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ABSTRACT

Diffusion models can be viewed as mapping points in a high-dimensional latent
space onto a low-dimensional learned manifold, typically an image manifold. The
intermediate values between the latent space and image manifold can be inter-
preted as noisy images which are determined by the noise scheduling scheme em-
ployed during pre-training. We exploit this interpretation to introduce Boomerang,
a local image manifold sampling approach using the dynamics of diffusion mod-
els. We call it Boomerang because we first add noise to an input image, moving
it closer to the latent space, then bring it back to the image space through dif-
fusion dynamics. We use this method to generate images which are similar, but
nonidentical, to the original input images on the image manifold. We are able
to set how close the generated image is to the original based on how much noise
we add. Additionally, the generated images have a degree of stochasticity, allow-
ing us to locally sample as many times as we want without repetition. We show
three applications for which Boomerang can be used. First, we provide a frame-
work for constructing privacy-preserving datasets having controllable degrees of
anonymity. Second, we show how to use Boomerang for data augmentation while
staying on the image manifold. Third, we introduce a framework for image super-
resolution with 8x upsampling. Boomerang does not require any modification
to the training of diffusion models and can be used with pretrained models on a
single, inexpensive GPU.
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Figure 1: Boomerang via Stable Diffusion (Rombach et al., 2022). Code available here. Starting
from an initial image x0 ∼ p(x0), we add varying levels of noise to the latent variables according
to the noise schedule of the forward diffusion process. Boomerang maps the noisy latent variables
back to the image manifold by running the reverse diffusion process starting from the reverse step
associated with the added noise. The resulting images are local samples from the image manifold,
where the closeness is determined by the amount of added noise. While Boomerang here is applied
to the Stable Diffusion model, it is applicable to other types of diffusion models, e.g., denoising
diffusion models (Ho et al., 2020). Additional images are provided in Appendix A.1.
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1 INTRODUCTION

Generative models have seen a tremendous rise in popularity and applications over the past decade,
ranging from image synthesis, audio generation, out-of-distribution data detection, and reinforce-
ment learning to drug synthesis (Kingma & Welling, 2014; Goodfellow et al., 2014; Bond-Taylor
et al., 2021). One of the key benefits of generative models is that they can generate new samples
from an unknown probability distribution from which we have samples. Recently, with the ad-
vent of models such as Dall-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022a), and Stable
Diffusion (Rombach et al., 2022), a family of generative models known as diffusion models have
gained attention in both the academic and public spotlights. A key difference between diffusion
models and previous state-of-the art generative models, such as Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), is that diffusion models take a fundamentally different approach
to image synthesis, opting for a series of denoising objectives, whereas GANs opt for saddle-point
objectives that have proven to be difficult to train (Yadav et al., 2018; Mescheder et al., 2018; Dhari-
wal & Nichol, 2021).

Generative models estimate the underlying probability distribution, or manifold, of a dataset. As
such, generative models should be able to produce samples close to a particular data point—known
as local sampling on the manifold—-given that they have some knowledge about properties of the
data manifold. One application of local sampling is to remove noise from an image, especially in the
cases of severe noise, where traditional denoising methods might fail (Kawar et al., 2021). Another
application of local sampling is data augmentation, which involves applying transformations onto
copies of data points to produce new data points. These data points are still from the original
data distribution, but different enough from existing data to encourage the model to generalize in
downstream tasks such as classification (Wong et al., 2016). While established techniques in image
augmentation include crops, flips, rotations, and color manipulations, data augmentation techniques
for images and other data types are an ongoing field of research (Yang et al., 2022; Wen et al., 2021;
Feng et al., 2021).

Diffusion models are typically designed to sample globally on the image manifold instead of per-
forming local sampling. GANs (Goodfellow et al., 2014), VAEs (Kingma & Welling, 2014), and
NFs (Rezende & Mohamed, 2015) can sample locally to a limited extent. VAEs and NFs can project
a data point x into a latent vector z in their respective latent spaces and then re-project z back into the
original data space, producing an estimate x′ of the original data point. The key difference between
x′

