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ABSTRACT

While machine learning has advanced through massive parallelization, we identify
a critical blind spot: some problems are fundamentally sequential. These "inher-
ently serial" problems—from mathematical reasoning to physical simulations to
sequential decision-making—require sequentially dependent computational steps
that cannot be efficiently parallelized. We formalize this distinction in complexity
theory, and demonstrate that current parallel-centric architectures face fundamental
limitations on such tasks. Then, we show for first time that diffusion models despite
their sequential nature are incapable of solving inherently serial problems. We
argue that recognizing the serial nature of computation holds profound implications
on machine learning, model design, and hardware development.

1 INTRODUCTION

The scaling up of machine learning has driven remarkable progress (Achiam et al., 2023; Hoffmann
et al., 2022; Dosovitskiy et al., 2021; Kaplan et al., 2020; Krizhevsky et al., 2012), much of this has
come from parallel scaling: hardware shifted from CPUs to massively parallel GPUs, architectures
moved from RNNS to highly parallelizable Transformers, and algorithms increasingly exploit parallel
compute (Dao, 2024; Chowdhery et al., 2023; Jouppi et al., 2017). But some problems stubbornly
resist such advances (Aggarwal & Welleck, 2025; Kazemi et al., 2025; Li et al., 2024; Merrill &
Sabharwal, 2023b; Marcus, 2018; Chollet, 2019): for a class of tasks, only scaling serial computa-
tion—allowing models to perform more sequential steps—yields further progress. It seems not all
scaling is created equal.

The necessity of deep or sequential models for some problems has remained mostly theoretical
(Telgarsky, 2016; Merrill & Sabharwal, 2025; Chen et al., 2024a). Only recently has scaling test-
time computation become recognized, independently of train-time computation (Snell et al., 2024;
OpenAl, 2024; Wu et al., 2025). Yet this dichotomy still overlooks the role of parallel vs. serial
computation, which is central to this paper. The literature on scaling still commonly reports both
parameter counts and computation FLOPs each as a single number, treating width (parallel) and
depth (serial computation) interchangeably (Kaplan et al., 2020; Hoffmann et al., 2022; OpenAl,
2024; Snell et al., 2024).

Consider Sudoku—a number-placement puzzle requiring
each number 1-9 to appear once per row, column, and
subgrid—as a parable (Figure 1). Easy puzzles can be
solved by filling in many blanks independently, in parallel.
Hard puzzles, however, require a long chain of dependent
reasoning: each blank depends on the others. No algorithm
can shortcut the process.
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Solving many easy puzzles may cost the same total com- Figure 1: (Left) Many easy Sudoku puz-
putation as solving a single hard one, but only the easy zles, where the circled blanks can be
ones can be sped up with more processors. This distinc- filled independently in parallel. (Right)
tion—between problems that are “wide” (parallel) and A hard Sudoku with the same total com-
those that are “deep” (inherently serial)—is fundamental, pute, but the circled blanks are interde-
yet it is underappreciated in machine learning. pendent, requiring sequential reasoning.

*Equal contribution.
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The Serial Scaling Hypothesis (SSH)

For many important ML problems such as reasoning, decision making, and modeling dynamic
systems, increasing parallel computation alone is insufficient. Progress requires scaling the
amount of serial computation.

The appeal of this hypothesis is that it is both theoretically sound and practically relevant:

* Grounded in theory: Complexity theory proves some problems parallelize efficiently, while others
do not (Greenlaw et al., 1995).

» Explains past successes: The breakthrough of deep learning came from increasing network depth
(LeCun et al., 2015; Prince, 2023), and Chain-of-Thought (CoT) improves performance by adding
more serial steps (Kojima et al., 2022; Li et al., 2024; Merrill & Sabharwal, 2024).

* Connects to practice: The parallel—serial lens connects well to practice. Formal results show
bounded serial capacity in Transformers (Merrill & Sabharwal, 2023b) and expanded capacity with
CoT (Li et al., 2024; Merrill & Sabharwal, 2024), matching empirical gains (Aggarwal & Welleck,
2025; Muennighoff et al., 2025). Our new analysis extends this picture to diffusion: despite
thousands of iterations, diffusion models with a TC” backbone have only constant computation
depth, consistent with observed step-count plateaus (Ma et al., 2025; Ravishankar et al., 2024).

Why does this matter for machine learning? As we push toward more challenging tasks—advanced
reasoning, physical simulations, planning, and scientific discovery—we encounter problems that
parallel architectures (like Transformers and diffusion models) cannot efficiently solve. Recognizing
this has several implications:

* Model: Should we revisit architectures that allow for deeper or more sequential computation?
* Hardware: Is it time to invest in faster, lower-latency processors, not just more parallel ones?

* Task analysis: Can some inherently serial tasks be reformulated into other tasks with reduced serial
structure, while remaining useful in practice?

Contributions. We (i) introduce the Serial Scaling Hypothesis (SSH), (ii) prove that diffusion models,
despite many iterative steps, have limited serial capacity, (iii) prove that certain Markov decision
problems require serial computation for good decisions, (iv) identify machine learning problems
where serial computation is essential, and (v) discuss SSH implications for machine learning.

2 MACHINE LEARNING FROM THE SERIAL PERSPECTIVE

We first formalize inherently serial problems (Section 2.1), show they are not only theoretically valid
but also pervasive in machine learning (Section 2.2). We then examine why predominant ML models
struggle with these tasks (Section 2.3). Finally, we discuss broader implications for ML (Section 2.4).

2.1 COMPLEXITY FRAMEWORK FOR INHERENTLY SERIAL PROBLEMS

We focus our attention on binary decision problems which take in N input tokens and output either
“yes” or “no” as depicted in Figure 2(A). While seemingly limited, this framework includes all
problems with discrete responses, since making a discrete choice out of 2™ options is equivalent to
answering n yes/no questions. Figure 2 (C—E) show how cellular automata, many-body mechanics,
and open-ended question answering can be represented in this way.

We adopt the complexity class TC (Threshold Circuits) to formally distinguish between serial and
parallel problems, since it is the standard theoretical framework that formalizes the serial—parallel
divide, and it has strong connections to neural networks.

Definition 2.1 (Informal, see Appendix D). A problem is in TC" if, for inputs of size N, it can be
solved by a Boolean circuit with polynomial width and polylogarithmic depth, using basic logic gates
(AND, OR, NOT) plus majority gates. The class TC is the union of all such TC" for i > 0.
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A baseball and a bat together cost $1.10.
The bat costs $1.00 more than the ball.

> = = ~ Math question answering What is the price of the ball?
A Serial problem requires more output:
“depth” that grow with the problem s $0.05 :
size to solve. Al! baseball || and | |_F-{2/0) .

Figure 2: . (A) A decision problem has a variable-size input and a fixed-size output (e.g., “yes”/*no”).
(B) A serial problem requires deeper or more steps as the problem size grows. Examples of serial
problems are: (C) Cellular automaton: takes the initial state as input and outputs a discrete value
of the row N atcelli fori € {1,...,2N — 1}. (D) Many-body mechanics: takes initial positions
and momenta of each particle with time T as inputs and outputs the particle locations at time
T in a limited-precision space. (E) Math QA: takes a question as input and outputs the answer
autoregressively, with each output from a fixed set of possibilities.

Intuitively, a problem belongs to TC if and only if it can be solved by a multilayer perceptron (MLP)
with polynomial width and polylog depth, where polylog denotes poly(log N) (Parberry & Schnitger,
1988). A problem belongs to TC” if and only if it can be solved by a constant-depth MLP. We
consider TC problems as parallel problems, since there are sublinear-depth MLPs that solve them.

Although the universal approximation theorem (Cybenko,
1989; Hornik et al., 1989) shows that a 3-layer MLP with Al Problome
unbounded width can approximate any continuous func- Outside P
tion, a constant-depth MLP with only polynomial width
is far more limited, capturing only problems in TC’.

A common phenomenon in computational complexity is
that one can make a neural network shallower at the cost
of exponentially larger width (Valiant, 1983; Hajnal et al.,
1993; Sherstov, 2007; Williams, 2014; Oliveira & San-
thanam, 2015; Eldan & Shamir, 2016; Liang & Srikant,
2016; Cohen et al., 2016; Telgarsky, 2016; Merrill & Sab-
harwal, 2025). However, such exponential-sized networks Figure 3: The complexity classes are
are intractable in both memory and computation. We nested as TCC C TC' C ... C TC C P.
consider them as inefficient solutions in this paper. This Each containment is widely believed to
exponential depth-width trade-off underlines the impor- be strict. Problems in TC are parallel,
tance of characterizing neural networks depth and width while those outside are inherently serial.
separately, which motivates the Serial Scaling Hypothesis.

To formally characterize the problems in terms of depth, we have the following definition:
Definition 2.2. A problem P is parallel if P € TC; otherwise, it is inherently serial.

