Learning an Effective Premise Retrieval Model for Efficient
Mathematical Formalization

Yicheng Tao " '?> Haotian Liu '

Abstract

Formalized mathematics has recently garnered
significant attention for its ability to assist mathe-
maticians across various fields. Premise retrieval,
as a common step in mathematical formalization,
has been a challenge, particularly for inexperi-
enced users. Existing retrieval methods that fa-
cilitate natural language queries require a cer-
tain level of mathematical expertise from users,
while approaches based on formal languages (e.g.,
Lean) typically struggle with the scarcity of train-
ing data, hindering the training of effective and
generalizable retrieval models. In this work, we
introduce a novel method that leverages data ex-
tracted from Mathlib to train a lightweight and ef-
fective premise retrieval model. In particular, the
proposed model embeds queries (i.e., proof state
provided by Lean) and premises in a latent space,
featuring a tokenizer specifically trained on for-
mal corpora. The model is learned in a contrastive
learning framework, in which a fine-grained simi-
larity calculation method and a re-ranking mod-
ule are applied to enhance the retrieval perfor-
mance. Experimental results demonstrate that
our model outperforms existing baselines, achiev-
ing higher accuracy while maintaining a lower
computational load. We have released an open-
source search engine based on our retrieval model
at https://premise-search.com/. The
source code and the trained model can be found
athttps://github.com/ruc—-aidmath/
Premise-Retrieval.

“Equal contribution 'Gaoling School of Artificial Intelligence,
Renmin University of China >School of Mathematics, Renmin Uni-
versity of China *Beijing Key Laboratory of Research on Large
Models and Intelligent Governance *Engineering Research Center
of Next-Generation Intelligent Search and Recommendation, MOE.
Correspondence to: Shanwen Wang <s_wang@ruc.edu.cn>,
Hongteng Xu <hongtengxu@ruc.edu.cn>.

The second Al for MATH Workshop at the /2™ International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

Shanwen Wang> Hongteng Xu ' 34

| —\/\| User Interface

theorem primes_infinite : ¥ n, 3 p > n, Nat.Prime p := by
intron
have hn : Nat.factorial (n +1) +1#1:= by
norm_num
exact Nat.factorial_ne_zero (n + 1)

4 obtain ¢p, pp, hdvd) := Nat.exists_prime_and_dvd hn

1

Select Useful Premise
-for Lean Programming

Proof State (Query)
Provided by Lean

N
: (n+1).factorial +1#1
= 3 p >n, Nat.Prime p [

) 4

Proposed Premise
Retrieval Model Nat.factorial_succ
(n:N):

1 (n + 1).factorial = (n +1) *

@ n.factorial

Premise Database
Extracted from Mathlib

{n:N}(hn:n=#1):

Nat.exists_prime_and_dvd
3 p, Nat.Primep Ap | n

Nat.prime_iff {p : N} :
Nat.Prime p < Prime p

Top-K Retrieved Premises

Figure 1. A schematic diagram illustrating user interactions with
an ITP (e.g., Lean) given our premise retrieval model.

1. Introduction

Formalized mathematics has recently attracted significant
attention. It helps verify existing mathematical results, iden-
tify errors in the literature, and has the potential to accelerate
the peer-review process for mathematical papers. This pro-
cess involves proving natural language theorems within a
strict formal logical framework. Interactive theorem provers
(ITPs), or proof assistants, are commonly used for this pur-
pose. In recent years, mathematicians have actively partici-
pated in developing large formalized theorem libraries using
ITPs such as Lean (De Moura et al., 2015), Coq (Barras
et al., 1997), and Isabelle (Nipkow et al., 2002).

