
A Free-Energy Principle for Representation Learning

Abstract

We employ a formal connection of machine learning with thermodynamics to characterize the quality
of learnt representations for transfer learning. We discuss how information-theoretic functionals such
as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface. We
prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process
that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this
process can be used for transferring representations from a source dataset to a target dataset while keeping
the classification loss constant. Experimental validation of the theoretical results is provided on standard
image-classification datasets.

1 Introduction

Information theory creates a lossless representation with the goal of getting the original data back after
decoding. Similarly, given images and their labels one could learn a representation with the goal of predicting
the correct labels. If this representation is minimal it would discard information in the data that is not
correlated with the labels. This makes it unique to the chosen task, it would perform poorly to predict
other labels that rely on the discarded information. If instead the representation were to retain redundant
information about the data, it could predict other labels correlated with this information. We would like to
characterize the discarded information in order to learn representations that can be transferred to other tasks.

Our main idea is to choose a canonical task—in this paper, we pick reconstruction of the original data—
to measure the discarded information. Although one can use any task, reconstruction is special because
achieving perfect reconstruction entails that the representation is lossless. Information discarded is therefore
readily measured as the one that helps improve reconstruction. This leads to the study of the Lagrangian

F (λ, γ) = min
θ∈Θ, eθ(z|x),mθ(z),dθ(x|z),cθ(y|z)

{
R+ λD + γC

}
where rate R is an upper bound on the mutual information z learnt by the encoder eθ(z|x) and data x,
distortion D measures the quality of reconstruction of the decoder dθ(x|z) and C measures the classification
loss of classifier cθ(y|z).

Contributions. (i) We observe that F (λ, γ) can be interpreted as a free-energy and corresponds to an
“equilibrium surface” of information-theoretic functionals R,D and C. We prove that the equilibrium surface
is convex and its dual, the free-energy F (λ, γ), is concave. (ii) We design stochastic processes to keep the
model parameters θ on the equilibrium surface and travel to any feasible values of (R,D,C). We focus on
iso-classification process which automatically trades off the rate and distortion to keep the classification loss
constant. (iii) We prescribe a dynamical process that allows for controlled transfer of representations. It
adapts the model parameters as the task is changed while keeping the classification loss constant.

2 Theoretical setup

D = E
x∼p(x)

[
−
∫

dz e(z|x) log d(x|z)
]
, R = E

x∼p(x)

[∫
dz e(z|x) log

e(z|x)

m(z)

]
(1)

Consider an encoder e(z|x) that encodes data x into a latent code z and a decoder d(x|z) that decodes
z back into the original data x. If the true distribution of the data is p(x) we may define the following
functionals. The distortion D measures the quality of the reconstruction through its log-likelihood. The rate
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R is a Kullback-Leibler (KL) divergence; it measures the average excess bits used to encode samples from
e(z|x) using a code that was built for our approximation of the true marginal on the latent factors m(z). The
Shannon entropy is defined as H = −Ex∼p(x) [log p(x)].

Figure 1: The RD equilibrium sur-
face for infinite capacity (black)
and finite capacity (red). The La-
grangian F (λ) controls which part
the solution of (2) lies in.

The functionals in (1) come together to give the inequality H −D ≤
Ie(x; z) ≤ R where Ie = KL(e(z|x) || p(z|x)) is the KL-divergence
between the learnt encoder and the true (unknown) conditional of the
latent factors. For finite capacity variational families, say parameterized
by θ, which we denote by eθ(z|x), dθ(x|z) and mθ(z) respectively, one
obtains an RD curve (see Fig. 1) corresponding to the Lagrangian [1]

F (λ) = min
eθ(z|x),mθ(z),dθ(x|z)

R+ λD. (2)

This Lagrangian is the relaxation of the idea that given a fixed variational
family and data distribution p(x), there exists an optimal value of, say,
rate R = f(D) that best sandwiches the above inequality. Let us create
a classifier that uses the learnt representation z as the input and set the
classification loss to be C = Ex∼p(x)

[
−
∫

dz e(z|x) log c(y|z)
]
.We can

again consider a Lagrange relaxation of this surface given by

F (λ, γ) = min
e(z|x),m(z),d(x|z),c(y|z)

R+ λD + γC (3)

and obtain the following lemma.

Lemma 1. The constraint surface f(R,D,C) = 0 is convex and the Lagrangian F (λ, γ) is concave.