Assumption 2.3. We adopt the widely held belief that TC C P—that is, some polynomial-time
problems are inherently serial (Greenlaw et al., 1995, Ch. 5, Ch. 8).
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2.2 REAL-WORLD PROBLEMS ARE LIKELY INHERENTLY SERIAL

A natural objection to theory: “Do such theoretical obstructions to parallelism arise in the real world?”
We say: Yes—particularly if one works in domains involving the need for physical simulation or
reinforcement learning. But even outside these areas, it remains highly likely that one will encounter
inherently serial problems. Even apparently simple tasks with a polynomial-time algorithm can be
inherently serial (Assumption 2.3).

Drawing from both empirical observations and theoretical arguments presented in the following
Section 3, we propose the following complexity-theoretic hypothesis:

Hypothesis 2.4

The following problems—cellular automata evolution, many-body mechanics, sequential
decision problems, mathematical question answering—are inherently serial.

Inherently serial problems (see Definitions 2.1, 2.2) exhibit fundamental computational dependencies:
the outcome of intermediate steps directly influences subsequent steps in ways that cannot be
shortcut without compromising correctness. To make this intuition rigorous, we prove a new theorem
(Theorem G.2) on inherent seriality in sequential decision making.

Limitations. (1) These arguments apply to the general (worst-case) complexity of the problems.
A problem may be inherently serial in general, but a parallel algorithm may cover most specific
instances occurring in practice. (2) An inherently serial problem may be solved approximately in
parallel to an accuracy acceptable for practical use.

2.3 ARE OUR MODELS CAPABLE OF SOLVING INHERENTLY SERIAL PROBLEMS?

Most modern architectures are designed for scaling Solve serial
. Method Parallel?

parallel computation. Transformers and state-space problem?
models (SSMs) (Gu et al., 2021; Gu & Dao, 2023), FF MLPs v X
though often called “sequence” models, process  FF Transformers 4 X

all available input in parallel. This raises a crucial ~ FF SSMs (Mamba) v X
question: “How efficiently do they solve inherently EGNIZZ&H Trers ; ;
serial problems? Chgin-of—gThgught X v
Prior work shows that for fixed-depth, polynomial ~ Diffusion models X! X

width, and fixed-precision, various architectures, (TC° backbone)

including MLPs, Transformers, and linear SSMs, . o

all collapse into constant-depth threshold circuits  1able 1: Parallelizable models are limited to par-
(TC°) (Merrill et al., 2022; Chiang, 2024; Chen allel problgms. Only nor}-parallehzable models
et al., 2024b; Merrill et al., 2024). Intuitively, their MY solve inherently serial problems. FF stands
computational graphs all collapse into constant par- for Feedforward.

allel steps, never requiring long sequential chains. Importantly, these results characterize the ar-
chitectures themselves. A model, however, is the combination of both architecture and inference
procedure. Thus, while a transformer architecture lies in TCO, a Transformer model run with serial
inference—such as autoregressive CoT or recurrence—extends beyond TC and can capture inher-
ently serial computations (see Appendix C.1). Table 1 summarizes computational characteristics of
common machine learning models.

Diffusion models cannot solve inherently serial problems. A key contribution of the present paper
is a new theorem (Theorem F.2) on the limitations of diffusion modeling. Although the step-by-step
sampling of a diffusion model appear serial, we prove in Section 4 that a diffusion model with a TC°
backbone remains in TC", even with infinitely many sampling steps. Thus, despite their stepwise
structure, diffusion models are incapable of solving inherently serial problems.

By linking the computational limits of modern ML models with the inherently serial structure of
many key problems, we arrive at the following conclusion:

"While diffusion models are not yet parallelizable, given their TC capabilities, there might exist a paral-
lelization algorithm for diffusion models.
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Key Limitation of Modern Machine Learning Models

MLPs, Transformers, SSMs, and diffusion models with TC° backbones are provably inca-
pable of solving general instances of inherently serial problems such as cellular automata
evolution, many-body mechanics, sequential decision-making, and mathematical question
answering.

Limitations. (1) Certain instances of serial problems may be trivial or admit parallel solutions;
seriality holds only in the general case. (2) For problems beyond P (e.g., NP \ P), exponential
computation—not serial computation—dominates. Thus, the Serial Scaling Hypothesis applies most
directly to problems of practical real-world difficulty.

2.4 IMPLICATIONS OF THE SERIAL SCALING HYPOTHESIS

For machine learning practitioners. Many important real-world problems—such as cellular
automata, many-body mechanics, and sequential decision-making—are inherently serial. Without
sufficient serial computation, solving them with shallow models requires an exponentially large set of
weights, which in turn demands exponentially large datasets to train. Neither is affordable in practice.
This mismatch—solving inherently serial problems using shallow or parallel models—helps explain
why many ML systems generalize poorly beyond their training distributions (Torralba & Efros, 2011;
Zhang et al., 2017; Recht et al., 2019; Liang et al., 2023; Mancoridis et al., 2025; Zhang et al., 2025).

Evidence from RL fine-tuning (Wang et al., 2025b; Yue et al., 2025; Shao et al., 2025) suggests that
LLMs already acquire both shallow heuristics (fast but memorization-like (Nikankin et al., 2025))
and deeper algorithms (slower but more general) during pretraining. However, if the inference-time
compute budget is set too low, the model defaults to the shallow routines, producing fast but brittle
behavior. Only with sufficient serial computation, the deeper routines can be executed resulting in
better generalization.

For task & benchmark designers. Recognizing the inevitable cost to inherent seriality, serial
problems may be reformulated into coarser or approximate problems to reduce serial depth to
acceptable levels while remain practically useful. For RL, truncated value functions cap the effective
depth while retaining theoretical guarantees and practical utility (Park et al., 2025; Sutton & Barto,
2018; De Asis et al., 2019). For reasoning, complexity theory shows that coarse decision problems
can be tractable even when exact solutions are not—for example, primality is in P while factoring
remains hard (Agrawal et al., 2004).

In addition, benchmarks should have inherently serial problems as a separate category, to distinguish
serial and parallel scaling in model performance.

For model designers. Solving these challenging real-world problems may require recurrent struc-
tures that increase serial computation alongside today’s predominantly parallel designs. However,
recurrence and depth often amplify gradient variance (Bengio et al., 1994; Pascanu et al., 2013) and
L-Lipschitzness (Bartlett et al., 2017; Fazlyab et al., 2019), making models harder to train. This
motivates improved training techniques and novel architectures such as implicit gradients (Wang
et al., 2025a), xLSTM (Beck et al., 2024), and test-time training (Sun et al., 2024).

For hardware designers. Massively parallel computing machinery, especially GPU clusters, enabled
past progress in deep learning. Future progress in machine learning and computing in general® also
depends on progress in high-clockrate, sequential computing machinery, with reduced data movement
overhead (Kang et al., 2021; Kaur et al., 2024). A concrete example is wafer-scale hardware (e.g.,
Cerebras CS-3), which prioritizes extremely high on-chip memory bandwidth (Wang, 2025).

2.5 RELATED WORKS

Our hypothesis is similar to the “parallelism tradeoff” hypothesis—that all parallelizable models,
irrespective of design, must necessarily fail to solve inherently serial problems (Merrill & Sab-
harwal, 2023a;b). Our work builds on classical complexity theory, including the “depth-width

2Amdahl’s law (Amdahl, 1967; Gustafson, 1988) shows that seriality is a hard upper bound on speedups
achievable by parallelism.
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tradeoff” (Vishkin & Wigderson, 1985), the “work™ vs. “depth” contrast Blelloch (1996), P-
completeness (Greenlaw et al., 1995, Ch. 8), and computational irreducibility (Wolfram, 2002).

While these ideas are well-established in complexity theory, our work brings them into the machine
learning context—extending them to real-world tasks such as sequential decision-making and question
answering, and highlighting the gap between these tasks and the limited serial capabilities of modern
machine learning models.

3 SERIAL PROBLEMS

In this section, we highlight representative inherently serial problems: cellular automata (Section 3.1),
physical systems (Section 3.2), and complexity-theoretic hardness results (Section 3.3), as well as
practical domains such as sequential decision making (Section 3.4) and reasoning QA (Section 3.5).
These cases illustrate serial bottlenecks that readers may encounter in other domains.

Rule 110

3.1 CELLULAR AUTOMATA

We begin with predicting the outcome of cellular automata (CA)
(Sarkar, 2000; Codd, 2014), shown in Figure 2(C), as a simple
problem that is inherently serial. A CA is a grid of cells, each in one
of finitely many states, updated in discrete steps according to a local
rule based on its neighbors. Despite this simplicity, CA can exhibit
behaviors ranging from predictable to complex dynamics such as
Rule 110 (Figure 4), which hints at inherent seriality of this problem.

