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Abstract
The ability to integrate context, including per-001
ceptual and temporal cues, plays a pivotal002
role in grounding the meaning of a linguistic003
utterance. In order to measure to what ex-004
tent current vision-and-language models mas-005
ter this ability, we devise a new multimodal006
challenge, Image Retrieval from Contextual007
Descriptions (IMAGECODE). In particular,008
models are tasked with retrieving the correct009
image from a set of 10 minimally contrastive010
candidates based on a contextual description.011
As such, each description contains only the012
details that help distinguish between images.013
Because of this, descriptions tend to be com-014
plex in terms of syntax and discourse and re-015
quire drawing pragmatic inferences. Images016
are sourced from both static pictures and video017
frames. We benchmark several state-of-the-art018
models, including both cross-encoders such as019
ViLBERT and bi-encoders such as CLIP, on020
IMAGECODE. Our results reveal that these021
models dramatically lag behind human perfor-022
mance: the best variant achieves an accuracy023
of 20.9 on video frames and 59.4 on static pic-024
tures, compared with 90.8 in humans. Further-025
more, we experiment with new model variants026
that are better equipped to incorporate visual027
and temporal context into their representations,028
which achieve modest gains. Our hope is that029
IMAGECODE will foster progress in grounded030
language understanding by encouraging mod-031
els to focus on fine-grained visual differences.032

1 Introduction033

Natural languages are highly contextual (Fodor,034

2001): for a listener, recovering the speaker’s in-035

tended meaning requires integrating information036

from different streams, such as grounding in per-037

ception (Pecher and Zwaan, 2005), shared world038

knowledge, and temporal reasoning (Wilson and039

Sperber, 1998). These processes, more generally,040

fall under the umbrella term of pragmatics (Grice,041

1957). Despite recent progress in multimodal sys-042

tems, it remains unclear to which extent they can043

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

Figure 1: An example of the new challenge, Image Re-
trieval from Contextual Descriptions (IMAGECODE):

“The girl in blue is to the left of the girl in the middle
with the purple shoes. The girl in blue is not obscured
in any way.” Frames 5–10 are left out for simplicity’s
sake. The target image, frame 3, is in green, whereas
the incorrect frames are in red.

handle settings where context plays a major role, 044

such as in real-world communication. 045

To this end, we present a new challenge that 046

requires multimodal models to leverage context 047

to retrieve images from text. In particular, given 048

a contextual description and a set of minimally 049

contrastive candidate images, i.e. differing only 050

in some details, the model has to retrieve the tar- 051

get image. In order to discriminate between simi- 052

lar images, human annotators naturally produce 053

highly nuanced and grammatically complex de- 054

scriptions. An example of our new challenging 055

dataset, Image Retrieval from Contextual Descrip- 056

tions (IMAGECODE), is shown in Figure 1. 057

During the data collection process, sets of simi- 058

lar images are selected among static pictures from 059

Open Images (Kuznetsova et al., 2020) and (a larger 060

portion) among video frames from diverse domains. 061

Including both types of images allows for diversi- 062

fying the dataset while representing different de- 063

grees of visual similarity within each set. Next, we 064
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crowdsource a contextual description of a target065