VAE and x′
NF is that neither the encoder nor the decoder in a VAE is invertible, while the projection

function of an NF is invertible, resulting in x′
VAE ≈ x = x′

NF (Kobyzev et al., 2021). Meanwhile,
GANs generally do not learn a map from the data space to the latent space, instead opting to only
learn a map from the latent space to the data space; finding or training the best methods for GAN in-
version is an ongoing area of research (Karras et al., 2020; Xia et al., 2022). Previous work on GAN
inversion has shown that, without special attention to underrepresented data points during GAN
training, reconstruction of certain data points can fail (Yu et al., 2020). As such, VAEs and NFs
can perform local sampling of a data point x by projecting a perturbed version of its correspond-
ing latent z back into the original data space, while GANs also have the potential to do so, albeit
requiring a suitable GAN inversion method (Wang et al., 2022; Zhu et al., 2020). While the straight-
forward tractability of VAE- or NF-based local sampling is attractive, GANs currently outperform
VAEs and NFs on popular tasks such as image synthesis (Zhang et al., 2022; Sauer et al., 2022).
However, given the recent advent and popularity of diffusion models and the brittle nature of GAN
training (Saxena & Cao, 2021), local sampling using diffusion models is a promising avenue for
leveraging local sampling techniques towards problems such as anonymization, data augmentation,
and super-resolution.

We propose the Boomerang algorithm to enable local sampling of image manifolds using diffu-
sion models. The algorithm earns its name from its principle mechanism—using noise of a certain
variance to push data away from the image manifold, and then using a diffusion model to pull the
noised data back onto the manifold. The variance of the noise is the only parameter in the algorithm,
and governs how similar the new image is to the old image, as reported by reported by Ho et al.
(2020). We show how this technique can be used within three applications: (1) data anonymization
for privacy-preserving machine learning; (2) data augmentation; and (3) image super-resolution. We
show that by exploiting the proposed local sampling technique we are able to anonymize the dataset
and maintain better classification accuracy when compared with state-of-the-art generated data from

2



Under review as a conference paper at ICLR 2023

StyleGAN-XL (Sauer et al., 2022). For data augmentation, we obtain higher classification accu-
racy when trained on the Boomerang-augmented dataset versus no augmentation at all. Finally, we
show that Boomerang can be used for super-resolution at varying strengths depending on the desired
upsampling factor without the need to train different networks.

In Section 2 we discuss the training framework of diffusion models, introducing the forward and
reverse processes. In Section 3 we introduce our proposed local sampling method—Boomerang—
and provide insights on how the amount of added noise affects the locality of the resulting samples.
Finally, we describe three applications (Sections 4 to 6) that Boomerang can be used without any
modification to the diffusion pretraining.

2 DIFFUSION MODELS

Generative models aim to sample from a target probability distribution by using available samples
from the distribution as training data, e.g., images of human faces. Diffusion models—a class of
generative models—accomplish this by learning to reverse a diffusion (forward) process, which
involves adding Gaussian noise to the input image in T steps (Ho et al., 2020). Given an image from
the target distribution x0 ∼ p(x0), the forward process can be written as:

xt :=
√
1− βtxt−1 + ϵt, ϵt ∼ N (0, βtI), t = 1, . . . , T, (1)

where βt ∈ (0, 1), t = 1, . . . , T, is the noise variance at step t, which is typically chosen beforehand
(Song & Ermon, 2020). Since the transition from step t−1 to t is defined by a Gaussian distribution
in the form of q(xt|xt−1) := N (

√
1− βtxt−1, βtI), the distribution of xt conditioned on the clean

input image x0 can be expressed as a Gaussian distribution,

q(xt|x0) = N (
√
αtx0, (1− αt)I) , t = 1, . . . , T, (2)

with αt =
∏t

i=1(1− βi). During training, diffusion models learn to reverse the forward process by
starting at t = T with a sample from the standard Gaussian distribution xT ∼ N (0, I). The reverse
process is defined via a Markov chain over x0,x1, . . . ,xT such that

xt−1 := fϕ(xt, t) + ηt, ηt ∼ N (0, β̄tI), t = 1, . . . , T. (3)

In the above expression, fϕ(xt, t) is parameterized by a neural network with weights ϕ, and β̄tI
denotes the covariances at step t. Equation (3) represents a chain with transition probabilities defined
with Gaussian distributions with density

pϕ(xt−1 | xt) := N (fϕ(xt, t), β̄tI), t = 1, . . . , T. (4)

The covariance β̄tI in different steps can be also parameterized by neural networks, however, we
follow Luhman & Luhman (2022) and choose β̄t =

1−αt−1

1−αt
βt, that matches the forward posterior

distribution when conditioned on the input image q(xt−1 | xt,x0) (Ho et al., 2020).