Cellular automata are inherently serial. Rule 110 has been proven 7%
Turing-complete (Woods & Neary, 2009), so computing the state of ol ? T i;i qﬂj

acell z; at row N requires simulating each step in sequence, without [r [lj [;. I:E‘j
shortcuts (Greenlaw et al., 1995, p. 58). This is not unique to Rule

110: many CA problems are P-complete (Moore, 1997), i.e., not

efficiently parallelizable. Figure 4: A single run of Rule

110. Given the top row, the CA
What does this mean? Even systems governed by just 8 simple ~evolves row-by-row according
rules can forbid shortcuts. to the 8 rules.

3.2 MANY-BODY MECHANICS

The previous section showed that inherent seriality can arise even in systems governed by a handful
of local rules. We now turn to a more realistic setting: Newtonian many-body dynamics.

Consider N particles evolving in R under forces and/or hard collisions. Given initial positions and
momenta at ¢t = 0, the goal is to predict the particle positions at some later time ¢ = 7T in a finite-
precision representation, which reflects practical scientific computation; with unbounded precision,
the prediction problem becomes PSPACE-hard. This is the instance depicted in Figure 2(D).

Many-body mechanics is inherently serial. Classical mechanics is expressive enough to emulate
arbitrary computation. The billiard-ball computer of Fredkin & Toffoli (1982) recreates any Turing
machine using nothing but billiard balls elastically reflecting off each other and walls, and Moore
(1990) proposes a similar recreation using smooth particle motion in a potential field in R3. Since the
problem of simulating general Turing machines is inherently serial (Greenlaw et al., 1995, p. 58), an
algorithm that accurately simulates general physical systems can only be done step by step.

Seriality in video prediction. Because videos capture inherently serial dynamics, such as collisions,
forecasting the next frame from a sequence of IV frames is similarly inherently serial. This task
underlies large-scale models for content creation (DeepMind, 2025; Brooks et al., 2024; Wan et al.,
2025) and decision making (Bar et al., 2025; Yang et al., 2024).

The computational difficulty in video prediction does not come from the cost of rendering a single
next frame. If a model maintains a complete world state (e.g., object positions and momenta),
stepping that state forward is as efficient as applying a local physical law. The problem arises when
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losing track on the state: recomputing it requires replaying the chain of many-body mechanics from

the last reliable observation, thus inherently sequential. K

Yaw
In real videos, objects frequently leave the field of view or become
occluded, as illustrated in Figure 5. Current large-scale video pre- 't":‘g ' . ‘
dictors—typically Transformer-based and trained with next-frame
objectives—are optimized only for immediate reconstruction. As : - 9.
a result, they are not encouraged to maintain the state of occluded
objects. This can lead to an incomplete world state, effectively ren- 't": L.'rtlz . Out of view
dering the task inherently serial and no longer solvable in a single for-
ward pass by the model. This may help explain why state-of-the-art ; N
video generators often produce physically inconsistent results (Kang Outout
et al., 2024; Brooks et al., 2024; Wan et al., 2025). el F '

What does this mean? Tasks involving the modeling of system dy-

namics, including physical simulations and video prediction, likely Figure 5: Predicting the frame
require serial models to be efficiently solved. For video prediction, ,( time 7. The intermediate
the model must maintain the full evolving world state. frames may not be observable

by camera motion/occlusion.
3.3 P-COMPLETE PROBLEMS

The inherently serial problems given previously have this in common: Given a problem statement of
size O(n), it is immediately obvious how to construct a linear computational graph of length O(n),
such that each node of the graph depends, and only depends, on the previous ones, and each step
takes constant time. This matches the intuition of what being “serial” means.

Such problems have been formalized as P-complete problems, of which the most prototypical one
is the Circuit Value Problem (CVP) (Ladner, 1975): Given a Boolean circuit with a single output
bit, specified as a graph of logic gates and their connections, and an input binary string, what is the
output bit? The CVP is robust in that many variations remain P-complete (Greenlaw et al., 1995).

The obvious solution is to perform a topological sort (takes O(n) time) on the graph of the logic
gates, so that each gate depends only on the output values of the previous gates, then evaluate them
serially. The CVP embodies the intuition of what an inherently serial problem should be, which
is that each step easily depends on the previous steps, but skipping steps is difficult. Since any P
problem is efficiently reducible to the CVP, it is P-complete.

This gives us an intuitive rule: If the problem appears to have a linear computational graph similar to
the CVP, then it is likely inherently serial. Indeed, this intuition guided us in proving the theorem in
Section 3.4. Furthermore, an extensive list of problems is shown to be P-complete (Greenlaw et al.,
1995), thus suggesting that inherently serial problems are common in the wild.

3.4 SEQUENTIAL DECISION PROBLEMS

The goal in sequential decision problems is to obtain an optimal policy 7*(s) = arg max, J(7),
where J() is the expected return under policy 7 in a Markov Decision Process (MDP) with finite
horizon N, and discount factor v € [0, 1]. Therefore, given a state s, the policy outputs an optimal
action a from a limited possibilities (discrete action) or with finite precision (continuous action).
There are two aspects in this: finding a policy, and executing a policy.

Executing a policy is inherently serial. In Appendix G, we construct certain MDPs and prove that
in these, any approximately optimal policy is inherently serial.

Finding a policy is inherently serial. Consider policy gradient methods (Sutton et al., 1999;
Williams, 1992), including popular variants like PPO (Schulman et al., 2017), widely used in
applications such as LLM fine-tuning (Ouyang et al., 2022).

In policy gradient, the parameters of a policy model are improved via gradient descent on return
estimates, which must be unbiased for convergence to the optimal policy’. Here, we show how an

3Convergence to suboptimal policies is still possible with biased return estimates (Mu & Klabjan, 2024; Tian
et al., 2023).
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unbiased return estimation is inherently serial, implying that with parallel estimation the optimal

policy is not guaranteed.
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Figure 6: Empirical serial scaling on (a) Hex board game and (b) locomotion & manipulation.

If parallel return estimation is possible, one must be able to access state 4 (and thus reward r;) in fewer
than a linear function of ¢ steps. This is unlikely in real-world MDPs, since even simple CA transition
rules (Section 3.1) or physical interactions (Section 3.2) prevent such shortcuts*. While scaling
parallel computation via aggregating multiple trajectories can accelerate convergence by reducing
variance (Sutton & Barto, 2018, p. 93), accurate return estimation still requires serial computation.

This inherent seriality motivates model-based reinforcement learning, where returns are computed by
unrolling an internal model step by step. For instance, Monte Carlo Tree Search (MCTS)—which
increases serial computation via tree expansion and reduces return-estimation bias—has achieved
superhuman-level performance in diverse board games (Silver et al., 2016; 2017; Schrittwieser et al.,
2020). Villalobos & Atkinson (2023) demonstrate consistent improvements in Hex from increasing
MCTS expansion nodes (see Figure 6a). Even in model-free RL, adding serial computation with
deeper networks significantly outperform wider (more parallel) ones on locomotion tasks Kevin et al.
(2025) (see Figure 6b).

What does this mean? Parallel computation cannot substitute for serial computation in RL. Without
sufficient serial computation, the optimal policy is not guaranteed.

65.0%

3.5 REASONING QUESTION ANSWERING 60,09

Instead of going through an MDP as in RL, math question 5%

answering exhibits seriality through step-by-step logical

Tokens (per rollout)
50.0%

et A —e— 3600
reasoning, irrespective of the answer length, before ar- 4s.0% 2048
riving at the solution. As shown in Figure 2(E), given a 44 g9, 1024
question as input tokens, the model autoregressively gen- . .. 512

erates the solution, each step from a limited set of tokens.

512 2K 8K 32K
Tokens (total)

Math QA is likely inherently serial. Solving grade-
school mathematics, GSM8K (Cobbe et al., 2021), which
has been used to benchmark reasoning capabilities in
LLMs, can be formalized as dependency graphs (Ye et al.,
2024). A solution is to traverse the graph in topological e . 4
order and perform necessary arithmetic operations sequen- majority voting (as dots along each line).
tially (Ye et al., 2024). This resembles the Arithmetic Data from Aggarwal & Welleck (2025).
Circuit Value Problem (Greenlaw et al., 1995, p. 124), a generalization of the standard CVP to

arithmetic operations. Like CVP, this problem is P-complete—that is, inherently serial. Since

Figure 7: Average benchmark scores
over 4 math benchmarks for longer rea-
soning chains (in different colors) vs.

*As usual, there is an exponential tradeoff available. One can randomly generate a trajectory and check
its consistency with the MDP and policy in parallel, but the expected number of trajectories needed before a
consistent one is found grows exponentially with length n.
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seriality arises even in simple math QA, it likely extends to advanced benchmarks such as AIME and
Olympiad-bench, where finding the correct approach is hard.

In mathematics QA, as shown in Figure 7, Aggarwal & Welleck (2025) demonstrate that sequential
scaling with longer reasoning chains consistently outperforms parallel scaling via majority voting
controlled for the same token budget. This pattern holds across mathematical datasets of varying
difficulty, including AMC, MATH, AIME, and Olympiad-bench.

