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Abstract

The field of algorithms with predictions incorpo-
rates machine learning advice in the design of
online algorithms to improve real-world perfor-
mance. A central consideration is the extent to
which predictions can be trusted—while existing
approaches often require users to specify an aggre-
gate trust level, modern machine learning models
can provide estimates of prediction-level uncer-
tainty. In this paper, we propose calibration as
a principled and practical tool to bridge this gap,
demonstrating the benefits of calibrated advice
through two case studies: the ski rental and on-
line job scheduling problems. For ski rental, we
design an algorithm that achieves near-optimal
prediction-dependent performance and prove that,
in high-variance settings, calibrated advice offers
more effective guidance than alternative methods
for uncertainty quantification. For job scheduling,
we demonstrate that using a calibrated predictor
leads to significant performance improvements
over existing methods. Evaluations on real-world
data validate our theoretical findings, highlighting
the practical impact of calibration for algorithms
with predictions.

1. Introduction

In recent years, advances in machine learning (ML) mod-
els have inspired researchers to revisit the design of classic
online algorithms, incorporating insights from ML-based
advice to improve decision-making in real-world environ-
ments. This research area, termed algorithms with predic-
tions, seeks to design algorithms that are both robust to
worst-case inputs and achieve performance that improves
with prediction accuracy (a desideratum termed consistency)
(Lykouris & Vassilvitskii, 2018). Many learning-augmented
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algorithms have been developed for online decision-making
tasks ranging from rent-or-buy problems like ski rental
(Purohit et al., 2018; Anand et al., 2020; Sun et al., 2024) to
sequencing problems like job scheduling (Cho et al., 2022).

This framework often produces a family of algorithms in-
dexed by a single parameter intended to reflect the global
reliability of the ML advice. Extreme settings of this param-
eter yield algorithms that make decisions as if the predic-
tions are either all perfect or all uninformative (e.g., Mah-
dian et al., 2007; Lykouris & Vassilvitskii, 2018; Purohit
et al., 2018; Rohatgi, 2020; Wei & Zhang, 2020; Antoniadis
et al., 2020). In contrast, ML models often produce local,
prediction-specific uncertainty estimates, exposing a discon-
nect between theory and practice. For instance, many neural
networks provide calibrated probabilities or confidence in-
tervals for each data point.

In this paper, we demonstrate that calibration can serve as a
powerful tool to bridge this gap. An ML predictor is said to
be calibrated if the probabilities it assigns to events match
their observed frequencies; when the model outputs a high
probability, the event is indeed likely, and when it assigns a
low probability, the event rarely occurs. Calibrated predic-
tors convey their uncertainty on each prediction, allowing
decision-makers to safely rely on the model’s advice, and
eliminating the need for ad-hoc reliability estimates. More-
over, calibrating an ML model can easily be accomplished
using popular methods (e.g. Platt Scaling (Platt et al., 1999)
or Histogram Binning (Zadrozny & Elkan, 2001)) that re-
duce overconfidence (Vasilev & D’yakonov, 2023).

Although we are the first to study calibration for algorithms
with predictions, Sun et al. (2024) proposed using confor-
mal prediction in this setting—a common tool in uncertainty
quantification (Vovk et al., 2005; Shafer & Vovk, 2008).
Conformal predictions provide instance-specific confidence
intervals that cover the target with high probability. While
these approaches are orthogonal, we prove that calibration
can offer key advantages over conformal prediction, espe-
cially when the predicted quantities have high variance. In
extreme cases, conformal intervals can become too wide
to be informative: for binary predictions, a conformal ap-
proach returns {0, 1} unless the true label is nearly certain to
be 0 or 1. In contrast, calibration still conveys information
that aids decision-making.
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1.1. Our contributions

We demonstrate the benefit of using calibrated predictors
through two case studies: the ski rental and online job
scheduling problems. Theoretically, we develop and give
performance guarantees for algorithms that incorporate cali-
brated predictions. We validate our theoretical findings with
strong empirical results on real-world data, highlighting the
practical benefits of our approach.

Ski rental. The ski rental problem serves as a prototypical
example of a broad family of online rent-or-buy problems,
where one must choose between an inexpensive, short-term
option (renting) and a more costly, long-term option (buy-
ing). In this problem, a skier will ski for an unknown number
of days and, each day, must decide to either rent skis or pay a
one-time cost to buy them. Generalizations of the ski rental
problem have informed a broad array of practical applica-
tions in networking (Karlin et al., 2001), caching (Karlin
et al., 1988), and cloud computing (Khanafer et al., 2013).

We design an online algorithm for ski rental that incorpo-
rates predictions from a calibrated predictor. We prove that
our algorithm achieves optimal expected prediction-level
performance for general distributions over instances and cal-
ibrated predictors. At a distribution level, its performance
degrades smoothly as a function of the mean-squared error
and calibration error of the predictor. Moreover, we demon-
strate that calibrated predictions can be more informative
than the conformal predictions of Sun et al. (2024) when
the distribution over instances has high variance that is not
explained by features, leading to better performance.

Scheduling. We next study online scheduling in a setting
where each job has an urgency level, but only a machine-
learned estimate of that urgency is available. This frame-
work is motivated by scenarios such as medical diagnostics,
where machine-learning tools can flag potentially urgent
cases but cannot fully replace human experts.

We demonstrate that using a calibrated predictor provides
significantly better guarantees than prior work (Cho et al.,
2022), which approached this problem by ordering jobs
based on the outputs of a binary predictor. We identify that
this method implicitly relies on a crude form of calibration
that assigns only two distinct values, resulting in many ties
that must be broken randomly. In contrast, we prove that a
properly calibrated predictor with finer-grained confidence
levels provides a more nuanced job ordering, rigorously
quantifying the resulting performance gains.

1.2. Related work

Algorithms with predictions. There has been significant
recent interest in integrating ML advice into the design of
online algorithms (see, e.g., Mitzenmacher & Vassilvitskii

(2022) for a survey). Much of the research provides a pa-
rameterized family of algorithms with no assumption on
the reliability of predictions (e.g., Lykouris & Vassilvitskii,
2018; Purohit et al., 2018; Wei & Zhang, 2020). Subse-
quent work has studied more practical settings, such as
assuming access to ML predictors learned from samples
(Anand et al., 2020), with probabilistic correctness guaran-
tees (Gupta et al., 2022), with a known confusion matrix
(Cho et al., 2022), or that provide distributional predictions
(Dinitz et al., 2024; Angelopoulos et al., 2024; Lin et al.,
2022; Diakonikolas et al., 2021). While conceptually re-
lated, these papers do not study uncertainty quantification.

Recently, Sun et al. (2024) proposed a framework for quan-
tifying prediction-level uncertainty based on conformal pre-
diction. We show that calibration can offer key advantages
over conformal prediction in this context, particularly when
predicted quantities exhibit high variance.

Calibration for decision-making. A recent line of work
examines calibration as a tool for downstream decision-
making. Gopalan et al. (2023) show that a multi-calibrated
predictor can be used to optimize any convex, Lipschitz loss
function of an action and binary label. Zhao et al. (2021)
adapt the required calibration guarantees to specific offline
decision-making tasks, while Noarov et al. (2023) extend
this algorithmic framework to the online adversarial setting.
Though closely related to our work, these results do not
extend to the (often unwieldy) loss functions encountered
in competitive analysis.

2. Preliminaries

For clarity, we follow the convention that capital letters (e.g.,
X) denote random variables and lowercase letters denote
realizations of random variables (e.g., the event f(X) = v).

Learning-augmented algorithm design. With each algo-
rithmic task, we associate a set Z of possible instances, a
set X of features for those instances, and a joint distribution
D over X x Z. Given a target function 7' : Z — ) that
provides information about each instance, we assume access
to a predictor f : X — Z D ) that has been trained to
predict the target over D. Let R(f) denote the range of f.