image (presented together with the rest of the set)066

that contains only differences relevant for retrieval.067

After a filtering phase involving human retrievers,068

we obtain a large-scale dataset with 94,020 images069

and 21,202 descriptions associated with image sets070

of size 10.071

As a result of this annotation protocol, success-072

fully completing the task requires models to in-073

tegrate several kinds of context: i) the image set,074

as the descriptions only make sense in the con-075

text of several other images and are not suitable as076

stand-alone captions. In fact, aspects of the image077

that are very salient and that therefore would nor-078

mally be emphasized are not useful in our proposed079

task. Instead, the focus of our descriptions are fine-080

grained details that help discriminate between im-081

ages (see Figure 1); ii) the speaker’s intention. Due082

to their high degree of image similarity, contextual083

descriptions may be literally true for multiple im-084

ages; however, once the speaker’s intention is taken085

into account, the correct image can be determined086

by virtue of pragmatics (see Figure 2); iii) temporal087

sequences: for video frames temporal reasoning is088

also required to compare different moments of an089

unfolding event.090

On our new dataset IMAGECODE, we bench-091

mark a series of vision-and-language models that092

achieve state-of-the-art performance on other mul-093

timodal tasks, including both cross-encoders such094

as ViLBERT (Lu et al., 2019) and bi-encoders such095

as CLIP (Radford et al., 2021). We report several096

findings. First, accuracy on static images is vastly097

superior than on video frames. Therefore, the de-098

gree of similarity among the candidate images has099

an overwhelming impact on retrieval performance.100

Second, all state-of-the-art models generally strug-101

gle with image retrieval from contextual descrip-102

tions, whereas humans consistently achieve high103

accuracy.104

Hence, we propose model variants capable of105

better taking context into account: i) once an image-106

description pair is encoded, we refine this represen-107

tation by attending to the other images in the set; ii)108

we augment image encodings with special tempo-109

ral embeddings. Based on our results, models take110

advantage of this additional information fruitfully111

but only to a limited degree.112

Because of its challenging nature, due to the113

minimally contrastive images and complex descrip-114

tions, we believe that IMAGECODE will help make115

visio-linguistic models more context-aware and 116

sensitive to fine-grained details. The dataset and 117

models would be publicly released with the camera- 118

ready version. 119

2 Related Work 120

There is a long tradition of grounding language 121

understanding on single images, in the form of 122

visual question answering (Goyal et al., 2017; Hud- 123

son and Manning, 2019), visual dialogue (de Vries 124

et al., 2017; Das et al., 2017), or visual entailment 125

(Xie et al., 2019). Recently, more and more fo- 126

cus has been directed to settings where the visual 127

context consists of multiple images, either con- 128

ventional static pictures (Vedantam et al., 2017; 129

Hu et al., 2019; Suhr et al., 2019; Forbes et al., 130

2019; Hendricks and Nematzadeh, 2021; Yan et al., 131

2021; Hosseinzadeh and Wang, 2021; Bogin et al., 132

2021; Liu et al., 2021), or video frames (Jhamtani 133

and Berg-Kirkpatrick, 2018a; Bansal et al., 2020). 134

While many of these benchmarks involve just two 135

images, COVR (Bogin et al., 2021) and ISVQA 136

(Bansal et al., 2020) provide more images, similar 137

to our sets of 10 images. 138

ISVQA and Spot-the-diff (Jhamtani and Berg- 139

Kirkpatrick, 2018a) are most similar to our dataset, 140

IMAGECODE. ISVQA is based on several video 141

frames that are synthetic and cover a restricted do- 142

main, with short questions for Visual Question An- 143

swering. Spot-the-diff provides two frames from 144

surveillance video cameras and descriptions of all 145

their differences. IMAGECODE is unique as a) we 146

cover a wider range of domains; b) we construct im- 147

age sets that are maximally similar while being dis- 148

tinguishable through natural language (Section 3) 149

and c) we limit descriptions to relevant differences. 150

This results in (a) diverse, (b) complex and (c) prag- 151

matically informative descriptions. 152

IMAGECODE elicits pragmatic reasoning (An- 153

dreas and Klein, 2016; Cohn-Gordon et al., 2018) 154

as a listener has to consider the context and resolve 155

ambiguities resulting from nuanced differences to 156

solve the task. 157

3 Data Collection 158

Our data collection involves two steps with a hu- 159

man describer and retriever. The describer is 160

given a set of 10 highly similar images S = 161

[I1, I2, ..., I10], one of them marked as the target 162

image It, and has to write a description D that 163

clearly distinguishes It from the other distractor 164
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images. In the second step, the retriever is given165

the same 10 images and the description from the166

first step and has to identify the target image based167

on the description. S and D are only added to our168

dataset if the retrieval is successful.169

Below, we outline the main stages of data col-170

lection: first, the collection of similar, contrastive171

images in Section 3.1. Then, the crowdsourcing172

of contextual descriptions in Section 3.2 and val-173

idation of the examples via image retrieval (Sec-174

tion 3.3). The final IMAGECODE dataset consists175

of 94,020 images (partitioned into 9,402 sets) and176

21,202 contextual descriptions (16,594 in the train177

split, 2,302 and 2,306 in the validation and test split178

respectively).179

3.1 Collecting Similar Images180

In the first stage, we collect sets of images that181

are highly similar but still distinguishable from182

each other by a human. To quantitatively measure183

the pairwise similarity of two images, we compute184

the Euclidean distance between their encodings ex-185

tracted from a pre-trained CLIP model (Radford186

et al., 2021).1 To study the effect of different de-187

grees of similarity, further variegate our dataset,188

and enable temporal reasoning, we source our can-189

didate images from collections of static pictures as190

well as videos, as detailed below.191

Static Pictures. We obtain image sets from one192

of the largest repositories of static pictures, the193

Open Images Dataset V6 (Kuznetsova et al., 2020),194

containing 1.74M images. For each image, we195

retrieve the 9 closest images from the training set196

based on their CLIP encodings. We then randomly197

sample 4,845 of these image sets.198

Video Frames. As sources for our video frames,199

we use i) Video-Storytelling (Li et al., 2019), cov-200

ering social events (wedding, birthday, Christmas,201

camping); ii) general-domain MSR-VTT (Xu et al.,202

2016); and iii) YouCook (Das et al., 2013), cover-203

ing cooking events. We choose these datasets as204

they contain publicly available and general-purpose205

videos (not specific to downstream tasks). We re-206

tain the original splits for train, validation, and test.207

To obtain disjoint sets of 10 similar frames, we208

first segment the videos into smaller scenes (also209

known as shots) via the scene detection function-210

ality of ffmpeg (Tomar, 2006). Then, for each211

scene, we add its first frame to the set of selected212

1We also experimented with ResNet-50 features, but we
found CLIP results to be more similar to that of humans in
preliminary experiments.