Similarly, science QA also appears to exhibit inherent seriality. Muennighoff et al. (2025) report
that in GPQA Diamond (Rein et al., 2024), a QA benchmark on PhD-level science, sequential
scaling yields consistent accuracy improvements, only limited by the model’s context window, and is
significantly more efficient than parallel scaling (via majority voting), which plateaus.

What does this mean? Complex question answering similar to math QA likely requires constructing
answers step by step over a computation graph, and thus inherently serial.

4 DIFFUSION MODEL’S COMPUTATION IS NOT SERIAL

The Serial Scaling Hypothesis provide a lens to look at machine Output

learning from serial-parallel lens. We have examined serial

machine learning problems. We now turn to a diffusion mod- | pitfusion model (TCO backbone)
els (Ho et al., 2020; Song et al., 2021; Song & Ermon, 2019),

widely used in image/video generation (Brooks et al., 2024)

and other vision tasks such as depth estimation (Saxena et al., X4 X, Xs
2023), and language modeling tasks (Li et al., 2022; Nie et al.,

2025; Arriola et al., 2025). While commonly thought as a serial Figure 8: The backbone network
model, we show here for the first time that they are not. takes as input a sequence of tokens,
and a single noisy output token.
This is repeated until the output to-
ken is fully denoised.

Consider a problem with input x4, ...,z y and fixed output
Tn+1 (as in Figure 2). A diffusion model uses a backbone
neural network 6 which takes the inputs and a noisy version
of xn41, denoising it over T steps until it becomes the output (see Figure 8). This models the
conditional distribution pyyn(zy+1 | 1, ..., 2N ) or concisely puym.

While the number of denoising steps 7" is scalable—more denoising steps for finer approximation of
Prruth, in practice, diffusion models converge rapidly (Ma et al., 2025). For instance, image generation
plateaus at 300 steps (Nichol & Dhariwal, 2021), depth estimation shows little difference between
5 and 100 steps (Ravishankar et al., 2024), and language modeling yields similar perplexity for 32
vs. 1024 steps (Austin et al., 2021). With distillation, 1-4 steps suffice without much loss (Yin
et al., 2024; Liu et al., 2024; Song et al., 2023; Lin et al., 2024; Salimans & Ho, 2022). Such rapid
convergence suggests that the effective computation depth of diffusion models is low. It would be
surprising if the underlying computation were truly serial.

Diffusion models with a TC" backbone can only solve problems in TC’. Previous work showed
that a backward diffusion process converges to py at the rate TV = O(d/T) (Li & Yan, 2024, Thm.
1), where T'V is the total variation between pg and the denoising pg o, and d is the intrinsic dimension
of x y41. Building on top of it, we obtained the following theorem, the formal statement and proof of
which are in Appendix F:

Theorem 4.1 (Informal). If a problem can be solved by a diffusion model with a TC® backbone with
high probability with infinite diffusion steps, then the problem itself is in the parallelizable class TC".

What does this mean? Diffusion models only provide a constant amount of additional serial
computation. The above theorem precludes the use of diffusion models as a scalable means of
increasing serial computation. Unlike CoT, which genuinely adds serial compute (see Appendix E),
diffusion models do not. This may explain the empirical mediocre performance of diffusion language
modeling as output length increases (Austin et al., 2021; Lou et al., 2024; Gulrajani & Hashimoto,
2023; Sahoo et al., 2024).

Limitation. The theorem doesn’t apply: (1) If solution space grows in intrinsic dimension. (2) If
the backbone is either poorly trained or trained under a different objective. This leaves open the
possibility of serial-compute-scalable generative models beyond score-based diffusion.
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A LIMITATIONS

Our conclusions rely on the widely-held but unproven assumption that TC C P (Assumption 2.3).
If this assumption is disproven, our formalization of the serial/parallel dichotomy would be invalid.
Moreover, our theoretical arguments apply only to the general case; although the intuition may
extend to practical settings, such generalization is not guaranteed. In particular, the average-case
complexity (Bogdanov et al., 2006) of many problems could differ or even allow parallel solutions.

For especially hard problems (e.g., NP \ P and beyond), exponential cost—rather than serial
depth—may dominate as the primary bottleneck. Thus, our focus is on real-world problems of
practical difficulty.

Our theorem on diffusion models applies only when the output dimension remains fixed. If it grows
with problem size, the result may not hold—though current empirical evidence in language modeling
does not suggest strong serial scaling. The theorem also assumes a well-trained backbone using a
score-matching objective, and may not apply to poorly trained models, especially early in training.

Finally, beyond theoretical and circumstantial evidence, more empirical work is needed to quantify
the degree of seriality in practice—particularly the benefits of increased serial compute. A promising
direction is to benchmark real-world tasks under varying ratios of serial and parallel computation.

B A BRIEF HISTORY OF SCALING

The success of modern machine learning has been driven Serial Parallel
by scaling—bigger models, more data, and especially  ~Scaling Depth Width
more parallel compute. Hardware has shifted from CPUs Architecture | RNN Transformer
to massively parallel GPUs; architectures have moved Algorithm RL  Imitation learn.
from RNNSs to highly parallelizable Transformers; and al-  Hardware CPU GPU

gorithms increasingly exploit parallelism for efficiency.

Table 2: Examples of serial and parallel

However, this focus on parallel scaling has a blind spot:
approaches.

it assumes that parallel and serial computation are in-
terchangeable. In reality, for many problems, only increasing serial compute—allowing models to
perform more sequential steps—yields further progress. This is especially true for tasks with inherent
temporal or causal dependencies. As we show in this paper, recognizing the limits of parallel scaling
and the necessity of serial computation is crucial for the next phase of progress in machine learning.

C POTENTIAL MISCONCEPTIONS

C.1 ARCHITECTURE VS. INFERENCE METHODS

One may be confused by the statement that “Transformers are not serial,” followed by “Chain of
Thought is serial.” This appears to be a contradiction. It is not, though it may appear so due to
our omission of words. The first statement really should be “If you fix a Transformer’s parameters
and give it problems of size O(n), but only run it for O(1) forward passes, then you cannot solve
inherently serial problem-families.”. Similarly, the second statement really should be “If you fix a
Transformer’s parameters and give it problems of size O(n), and also run it for O(n) forward passes,
then you can solve inherently serial problem-families.”.

This is a special case of a general phenomenon: people confuse architecture and inference methods,
meshing them all together like two lumps of clay gently melding under the desert sun. This is
unfortunate but understandable because, in practice, architecture and inference couple together
strongly, and this confusion is also encouraged by things like “architecture—deployment co-design”.
The fact is that the abstractions leak. How you use a model for inference depends on its architecture.
How you design a new model architecture depends on what you expect its inference method to be.
This is a good thing, but it may cause people to confuse architecture and inference.

Fundamentally, we consider an “architecture” to be a class that can have instances. For example,
gpt2 is an instance of the class CausalTransformer. Each class-instance should be imagined
as an “atom of computation”. An atom has mass and volume. An atom can be copied and put
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into many molecules. What an atom cannot do is be divided or changed. Similarly, an instance
of the “Transformer architecture” is an “atomic” Transformer. This atomic Transformer does
have “subatomic structures”, such as its individual layers. However, since we are not performing
complicated model surgeries, such as taking off its head, reading out the tensor from its middle layers,
etc., we can ignore all of its subatomic structures and assume it is simply atomic, perfectly indivisible,
unchangeable, eternal. If I give you an atomic Transformer, and you want to do something with it,
you must perform exactly one single forward pass, because you cannot stop half-way (since you don’t
have access to its subatomic structures). This has a fixed seriality. It may be 48 layers or 96 layers,
and you can pick bigger and bigger atoms from the same class with no upper bound. But for a given
particular instance from the class, the seriality is O(1), and cannot possibly grow like O(n).

Still, even though the atomic Transformer is unchanging, it can be used in many molecules, and the
molecules can change. It can be used in a Chain of Thought molecule, and this molecule would grow
like a polymer, taking on a length of O(n) in reaction to a length O(n) input.

In short, a single architecture may be used on its own in a fixed number of forward passes, or a number
of forward passes growing linearly with the problem size, or in a tree search, a beam search, etc.
Inference methods are separate from model architecture. In this paper, we discuss both architectures
and inference methods. We have found that Transformers, SSMs, and diffusion models are all not
serial when the inference method is just a single forward pass, but can become serial when the
inference method allows for more serial compute, such as Chain of Thought inference.

C.2 SSMis NoT RNN

We class SSMs as not inherently serial, while RNNSs as inherently serial. This is not a mistake, and in
fact, a very valuable illustration of how an architecture can have an illusion of seriality.