To ensure the Markov chain in Equation (3) reverses the forward process (Equation 1), the param-
eters ϕ are updated such that the resulting image at step t = 0 via the reverse process represents
a sample from the target distribution p(x0). This can be enforced by maximizing—with respect
to ϕ—the likelihood pϕ(x0) of training samples where x0 represents the outcome of the reverse
process at step t = 0. Unfortunately, the density pϕ(x0) does not permit a closed-form expression.
Instead, given the Gaussian transition probabilities defined in Equation (4), the joint distribution
over all the T + 1 states can be factorized as,

pϕ(x0, . . . ,xT ) = p(xT )

T∏
t=1

pϕ(xt−1 | xt), pT (xT ) = N (0, I), (5)

with all the terms on the right-hand-side of the equality having closed-form expressions. To obtain
a tractable expression for training diffusion models, we treat x1, . . . ,xT as latent variables and use
the negative evidence lower bound (ELBO) expression for pϕ(x0) as the loss function,

L(ϕ) := Ep(x0)Eq(x1,...,xT |x0)

[
− log pT (xT )−

T∑
t=1

log
pϕ(xt−1 | xt)

q(xt|xt−1)

]
≥ Ep(x0) [− log pϕ(x0)] .

(6)

3



Under review as a conference paper at ICLR 2023

After training, new global samples from pϕ(x0) ≈ p(x0) are generated by running the reverse
process in Equation (3) starting from xT ∼ N (0, I). Due to the stochastic nature of the reverse
process, particularly, the additive noise during each step, starting from two close initial noise vectors
at step T does not necessarily lead to close-by images on the image manifold. The next section
describes our proposed method for local sampling on the image manifold.

3 BOOMERANG METHOD

Our method, Boomerang, allows one to locally sample a point x′
0 on an image manifold X close to

a point x0 ∈ X using a pretrained diffusion model fϕ. Since we are mainly interested in images, we
suppose that x0 and x′

0 are images on the image manifold X . We indicate how close to x0 we want
x′
0 to be by setting the hyperparameter tBoomerang. We perform the forward process of the diffusion

model tBoomerang times, from t = 0 to t = tBoomerang in Equation (1), and use fϕ to perform the
reverse process from t = tBoomerang back to t = 0. If tBoomerang = T we perform the full forward
diffusion and hence lose all information about x0; this is equivalent to simply sampling from the
diffusion model. We denote this partial forward and reverse process as B(x0, tBoomerang) = x′

0 and
call it Boomerang because x0 and x′

0 are close for small tBoomerang, which can be seen in Figure 1.

When performing the forward process of Boomerang, it is not necessary to iteratively add noise
tBoomerang times. Instead, we simply calculate the corresponding αtBoomerang and sample from Equa-
tion (2) once to avoid unnecessary computations. The reverse process must be done step by step
however, which is where most of the computations take place, much like regular (non-local) sam-
pling of diffusion models. Nonetheless, sampling with Boomerang has significantly lower computa-
tional costs than regular sampling; the time required for Boomerang is approximately tBoomerang

T times
the time for regular sampling. Moreover, we can use Boomerang to perform local sampling along
with faster sampling schedules, e.g., sampling schedules that reduce sampling time by 90% (Kong
& Ping, 2021) before Boomerang is applied. Pseudocode for the Boomerang algorithm is shown in
Algorithm 1. SDEdit (Meng et al., 2022) is an image editing method based on pretrained diffusion
models, which uses a similar algorithm as above. This method is specific to image editing and is not
used in the context of local sampling. To the best of our knowledge, Boomerang is the first work
which uses generative models for local sampling on image manifolds.

Algorithm 1 Boomerang local sampling, given a diffusion model fϕ(x, t)

Input: x0, tBoomerang, {αt}Tt=1, {βt}Tt=1
Output: x′

0
ϵ← N(0, I)
x′
tBoomerang

← √αtBoomerangx0 +
√
1− αtBoomerangϵ

for t = tBoomerang, ..., 1 do
if t > 1 then

β̄t =
1−αt−1

1−αt
βt

η ∼ N(0, β̄tI)
else

η = 0
end if
x′
t−1 ← fϕ(x

′
t, t) + η

end for
return x′

0

We present a quantitative analysis to measure the variability of Boomerang-generated images as
tBoomerang is varied. As an expression of this variability, we consider the conditional distribution of
samples generated through the Boomerang procedure conditioned on a noisy input image at step
tBoomerang, i.e., pϕ(x′

0 | xtBoomerang). According to Bayes’ rule, we relate this distribution to the distri-
bution of noisy images at step tBoomerang of the forward process,

pϕ(x
′
0 | xtBoomerang) ∝ pϕ(xtBoomerang | x′

0)p(x
′
0)

≈ q(xtBoomerang | x′
0)p(x

′
0)

= N
(√

αtBoomerangx
′
0, (1− αtBoomerang)I

)
p(x′

0).