Dataset After §3.1 After §3.3

MSR-VTT 11,643 8,045
Video-Storytelling 11,459 8,153

YouCook 894 588
Open Images 4,845 4,416

Table 1: Number of descriptions from each source of
images at different stages of the annotation process.

images. We then iterate over every following frame 213

and add it to the set if its pairwise Euclidean dis- 214

tance with each of the previously selected frames 215

is larger than a threshold.2 Once the set contains 216

10 images, we reiterate the procedure for a new set. 217

If the scene ends and the current set contains less 218

than 10 images, the set is discarded. 219

During this process, we additionally remove 220

frames that i) are too blurry, i.e. their BRISQUE 221

score (Mittal et al., 2012) is larger than 0.65; or 222

ii) contain too much text, which is detected with 223

the OCR tool Tesseract (Smith, 2007).3 We use 224

all of YouCook’s image sets and (due to cost con- 225

straints) randomly sample image sets from Video- 226

Storytelling and MSR-VTT for crowdsourcing (cf. 227

Table 1). We remark that image sets are further fil- 228

tered at the final stage of annotation (Section 3.3). 229

3.2 Crowdsourcing Contextual Descriptions 230

After creating sets of highly-similar images in Sec- 231

tion 3.1, we request annotators from Amazon Me- 232

chanical Turk (AMT) to write contextual descrip- 233

tions for each target image in a set. Each round, 234

a set of images is presented in random order for 235

static pictures and respecting temporal order for 236

video frames. This encourages annotators to take 237

the dynamics of the event into account. We then 238

(randomly) select 3 target images per set, and ask 239

annotators to produce a description that discrim- 240

inates them from the other images in the set. To 241

encourage pragmatic reasoning, we do not ask for 242

all the differences (just those sufficient for retrieval) 243

and do not allow explicit mentions of other images 244

(see Figure 2). We select high-quality annotators 245

according to criteria in Appendix B and assign 246

partly disjoint sets of annotators to train and test in 247

order to avoid annotator bias (Geva et al., 2019).4 248

2The distance threshold was manually chosen as 0.35
based on qualitative results.

3The rationale of the second criterion is to prevent workers
from focusing on the overlaid text rather than image content.

4For further details on crowdsourcing instructions, analy-
sis of annotator bias and the AMT interface, please refer to
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Phenomenon all videos static Example from IMAGECODE Definition
% % %

Context 47.3 57.3 6.6 Figure 2 Visual context or pragmatic in-
ference required.

Temporal 15.0 18.5 4.1 A smiling boy just begins to look towards the
dog.

Temporal markers (e.g., after)
and verbs (e.g., starts)

Quantities 48.5 47.7 51.0 There is an equal amount of yellow and white
between both hands. —

Spatial Relations 70.5 72.2 65.3 The cloud on top left side of box only has half
of it showing. —

Negation 17.9 20.7 6.1 The spoon is at the top right corner, it is not
moving any of the food. —

Visibility /
Occlusion

45.5 54.5 8.6 The flowers the woman in the teal strapless dress
is carrying are completely obscured by the man
in the black shirt’s head.

An entity is covered or partially
outside of the image.

Nuances 26.3 31.6 5.1 There is the slightest of openings to see the end
of the bridge through the obstruction.

Description grounded on small
patch of pixels or very non-
salient aspects.

Co-reference 41.5 42.4 38.8 The cloud on top left side of box only has half of
it showing. —

Meta Properties 12.0 13.9 6.1 Bright shot of a girl and boy standing up
straight. Her eyes are closed.

Blurriness, brightness, overlays,
and transitions of frames.

Table 2: Distribution of challenging phenomena in IMAGECODE based on 200 (or 1000 if underlined) manually
annotated examples.

Metric val test

Human Accuracy 90.9 90.8
Krippendorff’s α (nominal) .797 .795
Krippendorff’s α (interval) .872 .869

Table 3: Human performance (accuracy) and inter-
annotator agreement (Krippendorff’s α) on the valida-
tion and test splits of IMAGECODE.