However, the process of mathematics formalization often
demands extensive experience with formalization and a high
level of mathematical expertise. Therefore, there has been
a sustained demand for automated auxiliary tools in the
formalization field, such as premise retrievers. As illus-
trated in Figure 1, premise retrieval aims to retrieve useful

https://premise-search.com/
https://github.com/ruc-ai4math/Premise-Retrieval
https://github.com/ruc-ai4math/Premise-Retrieval

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

premises based on the current proof state provided by the for-
malization platform. An effective premise retrieval system
can help mathematicians quickly identify relevant theorems,
thereby accelerating the proof process. For example, Lean-
Dojo (Yang et al., 2024) shows that a retrieval-augmented
generator achieves a higher proof pass rate compared to a
standalone generator without premise selection.

The early premise retrieval methods leverage internal APIs
of ITPs to identify applicable theorems through pattern-
matching algorithms. These methods, however, rely on
strict matching criteria and may miss relevant theorems. Re-
cently, learning-based methods (Yang et al., 2024; Mikuta
et al., 2023) have been proposed to encode formalized theo-
rems in a latent space and retrieve them by computing their
embedding similarities. The learning-based methods can
be further categorized based on the query language: natu-
ral language queries or formal proof state queries. Natural
language-based retrieval (Gao et al., 2024) requires users
to have a sufficient mathematical understanding of the cur-
rent proof state, posing a significant challenge for beginners.
In contrast, formal language-based retrieval is more user-
friendly, but it often relies on fine-tuning pre-trained natural
language models (Yang et al., 2024) because of the scarcity
of formal proof data. As a result, the fundamental differ-
ences between formal and natural languages introduce a
semantic gap, leading to suboptimal performance.

The above challenges motivate us to design and learn a
more effective premise retrieval system that directly lever-
ages the formal proof state to retrieve premises, improving
accuracy and usability for formalized mathematics. Specif-
ically, our premise retrieval model consists of a context-
free retrieval (CFR) module and a context-aware re-ranking
(CAR) module, each of which takes BERT (Devlin et al.,
2019) as its backbone. The CFR module derives embed-
dings for premises and proof states (i.e., queries) and re-
trieves relevant premises based on their similarity to the
input proof states. The CAR module is employed to re-
order the retrieved premises, and accordingly, improves
the top-k recall of the retrieval results. Unlike approaches
that merely fine-tune pre-trained language models, we first
pre-train a BERT model from scratch based on existing
formalized corpora, in which a new tokenizer is learned
for formal language. Based on the pre-trained BERT, we
further learn the CFR and CAR modules separately via con-
trastive learning (Chen et al., 2020; He et al., 2020). Experi-
ments show that the retrieval results of our model surpass
state-of-the-art models in performance while still maintain-
ing computational efficiency. Furthermore, to evaluate the
practicality of our premise retrieval model, we integrate it
with an independently trained tactic generator, creating a
retrieval-augmented automated theorem prover. We then
assess this system using the test dataset and MiniF2F bench-
mark (Zheng et al., 2022), demonstrating the effectiveness

of our retrieval model in facilitating the proof process.

Our contributions can be summarized as follows:

* We train an effective retrieval model for formalized the-
orems, with a new tokenizer for formal language, which
achieves notable results at low computational costs and
capable of running on a personal computer.

* We evaluate various retrieval models in a retrieval-
augmented theorem proving pipeline, demonstrating the
advantages of the proposed retrieval model in assisting
proof generators.

* Based on our model, we have deployed a search engine
featuring a real-time updating database, available free of
charge to provers, and provide a toolkit to facilitate local
model deployment for users.

2. Preliminaries and Related Work
2.1. Preliminaries in Formalization and Lean

As a proof assistant, Lean provides a user interface for con-
structing formal proofs. The formalization process typically
begins by translating a mathematical statement into Lean.
Lean then analyzes the statement and presents the user with
a proof state, which consists of a collection of hypothe-
ses and the proposition to be proved. The user provides
commands to modify the proof state until no goals remain.
In this context, the set of hypotheses is referred to as the
context, and the proposition is called the goal.

