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Despite recognition of the influence of socio-spatial networks on disaster recovery, limited data-
driven evidence exists regarding the nature of this relationship. To address this knowledge gap,
this study investigated the duration of the human mobility recovery process and its relationship
with hazard-exposure heterophily (as a measure for the resourcefulness of social ties) and various
other socio-demographic characteristics. We applied the concept of hazard-exposure heterophily
to the possibility of resource sharing, through social-spatial networks, between communities with
different hazard exposures. We used human movement patterns to measure recovery duration. To
understand the disparities during recovery, we examined the correlations between recovery dura-
tion and the social demographic characteristics of race and income caused by Hurricane Harvey
which made landfall in Harris County, Texas, on August 25, 2017. We discerned high/low haz-
ard-exposure heterophily through the use of a threshold-classification method, and we got four
clusters according to the flood-inundation percentage and social connectedness values. Then we
applied correlation analysis to analyze the relations between hazard-exposure heterophily/in-
come and recovery weeks among different income groups. The results revealed that hazard-
exposure heterophily considerably accelerates human mobility recovery in low-income areas, as
the hazard-exposure heterophily allows for the increased exchange of knowledge and resources
between members of diverse groups, ultimately accelerating the recovery process. The results of
this study could benefit local agents to better allocate recovery resources.

1. Introduction

Post-disaster human mobility recovery metrics are, in essence, virtual timestamps from which the length of time from the onset of
a natural hazard until the community returns to its pre-disruption state can be measured [1,2]. By analyzing the large-scale mobility
data, researchers can infer the length of time for a community to return to its pre-disruption state following a natural hazard from the
mobility patterns of a population [3]. Many factors influence a community's ability to return to pre-disaster status, for example, in-
come [4] and social disparities [5]. Hong et al. [5] found that low-income individuals were disparately affected by Hurricane Harvey,
and they are often the least able of any income group to evacuate to safer areas. Social networks provide both communication avenues
between users and, in the aggregate, proxy measures of disaster intensity. Most disaster management studies examined how social
connections are related to people's behaviors during the disaster, such as decision-making (Martin et al., 2017; [6,7,8]) and requests
for help. For example, during Hurricane Harvey, Hurricane Irma, and Hurricane Sandy, persons experiencing flooding/power outages
requested help via Twitter [9-11]. In addition, studies have found that social media community groups can affect people's reactions to
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an upcoming hazard (Shook and Turner, 2016; [6,8]). Social media platforms, such as Facebook and X (formerly known as Twitter),
can play a vital role in disaster management by providing platforms for affected people to build connections across space [12].

Most post-disaster recovery studies, however, measured each spatial unit as an isolated recovery event. In other words, such mea-
surements considered the recovery progress of a location as an independent process. Such characterization ignored the socio-spatial
networks that would influence disaster recovery through social connections and resource sharing across areas. While the disaster lit-
erature recognizes the importance of social connections in post-disaster recovery, there is a dearth of data-driven characterization of
the nature of the relationship between the properties of socio-spatial networks embedded in the community and the length of post-
disaster recovery. Currently, there is a limited understanding of the underlying mechanisms associated with the length of post-
disaster recovery from the perspective of socio-spatial networks. To tackle this issue, we applied hazard-exposure heterophily and so-
cio-demographic features to capture network-based measurements to determine whether these factors substantially impact human
mobility recovery duration in communities.

The general term of heterophily is defined as strong connections between a pair of communities with various characteristics (Liu &
Mostafavi, n.d.; [13,8]). Hazard-exposure heterophily captures the extent to which social ties would be resourceful to both communi-
ties when a disaster occurs (Liu & Mostafavi, 2022; [13,8]). The main premise of the concept of hazard exposure heterophily is that if
two areas with strong social ties are similarly impacted by a disaster, social ties would not be a resource to either. On the other hand,
if the hazard exposure of two areas is dissimilar, the social ties would be resourceful with people in low-hazard areas helping those in
high-hazard areas to expedite the recovery of the highly exposed community. In this study, we measured the strength of social con-
nections between two communities using Facebook (Meta) Social Connectedness Index data and accordingly quantified the resource-
ful tie rate based on the concept of hazard-exposure heterophily.