(7)
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Figure 2: Using Boomerang on CIFAR-10 to change the visual features of images. These images
were created with a FastDPM Model.

The second line in the expression above assumes that by training the diffusion model via the loss
function in Equation (6), the model will be able to reverse the diffusion process at each step of the
process. The last line in the equation above, which follows from Equation (2), suggests that the
density of Boomerang-generated images is proportional to the density of a normal distribution with
covariance (1 − αtBoomerang)I times the clean image density p(x′

0), which is the same as the original
clean image density. The resulting density will have very small values far away from the mean
of the normal distribution. In addition, the high probability region of pϕ(x′

0 | xtBoomerang) grows as
1 − αtBoomerang becomes larger. This quantity monotonically increases as tBoomerang goes from one to
T since αt =

∏t
i=1(1 − βi) and βi ∈ (0, 1). As a result, we expect the variability in Boomerang-

generated images to increase as we run Boomerang for larger tBoomerang steps.

Since Boomerang depends on a pretrained diffusion model fϕ, it does not require the user to have
access to significant amount of computational resources or data. This makes Boomerang very ac-
cessible to practitioners and even everyday users who don’t have specialized datasets to train a
diffusion model for their specific problem; they just need to find a diffusion model which is trained
on diverse enough images, such as Stable Diffusion (Rombach et al., 2022). The main limitation of
using Boomerang, however, is that the practitioner must find a diffusion model which models the
image manifold well. If fϕ does not generate realistic images, then the output of Boomerang will
also suffer, as we have seen empirically. However, this is becoming less and less of a problem with
the advancement of diffusion models in image synthesis tasks. Overall, our Boomerang method
allows local sampling on image manifolds without requiring significant amounts of computational
resources or data.

4 APPLICATION 1: ANONYMIZATION OF DATA

4.1 DATA AND MODELS

In the following experiments we use the CIFAR-10 (Krizhevsky et al., 2009), FFHQ (Karras et al.,
2019), and ILSVRC2012 (ImageNet) (Russakovsky et al., 2015) datasets. For the ImageNet ex-
periments, we use a 200-class subset of ImageNet which we call ImageNet-200; these are the 200
classes that correspond to Tiny ImageNet (Russakovsky et al., 2015). We use Boomerang with
the Stable Diffusion (Rombach et al., 2022), Patched Diffusion (Luhman & Luhman, 2022),1 and
FastDPM (Kong & Ping, 2021)2 models, with some comparisons to the recent StyleGAN-XL (Sauer
et al., 2022). For the FastDPM model we use Boomerang on the STEP DDPM sampler with S = 100
steps out of the original 1000 steps.

4.2 ANONYMIZATION

Recent work has proved that, not only are overparameterized models (such as deep networks) vulner-
able to membership inference attacks (Shokri et al., 2017), but also that their vulnerability increases
as their number of parameters increases (Tan et al., 2022). Such attacks attempt to recover poten-
tially sensitive training data (e.g., medical data, financial information, and private images) given
only access to a machine learning model (e.g., a classifier) trained on that data. Local sampling

1We use this repository.
2We use this repository.
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Ground Truth
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Figure 3: Using Boomerang on ImageNet-200 to change the visual features of images. These images
were created with a Patched Diffusion Model.

presents a potential tool towards privacy-preserving machine learning by enabling the generation of
data points that are similar to real (i.e., sensitive) data, while being dissimilar enough to existing data
so as to not provide any true sensitive information, in the case of a membership inference attack.
The Boomerang algorithm not only enables user-friendly local sampling for anonymization, but also
enables the use of pre-trained and popular diffusion models in doing so, such as Stable Diffusion.