While there are various styles of proofwriting, machine
learning researchers commonly adopt the tactic-state trans-
formation as an abstraction of the process. A tactic is a
piece of program that modifies the current proof state. Ex-
perienced Lean users can develop custom tactics through
meta-programming, utilizing Lean’s native automation tools.
Pre-defined tactics, such as simp, 1inarith, and so on,
have significantly enhanced the efficiency of formalization.'

We present a formal specification of the theorem-proving
process in Lean. Starting with an initial proof state Sy =
{Ty, Gy}, where I represents the initial context and G
the initial goal, the prover must provide a sequence of tac-
tics {¢;}7, to construct the proof. This sequence can be
visualized as a linked chain of transformations, i.e.,

So 58 25 8y .. I g, (1)
The proof is complete when G,, = “No Goals”. Note that
tactics are naturally various. As shown in Figure 2, some

'"The simp tactic uses lemmas and hypotheses to simplify the
main goal target or non-dependent hypotheses. The 1inarith
tactic attempts to find a contradiction between hypotheses that are
linear (in)equalities.

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

Proof State S, Tactics Relying Proof State S;
Context Ty on Premise Context T4
N t;: rw [add_comm a b] ‘N
Goal G, — Goal 6,
Fa+b+c=b+(@+0c) Case 1 Fb+a+c=b+(@+c)
Proof State S, Tactics Working
Context Ty without Premise
‘R ty: linarith Proof State S}
ta<b
tb<c I ' No Goal
Goal Gy

Fac<
asc Case 2

Figure 2. Examples of the theorem-proving process in Lean.

require additional premises to take effect, while others op-
erate independently. Furthermore, the behavior of certain
tactics may vary depending on the presence of premises.

2.2. Related Work

Learning-based Retrieval Models In the field of infor-
mation retrieval, traditional methods like BM25 (Harman,
1995; Robertson et al., 2009) and TF-IDF (Salton & Buck-
ley, 1988) rely on term information and document statistics
to match queries with relevant documents. With the ad-
vancement of deep learning, researchers have developed
learning-based retrieval models, often referred to as dense
retrieval models (Karpukhin et al., 2020; Qu et al., 2021).
These models typically fall into two categories.

The first approach (Karpukhin et al., 2020; Qu et al., 2021)
encodes queries and documents into embeddings separately.
Their similarity is then computed in the embedding space,
and the top-ranked documents are retrieved as the final re-
sults. A key advantage of this method is that document em-
beddings can be precomputed, allowing the system to embed
only the query during retrieval and improving computational
efficiency significantly. However, this approach lacks direct
interaction between queries and documents, which may limit
its retrieval performance. The second approach (Qiao et al.,
2019; Nogueira & Cho, 2019) concatenates the query and
document as a single input to the encoder model, which then
outputs a relevance score between them. This method can
capture richer interactions between queries and documents,
leading to improved performance. However, it incurs higher
computational costs since the concatenation must be per-
formed for each query-document pair. Recently, researchers
have increasingly embraced the paradigm of fine-tuning pre-
trained models for various retrieval tasks (Ma et al., 2024,
Wang et al., 2024; Li et al., 2024), leading to substantial
improvements in performance.

Premise Selection in Lean Premises are theorems or hy-
potheses that can be used in a tactic. Lean’s internal API?

2Loogle: https://loogle.lean-lang.org/

employs pattern matching to identify theorems applicable
to the current proof state. This approach, however, en-
forces strict matching criteria, which often leads to failures
in retrieving relevant theorems. In addition, applications
like Moogle3 and leansearch (Gao et al., 2024) have been
developed to enable searches based on natural language de-
scriptions of the target query. However, they place a higher
demand on the precision of natural language formulations
for both the query and the formal theorems. In contrast,
premise selection based on purely current formal proof state
is a more straightforward approach. LeanDojo (Yang et al.,
2024) employs a learning-based retrieval model that encodes
the proof state and theorems independently, subsequently
calculating their similarity to perform the retrieval task.