We assume in this paper that the labels are a deterministic function of the data, i.e., p(y|x) = δ(y − yx)
where yx is the true label of the datum x. We can solve the variational problem in (3) to get e(z|x) in
terms of the other quantities e(z|x) = mθ(z)dθ(x|z)λcθ(yx|z)γ

Zθ,x
where the normalization constant is Zθ,x =∫

dz mθ(z)dθ(x|z)λcθ(yx|z)γ . The objective F (λ, γ) can now be rewritten as

F (λ, γ) = min
θ∈Θ

−〈logZθ,x〉p(x) . (4)

The surface of constraints f(R,D,C) = 0 is called the equilibrium surface because if we define

H(z;x, θ, λ, γ) ≡ − logmθ(z)− λ log dθ(x|z)− γ log cθ(y|z) (5)

as the Hamiltonian and minimize Ex∼p(x){
∫

dz eθk(z|x)H(z;x, θk, λ, γ)} over a finite dataset with stochas-
tic gradient-based updates, the posterior distribution of the model parameters converges to the Gibbs distribu-
tion p(θ | data) ∝ exp (−2(R+ λD + γC)/σ) where σ > 0 is the step-size [2].

3 Dynamical processes on the equilibrium surface

For any parameters θ ∈ Θ, not necessarily on the equilibrium surface, let us define J(θ, λ, γ) = −〈logZθ,x〉p(x).
If θ ∈ Θλ,γ = {θ : −〈logZθ,x〉p(x) = F (λ, γ)}we have J(θ, λ, γ) = F (λ, γ) which implies∇θJ(θ, λ, γ) =

0 for all θ ∈ Θλ,γ . We are interested in evolving (λ, γ) slowly and simultaneously keeping the model param-
eters θ on the equilibrium surface; the constraint thus holds at each time instant. The equilibrium surface is
parameterized by R,D and C so changing (λ, γ) adapts the three functionals to track their optimal values.

2



Let us choose some values (λ̇, γ̇) and the trivial dynamics d
dtλ = λ̇ and d

dtγ = γ̇. The quasi-static
constraint leads to the following partial differential equation (PDE)

0 ≡ d

dt
∇θJ(θ, λ, γ) = ∇2

θJ θ̇ + λ̇
∂

∂λ
∇θJ + γ̇

∂

∂γ
∇θJ (6)

valid all θ ∈ Θλ,γ . At each location θ ∈ Θλ,γ the above PDE indicates how the parameters should evolve
upon changing (λ, γ). We can rewrite the PDE using the Hamiltonian H in (5) as shown next.

Lemma 2. Given (λ̇, γ̇), the parameters θ ∈ Θλ,γ evolve as θ̇ = −A−1bλ λ̇−A−1bγ and γ̇ = θλλ̇+ θγ γ̇
where H is the Hamiltonian in (5) and the other quantities are given in Appendix E.

3.1 Iso-classification process

An iso-thermal process in thermodynamics is a quasi-static process where a system remains in thermal
equilibrium with its surroundings. We can analogously define an process that adapts parameters of the model
θ while the free-energy is subject to slow changes in (λ, γ) but keeps the classification loss constant. We
simply add a constraint of the form d

dtC = 0 in addition to the quasi-static condition d
dt∇θJ = 0. This leads

to the constrained dynamics (see Appendix F)

0 = Cλλ̇+ Cγ γ̇; θ̇ = θλλ̇+ θγ γ̇. (7)

Observe that we are not free to pick any values for (λ̇, γ̇) for the iso-classification process anymore, the
constraint dC

dt = 0 ties the two rates together. The first constraint in (7) allows us to choose

λ̇ = −α∂C
∂γ

= −α∂
2F

∂γ2
; γ̇ = α

∂C

∂λ
= α

∂2F

∂λ∂γ
(8)

where α is a parameter to scale time. The second equalities in both rows follow because F (λ, γ) is the
optimal free-energy which implies relations like D = ∂F

∂λ and C = ∂F
∂γ . We can now compute the two

derivatives in (8) using finite differences to implement an iso-classification process.