If A(v, 1) is the cost incurred by algorithm A with prediction
f(X) = v on instance i € Z, and OPT(4) is that of the
offline optimal solution, the goal is to minimize either the
expected competitive ratio (CR)

A(f(X)J)}

(X,D)~D [ OPT(I)

or the expected additive regret E [A(f(X),I) — OPT(I)],
depending on context. Both measure the performance of
A relative to OPT over D. The former is consistent with
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prior work on training predictors from samples for algo-
rithms with predictions (Anand et al., 2020), while the latter
is commonly used to quantify suboptimality in learning-
augmented scheduling (Lindermayr & Megow, 2022; Im
et al., 2023). When D and f are clear from context, we refer
to these quantities as E[CR(A)] and E[R(A)], respectively.

Calibration. An ML model is said to be calibrated if its
predictions are, on average, correct. Formally,

Definition 2.1. A predictor f : X — Z with target T :
7 — Y is calibrated over D if

E [T()]f(X

(X,I)~D

)] = f(X).

When ) = {0, 1}, the equivalent condition Pr[T'(I) =1 |
f(X)] = f(X) requires that f(X) is areliable probabilistic
estimate of the event {T'(I) = 1}.

A classic result from the literature on probabilistic forecast-
ing states that calibrated predictions are the global minimiz-
ers of proper loss functions (DeGroot & Fienberg, 1983).
However, achieving perfect calibration is difficult in practice.
As a result, post-hoc calibration methods aim to minimize
calibration error, such as the max calibration error, which
measures the largest deviation from perfect calibration for
any prediction.

Definition 2.2. The max calibration error of a predictor
f:X — ZwithtargetT : Z — )Y over D is

Jnax lv—E[T() | f(X) =]

Given any black box ML model and sufficient data, these
methods yield a new predictor with a desired level of cali-
bration error with high probability.

3. Ski Rental

In this section, we analyze calibration as a tool for uncer-
tainty quantification in the classic online ski rental problem.
All omitted proofs in this section are in Appendix A.

3.1. Setup

Problem. A skier plans to ski for an unknown number of
days Z € N and has two options: buy skis at a one-time
cost of b € N dollars or rent them for 1 dollar per day. The
goal is to determine how many days to rent before buying,
minimizing the total cost. If Z = z were known a priori,
the optimal policy would rent for b days when z < b and
buy immediately otherwise, costing min{z,b}. Without
knowledge of z, competitive ratios of 2 (Karlin et al., 1988)
and efl (Karlin et al., 1994) are tight for deterministic and
random strategies, respectively. For convenience, we study
a continuous variant of this problem where Z, b,k € R>g
as in prior work (Anand et al., 2020; Sun et al., 2024).

Algorithm 1 Ay,

input: prediction f(X) = v, max calibration error v
if v < 4432 then
Rent for b days before buying.

else
Rent for by / 1=2+ days before buying.
end if
Predictions. Let X be a set of skier features, Z = R>g

be the set of possible days skied, and D be an unknown
distribution over feature/duration pairs X’ x R>(. Motivated
by the form of the optimal offline algorithm, we analyze a
calibrated predictor f : X — [0, 1] for the target T'(z) =
1{.>4), indicating if the skier will ski for more than b days.
For (X, Z) ~ D, a prediction of f(X) = 1 (respectively,
f(X) =~ 0) means Z > b (respectively, Z < b) with high
certainty.

Learning-augmented ski rental. A deterministic
learning-augmented algorithm .4, for ski rental takes as
input a prediction f(X) = v and returns a recommendation:
“rent skis for k(v) days before buying.” The cost of
following this policy when skiing for z days is

A0, 2) = {k(v) +b ifz>k(v) .

z if z < k(v)
We aim to select & : [0, 1] — R to minimize E[CR(A)].

3.2. Ski rental with calibrated predictions

In Algorithm 1, we introduce a deterministic policy for ski
rental based on calibrated predictions. To avoid following
bad advice, the algorithm defaults to a worst-case strategy
of renting for b days unless sufficiently confident that the
skier will ski for at least b days. In this second case, the al-
gorithm smoothly interpolates between a strategy that rents
for /(1 — a) /v days and one that rents for b/ /(1 + «)
days, where o € [0, 1] is a bound on local calibration error
that hedges against greedily following predictions.

Theorem 3.1. Given a predictor f with mean-squared er-
ror n and max calibration error o, Algorithm I achieves
E[CR(A,)] < 14+ 2a+min {E[f(X)] + o, 2y + 3a} .

As the predictor becomes more accurate (i.e., both  and «
decrease), the algorithm’s expected CR approaches 1. The
rest of this subsection will build to a proof of Theorem 3.1.

Prediction-level analysis. We begin by upper bounding
E[CR(Ag) | f(X) = v]. Let B, = {f(X) = v} be the
event that f predicts v € R(f) and C = {Z > b} be the
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Table 1. Objective values for fixed prediction f(X) = v, z days
skied, and renting for k(v) days.

CONDITION OPT(z) Ak(v,z2)
(1) z < min{k(v), b} z z
(13) k(v) <z<b z kE(v) +b
(ti1) b< z < k(v) b z
(iv) z > max{k(v), b} b k(v) +b

event that the number of days skied is more than b. Then

E[CR(Ay) | B,] = E[CR(Ay) | B,,C] - Pr[C'| B,] (1)
+ E[CR(A) | By, C] - Pr[C° | B,)].

Lemma 3.2 bounds each of the quantities from Equation (1).

Lemma 3.2. Given a predictor f with max calibration error
a, forallv € R(f),

L Pr[C| f(X)=v]<v+a

2.Pr[C) f(X)=v]<1l—-v+a

3. E[CR(A) | B,,C] < 1+ 22

4. E[CR(Ay) | By, C] < 14 “Hgmsn,
Proof sketch. (1) and (2) follow from the fact that f predicts
1 with max calibration error «. Under C' = {Z > b},
one of conditions (iii) or (iv) from Table 3 hold. In either
case, Ap(v, Z)/OPT(Z) < 1+ @. Under C*¢, one of
conditions (i) or (ii) hold. CR(Ag) = 1 for (i). For (ii),

Ac(v,Z) _ k(v)+b L+ b Lik(w)<vy
OPT(Z) = k(v) k(v)
O
Applying all four bounds to Equation (1) yields
E[CR(AR) | f(X) =v] < @
(v+ a)k(v) (1—v+a)b

1420+ A + Lik(wy<vy -

k(v)

The renting strategy k. (v) from Algorithm 1 is the mini-

mizer of the upper bound in Equation (2).

Theorem 3.3. Given a predictor f with max calibration

error a, for any prediction v € R(f), Algorithm 1 achieves
E[CR(AL,) | f(X) =] <

1+2a+min{v+a,2\/(v+a)(1 —v+a)}.

Proof sketch. Given a prediction f(X) = v, Algorithm 1
rents for k. (v) days where

if0 <o < it

b
ey (v) =
(v) {b, [lzvta jpasse g <,

Evaluating the right-hand-side of Equation (2) at k. (v) gives

{1+2a+(v+a) if0 <o < 43
‘£ 4430
1+2a+2/(v+a)(l—-v+a) if 432 <y <1

The fact that v + @ < 2\/(v+a)(l—v+a) forv €
0,232 and v + a > 2¢/(v+a)(1—v+a) forv €
(£32 1] completes the proof. O

5

Moreover, no deterministic learning-augmented algorithm
for ski rental can outperform Algorithm 1 for general distri-
butions D and calibrated predictors f. The construction is
non-trivial, so we refer the reader to the proof in Appendix A.

Theorem 3.4. For all renting strategies k : [0,1] — Ry,
predictions v € [0, 1] and € > 0, there exists a distribution
D¢, and a calibrated predictor f such that

E[CR(Ag) | f(X) =v] > 1+min {U,Q\/”U(l - v)} —€.