3. Proposed Method

As shown in Figure 3, our work includes three stages: 1)
Extract data from the formal mathematics library to con-
struct the theorem corpus. 2) The context-free retrieval
stage involves encoding the premises and proof states us-
ing a learning-based proof state encoder and calculating
semantic similarities. 3) In the context-aware re-ranking
stage, the retrieved premises are concatenated with the query
and evaluated using a cross-encoder for classification and
re-ranking.

3.1. Data Preparation

Let M = {p;}}¥, denote the library to be searched, where
each p; represents a theorem within the library. Since theo-
rems are functions that accept hypotheses as input and yield
proofs of specified propositions, p; can be represented as
{Tp;,Gp,}, where ', = [v1,...,0p]p, is the argument
list of the theorem and G, is the output of the theorem.
This representation is isomorphic to a proof state. Given
the current proof state s, the parameterized retrieval model
®(s; M, ©) assigns a score to each premise and returns the
top-k results. Note that a proof state may contain several

— [givlsl i T (Y
cases, denoted as s = {s"},_|, where s" = {I"}, G%}.

From human-written proofs, we extract tactic steps T =
{t;}T_,. Each tactic step contains the proof state before
and after executing the tactic, as well as the premises used
in the tactic, denoted as t; = (sp°°, {py;}7L,, s2),
where p;; € M. We collect state-premise pairs from these
tactics to form our training dataset. We consider the state
before/after a tactic both relevant to the premises used in
this step since the state before should satisfy the hypotheses
of the premises, while the state after will contain patterns
in the goal of the premises. Thus, we form our dataset as
D = {(si, Pi)}g’ where s; are distinct proof states and
‘P; is the set of relevant premises of s;.

*Moogle: https://www.moogle.ai/

https://loogle.lean-lang.org/
https://www.moogle.ai/

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

Context-Free Retrieval
M= { Pi }|N:1

Formal Theorem Corpus

mul_two (n : N) : n%2=n4+n

Context-Aware Re-rank

query Premise Ranked List

Nat.add_comm

ged_dvd_left (mn : N) : m.gcd n | m

o | Context I’ |

Goal G | Proof State s | Int.add_comm
149549 premises Nat.sub_add_comm
add_comm (nm : N) : n+m=m+n
BERT)
} f() Choose Top k;,
: f(T; 0) (G; 9) l s; 6 1
Data Extraction l f A Eiciy —{(MLP Pr(s,p)
- e
» Stepwise Proofs
» Tactic-Premise Pairs l l l BERT
» Theorem Declarations im(s, p) = f(s; 0) 1(f(T; 6) N f(G; 6) 3 3
Mathlib TSP G o) zI 17T O ' 17(G Ol [cLS]) (Gaeryl [sp] Mprenise
Maximum Similarity Choose Top k4

Figure 3. The overview of the retrieval framework. We extract 149,549 premises from Mathlib as our formal theorem corpus. In the
context-free retrieval stage, all the premises are encoded by averaging the embeddings of context and goal. The top-k; premises retrieved

in this stage will be re-ranked in a context-aware manner.

3.2. Model Architecture

Our premise retrieval model consists of two components:
a context-free retrieval (CFR) module and a context-aware
re-ranking (CAR) module. In detail, the CFR module re-
trieves a large set of relevant theorems for a given proof
state. Subsequently, the CAR module refines the ranking
of the top-k theorems retrieved by the CFR module, further
improving the accuracy of the retrieval process.

Context-Free Retrieval In the context-free retrieval stage,
we adopt a dense retrieval method (Karpukhin et al., 2020).
This approach maps both the proof state and the theorem
into a shared latent space, enabling retrieval through the
computation of their cosine similarity. We design the model
based on the BERT encoder architecture. For a given input
text, we process it through the model and apply average
pooling over the last hidden states to derive its latent repre-
sentation, denoted as f(-;6).