3.3 Human Validation via Image Retrieval249

Finally, we validate the annotation crowdsourced250

in Section 3.2 by asking AMT workers to retrieve251

the correct target image from a set given its contex-252

tual description. For the final dataset, we retained253

only the examples that i) were retrieved success-254

fully in the training set by a single worker or ii)255

were retrieved successfully by at least 2 out of 3256

workers in the validation and test sets. As a con-257

sequence, we filtered out 26.5% of the contextual258

descriptions generated in Section 3.2. Table 1 com-259

pares the number of examples retained at each stage260

throughout the dataset creation.5261

4 Data Analysis262

4.1 Human Accuracy and Agreement263

To quantify the reliability of the process outlined in264

Section 3, we report the inter-annotator agreement265

on our final dataset in Table 3. We use Krippen-266

Appendix C and Appendix D.
5Again, the set of workers validating train and test sets

were partly disjoint to avoid annotator bias.

ours NLVR2 Spot-the-diff

Average length 23.3 15.3 10.6
Word types 6,916 6,602 2,282
Average tree depth 5.1 4.8 4.3
Average sentences 1.6 1.0 1.0

Table 4: Comparison of the text statistics of IMAGE-
CODE with other vision-and-language datasets.

dorff’s α as a metric (the higher the better), which 267

accounts for incomplete data, since the number of 268

annotators per example is not fixed. We treat the 269

index of the target image either as a nominal vari- 270

able for static images or as an ordinal variable for 271

video frames. In both cases, we find a high degree 272

of agreement. Moreover, in Table 3, we also re- 273

port human accuracy– the percentage of times an 274

annotator retrieved the correct target image from a 275

contextual description (as described in Section 3.3). 276

This provides an upper ceiling for the model per- 277

formances (see Section 6). 278

4.2 Language Statistics 279

In Table 4, we measure a series of statistics of the 280

descriptions collected for IMAGECODE and com- 281

pare them with other vision-and-language datasets 282

with multiple naturalistic images (cf. Section 2), 283

such as NLVR2 (Suhr et al., 2019) and Spot-the- 284

diff (Jhamtani and Berg-Kirkpatrick, 2018b).6 In 285

particular, we count the average description length, 286

6For comparability, we measured the statistics for all the
datasets with the same tools.
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(a) Frame 1 & Frame 2 (b) Frame 3 (c) Frame 4 & Frame 5

Figure 2: An example with description: “No bridesmaid visible at all.”. Visual context is necessary to identify the
correct target image, by cross-referencing the portions of images with bridesmaids (red boxes).

the number of distinct word types, the average de-287

pendency tree depth of each sentence,7 and the av-288

erage number of sentences per description. Based289

on these metrics, we find evidence that IMAGE-290

CODE’s descriptions are longer and more syntacti-291

cally complex than in the other datasets. Moreover,292

they include multiple sentences (11.8% of exam-293

ples have 3 or more).294

4.3 Vision Statistics295

By calculating the average pairwise Euclidean dis-296

tance between CLIP-based encodings of images in297

the same set, we find that video frames are more298

similar than static pictures – as expected – by a fac-299

tor of 1.13. Moreover, we find that descriptions of300

video frames mention human body parts (72.1%)301

more often than static pictures (30.2%). On the302

other hand, names of colors appear in descriptions303

of static pictures (61.4%) more frequently than304

video frames (33.6%).8 Thus, annotators resort305

to different strategies to discriminate between dif-306

ferent types of image sets, focusing on the aspects307

that vary the most.308

4.4 Challenging Phenomena309

Finally, we identify 9 interesting and challenging310

phenomena in IMAGECODE and annotate whether311

they are present in 200 examples from the valida-312

tion set. We provide the definition of each phe-313

nomenon, its frequency, and an illustrative exam-314

ple in Table 2. More information is given in Ap-315

pendix F. For 4 of these phenomena unique to IM-316

AGECODE, we further annotated 800 examples for317

7We use spaCy (Honnibal and Montani, 2017) as a parser.
8We calculated these percentages based on a list of 171

body parts in English collected by Tjuka (2021) and a list of
colors in English from games4esl.com.