First, in what sense is RNN serial, while a Transformer is not serial? Recall the title of the original
paper on Transformers: “Attention is all you need” (Vaswani et al., 2017). What did they mean by
“all you need”? What was removed? Back in 2017, the standard sequence transduction model was a
pair of RNNs connected in the middle by the attention mechanism. The encoder RNN processes the
input sequence one token at a time, then the decoder RNN produces the output sequence, again one
token at a time. The key problem is that, while both an RNN and a Transformer must decode tokens
one-by-one, an RNN must encode tokens also one-by-one, whereas a Transformer can encode tokens
all-in-one-go. The animating spirit of the Transformer architecture was to remove everything that
stands in the way of all-in-one-go, but preserve everything that allows RNNs to work so well.

So they removed recurrence and preserved attention. Their title meant “attention is all you need (and
recurrence is not)”. This is exactly what our paper is arguing against: attention is not all you need,
and inherently serial processing is necessary. It can be done in many ways: recurrence in architecture,
CoT in inference strategy, or some other method, but it cannot be avoided.

So now we come to SSM. SSM is not RNN because it is not recurrent in an inherently serial way. It
was designed with the same spirit as the Transformer and suffers the same issue.

Concretely, consider the problem of ingesting an input sequence: =1, T2, . . ., T, and the task is to
output the next token x,,. For a Transformer with 96 layers to accomplish the task, it does so by
96 sequential steps. Each step is very wide but not deep. In contrast, an RNN with 96 layers must
process z first, then x2, and so on. It requires 96n sequential steps that cannot be done in parallel.
Suppose one attempts to do them “in parallel”, then there is an immediate problem: To run the RNN
on x4, one needs the internal states of the RNN just after it has processed x3, and to do that, it needs
to have processed w2, etc. Abstractly, the operation of an RNN looks like:

fo(wn, fo(zn_1,..., fo(xa, fo(r1,50)))),

where sg is the initial internal state.

In short, because the internal states of an RNN change nonlinearly and unpredictably, one cannot
skip the steps. This allows RNN to solve inherently serial problems without chain of thought, but at
the price of taking wall-clock time O(n) to even output its first token.

The animating idea of SSM is precisely to remove the inherent seriality of RNN. The idea is that
if the internal states change linearly and predictably, then one can skip the steps. Concretely, the
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operation of an SSM is of the form:
output, = fo(M* oy + M 2xy 4+ -+ Mlay_y,xp)

since its internal states change linearly in a data-independent way. This means that to run an SSM on
input x4, one does not need to know the internal state of the SSM after processing z3. This allows it
to be just as parallel as a Transformer, and thus just as lacking in seriality.

C.3 TRAINING VS. INFERENCE

Throughout most of the paper, the main contrast is the parallel vs. serial computation contrast. We do
not mean this to be a contrast between the parallel phase of training vs. the autoregressive phase of
inference, which is how modern GPT-like transformers are produced and used.

Concretely, consider initializing a language model with 96 layers. The training algorithm samples
a chunk of text (32,768 tokens long) from the training corpus. The model then performs a single
forward inference simultaneously on all tokens, such that it only takes 96 steps of time—one step per
layer. Now, during inference, the model must then generate one token at a time, so the same 32,768
tokens would take 3,145,728 steps of time, which is a vast expansion.

Yet, this is not the main focus of the paper. The paper mostly talks about the theoretical and
empirical results concerning learned and frozen models. The paper does talk about training, but only
occasionally and informally, by sketching out intuitive analogies with inference, without rigorous
theoretical justification.

This is not due to an intention to mislead. Indeed, we recognize that there is a parallel training
vs. autoregressive inference contrast, and we have attempted to get some theoretical handle on this
contrast. We failed. Because learning theory is extremely difficult, we could neither find theorems
proven by people that came before us, nor prove theorems ourselves. Therefore, we stayed within
inference. Fortunately, the parallel vs. serial contrast is already sharp even within inference, with
both clear theoretical and empirical results, allowing us to write the paper.

We believe strongly that in the future, the parallel vs. serial contrast will also be shown for training,
and leave this as work for the near-posterity.

D TCY AND TC CLASSES

Definition D.1. Leti € N. A decision problem L C {0, 1}* is in the complexity class TC" if there
exists a family {C,, },en of Boolean circuits such that:

* Each circuit C), decides whether z € L for all z € {0,1}".
* Each circuit C,, has size polynomial in n, i.e., |C,,| = O(n*) for some constant k.
« Each circuit has depth O(log’ n).

* The circuit gates are of unbounded fan-in AND, OR, NOT, and MAJORITY gates. A
majority gate outputs 1 if more than half of its inputs are 1.

The family {C,, } is L-uniform, where L stands for “logspace”. This means that there exists a
deterministic Turing machine that, on input (11 - - - 1,7), outputs the ith bit of the description

n repeats

of C,, using a working tape of length only O(logn).

In addition, a decision problem L C {0,1}* is in the complexity class TC if it is in the union of all
classes TC' over ¢ € N, that is,
TC=JTC. (1)
i€eN
In the literature, TC is also called NC, or “Nick’s Class.”

Define the L-uniform many-one reduction relation <! as follows: Given two languages L, L', that is,
two sets of binary strings, we say L <L L’ if and only if there exists a function f such that x € L if

m
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and only if f(x) € L/, and the function f is computable by a deterministic Turing machine with a
logspace working tape.

A decision problem is P-complete if and only if there exists a Turing machine that decides it in
polynomial time, and any problem decidable in polynomial time can be L-uniformly many-one
reduced to it.

E SERIAL CAPABILITIES OF MODERN MACHINE LEARNING METHODS

Empirically, we see a tradeoff in modern machine learning architectures. Some have highly paralleliz-
able computation graphs, such as MLPs, Transformers, and SSMs, but do not solve inherently serial
problems. Others can solve inherently serial problems, but cannot be parallelized, such as RNNs,
repeating layers, and CoT.

In terms of computational complexity, MLPs have been formalized as a family of Boolean circuits
with threshold gates called TC° (Parberry & Schnitger, 1988). Consider a family of MLPs with

constant O(1) depth, poly(n) neurons per layer, and O(1) numerical precision. A problem is in TC°
if and only if it is decidable by one forward pass through an MLP under this setup.

It is widely suspected that TC is strictly larger than TC®. Therefore, any TC*-hard problem requires
computations deepening at a rate of at least O(logn). We may consider the problem as being serial
in a weaker, logarithmic sense. A simple example of TC! is the word problem of the symmetric
group on 5 elements S5: Given g1, g2, ..., gn € Ss, find [], g; (Liu et al., 2022). Intuitively, this
is because Sj is not a solvable group, and therefore there is no better way to multiply its elements
than via a binary tree, which has O(log n) layers. Attempting to perform this with just O(1) layers
would effectively require one to memorize the entire S — .S,, multiplication table, which scales
exponentially as e™1°2(120) "an exponential depth-width trade-off.

To solve the word problem of S5 by a Transformer in one forward pass, we present it with input
tokens g1, go, - . ., gn, Yy, Where y is a special token. The Transformer’s output at y is read out as the
answer. Similarly, we may solve such a problem by presenting the same input tokens to a State Space
Model (SSM) or a Recurrent Neural Network (RNN). Since a Transformer with O(1) layers and
poly(n) dimensions can only solve problems in TC® (Merrill & Sabharwal, 2023b) in one forward
pass, it cannot solve the word problem of Ss that lies outside TCP.

On the contrary, for an RNN, we can write the multiplication table of Sg — Sk directly into its
weights, so it can solve the problem by unrolling for O(n) recurrence steps with O(1) layers and
O(1) dimensions. Intuitively, the hidden states of an RNN keep track of the progress of multiplication
as it performs the forward passes. However, RNN’s recurrence state dependency renders it non-
parallelizable. Several families of SSMs were developed as a compromise that still have recurrence
on hidden states, like an RNN, while making forward passes parallelizable, like a Transformer. The
prototypical SSM architecture is Mamba (Gu & Dao, 2023), though there are many others.

Unfortunately, it has been proven that there is not yet a “free serial-compute lunch,” in the sense
that the main families of SSMs proposed so far still cannot solve the word problem of S5 under the
constraints of O(1) layers, poly(n) dimensions per layer, and one forward pass. Despite its apparent
recurrence, the hidden state offered by an SSM is weaker in a computational sense than that offered
by an RNN (Strobl et al., 2023; Merrill & Sabharwal, 2023a; Merrill et al., 2024). This theoretical
fact rhymes with the empirical fact that in practice, MLPs, Transformers, and SSMs are all more
parallelizable than RNNs.

Only a genuinely serial method has been shown to go beyond the TC? class. In addition to RNNS,
this includes repeating layers and CoT. Repeating layers for O(logn) times enables a standard
Transformer to solve tasks in the TC' class (Merrill & Sabharwal, 2025). With poly(n) CoT,
requiring multiple forward passes before producing a final answer, a Transformer can be lifted from
TC'to P (Feng et al., 2023; Li et al., 2024). As discussed in Section 3.5, the power of CoT has been
well-attested in practice by the improved performance of reasoning models in complex math and
science tasks.
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Such a uniformity restriction is necessary for technical reasons. Specifically, it is necessary because
one may hide a large amount of computation into a small circuit that requires a long time to find.
The final circuit produced might run in time O (logn), but if the time required to find such a circuit
requires time 2°(™) | then this would not be parallel—in the sense used throughout this paper.