Global analysis. In extracting a global bound from the
conditional guarantee in Theorem 3.3, we encounter a term
(f(X) + @)1 — f(X) + «) that is an upper bound on
the variance of the conditional distribution 17> | f(X).
Lemma 3.5 relates this quantity to error statistics of f.

Lemma 3.5. If f : X — [0, 1] has mean-squared error n
and max calibration error o, then

Ef (XA - f(X)] <n+a
Finally, we prove this section’s main theorem.

Proof of Theorem 3.1. By the tower property of conditional
expectation, E[CR(Ay, )] = E[E[CR(A,) | f(X)]]. Ap-
plying Theorem 3.3 yields

E[CR(Ag,)] <14 2a

—HEI[min{f(X) +a,2v/(f(X) + )1 — f(X) + a)}} .

Recall that E[min(X,Y)] < min(E[X],E[Y]) for ran-
dom variables X, Y. Furthermore, the function h(y) =
V/(y + a)(1 — y + a) is concave over the unit interval, so
by Jensen’s inequality

E {mm{f(X) + 0,2/ (f(X) +a)(1 - f(X)+ a)}] <
min{E[f(X)] + o, 2V/E[(f(X) + &) (1 - f(X) + )] }.
Finally, observe that

(f(X)+ o)1= f(X)+a) < f(X)(1 - f(X)) + 20
We apply Lemma 3.5 to bound E[f(X)(1 — f(X))]. O
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3.3. Comparison to previous work

Consistency and robustness. It is well known that for
A € (0,1), any (1 + X)-consistent algorithm for deter-
ministic ski rental must be at least (1 + i)—robust (Wei
& Zhang, 2020; Angelopoulos et al., 2020; Gollapudi &
Panigrahi, 2019). While Algorithm 1 is subject to this
trade-off in the worst case, calibration provides sufficient
information to hedge against adversarial inputs in expecta-
tion, leading to substantial improvements in average-case
performance. Indeed, it can be seen from the bound in Theo-
rem 3.3 that Algorithm 1 is 1-consistent and always satisfies
E[CR( Ay, )] < 1.8 when advice is calibrated (o« = 0). An
analysis similar to that of Theorem 15 in Anand et al. (2020)
shows that Algorithm 1 is g(«)-robust, where

1+ ,/22 ifa<1/3
g(a)—{2 « /

ifa>1/3

is a decreasing function of «.. This is because Algorithm 1
executes a worst-case 2-competitive strategy when o > 1/3

and never buys skis before day b, / 1 otherwise.

We note that one can run the same algorithm using an ar-
tificial upper bound o’ > « on max calibration error to
achieve an improved robustness level g(’). As seen from
the bounds in Theorem 3.3 and Theorem 3.1, this adjustment
will come at the cost of expected performance, highlighting
the tradeoff between average and worst-case performance.

Uncertainty quantification. We are not the first to ex-
plore uncertainty quantified predictions for ski rental. Sun
et al. (2024) take an orthogonal approach based on confor-
mal prediction. Their method, Algorithm 2, assumes access
to a probabilistic interval predictor PIPs : X — P([0, 1]).
PIP; outputs an interval [¢,u] = PIPs(X) containing the
true number of days skied Z € [¢,u] with probability at
least 1 — §. Interval predictions are especially useful when
the uncertainty § and interval width u — ¢ are both small.

However, as features become less informative, the width
of prediction intervals must increase to maintain the same
confidence level. This can result in intervals that are too
wide to provide meaningful insight into the true number
of days skied. Lemma 3.6 and Theorem 3.7 demonstrate
that there are infinite families of distributions for which
calibrated predictions are more informative than conformal
predictions for ski rental.

Lemma 3.6. For all a € [0,1/2], there exists an infinite
SJamily of input distributions for which Algorithm 2 de-
faults to a worst-case break-even strategy for all interval
predictors PIPs with uncertainty § < a.

Proof sketch. The construction places mass 1 — a on some
day z; < g and mass a on zo > 2b. Any PIPs with § < a

Algorithm 2 (Sun et al., 2024) Optimal ski rental with
conformal predictions

input: interval prediction [¢, u] = PIPs(X)
if / < u < b then

Rent for b days
else if b < ¢/ < u then

Rent for b - min{,/d/1 — ¢, 1} days
else

if ((0,£) > 2and § + § > 2 then

Rent for b days
else if ((6,4) < + ¥ then

Rent for £ - min{/bd/¢(1 — ¢), 1} days

else
Rent for u days
end if
end if
(6,0 = {5+ ot 9 fO0Z00 g5 e o, 145)
1+2 if § € (75, 1]

must output an interval [/, u] containing both z; and zs.
Moreover, ((6,£) > 2 and § + ¥ > 2 by construction. []

Theorem 3.7. Forall a € [0,1/2), all instantiations A of
Algorithm 2 using PIPs with uncertainty § < a, and all
distributions from Lemma 3.6, if f is a predictor with mean-
squared error n and max calibration error o satisfying

2a 4 2y/n+ 3a < a, then E[CR(Ay,)] < E[CR(A)].

Proof sketch. For the distributions in Lemma 3.6, the num-
ber of days skied is greater than b with probability a. Thus,
the expected competitive ratio of the break-even strategy is
E[CR(A)] =a-2+ (1 —a) -1 =1+ a. The result follows
from the bound on E[CR(Ay, )] given in Theorem 3.1. [

4. Online Job Scheduling

In this section, we explore the role of calibration in a model
for scheduling with predictions first proposed by Cho et al.
(2022) to direct human review of ML-flagged abnormalities
in diagnostic radiology. Omitted proofs from this section
can be found in Appendix B.

4.1. Setup

Problem. There is a single machine (lab tech) that needs
to process n jobs (diagnostic images), each requiring one
unit of processing time. Job ¢ has some unknown prior-
ity y; € {0,1} that is independently high (y; = 1) with
probability p and low (y; = 0) with probability 1 — p. Al-
though job priorities are unknown a priori, the priority y; is
revealed after completing some fixed fraction 6 € (0, 1) of
job 2. Upon learning y;, a scheduling algorithm can choose
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to complete job 7, or switch to a new job and “store” job 7 for
completion at a later time. The goal is to schedule the n jobs
in a way that minimizes the weighted sum of completion
times Y ., C; - wy, where C; is the completion time of job
17, and w1 > wp > 0 are costs associated with delaying a
job of each priority for one unit of time. In hindsight, it is
optimal to schedule jobs in decreasing order of priority.

ML predictions. Based on the assumption that the n jobs
to be scheduled are iid, let X = A{j" be a set of job features,
Z = {0, 1}" be the set of possible priorities, and D = Df
be an unknown joint distribution over feature/priority pairs.
The prediction task for this problem involves training a
predictor f whose target is the true priority of each job
T(y) = . This amounts to training a 1-dimensional pre-
dictor f : Xy — Z that acts on the n jobs independently:

FX) = (f(X), - (X)),

Learning-augmented scheduling. Cho et al. (2022) in-
troduce a threshold-based scheduling rule informed by prob-
abilities p; that job ¢ is high priority based on identifying
features (Algorithm 3). Their algorithm switches between
two extremes—a preemptive policy that starts a new job
whenever the current job is revealed to be low priority, and
a non-preemptive policy that completes any job once it is
begun—based on the threshold parameter

0 w1

B

1—0.0.)1—(,00.

In detail, jobs are opened in decreasing order of p;. Jobs
with p; > [ are processed preemptively, and the remaining
jobs are processed non-preemptively.

A learning-augmented algorithm A for job scheduling deter-
mines the probabilities p; from ML advice. Cho et al. (2022)
assume access to a binary predictor f3 : XO — {0,1} of job
priority and study the case where p; = Pr[Y; = 1| f,(X;)].