the purpose of error analysis in Section 6. Inspect- 318

ing these examples, we find a high number of cases 319

where the visual context (47.0%) is required to 320

complete the task. For instance, consider Figure 2: 321

the description “No bridesmaid visible at all.” re- 322

quires a retriever to resolve the co-references of the 323

entities in 5 frames. In particular, the body parts 324

of the bridesmaids (red boxes) visible in frames 325

2 and 4 would not be identifiable as such without 326

frame 1 and 5, respectively (where they appear with 327

matching dresses and flowers in their hands). 328

Another group of phenomena characteristic for 329

IMAGECODE originates from its minimally con- 330

trastive setup: annotators might focus on how an 331

event unfolds over time (temporal context), on what 332

is missing in a specific frame but visible in the oth- 333

ers (negation), on what moved out of frame (visi- 334

bility / occlusion), or on small regions and patches 335

of pixels (nuances). Importantly, these phenomena 336

are less prominent in static pictures than in video 337

frames (cf. Table 2). 338

5 Methods 339

5.1 Baselines 340

In order to assess whether vision-and-language 341

models can retrieve the correct image from a con- 342

textual description on a par with humans, we bench- 343

mark two state-of-the-art models that represent 344

two main families of multimodal architectures 345

(Bugliarello et al., 2021; Miech et al., 2021): i) ViL- 346

BERT, a cross-encoder where language and vision 347

streams can interact via cross-attention at interme- 348

diate layers (Lu et al., 2019); ii) CLIP, a bi-encoder 349

where language and vision streams are independent 350

(Radford et al., 2021). It is worth noting that ViL- 351
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V&L V&L V&L V&L V&L V&L V&L V&L V&L V&L V&L V&L 

+ + +

CLIP / ViLBERT +Context Batch +Context Module +Temporal Embeddings

"No bridesmaid visible at all."

Transformer Transformer 

"No bridesmaid visible at all." "No bridesmaid visible at all." "No bridesmaid visible at all."

Figure 3: Models with increasing levels of context integration: see Section 5 for more details. In the figure,
we colour visual embeddings in red, text embeddings in blue, and positional embeddings in grey. POS is the
score for the target image and NEG for the other candidates. ⊛ represents dot product for CLIP and element-wise
multiplication followed by a linear layer for ViLBERT. ⊙ represents element-wise multiplication. For ease of
exposition, we show 3 images instead of 10.

BERT is more expressive due to its architecture,352

whereas CLIP boasts a higher parameter count and353

is pre-trained on a larger dataset.354

We evaluate these models under two different355

regimes: i) zero-shot inference, where pre-trained356

models are deployed on the IMAGECODE test set357

directly; and ii) fine-tuning, where the models are358

refined on the full training set before evaluation.359

We cast the training objective as binary classifica-360

tion for ViLBERT and as 10-class classification361

for CLIP.9 Crucially, in both cases, positive and362

negative examples during training are sampled at363

random independently from the image set they be-364

long to (see the first column of Figure 3). Thus, the365

visual context of the other images in a set is only366

indirectly accessible at inference time, where the367

image with the highest probability is predicted.368

5.2 Integrating Context into369

Vision-and-Language Models370

For the fine-tuning regime, we further investigate371

some modifications in the training setup and model372

architecture that facilitate the integration of visual373

and temporal context into the model. First, we use374

an alternative objective where both CLIP and ViL-375

BERT are trained on 10-class classification, but376

the 1 positive and 9 negatives are sourced from377

9We found this solution to work better for each model
in practice, which is justified by their different pre-training
objectives.

the same image set. The consequence of includ- 378

ing positive and negative examples from the same 379

image set in the same mini-batch is providing a 380

wider visual context. We refer to this variant as 381

+CONTEXTBATCH (second column of Figure 3). 382

This setup only conveys the visual context as a 383

weak signal, since the model has no chance to di- 384

rectly compare the images in the same set. Hence, 385

we experiment with enhancing the architecture of 386

vision-and-language models with a mechanism in- 387

spired by Bogin et al. (2021). In particular, given 388

an encoder (CLIP or ViLBERT), we obtain the rep- 389

resentations of a contextual description xL ∈ Re 390

(where e is the model hidden size) and of the im- 391

ages in a set (x(1)V , . . . ,x
(10)
V ),x

(i)
V ∈ Re from their 392

final layer.10 Then, we create a series of multi- 393

modal embeddings via element-wise multiplication: 394

m = (xL⊙x
(1)
V , . . . ,xL⊙x

(10)
V ). Finally, we feed 395

these to a l-layer Transformer Tf ∶ R10×e → R10×e 396

to obtain context-aware multimodal embeddings 397

(Tf(m)1, . . . ,Tf(m)10). Since each description– 398

image pair can now attend on the others in a set, 399

the model can fully exploit the visual context. We 400

obtain the score for the i-th pair through a linear 401

classifier head W ∈ R1×e. The target image is pre- 402

dicted as 403

argmax
i

softmax [W (Tf(m)i +m(i))] (1) 404

10We use the CLS tokens for ViLBERT.
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Note that we add a highway layer from the input to405