We preprocess the context and goal for each state and
premise to eliminate the effect of the theorem name and
achieve a unified format. We prepend a special token
<VAR> to each element of the context I" and <GOAL> to the
goal G, then concatenate them to form a new string. Here is
an example:

Raw theorem:

theorem Nat.add_comm (n m : Nat)

n + m m + n

After process:

<VAR> n m Nat <GOAL> n + m m +

The retrieval model measures the relevance between a proof
state s and a premise p by computing the similarity of their
embeddings. The conventional similarity can be defined as

_ _[f(s0) [0
1f(s: O 1Lf (s O)II°

However, considering that some states may only correlate
with either the arguments or the goal, we encode the premise
arguments and goal separately, which can be denoted as
f(T'p,0) and f(Gp,0). Accordingly, we design a fine-
grained similarity between the given state s and premise p
— sim(s; p) is formulated as

sim(s, p) 2

f(s:0) .1< f(Tps0) f(Gps0)) 3)
[f(s;)] 2 \[[f(Tp;)l ~ [f(Gp; Ol)
—_————

state embedding premise embedding

This similarity is designed based on the principle that the
context of the proof state should first meet the preconditions
of the available premises and, afterward, determine whether
the conclusions drawn from these premises fulfill the current
requirements. Compared to the conventional similarity, this
fine-grained design aims to explicitly measure the similarity
from both perspectives, capturing premises that can be ap-
plied in the current context, along with premises that can be
a solution to the current goal.

Context-Aware Re-ranking While facilitating the retrieval
model and vector store enables fast and efficient queries,
the lack of interaction between the state and premise may
lead to lower accuracy. To address the limitations of this
context-free approach, we adopt a context-aware method to
re-ranking the results from first stage. Specifically, we de-
sign the re-ranking model based on BERT architecture that

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

follows the sequence-pair classification of (Nogueira & Cho,
2019). The state and premise will be concatenated together
by [SEP] as the re-ranking module’s input sequence.

The module obtains the embeddings of the input. Passing the

[CLS] embedding through an affine projection followed
by a sigmoid layer, we obtain the relevant probability of the
state and premise, i.e.,

Pr(s,p) =o(W -hjcrs +b),)

where h[c LS] is the embedding of the [CLS] token, W is
the weight matrix, b is the bias term, and ¢ represents the
sigmoid activation function. For top-k retrieval, we first use
the retrieval model to find k; candidates. The re-ranking
model serves as a filter and returns top-k as the final result.

Note that, existing re-ranking methods (Qiao et al., 2019;
Nogueira & Cho, 2019) improve retrieval performance by
concatenating the query and each passage and passing them
through their re-ranking models. This strategy has a high
computational cost during inference due to the combining
process of state and premise. As a trade-off, we apply a
re-ranking model to refine the ranking of premises retrieved
by the retrieval model.

3.3. Learning Algorithm

Based on the Masked Language Modeling (MLM) (Taylor,
1953; Devlin et al., 2019) method, we pre-train the CFR and
CAR modules on the formalized corpus we collected. Their
tokenizers are the same and trained on formalized language
corpus using WordPiece (Song et al., 2021) algorithm. Then,
we use the state-premises pairs to fine-tune the pre-trained
modules separately by contrastive learning.

Contrastive Learning of CFR Module For (s;,P;) € D,
we use p;; € P; along with negatives sampled from M
to construct a set Pz{j, which contains one positive p;; and
|P; ;|—1negatives. The optimization objective of contrastive
learning is formulated as

|D| | Pl

min Z Z —log 5 exp(sim(si, Pij)/7))

prepy, EXp(sim(s;, p’)/7)’

i=1 j=1

where 7 refers to the temperature. We use the Homoge-
neous In-Batch Negative Sampling, which calls for many
negative samples to guarantee the embedding’s discrimina-
tivenss (Izacard et al., 2022; Wang et al., 2022; Qu et al.,
2021). In our work, this is implemented by the usage of
in-batch negatives — for each query, the negatives are ran-
domly sampled from the corpus, excluding the other positive
premises of the query. Given a batch of B samples, it results
in B x |P};| — 1 negative samples.