Although research on disasters acknowledges the vital role of social relationships and links in recovery after a disaster, there is a
notable lack of empirical analysis exploring the connection between the features of community-based socio-spatial networks and the
pace of post-disaster recuperation. To bridge this gap, this study examined the extent of resourceful ties using the concept of hazard-
exposure heterophily and evaluated its relationship with post-disaster recovery duration using data from the 2017 Hurricane Harvey.
Specifically, this study asked this research question: To what extent does the relationship between hazard-exposure heterophily and
the length of time for human mobility activities to resume pre-disruption status vary for different races or income backgrounds? To
answer this research question, we used social links from Facebook (now known as Meta) and flood inundation data to calculate haz-
ard-exposure heterophily and then examined the relationship with location-based human mobility data in Harris County, Texas, after
Hurricane Harvey. Our central hypothesis is that a greater degree of hazard-exposure heterophily can significantly shorten the dura-
tion of human mobility recovery. Statistical tests were conducted to learn if significant correlations exist between interactions among
communities with different socio-demographic features that affect human mobility recovery. This study used Zip Code Tabulation Ar-
eas (ZCTA) as the spatial units within Harris County and investigated their recovery durations based on hazard-exposure heterophily
and socio-demographic categories (race and income).

2. Background

The recovery process following a disaster can be categorized either as short-term or long-term [14,15]. Long-term recovery is
characterized by such factors as the economic viability of businesses. Short-term recovery, as measured by human mobility patterns,
refers to the period of time starting immediately after a disaster impact until the time local residents resume pre-disaster normal
lifestyle patterns, the assumption being that resuming human mobility patterns indicates that essential infrastructures have been re-
paired (Coleman et al., 2021). The ability of people to move around during a disaster is often limited due to road and bridge damage
making it difficult for people to get necessary supplies or to evacuate the area [2,13,8,16].

One method to quantitatively measure post-recovery progress is to compare post-disaster patterns of visitation to points of interest
(POIs) with pre-disaster activity to determine the number of days before visits returned to pre-disaster visitation patterns [17]. Analy-
sis of POI visitation over time provides valuable insights into how lifestyles are affected by changes in the built environment and the
status of businesses [8,17,18]. Thus, patterns of visits to POIs can be a proxy measurement of recovery progress [1,8,17,18,19]. By
tracking visits to POIs, researchers can measure recovery duration at distinct locations and thus identify places that may need in-
creased external resources during recovery. In addition, studies also show that the recovery duration varies with business type, and
that essential businesses, such as gas stations and grocery stores, recovered more quickly than non-essential businesses, such as enter-
tainment [1,8,18,20]. Following the framework of existing studies, we adopted visits to POIs as our post-disaster recovery measure-
ment. We measured the duration of impact in terms of recovery duration, the end of which is indicated by the return of human activ-
ity to pre-disaster levels. Analyzing such recovery time after hazards can better identify communities that may need external help,
and hence can improve resource allocation in recovery [1,21].

Aggregated and de-identified social media data sources reveal social connections both qualitatively and quantitatively. Due to its
timeliness, social media data have been widely utilized in disaster management [9,22,23]. By tracking social media posts and conver-
sations, researchers can gain insights into how people respond to disasters. For example, Facebook social links were used to study het-
erophily in Winter Storm Uri [13,8]. In the aftermath of a disaster, social media allows people to connect with others across space and
time, enhancing their ability to cope with bad situations [24]. In general, communities with strong social connections with their
neighbors are more likely to receive help from other communities, which accelerates a community's recovery [25]. Therefore, build-
ing strong social connections with other communities can be especially helpful during disasters, when a community needs to rely on
others for sharing information, providing support, and connecting people in need with services [13,8]. For example, Lee et al. (2022)
found that hazard-exposure heterophily predicts that communities in high-hazard-exposure areas seek support from well-connected
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low-impact areas. Hazard-exposure heterophily refers to the phenomenon in which communities with varied degrees of hazard expo-
sure allocate their resources to help other communities during post-disaster recovery. In disaster management, hazard-exposure het-
erophily is a vital indicator for assessing community recovery duration, as higher hazard-exposure heterophily communities are able
to receive more assistance after a disaster. Besides the hazard-exposure heterophily, other socio-demographic characteristics were as-
sociated with a community's post-disaster recovery duration, such as race and income (Liu & Mostafavi, 2022; [26,27]). Social dispar-
ity is also found to affect post-disaster recovery [28]. Income is positively correlated with the recovery duration [21,29]. In this study,
we examine human mobility recovery duration and its relationships with hazard-exposure heterophily and socio-demographic char-
acteristics.