F DIFFUSION IS IN TC?

In this section, we consider the non-uniform TC class, in contrast to the usual uniform classes. Note
that uniform TC* C non-uniform TC". We prove that many diffusion models are restricted within
that class. We need to assume non-uniformity because, at a certain point in the proof of the main
theorem, we merely prove that something exists, without showing that it is also efficiently computable.
We will highlight this in the proof.

F.1 PROBLEM SETTINGS

An abstract language is simply a set of sentences made of letters. Formally:

* An alphabet X is a finite nonempty set. Each element in the alphabet may be called a letter
or a token.

* A sentence in an alphabet ¥ is a finite sequence of elements of 3.

* A language in an alphabet X is a set of sentences in the alphabet 3.

An abstract language is more than a natural language. A sentence in a natural language is a sequence
of tokens. An image, divided into patches and tokenized, becomes a sentence in an abstract language.
A video, divided into frames and patches and tokenized, becomes a sentence in an abstract language.

We define the deterministic prefix language modeling problem: given a sequence of tokens
Z1,...,Ty, compute the next token ;. This is a deterministic formalization of next-token
prediction, the dominant paradigm in language modeling since the GPT-2 of 2019. This can also be
cast into a decision problem: given input of size n, x1, . .., x,, decide whether z,,,; is the correct
continuation.

Most language model benchmarks can be cast into this form, at least when without chain of thought.
For example, consider a problem from the GSM8K benchmark “Tina buys three 12-packs of soda for
a party ... How many sodas are left over when the party is over?” has only one correct continuation,
4‘1 1 ’7.

The definition has some issues. Some problems may have more than one correct answer. Some
answers may occupy more than one token. We may allow chain of thought. Language modeling is
not restricted to prefix modeling. A touted benefit of diffusion language modeling is that, unlike GPT
models, it can generate any number of tokens anywhere in a sequence conditional on other parts of
the sequence.

Define nondeterministic masked sequence modeling problem as follows. Consider a sequence of
tokens 1, . .., x,, some of which are masked. The task is to compute a sequence of tokens that can
acceptably fill in the masks.

For example, a game of 24 may be cast into a nondeterministic masked modeling problem” as follows:
“1,3,9,9, M]IM]M][M][M]IM][M] = 24”. This has more than one acceptable answer, such as “9 3
+11x9-".

As another example, solving a problem with chain of thought is unmasking an entire block of masked
tokens, where any unmasking is acceptable as long as the tokens between “Final answer: ... [END]”
are correct.

Given a problem instance, we can train a model such that, conditional on the problem instance, it
would sample one point from possibly many points that form a solution manifold, from which the
answer can be recovered by discretizing.

>Brackets would create different lengths for the masked sequence. We avoid them by reverse Polish notation.
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We need to make the discretization step as simple as possible, to avoid secretly performing part of
the problem-solving in the discretization step. Consequently, we will only consider cases where the
masking pattern is fixed, and the discretization is performed using a fixed amount of compute.

As a concrete illustration, suppose that we use a diffusion video model to evaluate an arithmetic
expression. The input is a sequence of frames presenting the arithmetic expression to be evaluated,
and the masked tokens are the frames illustrating an animated process that draws out the answer. The
solution might be written in many variable ways, creating the solution manifold. The discretization
step can be done by taking the pixel-wise nearest neighbor of the last frame’s digits.

Our overall framework for sequence modeling is:

discretization . . stochastic sampling
true answer <—————— solution manifold +——

We will show that if the dimension of the solution manifold does not grow quickly, and the stochastic
sampling is sufficiently parallelizable and accurate, then we can derandomize it to obtain a paralleliz-
able deterministic algorithm for obtaining the true answer, thus showing that the original problem is
parallelizable, not serial.

F.2 DIFFUSION MODELING

There are several equivalent formulations of diffusion modeling. We use the score-matching for-
mulation. In this formulation, given a probability density pg to be modeled, and a noise schedule
01,09, ...,0r, we define the forward diffusion process by adding an increasing amount of Gaussian

noise to pg:
2
o ~ po, Tilrg~N <\/1 - a?xo,at.f)

Let p; be the probability density of x;. Any (true) score function at time ¢ is f* (¢, z) := V log p:(z).
To score-match is to find an (approximate) score function fy, such that fy(¢,2) = f*(¢, ). In the
sense that the average score modeling error is low:

T
1
€score +— T § Ewtrvpt |:||f9(t7xt) - f*(t7$t)Hg:|
t=1

Given a score approximator fy and a noise schedule o, the Score-Matching with Langevin
Dynamics (SMLD) (Song & Ermon, 2019) sampler performs a backward diffusion accordingly,
sampling a sequence of &7,Z7_1,...,%9. Let pgarrp,+ be the probability density of ;. The
theoretical basis for diffusion modeling is that, at the limit of continuous noise schedule — infinitely
many steps, each adding an infinitesimal amount of noise — and the limit of perfect score function,
psmLD,0o would converge to be exactly equal to pg.

Generally, the difference between psyrr,p,0 and po can be understood as consisting of two parts: a
discretization error, caused by taking finitely many small steps, instead of infinitely many infinitesimal
steps; a score-matching error part, caused by fy # f*.

Intuitively, the discretization error converges to zero as T' — oo, while the score-matching error
grows with €gore and 7. In the next section, we quote a theorem from the literature that makes this
intuition precise.

F.3 THE FUNDAMENTAL THEOREM (LI & YAN, 2024, THM. 2)

Intuitively, a point is easier to model than a line, which is easier than a plane, and so on. This can be
made precise by the intrinsic dimension of the support of a probability distribution to be modeled.

Definition. The support of a probability distribution pg is supp(pp). It is the smallest set that
satisfies Pryp, (¢ € supp(po)) = 1.

Let T" denote the number of SMLD denoising steps. It is a positive integer.
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Definition. Given a base space (2, and two probability densities p, ¢ over it, their total variation is
V(o)1= [ Iple) - gla)lds
Q

Definition. Let X be an arbitrary subset of R”. Let € > 0. The discrete intrinsic dimension is
log N.(X)
de(X ) =2 e/ T
log <
where N, (X) is the minimal number of radius-e balls necessary to entirely cover X. As € — 0, if the
discrete intrinsic dimension converges, then what it converges to is the intrinsic dimension.

What does it mean?

Consider a 2-dimensional square X in R™. As we repeatedly halve the value of €, each halving would

require 4 times as many radius-e balls to cover the same square. Thus, d(X) = lolggi = 2. This is

1/2
true no matter if n = 3 or n = 300, and no matter what side length the square has. Thus, the intrinsic
dimension recaptures our intuition. However, it is well-defined for more than smooth manifolds. It is
well-defined for more general sets, such as fractals. The expression for intrinsic dimension is deeply
related to metric entropy, and has applications in statistics and information theory. (Wainwright, 2019,

Chap. 5)

However, the intrinsic dimension is not accessible in practice. For example, consider a line segment
X in R Tt has d.(X) — 1 as € decreases. However, when ¢ gets small enough, suddenly d(X)
starts converging to 2 instead. What happened? It turns out the line segment is not really a line
segment. At a high enough zooming level, it is actually a cylindrical tube. However, when € got even
smaller, suddenly d.(X) starts converging to 1 again. It turns out the cylindrical tube is actually a
tightly-wound helix curve.

What is accessible in practice is the discrete intrinsic dimension d.(X). Intuitively, it is intrinsic
dimension X if we are not allowed to look more closely than €. Another way to intuit it is by taking
X and constructing a low-dimensional e-skeleton X of it. Any point in X is within distance € of X..
The intrinsic dimension of the “dehydrated skeleton” of X is approximately d.(X).

Theorem F.1. There exists constants cpy, ce,c > 0, such that the following is true. Fix any positive
integer T' > 0. Fix € = T~ . Let pg be the target distribution. If the target distribution has first
order moment that is bounded by a polynomial in T :

EIONPO [||$0H2] < T

and we have a score network fo(x,t) such that it achieves average score modeling error €2.,,, then

there exists a SMLD sampler schedule that takes T steps, such that the result of SMLD sampling has
distribution psnrp,o, and

de(su
TV (po, psmrpyo) < ¢ ((I;P(Po))(log T)? + €scorer/10g T)

The two terms correspond to error caused by taking discrete steps, and error caused by drifting away
from score matching error.

F.4 MAIN THEOREM

We formalize a model of non-uniform TC® diffusion modeling.

Given a task, we define what it means to solve it by nondeterministic masked sequence modeling.
Each task instance is specified by a sequence of n tokens, written as x1, . . ., x,. Of these, k,, tokens
are fixed inputs to the model to specify the problem, and n — k,, tokens are masked, which the model
would denoise. The denoised tokens are discretized to a final answer.