3.2 Iso-classification process with a changing data distribution

The equations (8) show how to adapt the model under perturbations of (λ, γ) to keep the classification error
constant. We now discuss a different kind of perturbation, namely the one where the underlying task changes.
If i.i.d samples from the source task are denoted by Xs =

{
xs1, . . . , x

s
ns

}
and those of the target distribution

are Xt =
{
xt1, . . . , x

t
nt

}
the empirical source and target distributions can be written as ps(x) = 1

ns

∑ns
i=1 and

1
nt

∑nt
i=1 δx−xti respectively. For any t ∈ [0, 1] we interpolate between the two distributions using a mixture

p(x, t) = (1 − t)ps(x) + tpt(x). We can also use techniques from optimal transportation [3] to obtain a
better transport (Appendix I); the same dynamical equations given below remain valid. The equilibrium
surface Θλ,γ is a function of the task and also evolves with the task. The dynamical process in Lemma 3
keeps the model parameters in equilibrium as the task evolves quasi-statically.

Lemma 3. Given (λ̇, γ̇), the evolution of model parameters θ for a changing data distribution p(x, t) =
(1− t)ps(x) + tpt(x) for t ∈ [0, 1] is

θ̇ = θλλ̇+ θγ γ̇ + θt. (9)

where θt = −A−1
∫ ∂p(x,t)

∂t 〈∇θH〉 dx and other quantities are defined in Appendix E with the only change
that expectations on data x are taken with respect to p(x, t) instead of p(x).
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Figure 2: Iso-classification process for MNIST. We run 5 different experiments for initial Lagrange multipliers given
by λ = 0.25 and γ ∈ {4, 6, 8, 10, 15}. During each experiment, we modify Lagrange multipliers (Fig. 2b) to keep
the classification loss constant and plot the rate-distortion curve (Fig. 2a) and the validation loss (Fig. 2c). Validation
accuracy is constant for each experiment; it is between 92–98% for these initial values of (λ, γ). Similarly the training
loss is almost unchanged during each experiment and takes values between 0.06–0.2 for different values of (λ, γ).

We can now perform an analogous computation as that in Section 3.1 to get the dynamical equations

θ̇ = θλλ̇+ θγ γ̇ + θt; 0 = Cλλ̇+ Cγ γ̇ + Ct; (10)

for the iso-classification process with a changing data distribution; expressions for Cλ, Cγ and Ct are given
in Appendices F and G.

4 Experimental validation

We use the MNIST [4] and CIFAR-10 [5] datasets for our experiments. We show a few representative
experiments here; see Appendices B and C for more details.
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Figure 3: Transferring from
source dataset of MNIST
digits 0–4 to the target
dataset consisting of digits
5–9.

Iso-classification process. Given a value of the Lagrange multipliers (λ, γ)
we first find a model on the equilibrium surface by training from scratch for
120 epochs with the Adam optimizer [6]; the learning rate is set to 10−3 and
drops by a factor of 10 every 50 epochs. We then run the iso-classification
process discussed in Section 3.1. We modify (λ, γ) according to the equations
λ̇ = −α∂C∂γ and γ̇ = α∂C∂λ while adapting the model parameters θ to keep them
on the dynamically changing equilibrium surface by taking stochastic gradient
updates to minimize J(λ, γ) with a learning rate schedule that looks like a sharp
quick increase from zero and then a slow annealing back to zero (see Fig. 5).
Fig. 2 shows the result for the iso-classification process for MNIST and Fig. 4
shows a similar result for CIFAR-10.
Iso-classification transfer. We pick the source dataset to be all images cor-
responding to digits 0–4 in MNIST and the target dataset is its complement,
images of digits 5–9. We run the geodesic transfer dynamics from Appendix H
and the results are shown in Fig. 3. Fig. 3a shows the variation of rate and
distortion during the transfer; as discussed in Appendix H we maintain a con-
stant dR/dD during the transfer; the rate decreases and the distortion increases.
Fig. 3b shows the validation accuracy during the transfer. The orange curve
corresponds to geodesic iso-classification transfer; the blue curve is the result
of directly fine-tuning the source model on the target data (note the very low
accuracy at the start); the green point is the accuracy of training on the target
task from scratch. Results for a similar experiment for transferring between a
source dataset that consists of all vehicles in CIFAR-10 to a target dataset that
consists of all animals are in Appendix J.
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Appendix: A Free-Energy Principle for Representation Learning

A Related work

We are motivated by the Information Bottleneck (IB) principle of [7, 8], which has been further explored
by [9, 10, 11]. The key difference in our work is that while these papers seek to understand the representation
for a given task, we focus on how the representation can be adapted to a new task. Further, the Lagrangian (3)
has connections to PAC-Bayes bounds [12, 13] and training algorithms that use the free-energy [14]. Our use
of rate-distortion for transfer learning is close to the work on unsupervised learning of [15, 16].