3. Study area and data materials

3.1. Study area

During Hurricane Harvey, wind gusts reaching 150 miles per hour resulted in localized destruction and intense rainfall. To miti-
gate the risk of catastrophic dam failure, controlled water releases from the Addicks and Barker Reservoirs were carefully executed.
Although this action led to additional flooding in certain areas, it was a necessary measure to avert more severe consequences associ-
ated with potential dam breaches. This strategic decision was vital to prevent an even greater scale of flooding and infrastructure
damage across the impacted regions [30,31]. Although its center passed south of the Houston metropolitan area, heavy rains fell near
a stationary front on the north and east sides of the storm, causing flooding in northeast Houston [32]. More than 100 cm of precipita-
tion fell in the heavily populated Houston region of Texas, causing severe flooding and damage to onshore industrial facilities [33].
Harris County, core of the Houston metropolitan area, had a population of 4.7 million in 2017, making it the most populous county in
Texas (US Census Bureau, 2022). Hurricane Harvey caused a significant displacement of low-income rental housing residents, result-
ing in an 18 % increase in homelessness one year after Hurricane Harvey [34]. Harvey caused residential structural damage of more
than $77.2 million, while residential damage was valued at more than $36.9 million in Houston (Hicks & Burton, 2017). This study
uses Harris County during post-Hurricane Harvey recovery as a case study.

3.2. Data description

The datasets used in this study are shown in Table 1 and Fig. 1. Our research is analyzed based on ZCTA level, and the ZCTA
dataset is obtained from the U.S. Census Bureau [35], contains generalized representations of United States Postal Service Zip Code

Table 1
Data source description.

Data Source

ZIP Code Tabulation Areas map U.S. Census Bureau's Topologically Integrated Geographic Encoding and Referencing
Flood inundation Federal Emergency Management Agency maps

Socio-demographic characteristics U.S. Census Bureau table data

Points of interest (POI) Safegraph, Inc.

Meta Social Connectedness Index Data from Meta (formerly Facebook)

Data Components

= R - = 0

Houshold Median
Inome

Meta Friendship

Different Races POI Data ALl U Connections

\J
® ° =
o
Socio-demographic . Flood Inundation Social Connectedness
Characteristics Essential POI Data Map Index (SC)

Fig. 1. Data Components of the Study. Four datasets were used for further analysis: 1. Socio-demographic characteristics, encompassing household median income
and various racial demographics. 2. Essential points-of-interest (POI) data, derived from POI datasets. 3. Flood inundation map, created by aggregating flood inunda-
tion data onto a ZIP Code Tabulation Area (ZCTA) map. 4. Social Connectedness Index, calculated based on Meta friendship connections.
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service regions [35]. Each polygon in the map represents a Zip Code unit, the spatial unit used in this study. According to this dataset,
Harris County contains 144 ZCTAs [35].

We merged flood inundation, POIs, and socio-demographic characteristics into the ZCTA map. The socio-demographic character-
istics data (US Census Bureau, 2022) contained racial composition and median income spatial units in 2017. Meta Social connected-
ness Index is from meta datasets.

3.2.1. Flood inundation map

Flood inundation data, provided by the Federal Emergency Management Agency, was downloaded from Hydroshare (FEMA,
2020). This dataset provides gridded depth information at a resolution of 3-m by 3-m. FEMA provides information on the severity of
floods based on the effect of depth and velocity [36], as well as flood-inundation maps based on high-water marks. Flood-inundation
maps delineate the areas affected by flooding and their maximum depths during a natural hazard event (USGS, 2022). Fig. 2 is the
flood inundation map overlain with ZCTA boundaries.

3.2.2. Socio-demographic characteristics

3.2.2.1. Household median income. Fig. 3 displays the distribution of median household income across Harris County, Texas. It is ap-
parent that communities situated to the north and southeast of the downtown area are predominantly lower-income, whereas regions
to the east of downtown, as well as those bordering the county's perimeter, are typically associated with higher income levels.

3.2.2.2. Race composition. We considered race as another component of socio-demographic characteristics. We considered the per-
centage of White and Black populations in each ZCTA area as one feature of socio-demographic characteristics.

3.2.3. Essential POI data

The human mobility recovery time is considered an indicator for purposes of post-disaster human mobility recovery metrics,
which are drawn from POI datasets. This POI dataset was obtained from Safegraph, a database company that provides detailed busi-
ness information about geographic coordinates, street addresses, and the North American Industrial Classification System business
classification code of the business.