the output of the Transformer. We label this model406

variant +CONTEXTMODULE.407

Finally, in addition to visual context, we make408

models aware of the temporal context too, as shown409

in the fourth column of Figure 3. For video-410

based examples only, the multimodal embeddings411

of each description-image pair are summed with412

a learnable positional embedding t ∈ Re that re-413

flects the temporal order of the frames.11 Thus,414

m = (xL⊙x
(1)
V ⊕t(1), . . . ,xL⊙x

(10)
V ⊕t(10)). Mul-415

timodal embeddings are then fed to a Transformer416

as above. We label this variant encapsulating both417

visual and temporal context +TEMPORALEMBED-418

DINGS.419

5.3 Experimental Setup420

For all CLIP experiments, we use a pre-trained421

model with the vision backbone VIT-B/16.12 We422

train the full models with a batch size of 360 ex-423

amples (i.e., 36 image sets) for CLIP and 150 ex-424

amples for ViLBERT. We perform early stopping425

based on the validation accuracy with a maximum426

of 30 epochs. In the variants that adopt the base427

version of a model, we select a learning rate of428

4 ⋅10−6 for CLIP, 5 ⋅10−6 for ViLBERT, and 4 ⋅10−5429

for ViLBERT +CONTEXTBATCH. We find these430

values via hyper-parameter search on the range431

[10−4,10−7].432

For all the model variants that modify the model433

architecture, we adopt the following setup: first, we434

fine-tune the full model in the +CONTEXTBATCH435

regime as detailed above. Afterwards, we freeze436

the encoder parameters and train the components437

responsible for processing the multimodal embed-438

dings, described in Equation (1). More details are439

provided in Appendix E.440

All descriptions in IMAGECODE exceeding the441

maximum length of CLIP and ViLBERT are trun-442

cated. Due to their negligible amount, this does not443

affect performance significantly.444

6 Results445

In Table 5, we report the performance of the mod-446

els from Section 5 for all the examples in IMAGE-447

CODE as well as for the subsets containing only448

video frames or static pictures. Note that the ran-449

dom chance baseline has an accuracy of 10%. In450

11In the examples with static pictures, no temporal embed-
ding is added.

12https://github.com/openai/CLIP

all video static

ZERO-SHOT

CLIP 22.4 15.6 47.8
FINE-TUNING

CLIP 23.6 17.1 48.2
+CONTEXTBATCH 28.0 19.7 59.2

+CONTEXTMODULE 28.2 19.9 59.4
+TEMPORALEMBEDDINGS 28.9 20.9 58.8

ZERO-SHOT

ViLBERT 19.3 13.5 40.8
FINE-TUNING

ViLBERT 20.9 13.1 49.9
+CONTEXTBATCH 20.9 15.0 42.7

+CONTEXTMODULE 22.3 16.1 45.6
+TEMPORALEMBEDDINGS 24.5 18.0 49.3

Table 5: Performance (accuracy) on IMAGECODE
across two training regimes (zero-shot and fine-tuning),
two models (CLIP and ViLBERT) and 4 model variants.
We report separate figures for all the examples and two
disjoint subsets: video frames and static pictures.

what follows, we compare the results across several 451

dimensions. 452

Zero-shot vs. fine-tuning. In the zero-shot set- 453

ting, we observe that CLIP representations are sur- 454

prisingly superior to ViLBERT even though CLIP 455

has separate streams to encode an image and its 456

description. In the simplest fine-tuning setting (i.e., 457

if negatives are randomly sampled independent of 458

the image set), we find that there is only a small 459

increase in performance for both CLIP and ViL- 460

BERT (+5.4% and +8.3%, respectively) compared 461

to zero-shot inference. This demonstrates that in 462

the regime where images in the same set do not 463

appear in the same batch during training, models 464

cannot extrapolate how to leverage the visual con- 465

text at inference time. 466

Adding context. For the fine-tuning regime, we 467

observe instead a different trend once the visual 468

context of the other images in a set is provided 469

during training (+CONTEXTBATCH): CLIP re- 470

ceives a significant boost in performance (+18.7%), 471

which is particularly accentuated for static pic- 472

tures. On the other hand, ViLBERT’s perfor- 473

mance remains the same, as this variant is bene- 474

ficial for video frames but detrimental for static 475

pictures. Stacking a special module for con- 476

textualizing multimodal representations on top 477

of the encoders (+CONTEXTMODULE), instead, 478

yields gains for ViLBERT compared to +CON- 479
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TEXTBATCH, whereas CLIP is almost unaffected.480