This paper builds upon the work of [1, 17]. We refine some results therein, viz., we provide a proof of the
convexity of the equilibrium surface and identify it with the equilibrium distribution of SGD. We introduce
new ideas such as dynamical processes on the equilibrium surface. Our use of thermodynamics is purely as an
inspiration; the work presented here is mathematically rigorous and also provides an immediate algorithmic
realization of the ideas.

This paper has strong connections to works that study stochastic processes inspired from statistical
physics for machine learning, e.g., approximate Bayesian inference and implicit regularization of SGD [2, 18],
variational inference [19, 20]. The iso-classification process instantiates an “automatic” regularization via the
trade-off between rate and distortion; this point-of-view is an exciting prospect for future work. The technical
content of the paper also draws from optimal transportation [3].

The Lagrangian F (λ, γ, σ) characterizes many different representations of data. The encoder-decoder-
classifier architecture is quite generic: formally speaking, an infinite-capacity encoder can characterize any
representation of the data. As noted by [17] the Lagrangian F (λ, γ, σ) leads to a number of popular objectives
in machine learning, e.g., retaining only C is standard supervised learning; λ = 0 is the variational objective
corresponding to stochastic optimization algorithms [2]; λ = σ = 0 is the variational information bottleneck
of [10] to restrict the mutual information between the representation and the data; if one ignores the R term
and keep C + σ γ−1S as the objective, one obtains the information bottleneck of [9] which is an alternative
version of the original formulation of [7]; σ = γ = 0 gives ELBO or β-VAE [11] as noted before.

A large number of applications begin with pre-trained models [21, 22] or models trained on tasks differ-
ent [23]. Current methods in transfer learning however do not come with guarantees over the performance on
the target dataset, although there is a rich body of older work [24] and ongoing work that studies this [25].
The information-theoretic understanding of transfer and the constrained dynamical processes developed in
our paper is a first step towards building such guarantees. In this context, our theory can also be used to tackle
catastrophic forgetting [26] to “detune” the model post-training and build up redundant features.

B Details of the experimental setup

Datasets. We use the MNIST [4] and CIFAR-10 [5] datasets for these experiments. The former consists of
28 ×28-sized gray-scale images of handwritten digits (60,000 training and 10,000 validation). The latter
consists of 32×32-sized RGB images (50,000 training and 10,000 for validation) spread across 10 classes; 4
of these classes (airplane, automobile, ship, truck) are transportation-based while the others are images of
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animals and birds.
Architecture and training. All models in our experiments consist of an encoder-decoder pair along

with a classifier that takes in the latent representation as input. For experiments on MNIST, both encoder and
decoder are multi-layer perceptrons with 2 fully-connected layers, the decoder uses a mean-square error loss,
i.e., a Gaussian reconstruction likelihood and the classifier consists of a single fully-connected layer. For
experiments on CIFAR-10, we use a residual network [27] with 18 layers as an encoder and a decoder with
one fully-connected layer and 4 deconvolutional layers [28]. The classifier network for CIFAR-10 is a single
fully-connected layer. All models use ReLU non-linearities and batch-normalization [29]. We use Adam [6]
to train all models with cosine learning rate annealing.

C More experimental results
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Figure 4: Iso-classification process for CIFAR-10. We run 4 different experiments for initial Lagrange multipliers
λ = 0.5 and γ ∈ {5, 10, 15, 20}. During each experiment, we modify the Lagrange multipliers (Fig. 4b) to keep the
classification loss constant and plot the rate-distortion curve (Fig. 4a) along with the validation accuracy (Fig. 4c). The
validation loss is constant during each experiment; it takes values between 0.5–0.8 for these initial values of (λ, γ).
Similarly, the training loss is constant and takes values between 0.02–0.09 for these initial values of (λ, γ). Observe
that the rate-distortion curve in Fig. 4a is much flatter than the one in Fig. 2a which indicates that the model family
Θ for CIFAR-10 is much more powerful; this corresponds to the straight line in the RD curve for an infinite model
capacity is as shown in Fig. 1.
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Figure 5: Variation of the free-energy F (λ, γ) across the equilibration and the iso-classification processes. Fig. 5a
shows the free-energy during equilibration between small changes of (λ, γ). The initial and final values of the Lagrange
multipliers are (0.5, 1) and (0.51, 1.04) respectively and the free-energy is about the same for these values. Fig. 5b
shows the free-energy as (λ, γ) undergo a large change from their initial value of (0.25, 4) to (3.5, 26) during the
iso-classification process in Fig. 2. Since the rate-distortion change a lot (Fig. 2a), the free-energy also changes a lot
even if C is constant (Fig. 2c). Number of steps in Fig. 5b refers to the number of steps of running ??.
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D Proof of Lemma 1