Following the methods established by existing studies [17], we categorized POIs as essential or non-essential for recovery. In gen-
eral, essential POIs provide services without which local people's normal life would be disrupted, including sixteen types of businesses

Fig. 2. Flood inundation map of Hurricane Harvey with ZCTA boundaries in Harris County, Texas.
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Fig. 3. Income Level distribution based on median income in Harris County, Texas. Low- and high-income regions have been delineated according to the countywide
median household income, which stands at $55,855. High-income zones are represented in blue, while red indicates areas with lower income. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of this article.)

for emergency preparedness, emergency response, lifestyle and well-being, and recovery activity (Fig. 4). Recovery duration was de-

termined by the length of time visit patterns to these essential POIs returned to pre-disaster levels at the ZCTA level in Harris County
after Hurricane Harvey.

3.2.4. Social Connectedness Index (SCI)
The Facebook (now known as Meta) Social Connectedness Index (SCI) is based on social connections on Facebook [37]. The con-
nectivity between two locations was measured by the intensity of local users’ activities on Facebook. The location information of each
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Fig. 4. Four types of sixteen essential POI categories.



X. Lietal International Journal of Disaster Risk Reduction 108 (2024) 104537

user was based on their Facebook profile information, activities, location information, and device and connection data [37]. Equation
(1) shows the calculation for the SCI:

FBCannectianSiJ

Social_Connectedness; = B %FB
Useri X Userj

(€Y

where i and j are two regions. FB_User; and FB_User; reflect the numbers of Facebook users in locations i and j, respectively.
FB_Connections;; denotes the number of Facebook friendship ties between i and j. Social Connectedness;; evaluates the probability
that a user in location i and a user in location j are connected in Facebook activities. In this study, we adapted this measurement and
applied it to measure social connectedness between two ZCATs.

4. Methodology
4.1. Research approach

Fig. 5 presents a synopsis of the research methodology in this investigation. Initially, we handled four distinct datasets: socio-
demographic traits, critical POI data, flood inundation mapping, and SCI (Social Connectedness Index). In the data processing phase,
we consolidated the essential POI information to deduce the recovery time of human mobility. Calculation of the proportion of
flooded areas was determined at the Zip Code Tabulation Area level. The rate of resourceful connections was derived from the SCI.
For the analytical phase, we used threshold-based classification using the flood inundation proportion and resourceful tie rate to cat-
egorize the ZCTAs into four disparate strata of hazard-exposure heterophily. Ultimately, statistical approaches were employed to

LR 2 e £

Houshold Median Meta Friendship

Inome Different Races POI Data Foodiintededion Connections
Datasets \ /
\J
® ® =
o
Socio-demographic . Flood Inundation Social Connectedness
Characteristics Essential POI Data Map Index (SCI)
v l
=== %
Data =7 ﬁ 5’ ©
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Human Mobility Flood Inundation Resourcefull Tie
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= :-»/7_ threshold-classification
Data A
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Analyze e

Hazard-exposure

heterophily

o o Statistical Significance in Pearson,
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L

Fig. 5. Overview of the research approach.
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probe the dynamics among hazard-exposure heterophily, timelines for the resumption of human mobility, and socio-demographic
factors. This examination aims to reveal the influence of hazard-exposure heterophily and socio-demographic features along the
length of human mobility restoration, using trend line assessment and analysis of statistical significance.

4.2. Flood inundation percentage

We used ArcGIS Pro to calculate the flood inundation area percentage of each Harris County ZCTA. The histogram plot shows the
flood inundation percentage (Fig. 6) to be between 0 % and 45 %, with a median value 4.7 %. We grouped ZCTAs into high and low
flood inundation exposure based on their rank above or below this median value. Fig. 7 illustrates the geographical distribution of ZC-
TAs. Most high flood inundation areas (blue) are located in eastern Harris County due to its proximity to the coast and its complicated
networks of rivers and wetlands. Most low flood inundation areas (green) are located in the western part of Harris County, located in-
land and distant from the coast.

4.3. Human mobility recovery time

We incorporated essential POI data as defined by Podesta et al. [17] and followed the methodology of Coleman et al. (2023) to cal-
culate daily visits from each home Census Block Group (CBG) to various POlIs, as illustrated in Fig. 8. Our human mobility data was
sourced from Spectus, which specializes in providing highly accurate and frequently updated location data. To categorize each POI,
we used SafeGraph's dataset, which aligns with the North American Industry Classification System (NAICS) codes. This dataset in-
cludes detailed spatial coordinates and pertinent information about POIs, such as brand names, operating hours, and exact geographi-
cal details. Building upon SafeGraph's foundational data, we further refined the spatial definition of each POI using Microsoft's open-
building footprint dataset, which offers precise polygon geometries for buildings in the Houston area derived from satellite imagery.