To avoid surreptitiously hinting the diffusion model the answer, the masked tokens are always in the
same place, which, WLOG, we assume comes at the end. Similarly, we require that for each n, k,
is fixed. Finally, we require the discretization step to require constant compute, to avoid secretly
offloading problem-solving computation from the diffusion model to the discretization algorithm.
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Given a task, a TC family of score-networks fy,, for such a task is a sequence of networks
fo1, fo.2,- ., such that:

* Each fp, takes as input n + 1 elements x1,...,Ty,t, and produces an output
Jon(Thpt1, Thp 12, s Tnlt, T1, .00 Tk, ).
* The family fy,, has O(1) depth, poly(n) width, and O(1) precision.

Comment. The holds for any family of score-networks for which a single forward pass is in TC.
This includes, for example, Transformers and state-space models (Merrill & Sabharwal, 2023b;
Merrill et al., 2024).

For notational convenience, we will thenceforth assume that in our task, there is one true solution
per problem. If there are multiple true solutions per problem, then our proof shows that the task of
“finding at least one true solution for the original task” is TCP.

Since a diffusion model may solve a problem only with high probability, instead of solving it
deterministically, we make the following definition:

A task is solved with constant probability bound if there exists some & > 0, such that for each
input token sequence 1, . .., Ty, let Zcomect DE the correct discrete solution, then

p(l'correclm'ly ) xn) > p($l|ﬂfla e ,mn) + 57 V(L'/ 7& ZLcorrect - (2)

As noted before, there are 2 places where a diffusion model can incur error in its solution. The first
place is due to using discrete time-steps during the backward diffusion process. The second place
is due to score-matching error compared to the true forward diffusion process from the solution
manifold.

We are ready to state the theorem. We apologize for the amount of complicated epsilon-delta formality
in the statement, but it is what it takes to make it rigorous.

Theorem F.2. Given a task, and a TC® family of score-networks fq 0, fo1,. .., for solving the task,
by SMLD with fg n(Tk, 41, Tk, 42, - - - Tnl|t, T1, ..., Tk, )

n /e

Let the n-th solution manifold of the task be X,,. Assume:

1. There exists a constant integer T' > 0, a constant real number €g.,e > 0, a small constant
real number 6 > 0, and a sequence of probability distributions pg n, on Xy, such that

2. Letting c, ce,cpr be the constants used in the statement of Theorem F.1, ¢ = T~ %, and
€score,n. be the average score modeling error of using forn to score-match the forward
diffusion process on pg n,

3. Foralln =1,2,3,..., we have

Ezompo.n [[lToll2] < T,

65C0I"€,’n S ESCOI”E?

X, 1
c (de(jf)(log T)3 + €5eorer/10g T) < 5~ 0.

Then the task is in the non-uniform TC® class.

More generally, if the family of score-networks is a TCk family, and assume:

1. There exists a non-negative integer k, a sequence Ty, Ty, . .. such that T,, = O((logn)*), a
sequence 0., such that 1/6,, = poly(n), such that

2. Letting c, c., cpr be the constants used in the statement of Theorem F.1, €, = T, °, and
€score,n, be the average score modeling error of using fp ., to score-match the forward
diffusion process on pg p,
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3. Foralln =1,2,3,..., we have

Eaompo o lllzoll2] < T3,

de (X, .
¢ ("q(r)(log T0)? + €score.n /108 Tn) <

n

— On.

then the task is in the non-uniform TC* class.

Proof. The proof of the case for TC! is essentially the same as the case for TC®, with more cumber-
some notations. Thus, we only prove the case for TC? explicitly.

Using the big list of assumptions, we can apply Theorem F.1 directly, and conclude that, if we use
SMLD with fy ,, as the score network, for 7" steps, we would sample from a distribution psarr.p.0,n
that satisfies

TV (po.n, psmMLDom) <1/2—10¢

In particular, this means that after discretization, we obtain the correct solution with probability at
least 1/2 + 4. This then implies that the task is solved with constant probability bound. Now we

can derandomize this family, obtaining a TC° family of Boolean circuits that solves the problem
deterministically. The details of the derandomization method appear in (Hajnal et al., 1993, Prp. 4.2).
It goes as follows:

for each length n, we replicate the network k(n) times. Each network must take one seed. For each
choice of k(n) seeds sy, ..., Sk(n), We have a particular deterministic model:

x +— majority (f(z, s1), f(x,52),..., [(2, Sp(n)))-
If s is randomly sampled, then let the probability that f(x,s) is wrong be upper-bounded by a
constant p < 1/2. By Hoeffding’s inequality (Hoeffding, 1963), the probability that the majority vote
is correct is > 1 — e~ 2k(m)(p=1/2)

Sample k(n) random seeds, and fix them. This provides a deterministic model. Now, we try this
deterministic model on every single possible input of length n. There are only #vocab™ of them. If

we set k(n) > M, then by the union bound, the probability that the majority vote is correct on
2(p—1/2)
all inputs of length n is nonzero. Thus, there exists a specific choice of random seeds (s, . . ., sk(n))

that makes the compound model correct on all inputs of length n.
This construction is nonuniform precisely in the part where we have only shown the choice of seeds®
exists. To actually find these seeds may take exponential time. O

F.5 INTERPRETATION

At the high level, to satisfy the assumptions, one needs to have a good enough approximate score
with an error €s.o. Then, choose T (or T},) such that

X
c (dE(T")(logT)3 + escore}n\/logT) <1/2-96

For constant d.(X,,), we have the following interpretations:

Perfect diffusion model is non-uniform TC'. Consider the case if we have a perfect score function

€score = 0, we have ¢ (%(log T)3) <1/2—06.Wecanselect T = O(d.(X,)) = O(1), hence,

the task belongs to the non-uniform TC class. This is the same finding as Liu (2025).

8In complexity theory, this choice of seeds is an “advice string”.
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Good diffusion model is still non-uniform TC’. Consider if the score function is not perfect.
Here, the the accumulated error grows slowly with T, i.e., €sorev/logT. As T increases, the term

% (log T')3 decreases quickly, while the term egcorev/Iog T increases only slowly and eventually
dominates, setting a floor on the total error. If the error is not too large, we can still find a constant 7’
to obtain a constant error bound.

Similar interpretations can be obtained for non-uniform TC* if d. (X,,) = O((logn)).

There are two scenarios that the theorem’s assumptions are violated and the conclusion of the theorem
does not apply.

€score 1S t00 large. In this case the inequality fails and our theorem no longer applies. This corresponds
to a diffusion model that is not doing a good job at its intended task of score matching. We expect this
to occur when the diffusion model is poorly trained or under-parameterized, or when the network is
not being used as a score-matching diffusion model at all. If it is not used for score matching, SMLD
can in principle implement arbitrary Turing computations via a highly non—score-matching network.

The intrinsic dimension of the solution space d.(X,,) grows faster than polylog(n). In this
case, the convergence rate of the diffusion model will be slow enough that the task may go beyond
non-uniform TC¥ if d., (X,,) = O((logn)¥). However, it doesn’t immediately imply that the task is
in P\ TC, nor the diffusion model can solve an inherently serial problem. It only means that diffusion
models solve a problem with polynomial number of intrinsic dimensions with polynomial steps.

G INHERENTLY SERIAL PROBLEMS IN RL

Throughout this section, by a parallel algorithm, we mean specifically an L-uniform TC Boolean
circuit family—as usual throughout this paper.

In this section, we begin with a problem from computational complexity theory that is proven to be
impossible to parallelize (assuming, as always, that TC # P), then convert it into a deterministic
decision problem. We then prove a theorem, showing that any parallel decision rule for this problem
has arbitrarily bad worst-case performance. As special cases, this includes maximizing parallel value
functions, maximizing parallel Q-functions, parallel policies, and parallel learning rules that produce
parallel policies.

G.1 DEFINITIONS

A Boolean circuit C' is alternating when it consists solely of AND and OR gates such that every
AND gate connects to only OR gates and every OR gate connects to only AND gates.

Alternating circuits are monotonic in the following sense. Consider an alternating circuit that takes
n inputs, and let z, 2’ € {0,1}" be two possible inputs to it. If x < 2’ (i.e., 2’ is obtained by
flipping some zeros of z to ones), then C'(z) < C(x'). More generally, for any gate output C; of C,
we have C;(z) < C;(2'); intuitively, this can be visualized as “hot” wires carrying True-signals
monotonically “upwards” through the circuit.

The depth of a gate is the length of the longest directed path from any circuit input to that gate. A
chain of the form OR— AND — OR — - - - therefore has gate depths 1,2, 3, ... in order.

For an alternating circuit C' on input z, the depth-of-1 (DO1) of this circuit configuration is

di(C,z) := max{depth(g) : g outputs 1 onz}.

The problem of computing the DO1 of any circuit configuration is the DO1 problem. Assuming that
TC # P, as usual in the paper, then the DO1 problem cannot be solved by a parallel algorithm. In
fact, much more can be said. Not only would it be non-parallelizable, any approximation of it is also
non-parallelizable.