These probabilities can be computed using Bayes’ rule, and
because f3 is binary, this procedure effectively assigns each
job one of two probabilities. Although not explicitly dis-
cussed by Cho et al. (2022), this amounts to a basic form of
post-hoc calibration. In contrast, our results extend to arbi-
trary calibrated predictors f : Xy — [0, 1]—a more general
framework that calls for new mathematical techniques—
allowing us to significantly improve upon their results. In
this setting, A takes the predictions f(X) = ¥ as input and
executes Algorithm 3 with probabilities p; = ;.

To quantify the optimality gap of .4, Cho et al. (2022) note
that compared to OPT, Algorithm 3 incurs (1) a cost of 6w
for each inversion, or pair of jobs whose true priorities y;
are out of order, and (2) a cost of fw for each pair of low
priority jobs encountered when acting preemptively. When
acting non-preemptively, Algorithm 3 incurs (3) a cost of
w1 — wo for each inversion. Thus, for fixed predictions

Algorithm 3 S-threshold rule
input: Probabilities {p; }?_; that each job is high-priority

Define ny = |{i : p; > B}|
Order probabilities p(1) > -+ > p(p)
Run jobs j(1), .- J(ny) preemptively, in order

Complete remaining jobs non-preemptively, in order

f(X)

A(v,9) — OPT(¥) 3
= 9&]1[/(’17, 17) + HWOM(ﬁa g) + (Ldl - WO)N(’Uv g)a

= ¢ and true job priorities ¥,

where L(7,§), M (¥, ), and N (¥, §) count occurrences of
(1), (2), and (3), respectively (see Table 2 for details).

4.2. Scheduling with calibrated predictions

Calibration and job sequencing. To build intuition for
why finer-grained calibrated predictors sequence jobs more
accurately, we begin by observing that Algorithm 3 orders
jobs with the same probability p, randomly. Given a cali-
brated predictor f, consider the coarse calibrated predictor

f(X) > f]

\ if f(z) >
E[f(X) | f(X) < 5]

B
if f(z) < B
obtained by averaging the predictions of f above and below
the threshold 8. Whereas |R(f)| may be large, f’ is only
capable of outputting |R(f’)| = 2 values. As a result, when
ordering jobs with features X1, ..., X,, according to pre-
dictions from f, all jobs with f(X) > 8 will be sequenced
before jobs with f(X) < 3, but the ordering of jobs within
these bins will be random. In contrast, predictions from
f provide a more informative ordering of jobs (Figure 1).
Note, however, that f = f’ when f has no variance in its
predictions above or below the threshold 3. We demon-
strate in Theorem 4.3 that this intuition holds in general:
improvements scale with the granularity of predictions.

el B0
afalo

Figure 1. Job sequencing under fine-grained (above) and coarse
(below) calibrated predictors. For six example jobs, predicted
probabilities p; are marked with x, and numbered boxes give the
order of jobs according to each predictor.

f(X)
f1(X)

0 8 1
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Table 2. Quantities of interest in learning-augmented scheduling for fixed predictions f ()? )

= ¥ and job priorities .

Quantity

Description

Relevant setting

ny = |{Z’(72 >5}‘
n n

1 1
v, g) = Z Z 1{?7(1‘):0/\?7(_7’):1}

Number of jobs likely to be high priority. —

Number of inversions among jobs likely to be =~ Preemptive
i=1 j= i+1 high priority.
M(0,9) = Z Z L¢g:,=0Ag;,=0} Number of low-priority job pairs among jobs Preemptive
i=1 j=i+1 likely to be high priority.
n n
) = Z Z Lig=0ng;y =1} — L(¢,9) Number of inversions among job pairs where Non-preemptive
i=1j=i+1 at least one is likely to be low priority.

Performance analysis. Building off of Equation (3),
we bound the expected competitive ratio E[CR(A)] by
bounding each of E[L(f(X),Y)], E[M(f(X),Y)], and
E[N(f(X),Y)]. The dependence on the ordering of pre-
dictions from f in these random counts means our analysis
heavily involves functions of order statistics. For example,
considering the shared summand of L(-) and N(-),

E [1{37(0:0} ' IL{17(.7'):1} | f(X—)}

(Pr[Y — 0] f(Xw)]-Prliy = 0] fo?um)
=1 - fF(Xp)F(Xy)
= g(f(Xw), F(X3)

for the function g(x,y) = (1 — z)y. Similarly, the analysis
for the summand of M (-) yields g(f()z(i)), f()?(j))) for
g(xz,y) = (1 — 2)(1 — y). Based on this, our high-level
strategy is to relate “ordered” expectations of the form

B[> 3 o

i=1 j=i+1

), F(X (7))

to their “unordered” counterparts

Z Z F(X0), F(X)),

=1 j=1i+1

which are simple to compute. Lemma 4.1 shows that the
ordered and unordered expectations are, in fact, equivalent
when the function g satisfies g(x,y) = g(y, x).

Lemma 4.1. Let X1, ..., X, be iid random variables with
order statistics X(l) > e > X(n). For any symmetric
functiong : R x R — R,

ZZ (X, X

i=1 j=i+1

(Xi, X;)

I

i=1 j=i+1

This result is sufficient to compute the expectation of M (+)
exactly. For the other counts, the analysis is more technical
as g(x,y) = (1 — z)y is not symmetric. Lemma 4.2 charac-
terizes the relationship between the ordered and unordered
expectations for the function g(z,y) = (1 — x)y.

Lemma 4.2. Let X1,...,X,, be iid samples from a dis-
tribution over the unit interval [0, 1] with order statistics

X(l) > 2> X(n). Then,
D> (1=Xp) X <
i=1 j=i+1
n n n
Y a-x - (2> - Var(X1).
i=1 j=i+1

Proof sketch. By Lemma 4.1 with g(z,y) = zv,
Z Z X(i)'XJ):Z Z X X
i=1 j=it1 i=1 j=i+1

can be removed from both sides. Then, we apply Lemma 4.1
with g(z,y) = min(z, y) to simplify the left-hand-side.

Z Z X —Z Z min{ X ), X(;)}

=1 j=i+1
= Z Z mln{X“X]}
=1 j=i+1

Finally, we show that E[X; — min{X;, X5}] > Var(X}).

Note thatIE[Xl] —E[min{Xl,Xg}] = %E |X1 _XQ‘ since
0 if X; < X.
lemin{Xl,Xg}: l 1= 2
|X1—X2| if X7 > Xo.

Finally,IE|X1 7X2| 2E|X1 7X2|2 :2Var(X1). O]
With careful conditioning to deal with random summation

bounds, we apply Lemma 4.2 to bound the expectations of
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L(-) and N (-), giving this section’s main theorem. Of note,
Theorem 4.3 says that the expected number of inversions of
high and low priority jobs decreases with predictor granular-
ity, measured by 1 and x9. For the method from Cho et al.
(2022), k1 = k9 = 0 and the inequalities hold with equality.

Theorem 4.3. Let [ be calibrated, with Pr[f(X) > 5 |
Y =0] = e, Pr[f(X) < 5|V = 1] = ey,
k1 = Prf(X) > B2 - Var(f(X) | f(X) > B), and
ko = Pr[f(X) < ] Var(£(X) | f(X) < B).

< (5)(p(1 = p)(1 +eo)er — kn)
= (5) 1= p)%
1< (3)(p(1 = p)eo(l = e1) — o)

Remark 4.4. A(f(X),-) — OPT(-) = 0 when ¢ = ¢; = 0,
and A inherits the robustness guarantees of Cho et al. (2022)
when € and €; are large.

w
&
=z
o
=
z

An analogous result holds under the weaker assumption that
f monotonically calibrated. That is, the empirical frequen-
cies Pr[Y = 1| f(X)] are non-decreasing in the prediction
f(X). This property holds trivially for calibrated predictors,
but zero calibration error is not required. In fact, many cali-
bration approaches used in practice (e.g. Platt scaling (Platt
et al., 1999) and isotonic regression (Zadrozny & Elkan,
2001)) produce a monotonically calibrated predictor with
non-zero calibration error. See Appendix B for details.