Recovery time is measured based on the number of weeks needed to return to the baseline levels of visits to essential POIs [1,17].
We defined August 1 through August 21, 2017, as the pre-hurricane period. The baselines of the 16 categories were calculated as the
seven-day moving average of the number of daily visits to several categories of POIs during the pre-hurricane period. This baseline
provides a standard reference point for pre-hazard POI visitation patterns. After the disaster, the trend is a slow resumption of pre-
disaster patterns. The systemic point of inflection shown in Fig. 9 is the point of lowest percentage change of POIs visits [38]. The per-
centage change reveals the difference between the pre- and post-hurricane daily visits for each POI category. In Equation (2), the
daily value represents the observed daily visits to the POL The base value is the standard reference value for normal activity in the
pre-hazard period. The change percentage then represents changes in the number of daily visits for each category. We used a seven-
day rolling average so that the average percent change was be taken for seven-day periods:

7 Daily value — B Il
7 — day Rolling,y, = Z < aily value — Base value

- ) x 100% )

Base value

The resilience curves (aggregated in Fig. 9) for each POI category were calculated by plotting the seven-day rolling averages. The
duration of recovery in our study dataset is the duration of impact shown in Fig. 8. We calculated the average amount of time required
for each area to recover. The recovery week occurs when the seven-day rolling average reaches 90 % of the baseline values. We aggre-
gated the POI datasets from the census block group (CBG) level to the ZCTA Level in ArcGIS Pro. If the centroid of a CBG is located in-
side a ZCTA, we consider this CBG as belonging to this ZCTA.

N i
A .
N .

30 A

Number of ZCTAs

20

10 A

(4] 5 10 15 20 25 30 35 40
Flood Inundation Percentage(%)

Fig. 6. Histogram plot of flood inundation percentage. The vertical red line represents the median value of flood percentage, 4.7 %. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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B High Flood Inundation Zone
I Low Flood Inundation Zone
No Flood Inundation Zone

Fig. 7. High/low flood inundation map of Harris County, Texas. Blue represents high flood inundation zone, green represents low flood inundation zone, and white
represents no inundation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. Visits to POIs.
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Fig. 9. Duration of impact based on the frequency of POIs visited.

4.4. Hazard-exposure heterophily calculation

In this study, hazard-exposure heterophily was calculated using the Facebook Social Connectedness Index (SCI) and flood inunda-
tion percentages. As described in Section 4.2, we grouped all the ZCTAs into high and low flood inundation zones based on the me-
dian flood inundation percentage. In Fig. 10, blue-shaded areas represent high-flood inundation areas, while green-shaded areas de-
note low-flood inundation areas.

The concept of hazard-exposure heterophily describes the social connections among populations residing in spatial areas with dif-
ferent levels of hazard exposure. Conversely, social connections among population sharing similar hazard exposure are representative
of hazard exposure homophily (Liu & Mostafavi, n.d.; [13,8]). When considering flood inundation as a feature of hazard exposure
within a community, heterophily is found between high-flood inundation communities and low-flood inundation areas, while ho-
mophily is found between pairs of high-flood inundation or low-flood inundation areas. When strong social ties exist between areas
with varying levels of flood impact, the area with lower exposure to flood can effectively offer help to areas in high-flood zones. It is
understood that those in regions with less exposure can offer prompt support for recovery and play a significant role in the sustained
reconstruction of more heavily affected communities.

— : Heterophily: Social ties between dissimilar hazard-exposure areas
— : Homophily: Social ties between similar hazard-exposure areas

The SCI quantifies the strength of social connection between two Meta users [37]; however, this study necessitates the aggregation
of individual connection intensity to the ZCTA level. To achieve this, we adopted the concept of “resourceful tie rate,” as introduced
by Liu and Mostafavi [39], to capture the social connectedness strength between two communities in a given social-spatial network.
The resourceful tie rate measures the extent of connections a high-hazard-exposure region could receive from low-hazard-exposure
regions under the assumption that low-hazard-exposure regions can provide resources for post-disaster recovery. Each ZCTA is de-
fined as a node in the social-spatial network, with the resourceful tie rate acting as a node attribute. Let pi (i = 1, 2, ..., n) be the re-
sourceful tie rate for the ith ZCTA, and p; is calculated by Equation (3):

Z]-SLSOClalConnectednessi,/'

i 3

- n .
Z/-: 1 SOClalCt)nneclednessi.j

where p; represents the resourceful tie rate of ZCTA i, quantifying the extent to which area i can receive resources from low-hazard-
exposure areas (L). As shown in Eq. (3), p; is calculated as the ratio of social connectedness originating from low-flood-inundation ar-
eas (L) in relation to the total social connectedness (n). This ratio shows the degree to which a ZCTA can draw resources from low-
hazard-exposure areas.