Fix constants 0 < € < b. Given (C, x), the problem of computing a number d(C, x) satisfying
d(Cyz) € [edi(C,z), bdyi(C,z)].
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Because a solution for [e, b] yields one for [¢/b, 1], it suffices to consider the special case b = 1, which
we call the e-approximate DO1 problem.

G.2 NON-PARALLELIZABILITY RESULTS

We quote the following result from Kirousis and Spirakis (Kirousis & Spirakis, 1988).

Theorem G.1. For every € € (0, 1), the e-approximate DOI problem is P-complete. Consequently, if
TC # P, no parallel algorithm can solve the e-approximate DOI.

To import the theorem from computational complexity theory into RL theory, we need to construct a
specific decision environment in which an agent must perform actions to maximize rewards.

The idea of the following construction is that an approximately optimal agent can be exploited as a
problem-solving resource for other ends. Specifically, we will construct some environments in which
the first action of the agent is a forced choice between two circuits. In the language of psychologists,
we construct two-alternative forced choice experiments. The agent’s choice can then be interpreted as
an agent’s judgment as to which circuit has a deeper depth-of-1.

Given a circuit configuration (C,z), we construct, in parallel, many other circuit configura-
tions (C1,1),(C3,1),(C3,1),..., (Clg), 1), such that dy (C1, 1) = 1,d1(C3,1) = 2,d1(C5,1) =
3,...,d( |’C‘, 1) = |C|. Then, we perform in parallel all forced choices for these pairs: (C, x) vs
(C1,1), (C,2) vs (C3,1), .., (C,w) vs (Cjg, 1). At some point, the agent’s forced binary choice
should switch from preferring (Cj,, 1) to preferring (C,x). This can be taken as a judgment that
dy(C,x) = k. If the agent is approximately optimal, then d; (C, x) = k is correct, in the sense that

we can guarantee k € [ed(C, z), bd; (C, x)] for some constants 0 < e < b that do not depend on
either C' or z.

This is the essential idea of the construction and the subsequent proof. The rest are tedious details
designed to close loopholes.

We define the DO1 environment as follows. Given a circuit configuration (C, x), define a corre-
sponding deterministic decision problem as follows.

1. Att = 0, the agent observes two circuit configurations: the original (C, z) and a length-k
alternating chain of the form OR— AND —-OR — - - -, whose input is 1.

2. The agent selects one gate from one of the circuits; the unchosen one is then removed. This
is the two-alternative forced choice.

3. Subsequently, the agent may select at most one additional gate per time-step, for H :=
max{k, |C|} steps, designed so that the agent has enough time to choose every desired gate.

4. The episode ends at ¢t = H. If every chosen gate outputs 1, then the reward at this step is
ry = the maximal depth among all the chosen gates. Otherwise, r; = 0. The reward at all
other steps is zero.

This means that each DO1 environment can have the following states:

* No gates are selected.
» Some gates of C are selected.
* Some gates of the alternating chain are selected.
Theorem G.2 (optimal decision in the DO1 environment is inherently serial). Assume TC # P.

(a) No parallel algorithm can compute an approximate optimal value function V such that
J0<e<bwithV(s) € [eV*(s), bV*(s)] for every state s in every DOI1 environment.

(b) For any parallel algorithm producing a value function V and any € € (0, 1), there exists
a DOI environment where the greedy policy my (s) := arg max, V (s') achieves terminal
reward vy < er*, where r* is optimal. Here, s’ denotes the next state if, at state s, the agent
performs action a.
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(c) Statement (b) extends to any parallel algorithm that, given a state in a DOI environment,

Proof.

outputs an action.

(a) We argue by contradiction. Assume there exists a parallel algorithm that, for some
constant 0 < e < 1, outputs a value function V satisfying

V(s) € [eV*(s), V*(s)] forevery state s in every DO1 environment.

Since any factor b > 1 can be removed by division, we set b = 1 without loss of generality.

Special case. We need to check first the special case where d; (C, z) = 0. This is done as
follows. First, perform a topological sort of C, which is parallelizable (in TCZ, in fact (Cook,
1985)). This then allows us to find all the gates that are in the first layer. Next, for each
gate in the first layer, we test in parallel whether that gate outputs 1. Let their outputs be
Y1y s Ym. I OR(Y1,--.,ym) = 0, then dy(C, z) = 0, because alternating circuits are
monotonic. Otherwise, d1(C, x) > 1.

Having thus handled the special case, we assume that d; (C, ) > 1 for the rest of the proof.

Two-alternative forced choice experiments in parallel. Given an input (C, ) with n :=
|C| gates and depth-of-1 equal to d; = d;(C, z), choose m € N such that 2™~ < n < 2™,
For each index ¢ € {0, ..., m} construct, in parallel, a DO1 environment F;, whose second
circuit is an alternating chain of length 2¢, with the only input being 1. Within each E,
evaluate (again in parallel)

. V(sge)) , where sy) is the state after initially selecting gate g € C;

. V(siﬁzm), where sgﬁzﬁn is the state after selecting the input gate of the chain.

The whole procedure requires

(n+1)(m+1) = (|C| + 1) [log, |C]]
parallel evaluations.

Identifying the switchover index. For / = m the chain depth 2™ is at least as long as
what depth-of-1 that C' can create, hence, if the value function is any good, it should satisfy

V(s(m) ) > V(sém)) for all g. As ¢ decreases the chain shortens; eventually picking C

e
shofnl?imbe better than picking the chain. This intuition allows us to define the following

decision procedure.

Let &k be the smallest ¢ such that

Output d’' := 2m—k a5 the estimate for d;.
There are two special cases to handle. If the agent rejects the chain even for ¢ = 0, then

output |C/. If the agent always picks the chain, then output d’ = 1.

Quality of the estimate. Suppose the switchover occurs, such that the agent picks the chain
for Iy, but switches to picking the circuit for F/;_;. Consider in detail what happens for
FEg.

Choose g* attaining the maximum in the definition of k and set

(k) ! (k)

§:1= S84, S = Sghain

by construction, V' (s) > V(s’), and by the assumed guarantee on V/,
V(s) € [ed1, di], V(s') € [ed, d'].
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Hence d; > ed'.

Similarly, the argument in the case for E_1 shows ed; < 2d’, so altogether

/2 g
di € [ed , 2 d ] .
A similar argument applies for the two special cases where no switchover occurs.

Therefore the procedure is an approximation algorithm for DO1 that operates in parallel,
contradicting Theorem G.1.

(b) A special case of (c).

(c) Assume for contradiction that there exists a parallel decision algorithm that is within an
e of optimality. That is, when the decision algorithm is applied in any DO1 environment,
it always achieves reward at least er*. Then, for any particular DO1 environment, its
first action must be an approximate solution as to whether (C, ) or the chain possesses
larger depth-of-1. Now, the same construction of (a) yields a parallel algorithm solving
€'-approximate DOI, again contradicting Theorem G.1.

O

Comment. By prepending beneath the circuit C' a length-|C/| alternating chain of gates, and making
some minor adjustments to the proof, we can show that any parallel decision algorithm achieves
linear regret in the worst case, meaning that g — r* = ©(H).

Although our analysis uses the DO1 problem in particular, there are some other P-complete problems,
such as linear programming, that are P-complete to approximate. See for instance (Sahni & Gonzalez,
1976; Serna, 1991; Diaz et al., 1997; Greenlaw et al., 1995) for some examples. This leads us to
conjecture that inherent seriality may be a fairly common phenomenon in RL, not particular to the
DO1 setup.

The barrier in Theorem G.2 can be bypassed in several ways:

* In the unlikely case that TC = P is proven, it would have great consequences for com-
plexity theory in general, analogous to the case where P = NP is proven. This rejects the
fundamental assumption in the theorem.

* By employing a serial learning algorithm that runs in polynomial (not polylog) time, one
may discover the right policy, which can then be compressed down into a policy that runs
faster than serial. This bypasses the “L-uniform” part of the obstacle.

1)

* By allowing the learned policy or value function to be non-parallel, the “TC circuit family
part of the obstacle is bypassed. This is true for certain RL algorithms, especially model-
based methods that simulate the environment dynamics before making a decision.

* For some RL applications, one may be able to tolerate arbitrarily poor worst-case perfor-
mance, as long as they occur rarely.

Part (b) of the theorem may explain the observation in Kevin et al. (2025). In that work, they trained
both policy networks and value function networks by actor-critic methods, and noted that using
deeper networks on both policy and value function improved performance. Part (b) of the theorem
suggests that, when the network for approximating the value function contains less serial compute
than the environment demands, then the corresponding exact V-maximizing policy would suffer
arbitrarily bad worst-case performance. Though the theorem does not exactly apply when the policy
is inexact, it suggests that the same phenomenon happens for an actual policy network trained to
merely approximate the V' -maximizing policy.
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