5. Experiments

We now evaluate our algorithms on two real-world datasets,
demonstrating the utility of using calibrated predictions. See
Appendix C for additional details about our datasets and
model training, as well a broader collection of results for
different ML models and parameter settings.'

5.1. SKki rental: Citi Bike rentals

To model the rent-or-buy scenario in the ski rental prob-
lem, we use publicly available Citi Bike usage data.?. This
dataset has been used for forecasting (Wang, 2016), system
balancing (O’Mahony & Shmoys, 2015), and transportation
policy (Lei & Ozbay, 2021), but to the best of our knowl-
edge, this is its first use for ski rental. In this context, a Citi
Bike user can choose one of two options: pay by ride dura-
tion (rent) or purchase a day pass (buy). If the user plans

'Code and data available here: https://github.com/
heyyjudes/algs-cali-pred

*Monthly usage data is publicly available at https://
citibikenyc.com/system-data.

ALG
19 \ —e— Conformal

Binary
--e-- Breakeven
--e--- Calibrated

E[ALG/OPT]

4 6 8 10 12 14 16
Breakeven point (minutes)

Figure 2. Comparison of E[ALG/OPT] for algorithms aided by
predictions from a small MLP with two hidden layers of size 8 and
2. Algorithm 1 (CALIBRATED) performs best on average.

to ride for longer than the break-even point of b minutes, it
is cheaper to buy a day pass than to pay by trip duration.’
We use single-ride durations to approximate the rent vs.
buy trade-off for a spectrum of break-even points b. The
distribution over ride durations can be seen in Appendix C.

We analyze the impact of advice from multiple predictor
families, including XGBoost, logistic regression, and small
multi-layer perceptrons (MLP). Each predictor has access
to available ride features: start time, start location, user
age, user gender, user membership, and approximate end
station latitude. While these features are not extremely in-
formative, most predictor families are able to achieve AUC
and accuracy above 0.8 for b > 6. Figure 2 summarizes the
expected competitive ratios achieved by our method from Al-
gorithm 1 (CALIBRATED) and baselines from previous work
when given advice from a small neural network. Baselines
include the worst-case optimal deterministic algorithm that
rents for b minutes (Karlin et al., 1988) (BREAKEVEN), the
black-box binary predictor ski-rental algorithm by Anand
et al. (2020) (BINARY), and the PIP algorithm described
in Algorithm 2 (Sun et al., 2024) (CONFORMAL). Though
each algorithm is aided by predictors from the same family,
the actual advice may differ. For example, CONFORMAL
assumes access to a regressor that predicts ride duration
directly. While performance is distribution-dependent, we
see that our calibration-based approach often leads to the
most cost-effective rent/buy policy in this scenario.

5.2. Scheduling: sepsis triage

We use a real-world dataset for sepsis prediction to validate
our theory results for scheduling with calibrated predictions.
Sepsis is a life-threatening response to infection that typi-
cally appears after hospital admission (Singer et al., 2016).

3The day pass is designed to be more economical for multiple
unlocks of a bike (e.g., b = 66 minutes for 1 unlock). However,
ride data is anonymous, so we cannot track daily usage.
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Figure 3. Comparison of E[ALG — OPT] (normalized) achieved by
Algorithm 3 for naively calibrated and histogram-binned predictors
under varying delay costs wo, w1 and information barrier 6.

Many works have studied using machine learning to predict
the onset of sepsis, as every hour of delayed treatment is
associated with a 4-8% increase in mortality (Kumar et al.,
2006; Reyna et al., 2020); existing works aim to better pre-
dict sepsis to treat high-priority patients earlier. Replicating
results from Chicco & Jurman (2020) we train a binary
predictor for sepsis onset using logistic regression on a
dataset of 110,204 hospital admissions. The base predictor
achieves an AUC of 0.86 using age, sex, and septic episodes
as features. We then calibrate this predictor using both the
naive method from Cho et al. (2022) (BINARY) and more
nuanced histogram calibration (Zadrozny & Elkan, 2001)
(CALIBRATED). Figure 3 shows the expected competitive
ratio (normalized by the number of jobs n = 100) achieved
by Algorithm 3 when provided advice from each of these
predictors for varying delay costs wy,wy and information
barrier . We see that the more nuanced predictions consis-
tently result in schedules with smaller delay costs.

6. Conclusion

In this paper, we demonstrated that calibration is a powerful
tool for algorithms with predictions in settings where per-
formance is measured over a distribution and probabilistic
estimates of a binary target enable good decisions. In par-
ticular, calibration bridges the gap between traditional the-
oretical approaches—which treat all predictions as equally
reliable—and modern ML methodologies that offer fine-
grained, instance-specific uncertainty quantification. We
focused on the ski rental and online scheduling problems,
developing online algorithms that exploit calibration guaran-
tees to achieve strong average-case performance. For both
problems, we highlighted settings where our algorithms out-
perform existing approaches and supported these findings
with empirical evidence on real-world datasets.

This work exposes a number of directions for future research.

For ski rental, deriving performance guarantees in terms of
binary cross entropy and focusing on less rigid calibration
measures (e.g. expected calibration error) offer to further
close the gap between theory and practice. More broadly, we
believe calibration-based approaches offer broad potential
for designing online decision-making algorithms beyond
these two case studies, particularly in scenarios that require
balancing worst-case robustness with reliable per-instance
predictions.
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A. Ski Rental Proofs

Lemma 3.2. Given a predictor f with max calibration error «, for allv € R(f),
I PriC | f(X)=v]<v+a
2.Pr[C° | f(X)=v]<1l—-v+a
3. E[CR(A) | By, C] <1+ ¥

4. EICR(AL) | B,,C¥] < 1+ Mhisasn,

Proof. Recall that B, = {f(X) = v} is the event that f predicts v € R(f), and C = {Z > b} is the event that the true
number of days skied is at least b. Because f is a predictor of the indicator function 1 with max calibration error «,

PriC | B, =Pr[Z>b| f(X)=v]=v—a, <v+a

and
Pr[C¢| B, =Pr[Z<b| f(X)=v]=1-v+a,<1l—-v+a.

This establishes (1) and (2). In the remainder of the proof we will reference the costs from conditions (¢)-(¢v) in Table 3.

(3) E[CR(Ax) | By, Cl <1+ @ Under the event C (Z > b), one of conditions (#¢%) or (¢v) must hold. The bound is
tight when condition (iv) holds. Under condition (4i7), it must be that Z < k(v), so
ALG(A [(X).2) _Z _ k() _ | | k(o)

=2 <7 <~ ~
OPT(Z) b=y ST

4) E[CR(Ak) | BMCC] <1l+ ]l{k(q,)<b} . ﬁ

Under the event C° (Z < b), one of conditions (¢) or (i¢) hold. The bound is trivial under condition (¢). Under
condition (i%), because k(v) < Z and Z < b,

ALG(Ai, f(X),Z) _ k() +b _ k(v) +b b

- — 141 2
OPT(Z) Z = k) tlrm< 1

Theorem 3.3. Given a predictor f with max calibration error «, for any prediction v € R(f), Algorithm 1 achieves
E[CR(Ax.) | f(X) =v] <
14 2a + min{v + a, 2/ (v+a)(l—v+ o)}

Proof. Let B, = {f(X) = v} be the event that f predicts v € R(f), and let C = {Z > b} be the event that the true
number of days skied is at least b. By the law of total expectation and Lemma 3.2,

E[CR(A) | B,] = Pr[C | B,] - E[CR(A) | C, B,] + Pr[C¢ | B,] - E[CR(A) | C¢, B,]

k(v b
<(vta)- (1+(b))+(1—v+04)' (1+1{k(v)<b}'k(v)
(v + a)k(v) (1—v+a)b

= e T k< T

Finding the number of days to rent skis that minimizes this upper bound on competitive ratio amounts to solving two convex
optimization problems — one for the case k(v) < b, and a second for k(v) > b — then taking the minimizing solution.