This shows that all models can exploit visual con-481

text, but different strategies (contrastive training or482

dedicated modules) may be necessary.483

Finally, both CLIP and ViLBERT achieve the484

highest performance when fine-tuned with both485

visual and temporal context. Adding temporal posi-486

tional embeddings on top of the contextual module487

(+TEMPORALEMBEDDINGS) yields an accuracy488

of 28.9 for CLIP and 24.5 for ViLBERT. Crucially,489

even the best-performing models lag significantly490

behind the (micro-averaged) human accuracy of491

90.8 (cf. Table 3). Hence, despite some limited492

ability to integrate context, models are currently493

incapable of the fine-grained reasoning and prag-494

matic inferences needed to solve IMAGECODE.495

Pre-trained model. Across all model variants496

and training regimes, CLIP consistently achieves497

higher accuracy than ViLBERT. This implies that498

a larger amount of parameters and pre-training499

examples are more beneficial than ViLBERT’s500

more expressive model architecture. Thus, these501

results violate the expectations that ViLBERT’s502

cross-attention would be more suitable to jointly503

encode highly nuanced visual details and descrip-504

tions (Miech et al., 2021).505

Video frames vs. static pictures. The highest506

accuracy on the subset of the data with video507

frames (20.9) is far lower than that for static pic-508

tures (59.4). This confirms that videos represent509

the main challenge in IMAGECODE, both because510

of the higher similarity of images in a set and of511

the particular factors of variation that help differen-512

tiate among them (cf. Section 4.3 and examples in513

Appendix F). Additionally, model performance on514

video frames seems to increase more consistently515

as more context (both visual and temporal) is pro-516

vided, whereas there is no clear trend in the case of517

static pictures.518

Error Analysis. On a broad level, we have seen519

that video frames are much more challenging for520

models. Next, to identify more fine-grained causes521

for the overall low performance of the vision-and-522

language models on IMAGECODE, we compute the523

Pearson’s correlation between accuracy and a se-524

ries of possible explanatory variables. In particular,525

we find a weak negative correlation with the num-526

ber of tokens in the description (ρ = −0.11) and527

a weak positive correlation with the average pair-528

wise Euclidean distance between CLIP encodings529

of the images in a set (ρ = 0.22), which represents530

Figure 4: Performance of different CLIP variants
(rows) on subsets of examples containing phenomena
of interest (columns) in 1000 annotated validation ex-
amples. The hue of each cell indicates accuracy.

visual similarity. 531

By focusing on the 1000 annotated examples 532

in Table 2 we observe a stark drop from overall 533

performance on the subset of examples containing 534

nuances, visibility/occlusion, and negation (Fig- 535

ure 4). This confirms insights from Kassner and 536

Schütze (2020) and Hosseini et al. (2021) on the 537

difficulty of modeling negation in text-only models. 538

7 Conclusions and Future Work 539

We created a new challenge, Image Retrieval from 540

Contextual Descriptions (IMAGECODE), which 541

is designed to evaluate the ability of vision-and- 542

language models to integrate visual, pragmatic, 543

and temporal context into their predictions. In 544

particular, given a complex and nuanced contex- 545

tual description, a model is required to retrieve the 546

corresponding image from a set of highly similar 547

candidates. We benchmarked state-of-the-art bi- 548

encoder and cross-encoder models, such as CLIP 549

and ViLBERT. Moreover, we proposed new vari- 550

ants of these models that are more suitable to solve 551

this task, by augmenting them with a module to 552

attend on the other images in a set and temporal 553

embeddings. We found that IMAGECODE is highly 554

challenging for all variants: even the best model 555

(28.9) lags behind human performance (90.8) dra- 556

matically. Images sourced from video frames dis- 557

play the largest gap in performance. The most 558

challenging phenomena in IMAGECODE include 559

pragmatics, negation, fine-grained distinctions be- 560

tween images, and occlusion among others. 561
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A Length Distribution of the Image774

Descriptions775

Figure 5: Distribution of the number of tokens across
contextual descriptions in IMAGECODE.

B Criteria for Selecting Annotators776

We keep data quality high through entry require-777

ments (English speaking country, over 98% ap-778

proval rate, etc.), qualification test, whitelisting779

workers and manually inspecting data. Most impor-780

tantly our two-stage setup also allowed us to auto-781

mate monitoring data quality as we could measure782

the description and retrieval accuracy of workers783

and only whitelisted those with high accuracy. We784

paid 0.25$ per description and 0.1$ per retrieval.785

C Annotator Bias786

The majority of descriptions in our test and valida-787

tion split come from workers who did not work on788

the training set in order to avoid annotation bias.789

Our validation set contains 502 descriptions from790

workers "seen" from the training set and 1,800 de-791

scription from "unseen" workers. In Table 6 we792

can see that models perform slightly better on seen793

workers across our CLIP model variants.794

D Crowdsourcing Interface795

Our AMT interface for the description task can796

be seen in Figure 6. The retriever interface looks797

conceptually similar, with a select-button for each798

image. Note that workers see images almost in799

almost half of full-screen (opposed to the shown800

examples in this PDF) and can quickly go back and801

forth between consecutive frames with arrow-keys,802

making it significantly easier to spot and compare803

nuanced changes.804

seen
workers

unseen
workers

FINE-TUNING

CLIP 23.9 23.8
+CONTEXTBATCH 34.5 29.0

+CONTEXTMODULE 33.3 29.2
+TEMPORALEMBEDDINGS 32.1 30.8

Table 6: Performance (accuracy) on two subsets of the
distinct validation split: seen workers (workers who
also produced description on the train split) and unseen
workers (who only worked on the test and validation
data).