Stable Diffusion (Rombach et al., 2022) is a promising venue for Boomerang image anonymization,
capable of both image feature modification and image style transfer, having been trained on a vast
corpus of images containing a wide variety of images and styles (Schuhmann et al., 2021). Unlike
other diffusion models, Stable Diffusion uses a Latent Diffusion Model (LDM) to conduct all for-
ward and reverse diffusion processes solely in a latent space. As such, the Boomerang algorithm,
when used on Stable Diffusion, first projects an image into the latent space using the LDM encoder,
then adds noise to the latent vectors, next iteratively denoises the latent vectors via the LDM re-
verse process, and finally re-projects the denoised latent vectors back into the image space using the
LDM decoder. Figure 1 (and Figures 5 to 7 in Appendix A.1) showcase the ability of Boomerang
and Stable Diffusion to produce not only similar (i.e., anonymous) variants of an initial image, but
also dissimilar variants that share certain features (e.g., a cat resembling a person, or a bathroom
resembling a bedroom).

Additionally, Boomerang can be used to make entire datasets anonymized to varying degrees con-
trolled by the hyperparameter tBoomerang. Anonymization with people’s faces, for example, makes
intuitive sense, but anonymized images in a more general context, such as ImageNet, is less clearly
defined. In this work, an image x0 is anonymized to x′

0 if the features of each image are visibly
different so that an observer would guess that the two images are of different objects. For each
diffusion model, we pick tBoomerang so that the anonymized images are different, but not drastically
different from the original dataset images, for CIFAR-10 and ImageNet-200. These images are
shown in Figures 2 and 3. One potential alternative to using Boomerang-anonymized data is to use
completely synthetic data. The state-of-the-art generative model for image generation of both Im-
ageNet and CIFAR-10 is StyleGAN-XL. We compare our anonymized data to training a classifier
with completely synthetic data.

We show in Table 1 that training a classifier on these anonymized images achieves a performance be-
tween using real images and using the state-of-the-art ImageNet generated images from StyleGAN-
XL. This makes sense because, as we increase tBoomerang, we obtain samples that are more similar
to completely synthetic images. Therefore, anonymization of datasets is a better alternative for
preserving the identity of data than using generated data.

5 APPLICATION 2: DATA AUGMENTATION

Data augmentation for image classification is essentially done by sampling points on the image
manifold X near the training data. There are typical augmentation techniques, such as using random
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Table 1: Using Boomerang-generated data for data augmentation increases test accuracy of CIFAR-
10 and ImageNet-200 classification tasks. Using just the “anonymized” boomerang dataset for
classification performs between using real data and using state-of-the-art completely synthetic
StyleGAN-XL data.

Classification Training data Top-1 Test Top-5 Test
Task Accuracy Accuracy

CIFAR-10 CIFAR-10 data 87.8%
CIFAR-10 StyleGAN-XL generated data 81.5%
CIFAR-10 Boomerang (anonymized) data (ours) 84.4%
CIFAR-10 CIFAR-10 + Boomerang DA (ours) 88.4%
ImageNet-200 ImageNet-200 data 66.6% 85.6%
ImageNet-200 StyleGAN-XL generated data 50.2% 73.0%
ImageNet-200 Boomerang (anonymized) data (ours) 61.8% 83.4%
ImageNet-200 ImageNet-200 + Boomerang DA (ours) 70.5% 88.3%

image flips and crops, which exploit symmetry and translation invariance properties of images. Al-
though there are many techniques for data augmentation, they mostly involve modifying the training
data in ways which make the new data resemble the original data while still being different, i.e., they
attempt to perform local sampling on the image manifold.

Due to the intrinsic computational costs of diffusion models, we generate the augmented data before
training instead of on-the-fly generation during training. We pick tBoomerang to be large enough to
produce differences between the original dataset and the Boomerang-generated dataset, as shown in
Figures 2 and 3. We then randomly choose to use the training data or the Boomerang-generated data
with probability 0.5 at each epoch. We use ResNet-18 (He et al., 2016) for our experiments.

We show that using Boomerang data augmentation on CIFAR-10 classification increases test accu-
racy from 87.8% to 88.4%. For CIFAR-10 we pick tBoomerang = 40 and train for 100 epochs with
a multistage learning rate scheduler which reduces the learning rate by a factor of 10 at epochs 30,
60, and 80.3 We train using stochastic gradient descent with an initial learning rate of 0.1, Nesterov
momentum of 0.9, and weight decay of 5e−4. Since CIFAR-10 already has a significant amount of
samples per class (5,000) we see a small benefit from using Boomerang data augmentation.