(v+o¢)€+(1—v+a)b

b /
s.t. 0</<b s.t. {>b

(v+a)t

(a) Minimize 1+ 2o+ b

(b) Minimize 1420+

12
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Note first that (b) has optimal solution ¢, = b. The Lagrangian of (a) is

(11—|—Oz)€Jr (I1—v+a)d

b A, ) =1+2
L4, A1, \2) +2a+ b 7

+ A (£ —Db) — Al
with KKT optimality conditions

v+a (1—-v+a)

. e FA =X =0
0<b

<0

AL, A2 >0

A(L—b)=0

Ao(—0) = 0.

We’ll proceed by finding solutions to this system of equations via case analysis.

1. Ay # 0. Then, £ = 0 and A; = 0 by complementary slackness. But at least one of the stationarity or dual feasibility

constraints are violated, since
v+a (I—-v+a)d
0> — = Ao.
b Iz 2

2. Ay = 0and \; # 0. Then, £ = b by complementary slackness. Stationarity and dual feasibility are satisfied only when

0 < v < 0.5, since in this case )
v+« -V 4+«
— =-X\ <0.
b b 1=

3. A2 = 0 and Ay = 0. Then, the first constraint gives that

2 (1—v+a)b?
- V4« '

Recall that 0 < ¢ < b, so this constraint is only satisfied when 0.5 < v < 1and ¢ = b,/ 1;};720‘

Because ¢, = b is the optimal solution to both (a) and (b) when 0 < v < 0.5, it must be the case that k,(v) = b if
0 < v <0.5. When 0.5 < v < 1, the optimal solution to (a) is £, = b,/ % and the optimal solution to (b) is £, = b.

The value of the former is 1 + 2 + 24/(v + @) (1 — v + «), while the value of the latter is 1 + 2 + v + . Taking the
argmin yields

b if0 <o < 4t
ke(v) =

by/lzute jfdtde £y <

which is exactly Algorithm 1 and achieves a competitive ratio of

E[CR(A,) | f(X)=v] <1 +2a+min{v+a,2\/(v+a)(1 —vta)}.

O

Theorem 3.4. For all renting strategies k : [0, 1] — Ry, predictions v € [0,1] and € > 0, there exists a distribution D5,
and a calibrated predictor f such that

EEMAQ|ﬂX):ﬂz1+nm{wzwm1—w}—e
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Table 3. Objective values for fixed prediction f(X) = v, z days skied, and renting for k(v) days.
CONDITION OPT(z) ALG(Ag,v, %)

(z) z < min{k(v), b} z z
(43) k(v) <z<b z k(v)+b
(7it) b < z < k(v) b z
(tv) z > max{k(v), b} b k(v) +b

Proof. Letv € [0,1] and € > 0. The calibrated predictor f will deterministically output v, while the distribution D¢, will
depend on whether algorithm Ay, buys before or after day b.

Case 1: k(v) < b. Define a distribution D, where in a v fraction of the data the true number of days skied is z = b+ €/, and
ina 1 — v fraction the number of days skied is z = k(v) + €/, where ¢’ is sufficiently small that

e 2ue’

k(v)+€ <b and 2\/U(1_U)(1_b>—l)-|-6/22 v(l —v) —e.

By construction, condition (7) from Table 3 is satisfied when k(v) < b < z = b+ ¢’ with

o kJ(U)+b - k‘(v) — ¢
ALG(Ag,v, z)/OPT(z) = e 1+ S ao
Similarly, condition (i) holds when k(v) < z = k(v) + ¢ < b with
k(v) +b b—¢

ALG( A0, 2)/OPT(2) = vmg = 1+ .

By the law of total expectation,

E[CR(A)] = v- <1+ k(lﬁee) +(1-v)- <1+ /f(bv)je)

Some basic calculus yields ¢, = \/ 1=v(h — ) (b+ €) — €, and evaluating the lower bound at £* gives

(%

134 b

>14+2y/v(l—v)—e

E[CR(AL)] > 1 — be/ n 2\/1)(1 — ) (1 _ 6')

Case 2: k(v) > b.

Define a distribution D¢ where in a v fraction of the data the true number of days skied is z = k(v) + ¢, and in a
1 — v fraction the number of days skied is z = b — e. Condition (iv) is satisfied when b < k(v) < z = k(v) + € with
ALG( Ay, v, z)/OPT(z) = 1+@. Condition (¢) is satisfied when z = b—e < b < k(v) with ALG( A, v, z) /OPT(2) = 1.
By the law of total expectation,
k(v
E[CR(Ay)] =v- (1 + (b)> +(1—wv)-1
>v-24+(1-wv)-1
=14

14



Algorithms with Calibrated Machine Learning Predictions

In both cases, f is calibrated with respect to D since Pr[Z > b | f(X) = v] = v. Moreover, because the cases are
exhaustive, at least one of the corresponding lower bounds must hold. It follows immediately that

E[CR(Ay) | f(X) =] > 1+ min {v, 2\/o(1 — v)} _e

O
Lemma 3.5. If f : X — [0, 1] has mean-squared error 1) and max calibration error «, then
Ef(X)(1 - f(X)] <n+a
Proof. We have from the law of total expectation that
2
= E 1 — f(X
1= L E o [( (z>0y — f(X)) }
2
= 3 B[z —v)*| FX) = 0] - PrIf(X) = o]
vER()
= > (E[Lizsn | F(X) =] = 20E [Lizspy | F(X) =] +0°) - Pr[f(X) =1].
vER(f)
Applying the definition of the local calibration error «,,
n= Y (E[lizsn | F(X)=0] = 20E [L{zsp} | F(X) =] +0%) - Pr[f(X) =]
veER(S)
= ¥ (a0 -2e-an o) Prif =
vER(f)
= Y (1 =v)+ (20— 1)ay) - Prf(X) =]
vER()
=E[f(X)1 - f))]+ > (2v—Day-Pr[f(X)=1].
veER(S)
The observation that (2v — 1)a,, > —|«,| gives the result. O

Theorem 3.1. Given a predictor f with mean-squared error 1 and max calibration error o, Algorithm 1 achieves
E[CR(Ay.,)] < 14 2+ min {E[f(X)] + o, 2y/n + 3a} .

Proof. This result follows from Theorem 3.3, Lemma 3.5, and an application of Jensen’s inequality. To begin,

E[CR(Ax,)] = E [E[CR(Ax,) | f(X)]] (Tower property)
<E [1 + 20 + min {f(X) +a,2/(F(X) +a)(I— F(X) + a)}] (Theorem 3.3)

<142+ min {IE [F(X)] +a,2E [\/(f(X) To)l—7xX)+ a)} } ,

with the final line following from the fact that E[min(X,Y")] < min(E[X], E[Y]) for random variables X, Y. Next, we
argue from basic composition rules that the function g(y) = /(v + @)(1 — y + «) is concave for y € [0, 1]. The concavity
of g over its domain follows from the facts that (1) the /- function is concave and increasing in its argument and (2)
(y + a)(1 — y + «) is concave. Moreover, g(y) is well-defined for all y € [0, 1]. With concavity established, an application
of Jensen’s inequality yields

E[CR(A,)] < 1+ 20 +min {E [f(X)] + o, 2VE[(F(X) + a)(1 = J(X) + a)]}
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To finish the proof, we will bound the term within the square root using Lemma 3.5. Notice that

(f(X) + )1 = f(X) +a) = f(X)1 = f(X)) +a+a’
< f(X)A = f(X)) + 2a.