E Additional Hyper-parameters 805

The Transformer consists of 2 layers in CLIP vari- 806

ants and 4 layers in the ViLBERT variants, both 807

employing gelu activation. The learning rate for 808

the fine-tuning of the Transformer and linear heads 809

is 2 ⋅10−6 for the CLIP +CONTEXTMODULE, 10−4 810

for CLIP +TEMPORALEMBEDDINGS, and 2 ⋅ 10−5 811

for both ViLBERT variants. We use the Volta- 812

framework (Bugliarello et al., 2021) for the stan- 813

dardized ViLBERT model. 814

F Examples from IMAGECODE for all 815

phenomena 816

For each phenomenon we provide 1 example and a 817

definition we used for annotation purposes. Since 818

most examples contain more than one phenomenon, 819

some phenomena will be effectively showcased sev- 820

eral times. Note that we picked examples that are 821

relatively easy to understand and spot differences 822

in. 823

11



Figure 6: AMT interface for the describer task.

(a) Frame 6 (b) Frame 7

(c) Frame 8 (d) Frame 9

Figure 7: Example of Context: “Both hands are on
the piece of bread closest to the person.” Note: This
is contextual since since without any context of other
images, the description is also literally true for Frame
9. A model might even score it higher since the direct
visual appearance is closer to typical bread. Definition:
To understand the description, a listener has to consider
other images and/or the speakers intention of describ-
ing only one of the images. In line with Grice’s maxim
of quality, a description is contextual if it is literally
true for several images but we know it was intended
for only one image. A description is also contextual if
an objects cannot clearly be identified in the target im-
age directly but only through cross-referencing other
images.

(a) Frame 3 (b) Frame 4

(c) Frame 5 (d) Frame 6

Figure 8: Example of negation: “The knife is most
centrally placed to insert into the onion without hav-
ing fully cut deeply into it yet.” Definition: Explicit lin-
guistic negation ("not", "unseen", "non-") or negation
quantifiers ("no person").
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(a) Image 1 (b) Image 3

(c) Image 8 (d) Image 9

Figure 9: Example of quantifiers/quantities: “A yel-
low 3 way traffic light with a green arrow on the side
facing closest to the camera” Definition: We annotate
for quantifiers (most, every, no, several,...) and absolute
quantities ("five") as well as relative quantities (ratios
like " a third of his hand").

(a) Frame 4 (b) Frame 5

(c) Frame 6 (d) Frame 7

Figure 10: Example of spatial relations/reasoning:
“The small girl in front is looking directly to the right
with her right hand on the side of her face.” Defini-
tion: Any relations or adjectives regarding space. Ex-
amples: "in the top left corner", "left to the chair", but
also camera perspective, or body orientation ("turned
towards...")

(a) Frame 6 (b) Frame 7

(c) Frame 8 (d) Frame 9

Figure 11: Example of temporality: “ A smiling boy
just begins to look towards the dog.” Definition: While
most examples based on video frames implicitly re-
quire some temporal knowledge, we focus on explicit
textual mentions of 1) temporal markers ("after", "dur-
ing", "about to", etc) and 2) temporal verbs ("beginning
to", "end to").

(a) Frame 7 (b) Frame 8

(c) Frame 9 (d) Frame 10

Figure 12: Example of visibility/occlusion: “ The tire
is directly on top of the person’s right shoe and you can
just barely see fingers at the top. ” Definition: A de-
scription that mentions objects/people being occluded,
(partially) out of frame, or in the process of leaving the
frame.
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(a) Frame 4 (b) Frame 5

(c) Frame 6 (d) Frame 7

Figure 13: Example of nuances (we marked small de-
tails with red/green rectangles): “ The person’s palm is
towards us and touching the left bottom corner of the
cake. There is a small amount of dark space between
the right bottom corner of the photo and the edge of
the cake. ” Definition: Minor details, that are either
a) not salient at all and would usually be left unmen-
tioned and/or b) language reference is grounded on a
small patch of pixels. Note that this phenomena is of-
ten linked with very minimally contrastive images.

(a) Image 3 (b) Image 5

(c) Image 6 (d) Image 10

Figure 14: Example of coreference: “ A woman with
a white background smiles at the camera. Most of her
body is visible. She is wearing a black outfit. ” Defini-
tion: Linguistic coreference.

(a) Frame 7 (b) Frame 8

(c) Frame 9 (d) Frame 10

Figure 15: Example of meta properties: “ The cucum-
ber is just to be cut into, you can see a transparent im-
age covering the image.” Definition: Descriptions that
mention aspects that stem from the way the photo/video
was taken: two overlayed images (when a video transi-
tions), black-and-white, blurriness, brightness.
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