Contrastive Learning of CAR module The CAR module
is learned in the same contrastive learning framework, in

which the choice of negatives is crucial. We sample hard
negatives from the top-k; premises selected by the retrieval
model and they will be used in the re-ranking model train-
ing process. During testing, we also use the retrieval model
to retrieve the top-k; premises and re-ranking them by the
re-ranking model. The loss function used for training the
re-ranking model is the cross-entropy loss, and the optimiza-
tion objective is formulated as

D] [Pl

min Z Z —log 5 Prisi pij) (6)

AR
i=1 j=1 p'E€P; Pr(sﬂp)

where ’ng contains one positive p;; and some hard negatives.
Pr(s,p) is the relevant probability obtained via Eq. (4).

Training Tactic Generator After training the retrieval
model, we integrate it with the generator for testing. The
generator is trained in an independent paradigm for a fair
comparison between retrievers. Most prior work on genera-
tors (Welleck & Saha, 2023; Song et al., 2023; Yang et al.,
2024) utilizes state-tactic pairs to fine-tune a pre-trained
model for tactic generation. Leandojo (Yang et al., 2024)
incorporates premise retrieval by leveraging the retrieval
model to extract relevant premises based on the state from
the training dataset. The premises are then concatenated
with the state to form premise-augmented state-tactic pairs
used for fine-tuning. However, this approach results in a
high degree of coupling between the retrieval model and the
generator, as prior knowledge of the retrieval result distribu-
tion is incorporated during training.

To ensure a fair experimental setup, we aim to decouple the
generator from the retrieval model and train the generator
independently. As a substitution of the retrieval model, we
randomly select the positive and negative premises from
the library and prepend them to the state, thereby creating
premise-augmented state-tactic pairs. For each tactic, we
add up to ten premises. The number of positive premises
selected is randomly determined, ranging from one to the
lesser of the total available positive premises or ten. The
remaining premises are negative. Half of these negatives
are selected from the same module as the positive samples,
while the remaining are chosen from other modules. Follow-
ing (Yang et al., 2024), we use these pairs to fine-tune the
ByT5 (Xue et al., 2022) model for tactic generation. The
loss function we use is typically cross-entropy loss.

4. Experiments
4.1. Experiment Setup

Implementation Details Our retrieval and re-ranking mod-
els are based on the BERT architecture, which consists of
6 layers, each with 12 attention heads. It features a hidden
size of 768 and an intermediate size of 3,072, complemented
by a vocabulary size of 30,522. For the retrieval model, the

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

maximum position embeddings are configured at 512. The
maximum length for states is set at 512 and for premises’
arguments and goals set at 256 respectively. The batch size
is set at 32, and | P;;| mentioned in 3.3 is set at 2. In contrast,
the re-ranking model has its maximum position embeddings
set at 1,024. We set the batch size at 2, gradient accumula-
tion steps at 8, and |77£j| at 8. We construct the pre-training
corpus by concatenating states from the training set and all
premises’ argument lists and goals from the corpus. The
results of our method presented in Table 2 are obtained by
first training the retrieval model and selecting the top-100
results as hard negative candidates. We then train the re-
ranking model and use it to reorder the top-20 results from
the retrieval stage. The experiments are conducted on 8
RTX 4080 servers.

Baselines As mentioned above, ReProver (Yang et al.,
2024) is a model specifically trained on the Lean dataset,
using formal states and premises. Therefore, it serves as
our primary baseline. Moreover, we retrain the model using
our dataset and following the setting in (Yang et al., 2024).
In addition to ReProver, we compare against several other
commonly used retrieval models that have demonstrated
strong performance in their specific domains.

¢ UniXcoder-base (Guo et al., 2022): It is one of the state-
of-the-art code embedding models to transform code snip-
pets into hidden vectors. It leverages multimodal data,
such as code comments and abstract syntax trees (ASTs),
to pre-train code representations.