Finally,

E[CR(A,)] < 1+ 20 +min {E [f(X)] + o, 2VE[F(X)(T = J(X))] + 2a
<1+ 20+ min {E [£(X)] +a72s/77+3a}. (Lemma 3.5)

O

Lemma 3.6. Forall a € [0,1/2], there exists an infinite family of input distributions for which Algorithm 2 defaults to a
worst-case break-even strategy for all interval predictors PIPs with uncertainty § < a.

Proof. Leta € [0,1/2] and consider a distribution that, for each unique feature vector z € X, has a true number of days
skied that is either z; < % with probability 1 — a or 25 > 2b with probability a. By construction, any interval prediction
PIPs(X) = [¢,u] with § < min{a,1 — a} = a must satisfy that ¢ < z; and u > z5. This means b € [£, u], so Algorithm 2
makes a determination of which day to buy based on the relative values of ((d,£), 6 + ¥, and 2. In particular, the algorithm
follows the break-even strategy of buying on day b when ((6,¢) > 2and § + 3 > 2.

Itis clear that § + § > ¥ > %2 > 2. Next, recall the definition of ¢(J, £).

C6.0) = S+ (1 —6)%+2/6(1—0)b/t ifée[0,55)
T+ 8 if § € [5, 1]

When § > b%e’ we see that ((d,4) =1+ % > 3. To handle the case where § < ﬁ, we will show that

FG2) =0+ (1—08)z+2/0(1—0)z >2

forall z > 2 and § € [0,1/2]. Plugging in & = % > 2 and noting that § < btﬁ < 0.5 implies the desired bound. Toward

that end, notice that f(J, x) is increasing in x, and so for all z > 2 we have that

f(6,2) > f(8,2) =2 -3 +2/25(1 - 6).
All that is left is to show that 24/25(1 — §) > ¢. This is straightforward: for § € [0,1/2],

2v/2(1=68) > vV1—-06 > V5,

and multiplying through by /9 gives the desired inequality. In summary, we’ve shown that b € [, u], (6,¢) > 2, and
d + 3 = 2 for the family of distributions described above. For this particular case, Algorithm 2 rents for b days. O

Theorem 3.7. For all a € [0,1/2], all instantiations A of Algorithm 2 using PIPs with uncertainty 6 < a, and all
distributions from Lemma 3.6, if f is a predictor with mean-squared error 1 and max calibration error o satisfying

2a 4+ 2y/n+ 3a < a, then E[CR(A,)] < E[CR(A)].

Proof. Leta € [0,1/2] and consider any distribution from the infinite family given in Lemma 3.6. In particular, in any of
these distributions, the number of days skied is greater than b with probability a. Therefore, the expected competitive ratio
of the break-even strategy that rents for b days before buying is

E[CR(A)]=a-24+(1—-a)-1=1+a.

The result follows from the bound on E[CR(Ay, )] from Theorem 3.1. O

16



Algorithms with Calibrated Machine Learning Predictions

B. Scheduling Proofs
Lemma 4.1. Let X1, ..., X, be iid random variables with order statistics X1y > - -+ > X(y,). For any symmetric function
g:RxR—=R,

DD I ETRIED S SR

i=1j=i+1 i=1 j=i+1

Proof. Beginning with the facts that

n n n n n

3D 9(X@, X)) =D 9(Xi, X;) and Zg Xy Xiy) Z (X4, X5),

i=1 j=1 i=1 j=1

it follows from the symmetry of g that

1 n n n
Z Z (X, X)) = 5 [ 22D 9(X, X)) = D_9(X(0, Xiy)
i=1 j=i+1 i=1 j=1 i=1
1 n n
1P IR weRS
=1 j=1 i=1
n n
=2 2. I X;)
=1 j=1i+1
O
Lemma 4.2. Let X1,..., X, be iid samples from a distribution over the unit interval [0, 1] with order statistics Xy 2

- > X(n) Then,

=1 j=i+1
Z Z (1- — (Z) - Var(Xy).
1=1 j=1+1

Proof. We’ll begin by removing a shared term from both sides of the inequality. Notice that
oD XXy =) ) XX,
i=1 j=i+1 i=1 j=i+1

by Lemma 4.1 with g(z,y) = zy. So, it is sufficient to show that

Zn: Zn: Xj| —E Zn: Zn: X | > (;’) Var(X,).

i=1j=i+1 i=1 j=i+1

By linearity of expectation, the first term on the left-hand side is equal to (g) E[X1]. The random variables in the second
term are not identically distributed, however, so a different approach is required. We will use a trick to express the sum in
terms of the symmetric function g(x, y) = min(x, y), which allows us to remove the dependency on order statistics using
Lemma 4.1.

Z Z Xy = Z Z min{ X ), X(;)} (X@y > Xy since i < j)

i=1 j=i+1 i=1 j—i+1
Z Z min{X;, X,}. (Lemma 4.1 with g(z, y) = min{xz, y}])
=1 j=i+1
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Thus, the second term on the RHS is equal to (%) E[min{X;, X}]. All that is left is to show that
]E[Xl] - E[min{Xl, XQ}] > Var(Xl).
Toward that end, we can write

0 if Xh <Xy

X1 —min{X;, Xo} =
! X, Xa} {|X1—X2| if X1 > X,

so E[X;] — E[min{ Xy, X5}] = %E | X1 — X3|. Finally, using the fact that | X; — X5| € [0, 1] are iid, we have

1 1
§E|X1 — Xa| > §E[(X1 - X5)?]
1
= S E[XT - 2X1 X, + X
1
= 5'2(]E[X12] - E[X1])%)
:Va.I‘(X1>

Theorem 4.3. Let f be calibrated, with Pr[f(X) > B |Y =0] =€, Pr[f(X) <B|Y =1] =€,

k1 = Prf(X) > B* - Var(f(X) | f(X) > B), and
ko = Pr[f(X) < ] Var(£(X) | f(X) < B).

< (D) (p(1 = p)(1+ €o)er — k1)
2. EM(f(X),Y)] = (3)(1 - p)%e}
3. EIN(f(X),Y)] < () (p(1 = p)eo(l — €1) — k)

Proof. We relax the calibration assumption and only assume that f is monotonically calibrated, a weaker condition that
the empirical frequencies Z := Pr[Y" = 1 | f(X)] are non-decreasing in the prediction f(X). Given n jobs to schedule
with features X = (X1,...,X,,) and the predictions f(X) = (f(X1),..., (X)), letny = |[{i : f(X;) > B} bea
random variable that counts the number of samples from f with prediction larger than /3, and define random variables
Z; = Pr[Y; = 1| f(X;)] which give empirical frequencies. We’ll begin by computing expectations conditioned on 74
before taking an outer expectation.

E[L(/(X),7) | ] = E[E[Mf( ). 7) | (X)) n} (Tower property)

[ ni ny .

=E |E ]l{?@):o} . ]1{17(”:1} | F(X)] | n1 (Definition of X)
| [i=1g=it1
i ni ni N . . .