We also perform data augmentation with ImageNet-200, described in Section 4.1, raising our test
accuracy from 66.6% to 70.5%. We pick tBoomerang = 75 and train for 90 epochs using the standard
PyTorch (Paszke et al., 2019) training script4 with a few modifications. We removed the standard
data augmentation of random resized cropping and random flips and instead resize each image so
that its smallest dimension is 256 followed by a centered crop to 224 × 224 in order to see if our
Boomerang data augmentation would be beneficial. Since ImageNet-200 has much fewer samples
than CIFAR-10 per class (approximately 1,300) and the classification task is harder, the greater
increase in performance due to our data augmentation makes sense.

6 APPLICATION 3: SUPER-RESOLUTION

6.1 VANILLA BOOMERANG SUPER-RESOLUTION

To perform super-resolution with Boomerang, one first upsamples a low-dimensional image using
any existing method (e.g., nearest-neighbor, linear interpolation), and then performs the Boomerang
algorithm (See Algorithm 1) on this image to recover the “original” image in high dimensional
space. The recovered image corresponds to a point on the image manifold that is “close” to the
noisy, upsampled image; the distance between the two images is controlled by tBoomerang.

While others such as Saharia et al. (2022b) and Rombach et al. (2022) have used diffusion models
to perform well on super-resolution tasks, Boomerang has two key advantages to vanilla diffusion

3We use code from this repository to implement the CIFAR-10 experiments.
4For our ImageNet-200 training we used the standard PyTorch training script.
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Initial 8x DS Image ncascade = 5

ncascade = 10 Ground Truth

Figure 4: Cascaded Boomerang super-resolution; tBoomerang = 50

models. The first is that Boomerang’s local sampling keeps the output “close” to the input on the
image manifold. The second is that adjusting tBoomerang allows easy “tuning” of how aggressively the
super-resolution enhancement is applied. This means that the same pretrained network can perform
super-resolution on images of different scales: the more downsampled or degregated the image, the
larger the value of tBoomerang one may choose to use to fill in more details of the final image. Fur-
thermore, by varying tBoomerang for different passes of the same input image, one can choose which
image has the best detail/variance tradeoff. This can be seen in Figure 8 in Appendix A.1, wherein
more aggressive super-resolution improves clarity at the cost of distance from the original image.
Empirical tests showed that setting tBoomerang ≈ 100 on the Patched Diffusion Model produced a
good balance between sharpness and the features of the original image, in some cases maximizing
PSNR.

6.2 CASCADED BOOMERANG SUPER-RESOLUTION

As tBoomerang is increased, the variance of the generated images dramatically increases due to diffu-
sion models’ stochastic nature (noise is added to data at each step t, see Algorithm 1). As a result,
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increasing tBoomerang enough causes the generated images to vary so much that they no longer re-
semble the input image at all (and thus we are not sampling from the image manifold as closely as
we desire). Even for modest values of tBoomerang, the large variance of added noise causes repeated
upsampling attempts to differ significantly. In this section, we propose a simple method that allows
the results of different upsampling attempts to be stabilized.

The cascade method describes repeated passes of an upsampled image through a diffusion network
with a smaller value of tBoomerang. If we denote the Boomerang upsampling method in the previ-
ous section on an input image xds to generate xsr = Bfϕ(xds), the method described here would
be xcascade = Bfϕ(Bfϕ(. . . (Bfϕ(xds)))). We designate ncascade as the number of times we repeat
Boomerang on the intermediate result. In addition to stabilizing independent super-resolution at-
tempts, the cascade method allows users to iteratively choose the desired upsampling detail—simply
stop repeating the cascade process once the desired resolution is achieved. An example of cascaded
super-resolution with Boomerang is shown in Figure 4, with more details found in Figure 9.

Super-resolution is an essential inverse image problem (Freeman et al., 2002; Wang et al., 2021), and
Boomerang is a quick and efficient method of performing super-resolution with diffusion networks.
As we have shown, Boomerang allows the user to easily adjust the strength of the super-resolution
by varying tBoomerang. The same procedure and pretrained network can thus be used to perform
super-resolution at any scale, for any image size smaller than the output of the diffusion network
(in our emperical tests, the image dimensions were 1024× 1024): for larger scaling factors, simply
increase tBoomerang or cascade the result until one achieves the desired fidelity. This also avoids the
issue of needing to train different networks for upsampling at different scales. As with the previous
applications, Boomerang’s generated images look realistic yet it requires no additional fine-tuning
or training.