The resourceful tie rate can function as an indicator of community resilience within socio-spatial networks, as the connection of
high-hazard-exposure areas with low-hazard-exposure areas enables communities to access external resources during post-disaster re-
covery. We first calculated the resourceful tie rate flood inundation levels then derived the hazard exposure heterophily metric. High-
hazard-exposure heterophily is present when an area experiences significant flood inundation and a high resourceful tie rate, indicat-
ing its ability to receive resources from low-flood-inundation areas. The p; value represents the extent of hazard-exposure heterophily.
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B High Flood Inundation Zone
I Low Flood Inundation Zone
No Flood Inundation Zone

Fig. 10. Illustration of hazard-exposure heterophily.

For ZCTAs affected by flood inundation, a higher pi implies a greater degree of hazard-exposure heterophily within a region, signify-
ing capacity to establish connections with individuals in other areas and obtain the information and assistance necessary during nat-
ural hazard events.

4.5. Statistical tests analysis

We ran Pearson, Spearman, and Kendall statistical tests to investigate the relationships among income, heterophily, and recovery
weeks durations. Pearson's correlation coefficient [40], denoted r, describes the direction and degree of the linear relationship be-
tween two continuous variables (Chok, n.d.; [41]). For example, a positive correlation coefficient means a linearly increasing rela-
tionship relates to the variables, and a negative correlation indicates a linearly decreasing relationship between variables [41]. Spear-
man's rank-order correlation coefficient [42], denoted p, is a rank-based version of Pearson's correlation coefficient. This non-
parametric measure of correlation evaluates how well a monotonic function can describe a relationship between two different vari-
ables [41]. Like Spearman's rank-order correlation coefficient, Kendall's tau correlation coefficient, denoted t, aims to capture the re-
lation between two ordinal variables [41,43,44]. In all three methods, the coefficients range from —1 to +1. The closer the coefficient
is to 0, the weaker the relationship is between the two variables. Pearson's correlation coefficient assesses the linear relationship be-
tween two variables; Kendall's and Spearman's correlation coefficients evaluate the monotonic relationship. In contrast to linear con-
nections, in which two variables move together at a constant rate, monotonic relationships quantify the likelihood that two variables
will move in the same direction but not necessarily at the same rate.

5. Results and discussion

5.1. Recovery measurement based on trips to POIs

Fig. 11 shows the recovery duration in each ZCTA area after Hurricane Harvey in Harris County, Texas. For a ZCTA, the darker
the hue of the area on the map, the longer the area took to recover. This map reveals that the northern part of Harris County has the
longest recovery duration. In contrast, the downtown area and the west side of Harris County had the shortest duration of recovery.

10



X. Lietal International Journal of Disaster Risk Reduction 108 (2024) 104537

The Recovery Weeks in Harris County(ZCTAs)
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Fig. 11. The recovery weeks in each ZCTA area after Hurricane Harvey in Harris County, Texas. The darker the color of the area on the map, the longer the area took
to recover. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

One possible cause is that those communities are located near major riverways, which are more vulnerable to flooding, causing ex-
tensive damage and requiring a longer recovery period.

Table 2 shows the median recovery weeks in each cluster. We can see that cluster 3 has the fewest recovery weeks, which is 8.53.
Cluster 1 has the most recovery weeks, which is 10.15.

5.2. Hazard-exposure heterophily

In this study, we used the threshold-classification method to group the ZCTAs into four clusters according to flood inundation per-
centage and resourceful tie rate using median values as the criteria (Fig. 12). The threshold is the median value of the flood inunda-
tion percentage (6.48 %) and resourceful tie rates (0.44 %). Clusters 1 and 2 are assigned to low flood inundation areas and clusters 3
and 4 are assigned to high flood inundation areas. The right panel of Fig. 12 illustrates the spatial distribution of four clusters. Most of
the ZCTAs in the eastern part of Harris County are within clusters 3 and 4. The southwest part of Harris County, which is the urban
center, is mainly composed of ZCTAs that fall into clusters 1 and 2.

Cluster 1 has a low flood-inundation percentage and higher resourceful tie rates, which means it is less affected by the flooding. It
is strongly connected with other low-flood-inundation areas, however, meaning that its population is less likely to help high-flood-
inundation communities. This suggests that cluster 1 has low hazard-exposure heterophily; in other works, cluster 1 communities
were strongly connected with similarly affected groups.