The second statement directly follows by observing that F is a minimum of affine functions in (λ, γ). To see
the first, evaluate the Hessian of R and F

Hess(R) Hess(F ) =

(
∂2R
∂D2

∂2R
∂D∂C

∂2R
∂C∂D

∂2R
∂C2

) (
∂2F
∂λ2

∂2F
∂λ∂γ

∂2F
∂γ∂λ

∂2F
∂γ2

)

Since we have F = mineθ(z|x),dθ(x|z),mθ(z)R+ λD + γC, we obtain

λ = −∂R
∂D

, γ = −∂R
∂C

, D =
∂F

∂λ
, C =

∂F

∂γ
.

We then have

dλ = −d

(
∂R

∂D

)
= −∂

2R

∂D2
dD −−∂

2R

∂C2
dC

= −
(
∂2R

∂D2

∂2F

∂λ2
+

∂2R

∂D∂C

∂2F

∂λ∂γ

)
dλ

−
(
∂2R

∂D2

∂2F

∂λ∂γ
+

∂2R

∂D∂C

∂2F

∂γ2

)
dγ.

Compare the coefficients on both sides to get

Hess(R) Hess(F ) = −I.

Since 0 � Hess(F ), we have that Hess(R) � 0.

E Proof of Lemma 2

We compute the gradient of the objective function as follows.

∇θJ(θ, λ, γ) = − E
x∼p(x)

∇θ logZθ,x

= − E
x∼p(x)

1

Zθ,x
∇θZθ,x

= − E
x∼p(x)

1

Zθ,x

∫
(−∇θH) exp(−H) dz

= E
x∼p(x)

〈∇θH〉

Then with some effort of computation, we get

A = ∇2
θJ(θ, λ, γ) = ∇θ E

x∼p(x)

[ 1

Zθ,x

∫
∇θH exp(−H) dz

]
= E

x∼p(x)

[
− 1

Z2
θ,x

(∫
(−∇θH) exp(−H) dz

)(∫
∇TθH exp(−H) dz

)
+

1

Zθ,x

∫
∇2
θH exp(−H) dz − 1

Zθ,x

∫
∇θH ∇>θ H exp(−H) dz

]

= E
x∼p(x)

[〈
∇2
θH
〉

+ 〈∇θH〉 〈∇θH〉> −
〈
∇θH ∇>θ H

〉]
;
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bλ = − ∂

∂λ
∇θJ =

∂

∂λ
E

x∼p(x)

[
1

Zθ,x

∫
∇θH exp(−H) dz

]
= E

x∼p(x)

[
− 1

Z2
θ,x

(∫
−∂H
∂λ

exp(−H) dz

)(∫
∇θH exp(−H) dz

)
+

1

Zθ,x

∫
∂

∂λ
∇θH exp(−H) dz − 1

Zθ,x

∫
∂H

∂λ
∇θH exp(−H) dz

]

= − E
x∼p(x)

[〈
∂∇θH
∂λ

〉
−
〈
∂H

∂λ
∇θH

〉
+

〈
∂H

∂λ

〉
〈∇θH〉

]
;

bγ = − ∂

∂γ
∇θJ =

∂

∂γ
E

x∼p(x)

[ 1

Zθ,x

∫
∇θH exp(−H) dz

]
= E

x∼p(x)

[
− 1

Z2
θ,x

(∫
−∂H
∂γ

exp(−H) dz

)(∫
∇θH exp(−H) dz

)
+

1

Zθ,x

∫
∂

∂γ
∇θH exp(−H) dz − 1

Zθ,x

∫
∂H

∂γ
∇θH exp(−H) dz

]

= − E
x∼p(x)

[〈
∂∇θH
∂γ

〉
−
〈
∂H

∂γ
∇θH

〉
+

〈
∂H

∂γ

〉
〈∇θH〉

]
.