=FE Pr[Yu) =0 | f(X@)] - Pr[Yy) = 1] f(X)] | m (Independence)
Li=1 j=it+1
[ ni ni

=E (L= Zu)Z) | m
Li=1 j=it+1

Performing the same computation for counts M () and N(-) yields

EM(f(X).Y) [ m]=E|> > (1-Zu)-(1-Z3)|m

i=1 j=i+1
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and
ny n n n
EIN(f(X),Y) [m]=E > Y (1=Zu)-Zg |m|+E| >, > (1=2Z) Zg|m
i=1 j=n1+1 i=n14+1 j—it1

At this point, we can compute the conditional expectation of M (-) directly. By Lemma 4.1 with g(x,y) = (1 — z)(1 — y),

E{i i (1-Z@) - (1-Zgy) | nl]

i=1 j—it1

=E Z Z (1-2)-1-2Z5)|m (Lemma 4.1)
i=1 j=it1

- (7121) ‘E[Pr[Y =0 f(X)] | f(X) > 5]2 (Independence)

- (7121> Pr[Y =0 f(X) > 8]? (Tower property)

_(m (1 —p)? ’

- (%) w2 e (Bayes )

The same technique cannot be used to evaluate the expectations of L(-) and N(+) because the function g(z,y) = (1 — z)y
is not symmetric. Instead, we will provide upper bounds on the conditional expectations using Lemma 4.2, then evaluate the
unordered results as before. For the conditional expectation of L(-), we have

E{i i (1= 2@) - Z) ”1}

i=1 j=i+1

<E Z Z (1=2Zi) - Zj|m| - (T;l) Var(Z | f(X) > B) (Lemma 4.2)
i=1 j=i+1

= (T;l) : (Pr[Y =0 f(X)>B]-Pr[Y =1 f(X) > B8] — Var(Z | f(X) > 5))

_ () (pA=p)d—eeo

=(3) (Rt e - Ve 10> )

Similarly for the conditional expectation of the second term of N (-),

E[ i i (1—Z(i>)'Z<j>|n1]

i=n1+1j=i+1

<E Z Z 1-2Z)-Zj|m| — (n —2n1> Var(Z | f(X) <) (Lemma 4.2)
i=ni+1j=1+1

= <n_2n1) : (Pr{Y:O | f(X) < B]-Pr[Y =1 f(X) < B] - Var(Z | f(X) < 5))

_(n=m\ (pd-p)Ad—-c)a _ -

(") (Crrtn e e <),

For the first term of N (-), we simply apply the rearrangement inequality in lieu of Lemma 4.2 for unordering. Note that the

sum has the form 3=, a; - b;, where a; = (1 — Z(;)) and b; = >°7_, .| Z(;). The sequence {a;}}_; is non-decreasing as a
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result of the monotonic calibration of f, and {b;}?_; is non-increasing. Thus,

Z Z (1-Zz Z(])|n1]<E|:Z Z 1-2Z)-Zj | m

i=1 j=ni+1 i=1 j=ni+1
=ni(n—m) - Pr[Y =0 f(X) > 5] - PrlY =1 f(X) < ]
_ n1(n _ nl) . p(]‘ — P)€1€0

Pr(f(X) > p] - Pr[f(X) < 8]’

Next, we take an outer expectation to remove the dependency on n;. Recall that n; follows a Binomial(n, Pr[f(X) > f])
distribution, so one can easily verify that

E[("})] = (5) - Pr[f(X) > 52
2. B[("")] = (5) - (L= Pr[f(X) > B))? = (5) - Pr[f(X) < B2
3. Elna(n—mn1)] = 2(3) - Prif(X) > 8] - Pr[f(X) < 8].

It follows immediately that

)
m) . <p(1 —p){ - 61)60 — Var(Z | f(X) > 6>)]

o>
=
5
\Y
=

E[N(f(X),Y)] = E[EIN(f(X),Y) | m]
) (A e <)

2 Pr[f(X) < 4]
o o1 - p)ereo
Ehml D B(X) > A Prf(X }

p(l — p)(]. — 60)61 -+ 2[)(1 — 6160 — I{Q)

(
(3) (p1-n1+ = a).

2
where
k1= Pr[f(X) > B)?-Var(Z | f(X) > B) and kg :=Pr[f(X) < B> Var(Z | f(X) < B).
The observation that Z = f(X) when f is calibrated gives the result from the main body. [

C. Experimental Details
C.1. Ski-Rental: CitiBike

Our experiments with CitiBike use ridership duration data from June 2015. Although summer months have slightly longer
rides, the overall shape of the distributions is similar across months (i.e. left-skewed distribution). Figure 4 illustrates the
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Distribution of target values for CitiBike dataset June 2015
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Figure 4. Distribution of ride times and quantiles in minutes, most rides are under 900 minutes.
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Figure 5. Predictor accuracy with different features around final docking station, no information, partial information (approximate latitude),
and rich information (approximate latitude and longitude).

distribution of scores. This indicates that using this dataset for ski rental, the breakeven strategy will be better as b increases
since most of the rides will be less than b. This is an empirical consideration of running these algorithms that prior works do
not consider. Thus, we select values of b between 200 and 1000 as a reasonable interval for comparison.

Feature Selection The original CitiBike features include per-trip features including user type, start and end times, location,
station, gender, and birth year of the rider. We tested predictors with three types of feature: no information about final
destination, partial information about final destination (end latitude only), and rich information about final destination (end
longitude and latitude). Even with rich information, the best accuracy of the model’s we consider are around 80% accuracy.
This is because there are many factors affecting the ride duration. However with no information about the final destination,
many of our models were close to random and thus do not serve as good predictor (Figure 5).

Model Selection We tested a variety of models for both classification (e.g. linear regression, gradient boosting, XGBoost,
k-Nearest Neighbors, Random Forest and a 2-layered Neural Network) and regression (e.g. Linear Regression, Bayesian
Ridge Regression, XGBoost Regression, SGD Regressor, and Elastic Net, and 2-layered Neural Network). We ended
up choosing three representative predictors of different model classes: regression, boosting, and neural networks. To
fairly compare regression with classification we choose similar model classes: (Linear Regression, Logistic Regression),
(XGBoost, XGBoost Regression), and two-layer neural networks.

Calibration To calibrate an out-of-the box model, we tested histogram calibration (Zadrozny & Elkan, 2001), binned
calibration (Gupta & Ramdas, 2021), and Platt scaling (Platt et al., 1999). While results from histogram and bin calibration
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Figure 6. XGBoost predictors generally enable the calibrated predictor algorithm to do better than other baselines.

[E[ALG/OPT] for CitiBike Ride Duration (Ski-Rental)
clf:LR reg:LR (partial info)

20
ALG
—e— Conformal
18 —e - Binary
o= Breakeven
I --e-- Calibrated
S 16
)
2
R

4 6 8 10 12 14 16
Breakeven point (minutes)

(b) Partial info (approx end latitude)

E[ALG/OPT]

E[ALG/OPT] for CitiBike Ride Duration (Ski-Rental)
clf:LR reg:LR (rich info)

ALG
19 —e— Conformal
1.8 —e~ Binary
e Breakeven
7 --e- Calibrated

o

o

4 6 8 10 12 14 16
Breakeven point (minutes)

(c) Rich info (approx end long. and lat.)

Figure 7. Linear regression and logistic regression remains similar to break even stretegy regardless of the features used.
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Figure 8. Neural network predictors generally enable calibrated predictor algorithm to do better than other baseline when there are

informative features
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Figure 9. Comparison of different base models. As € increases the perforance of the calibrated preditctor becomes more similar to the
binary predictor.

were similar, Platt scaling often produced calibrated probabilities within a very small interval. Though it is implemented
in our code, we did not use it. A key intervention we make for calibration is to calibrate according to balanced classes in
the validation set when the label distribution is highly skewed. This approach ensures that probabilities are not artificially
skewed due to class imbalance.

Regression For a regression model as a fair comparison, we assume that the regression model also only has access to the
0/1 labels of the binary predictor for each b. To use convert the output conformal intervals to be used in the algorithm from
Sun et al. (2024), we multiply the 0/1 intervals by b.

C.2. Scheduling: Sepsis Triage

Dataset We use a dataset for sepsis prediction: ‘Sepsis Survival Minimal Clinical Records’. # This dataset contains three
characteristics: age, sex, and number of sepsis episodes. The target variable for prediction is patient mortality.

Additional Models We also include results for additional base models: 2 layer perception (Figure 9b) and XGBoost
(Figure 9c)

4https ://archive.ics.uci.edu/dataset/827/sepsis+survival+minimal+clinical+records
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