Table 2
Median recovery weeks in each cluster.

Cluster Median recovery (weeks)
1 10.15

2 9.32

3 8.53

4 9.54
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Spatial distribution of Cluster 1-4
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Fig. 12. Left: Four clusters based on flood-inundation and resourceful tie rates. The vertical red line is the median flood-inundation percentage; the horizontal red
line is the median resourceful tie rate. Right: Spatial distribution of the four clusters. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)

In cluster 2, the flood-inundation percentage is lower than the median percentage (4.7 %), and the resourceful tie rates are also
lower, meaning cluster 2 is less affected by the flooding and receives less help from low-hazard-exposure areas.

Cluster 3 and cluster 4 are higher flood-inundation percentage areas, which are higher than the median value. In cluster 3, the
flood-inundation percentage is higher, and so are the resourceful tie rates. This means that communities in this cluster were heavily
flooded, but they were strongly connected with low-flooded communities. Therefore, they were likely to receive external resources
from low-hazard-exposure areas, giving cluster 3 communities a high heterophily.

Cluster 4 has a high flood-inundation percentage but lower resourceful tie rates, meaning it experiences high floods, but residents
were less connected with low-flooded communities. This indicates that Cluster 4 is a lower hazard-exposure heterophily community.

5.3. Correlation analysis

In this research, the connection between recovery duration and hazard-exposure heterophily across different income groups was
interrogated using Pearson, Spearman, and Kendall correlation analyses. Displayed in Fig. 13, the heatmaps demarcate the correla-
tions with corresponding p-values, where blue indicates a negative relationship and red a positive one. Deeper shades connote
stronger correlations.

For instance, the Pearson correlation in low-income areas reveals a negative coefficient (—0.34) between hazard-exposure het-
erophily and the duration of recovery weeks, implying that increased heterophily correlates with shorter recovery times. This pattern

is supported by all three correlation metrics (Spearman r = —0.31, Pearson p = —0.34, Kendall t = —0.22), underscoring a statisti-
cally significant negative association in low-income zones. Conversely, in high-income areas, there is a notably negative correlation
between median income and recovery weeks (Spearman r = —0.49, Pearson p = —0.40, Kendall t = —0.36), indicating that higher

median incomes correspond with faster recovery. Notably, a significant positive relationship exists between the percentage of Black
residents and recovery weeks, as demonstrated by the Spearman and Kendall correlations; this relationship, however, is not captured
by the Pearson correlation.

P-values are denoted by asterisks: “for p < 0.01(***), forp < 0.05 (**), and forp < 0.1(*),” From Fig. 13, we can see that the
correlation between hazard-exposure heterophily and recovery weeks in low-income areas is —0.34, with a p-value of 0.089, which
means this correlation is statistically significant. While in high-income communities, hazard exposure heterophily and duration of re-
covery weeks have a p-value of 0.22, which does not show a statistically significant correlation. On the other hand, the correlation be-
tween median income and recovery weeks are all negative with significant P-values (r = —0.49, p-value = 0.012; p = —0.4, p-
value = 0.041; © = —0.36, p < 0.01). This indicates that median income promotes human mobility recovery in high-income re-
gions. In general, income is a factor correlated with recovery duration, which is consistent with existing literature [45]. Moreover, in
low-income communities, hazard-exposure heterophily is more significantly correlated with recovery duration than that in high-
income communities. One possible explanation is that people with higher incomes tend to have more resources to rebuild their lives
and more access to services and support networks that can help them recover from natural hazards. High-income communities are
typically better prepared for an oncoming hurricane by stocking more essential supplies. In low-income areas, however, residents
may not have sufficient supplies and thus need to ask for help from external resources [5]. In summary, while income consistently in-
fluences recovery duration, the impact of hazard-exposure heterophily is more pronounced in low-income communities, potentially
due to their reliance on external support and resources for post-disaster recovery.
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Fig. 13. Correlation of features from low-income and high-income areas. We included the Recovery Weeks, Hazard-exposure Heterophily, Median Income,
White Population Percentage, and Black Population Percentage as our features. Red represents a positive relationship; blue represents a negative relationship. The
darker the hue, the stronger the relationship. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this arti-
cle.)
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5.4. Discussion

The results of our research emphasize the significance of social connectivity in the context of disaster recovery, particularly within
economically disadvantaged neighborhoods. Our study reveals that the strength of social connections across different exposure lev-
els—what we term as hazard-exposure heterophily—has a more pronounced impact on the duration of recovery in low-income areas
than the high-income areas. This highlights the importance of resourceful social ties, especially in low-income areas. Low-income
populations typically have limited access to resources that could help them prepare for the storm and its aftermath. Many low-income
communities rely on outside assistance to rebuild and recover from the devastation caused by disasters [46]. As a result, external as-
sistance plays a crucial role in helping poorer communities recover from disasters. From this perspective, hazard-exposure het-
erophily can help plan community-to-community resource allocation in post-disaster recovery.