According to the quasi-static constraints (6), we have:

Aθ̇ + λ̇bλ + γ̇bγ = 0,

which implies
θ̇ = A−1bλ λ̇+A−1bγ γ̇

= θλλ̇+ θγ γ̇

F Computation of Iso-classification constraint

We start with computing the gradient of classification loss, clear thatC = Ex∼p(x)

[
−
∫

dz e(z|x) log c(y|z)
]

=
−Ex∼p(x) 〈`〉, where ` = log cθ(yx|z) is the logarithm of the classification loss, then

∇θC = −∇θ E
x∼p(x)

[
1

Zθ,x

∫
` exp(−H) dz

]
= − E

x∼p(x)

[
− 1

Z2
θ,x

(∫
(−∇θH) exp(−H) dz

)(∫
` exp(−H) dz

)
+

1

Zθ,x

∫
∇θ ` exp(−H) dz − 1

Zθ,x

∫
`∇θH exp(−H) dz

]
= − E

x∼p(x)
[〈∇θ `〉+ 〈∇θH〉 〈`〉 − 〈`∇θH〉] ;

∂

∂λ
C = − ∂

∂λ
E

x∼p(x)

[
1

Zθ,x

∫
` exp(−H) dz

]
= − E

x∼p(x)

[
− 1

Z2
θ,x

(∫
−∂H
∂λ

exp(−H) dz

)(∫
` exp(−H) dz

)
− 1

Zθ,x

∫
`
∂H

∂λ
exp(−H) dz

]

= − E
x∼p(x)

[〈
∂H

∂λ

〉
〈`〉 −

〈
`
∂H

∂λ

〉]
;

∂

∂γ
C = − ∂

∂γ
E

x∼p(x)

[
1

Zθ,x

∫
` exp(−H) dz

]
= − E

x∼p(x)

[
− 1

Z2
θ,x

(∫
−∂H
∂λ

exp(−H) dz

)(∫
` exp(−H) dz

)
− 1

Zθ,x

∫
`
∂H

∂γ
exp(−H) dz

]

= − E
x∼p(x)

[〈
∂H

∂γ

〉
〈`〉 −

〈
`
∂H

∂γ

〉]
.
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The iso-classification loss constrains together with quasi-static constrains imply that:

0 = θ̇> ∇θC + λ̇
∂C

∂λ
+ γ̇

∂C

∂γ

= λ̇

(
θ>λ ∇θC +

∂C

∂λ

)
+ γ̇

(
θ>γ ∇θC +

∂C

∂γ

)
= −λ̇ E

x∼p(x)

[〈
∂H

∂λ

〉
〈`〉 −

〈
`
∂H

∂λ

〉
+
〈
θ>λ∇θH

〉
〈`〉 −

〈
`θ>λ∇θH

〉
+
〈
θ>λ∇θ`

〉]
−γ̇ E

x∼p(x)

[〈
∂H

∂γ

〉
〈`〉 −

〈
`
∂H

∂γ

〉
+
〈
θ>γ ∇θH

〉
〈`〉 −

〈
`θ>γ ∇θH

〉
+
〈
θ>γ ∇θ`

〉]
= Cλλ̇+ Cγ γ̇,

where the second equation is followed by the quasi-static constrains.

G Iso-classification equations for changing data distribution

In this section we analyze the dynamics for iso-classification loss process when the data distribution evolves
with time. ∂p(x)

∂t will lead to additional terms that represent the partial derivatives with respect to t on both
the quasi-static and iso-classification constrains. More precisely, have:

bt =
∂

∂t
∇θJ =

∫
∂p(x)

∂t
〈∇θH〉 ;

∂

∂t
C = −

∫
∂p(x)

∂t
〈`〉 ,

next the quasi-static and iso-classification constraints are ready to be modified as

0 ≡ d

dt
∇θJ(θ, λ, γ)⇐⇒ 0 = ∇2

θF θ̇ + λ̇
∂∇θF
∂λ

+ γ̇
∂∇θF
∂γ

+
∂∇θF
∂t

⇐⇒ θ̇ = −λ̇ A−1 bλ − γ̇ A−1 bγ −A−1 bt

⇐⇒ θ̇ = λ̇ θλ + γ̇ θγ + θt

;

0 ≡ d

dt
C ⇐⇒ 0 = θ̇> ∇θC + λ̇

∂C

∂λ
+ γ̇

∂C

∂γ
+
∂C

∂t

⇐⇒ 0 = λ̇

(
θ>λ ∇θC +

∂C

∂λ

)
+ γ̇

(
θ>γ ∇θC +

∂C

∂γ

)
+

(
θt +

∂C

∂t

)
⇐⇒ 0 = λ̇ Cλ + γ̇ Cγ + Ct,

H Geodesic transfer

The dynamics of Lemma 3 is valid for any (λ̇, γ̇). We provide a locally optimal way to change (λ, γ) in this
section. Note that

Ċ = 0,

Ḋ =
∂D

∂λ
λ̇+

∂D

∂γ
γ̇ = −α

(
∂2F

∂λ2

∂2F

∂γ2
−
(
∂2F

∂λ∂γ

)2
)

= −α det (Hess(F )) ,

Ṙ =
∂R

∂D
Ḋ +

∂R

∂C
Ċ = −λḊ.