Interestingly, performing super-resolution using Boomerang with some diffusion models worked
and with some it did not work. With Stable Diffusion, for example, empirical results had shown
that the vanilla Stable Diffusion network would not introduce detail into blurred images except for
large tBoomerang, at which point the generated images no longer strongly resembled the ground truth
images. This is likely due to the fact that noise is added in the latent space with Stable Diffusion but
in the image space with Patched Diffusion. Therefore, the noise model will impact which kinds of
inverse problems Boomerang will be effective on.

7 CONCLUSION

We have presented the Boomerang algorithm, which enables simple and efficient local image sam-
pling via diffusion models on a single GPU, without any re-training or modifications to the model.
We showed the applicability of Boomerang on various tasks, such as anonymization, data augmen-
tation, and super-resolution. Future works include continued experiments of its efficacy for data
augmentation, as well as applying the Boomerang algorithm to different domains of data, such as
audio and text. Additionally, recent work has shown that diffusion models can work with non-
stochastic transforms instead of additive Gaussian noise (Bansal et al., 2022; Daras et al., 2022), and
evaluating the Boomerang algorithms with such diffusion models would provide further insight into
the nature of local sampling using diffusion models.
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A APPENDIX

A.1 BOOMERANG-GENERATED IMAGES VIA THE STABLE DIFFUSION MODEL

Here we present additional images created via the Boomerang method that indicate the evolution of
the predicted image as we increase tBoomerang. These images are generated via the pretrained Stable
Diffusion model (Rombach et al., 2022) where instead of adding noise to the image space during
the forward process it is added in the latent space. Figures 5–7 showcase this where the images on
the bottom row show noisy latent variables whereas the ones on the top row indicate the Boomerang
predictions with increasing amounts of added noise from left to right, except for the rightmost image,
which is created by using an alternate prompt.

A.2 VANILLA BOOMERANG SUPER-RESOLUTION

Here we present the result of image super-resolution using the vanilla Boomerang approach. Fig-
ure 8 illustrates the results for image super-resolution. The top-left image in this figure shows the
low-resolution image, and the top-right and bottom-left images are the result of vanilla Boomerang
8x super-resolution when using tBoomerang = 100 and tBoomerang = 150, respectively. When com-
pared with the high-resolution image in the bottom-right corner of Figure 8 we observe that the
resulting image with tBoomerang = 100 is plausible while the result with tBoomerang = 150 seems
high-resolution, but is inconsistent compared to the original image.
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Initial Image
Back to t = 0
prompt = “cat”

Back to t = 0
prompt = “cat”

Back to t = 0
prompt = “person”

Back to t = 0
prompt = “cat”

Back to t = 0
prompt = “person”

Forward to t = 500 Forward to t = 800 Forward to t = 900

Figure 5: The Boomerang method using Stable Diffusion (T = 1000), as in Figure 1, with an image
of a cat. Note how, as tBoomerang

T approaches 1, the content of Boomerang-generated images strays
further away from the starting image.

Initial Image
Back to t = 0

prompt = “bedroom”
Back to t = 0

prompt = “bedroom”
Back to t = 0

prompt = “bedroom”
Back to t = 0

prompt = “bathroom”

Forward to t = 200 Forward to t = 500 Forward to t = 800

Figure 6: The Boomerang method using Stable Diffusion, as in Figure 1, with an image of a bed-
room.
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Initial Image
Back to t = 0

prompt = “person”
Back to t = 0

prompt = “person”
Back to t = 0

prompt = “person”
Back to t = 0

prompt = “dog”

Forward to t = 200 Forward to t = 500 Forward to t = 800

Figure 7: The Boomerang method using Stable Diffusion, as in Figure 1, with an image of Albert
Einstein.
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Initial 8x DS Image tBoomerang = 100

tBoomerang = 150 Ground Truth

Figure 8: Vanilla super-resolution with Boomerang.
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ncasc = 6 ncasc = 8 Ground Truth

ncasc = 6 ncasc = 8 Ground Truth

Figure 9: Cascaded boomerang examples with superresolution. For the top row, notice how the best
quality image is seen after 6 cascade steps, with tBoomerang = 50. After 8 cascades, details such as
the teeth begin to be removed. On the bottom row, however, ncasc = 8 provides better results and
more detail compared to previous steps. This shows the value in introducing the cascade method:
different images may have better results with more cascade steps than others
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