Expanding on this insight, our analysis delineates four distinct clusters, using the threshold-based classification method, each with
unique characteristics and needs that can inform specific disaster response and recovery strategies. Cluster 1 and Cluster 2 all exhibit
lower flood inundation percentages. Cluster 1, however, experienced the highest number of recovery weeks, which could be due to its
lowest hazard-exposure heterophily. After all, although it experiences a lower area flood-inundation percentage, it still has higher re-
sourceful tie rates. Cluster 2 has the second shortest number of recovery weeks, and it has lower resourceful tie rates. For these com-
munities, prevention strategies can focus on leveraging existing social networks to distribute resources and information during disas-
ters. These communities can act as resource hubs, providing supplies, shelter, and support to more heavily impacted areas. In Cluster
3, the combination of high impact from flooding and strong external connections, as well as the shortest number of recovery weeks,
suggests that reinforcing these networks and improving infrastructure could significantly reduce disaster impacts. Cluster 4, facing
high floods with few resourceful ties, requires targeted efforts to build community resilience and connect with external support net-
works. Addressing the unique characteristics of each cluster can lead to more effective disaster response, leveraging the strengths of
well-connected communities and supporting those in greater need, ultimately enhancing overall community resilience and resource
distribution.

6. Conclusion

The intent of this study was to investigate the relationship between socio-spatial networks and the duration of post-disaster recov-
ery. Recognizing the significant role social ties play in the aftermath of disasters, this research sought to fill a gap in the empirical
analysis of how socio-spatial network characteristics impact recovery times with different socio-characteristics. We focused on haz-
ard-exposure heterophily as a key feature of these networks, examining how it interacts with socio-demographic factors to influence
the duration of human mobility recovery. We first used resourceful tie rate to measure the possibility of receiving external help from
low-hazard exposure areas. Then we identified four clusters with different levels of hazard-exposure heterophily based on their haz-
ard exposure and resourceful tie rate. Finally, we considered socio-demographic characteristics and analyzed how these features were
correlated with human mobility recovery.

In light of the findings, this research offers significant insights into the intricate dynamics of post-disaster recovery, particularly
the role of socio-spatial networks. The results revealed that hazard-exposure heterophily considerably accelerates human mobility re-
covery in low-income areas, as the hazard-exposure heterophily allows for the increased exchange of knowledge and resources be-
tween members of various groups, ultimately accelerating the recovery process. In addition, communities with higher median income
experience significantly faster recovery.

It is worth noting that this research has some limitations. First, we considered only race and income for the socio-demographic
characteristics. Other socioeconomic or demographic characteristics, however, were also found to be associated with recovery dura-
tion: age, ethnicity, and education ([47,48]; Aldrich et al., 2012). Future studies could further examine correlations with other char-
acteristics to achieve a better understanding of the nuances of disaster recovery. Second, we used only essential POI datasets to calcu-
late recovery weeks. Early-warning signals detected from the essential POIs visits appeared earlier than those from non-essential POIs
[19,20]. Communities can have different recovery priorities in terms of essential or non-essential businesses [8,18]. Third, our analy-
sis was limited to connections within Harris County, potentially restricting the calculation of resources beyond the study area. Future
studies could broaden the scope to assess resource tie rates more comprehensively. Fourth, we considered flood-exposure percentage
to define hazard-exposure heterophily, which will possibly limit the real outcomes of a hazard. Future studies can adopt other
datasets that consider other impact data. Finally, the social connection measurement was based on Facebook connections. Although
social media platforms, such as Facebook, have provided good measurements for social connections, the issue of representativeness
remains unsolved [6,8,49,]. Future research could focus more on how to leverage multiple data sources to achieve a better population
sample for social connection measurements.

In summary, this study presents a nuanced understanding of the interplay between socio-spatial networks and recovery duration,
offering valuable insights for disaster management, especially regarding the optimization of recovery strategies in low-income areas.

Code availability
The code that supports the findings of this study is available from the corresponding author upon request.
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