(11)
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The first equality is simply our iso-classification constraint. For α > 0, the second one indicates that Ḋ < 0
using Lemma 1 which shows that 0 � Hess(F ). This also gives λ̇ > 0 in (8). The third equality is a powerful
observation: it indicates a trade-off between rate and distortion, if Ḋ < 0 we have Ṙ > 0. It also shows the
geometric structure of the equilibrium surface by connecting Ṙ and Ḋ together, which we will exploit next.

Computing the functionals R,D and C during the iso-classification transfer presents us with a curve
in RDC space. Geodesic transfer implies that the functionals R,D follow the shortest path in this space.
But notice that if we assume that the model capacity is infinite, the RDC space is Euclidean and therefore
the geodesic is simply a straight line. Since we keep the classification loss constant during the transfer,
Ċ = 0, straight line implies that slope dD/dR is a constant, say k. Thus Ḋ = kṘ. Observe that
Ṙ = ∂R

∂D Ḋ + ∂R
∂C Ċ + ∂R

∂t = −λḊ + ∂R
∂t . Combining the iso-classification constraint and the fact that

Ḋ = kṘ = −kλḊ + k ∂R∂t , gives us a linear system:

∂D

∂λ
λ̇+

∂D

∂γ
γ̇ =

k ∂R∂t
1 + kλ

;

∂C

∂λ
λ̇+

∂C

∂γ
γ̇ +

∂C

∂t
= 0

(12)

Equivalently, we have

Hess(F )

(
λ̇

γ̇

)
=

(
− k ∂R

∂t
1+kλ

−∂C
∂t

)
We solve this system to update (λ, γ) during the transfer.

I Optimally transporting the data distribution

We first give a brief description of the theory of optimal transportation. The optimal transport map between
the source task and the target task will be used to define a dynamical process for the task. We only compute
the transport for the inputs x between the source and target distributions and use a heuristic to obtain the
transport for the labels y. This choice is made only to simplify the exposition; it is straightforward to handle
the case of transport on the joint distribution p(x, y).

If i.i.d samples from the source task are denoted by
{
xs1, . . . , x

s
ns

}
and those of the target distribution are{

xt1, . . . , x
t
nt

}
the empirical source and target distributions can be written as

ps(x) =
1

ns

ns∑
i=1

δx−xsi , and pt(x) =
1

nt

nt∑
i=1

δx−xti

respectively; here δx−x′ is a Dirac delta distribution at x′. Since the empirical data distribution is a sum of a
finite number of Dirac measures, this is a discrete optimal transport problem and easy to solve. We can use
the Kantorovich relaxation to denote by B the set of probabilistic couplings between the two distributions:

B =
{

Γ ∈ Rns×nt+ : Γ1ns = p,Γ>1ns = q
}

where 1n is an n-dimensional vector of ones. The Kantorovich formulation solves for

Γ∗ = argmin
Γ∈B

ns∑
i=1

nt∑
t=1

Γij κij (13)

where κ ∈ Rns×nt+ is a cost function that models transporting the datum xsi to xtj . This is the metric of the
underlying data domain and one may choose any reasonable metric for κ = ‖xsi − xtj‖22. The problem in (13)
is a convex optimization problem and can be solved easily; in practice we use the Sinkhorn’s algorithm [30]
which adds an entropic regularizer −h(Γ) =

∑
ij Γij log Γij to the objective in (13).
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I.1 Changing the data distribution

Given the optimal probabilistic coupling Γ∗ between the source and the target data distributions, we can
interpolate between them at any t ∈ [0, 1] by following the geodesics of the Wasserstein metric

p(x, t) = argmin
p

(1− t)W 2
2 (ps, p) + tW 2

2 (p, pt).

For discrete optimal transport problems, as shown in [3], the interpolated distribution pt for the metric
κij = ‖x2

i − xtj‖22 is given by

p(x, t) =

ns∑
i=1

nt∑
j=1

Γ∗ij δx−(1−t)xsi−txtj . (14)

Observe that the interpolated data distribution equals the source and target distribution at t = 0 and t = 1
respectively and it consists of linear interpolations of the data in between.

Remark 4 (Interpolating the labels). The interpolation in (14) gives the marginal on the input space
interpolated between the source and target tasks. To evaluate the functionals in Section 3 for the classification
setting, we would also like to interpolate the labels. We do so by setting the true label of the interpolated
datum x = (1− t)xsi + txtj to be linear interpolation between the source label and the target label.

y(x, t) = (1− t)δy−yxs
i

+ tδy−y
xt
j

for all i, j. Notice that the interpolated distribution p(x, t) is a sum of Dirac delta distributions weighted by
the optimal coupling. We therefore only need to evaluate the labels at all the interpolated data.

Remark 5 (Linear interpolation of data). Our formulation of optimal transportation leads to a linear
interpolation of the data in (14). This may not work well for image-based data where the square metric
κij = ‖xsi − x− kt‖22 may not be the appropriate metric. We note that this interpolation of data is an artifact
of our choice of κij , other choices for the metric also fit into the formulation and should be viable alternatives
if they result in efficient computation.

J Transfer learning between two subsets of CIFAR-10

The iso-classification process is a quasi-static process, i.e., the model parameters θ are lie on the equilibrium
surface at all times t ∈ [0, 1] during the transfer. Note that both the equilibrium surface and the free-energy
F (λ, γ) are functions of the data and change with time. Let us write this explicitly as

F (t) := R(t, λ(t), γ(t)) + λD(t, λ(t), γ(t)) + γC0

where C0 is the classification loss. We prescribed a geodesic transfer above where the Lagrange multipliers
λ, γ were adapted simultaneously to confirm to the constraints of the equilibrium surface locally. We can
forgot this and instead adapt them using the following heuristic. We let λ̇ = k for some constant k and use

∂C

∂λ
λ̇+

∂C

∂γ
γ̇ +

∂C

∂t
= 0, (15)

to get the evolution curve of γ(t).
Here we present experimental results of an iso-classification process for transferring the learnt representa-

tion. We pick the source dataset to be all “vehicles” (airplane, automobile, ship and truck) in CIFAR-10 and
the target dataset consists of four “animals” (bird, cat, deer and dog). We let the output size of classifier be
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Figure 6: Transferring from source dataset of CIFAR vehicles to the target dataset consisting of four animals.
Fig. 6a shows the variation of validation loss during the transfer. Fig. 6b shows the validation accuracy during the
transfer. The orange curve corresponds to iso-classification transfer; the blue curve is the result of directly fine-tuning
the source model on the target data (note the very low accuracy at the start); the green point is the accuracy of training
on the target task from scratch.

four. Except the output size of classifier, we use the exactly same model that searching for iso-classification
process on the equilibrium surface of CIFAR-10. Our goal is to adapt a model trained on the source task to the
target task while keeping its classification loss constant. We run the iso-classification transfer dynamics (15)
and the results are shown in Fig. 6.

It is evident that both the classification accuracy and loss are constants throughout the transfer. CIFAR-10
is a more complex dataset as comparing with MNIST and the accuracy gap between iso-classification transfer,
fine-tuning from the source and training from scratch is significant. Observe that the classification loss gap
between iso-classification transfer and training from scratch on the target is also significant. The benefit of
running the iso-classification transfer is that we can be guaranteed about the final accuracy and validation
loss of the model.

J.1 Details of the experimental setup for CIFAR-10

At moment t, parameters λ, γ determine our objective free-energy. We compute iso-classification loss transfer
process by first setting initial states: (λ = 4, γ = 100). We train on source dataset for 300 epochs with Adam
and a learning rate of 10−3 that drops by a factor of 10 after every 120 epochs to obtain the initial state.
Every moment we let λ, γ and t change a little bit and then apply the beta function learning rate schedule
to achieve the transition between equilibrium states. We compute the partial derivatives ∂C

∂t , ∂C∂λ and ∂C
∂γ

by using finite difference. For each moment t we transferring, equipping with these partial derivatives and
solving the equation (15) leads to solution for γ̇, where λ̇ is a constant, in our experiment we set λ̇ = −1.5.
γ̇ will enable us to adjust the updates for γ.
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