* ES5-large-v2 (Wang et al., 2022): It is trained in a con-
trastive manner using weak supervision signals derived
from a curated, large-scale text-pair dataset (referred to as
CCPairs) and demonstrates strong performance on several
English retrieval tasks.

* BGE-m3 (Chen et al., 2024): It is distinguished for its ver-
satility and excels in multiple functionalities, multilingual
capabilities, and fine granularity retrieval tasks.

We fine-tune the three aforementioned baselines using our
dataset. Following the parameters provided in (Chen et al.,
2024), we set the learning rate to le-5 and use a linear
scheduler. Due to server constraints, the batch sizes for the
three models are set to 16, 8, and 6, respectively.

Metrics To evaluate the performance of various retrieval
models, we utilize four widely adopted metrics: Precision,
Recall, F1-Score, and nDCG. Since the nDCG considers
the retrieved results’ relevance and position, it allows for
multiple relevance levels. Following the setup in (Gao et al.,
2024), we define the relevance criteria in Table 1, which
provides the relevance scores for calculating nDCG.

Data Split To evaluate the performance of the model across
different feature datasets, we employ four distinct data split

Table 1. Relevance criteria for the retrieval results.

Rating |Score|Description

Match 1

Match to one of the premises used in the tactic.

Within the same module with any of the

Relevant| 0.3 . . .
premises used in the tactic.

Irrelevant| O |Situations other than the two mentioned above.

strategies. Here, we represent a proof as P = {ti}gll,

which is a sequence of tactics, and apply Proof Length and
Premise Frequency to characterize the proof, i.e.,

ProofLength = |P|,

. 1 1P| .
PremiseFreq = ﬁ Zi:l PremiseNum(¢;),

where PremiseNum(¢;) denotes the number of external
premise in a tactic. Proof Length reflects the complexity of
the proof, while the Premise Frequency indicates the degree
of reliance on external theorems during the proof process.
Then, we apply the following four data split strategies to
obtain four datasets:

* Random (RD): Randomly split the dataset.

* Reference Isolated (RI): Premises in the validation and
test sets will not appear in the training set.

* Proof Length (PL): Sample proofs for the validation and
test sets weighted by Proof Length.

* Premise Frequency (PF): Sample proofs for the valida-
tion and test sets weighted by Premise Frequency.

Each dataset contains 65,567 theorems for training, while
the validation and test sets each contain 2,000 theorems.

4.2. Main Results

After training different models on the training dataset and
evaluating them on the corresponding test sets, we obtain
the results presented in Table 2. From this table, we can
observe that our method demonstrates exceptional perfor-
mance, outperforming other baseline models. Specifically,
UniXcoder-base (Guo et al., 2022), ES-large-v2 (Izacard
et al., 2022), and BGE-m3 (Chen et al., 2024) exhibit gen-
erally poor performance, which can be attributed to the
substantial discrepancy between the pre-training corpora
used by these models (based on natural language data) and
the Lean language. Although these models are fine-tuned,
they cannot fully capture the core aspects of the Lean lan-
guage due to Lean’s unique syntax and semantic features
and thus suffer suboptimal performance. In contrast, the
ReProver (Yang et al., 2024) model performs relatively well,

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

Table 2. Premise selection results of our method and other baselines on different data splits.

Split Method Recall Precision F1-score nDCG
R@l1 R@5 R@10| P@l P@5 P@l10| F@l F@5 F@l0| n@l n@5 n@10
UniXcoder-base | 4.23 19.47 27.01 6.68 6.90 5.04 5.18 10.19 8.50 | 0.2283 0.3455 0.3958
E5-large-v2 442 1899 2729 | 690 6.75 5.09 5.39 9.96 8.58 | 0.2313 0.3458 0.3952
RD | BGE-m3 400 1856 2529 | 640 6.51 4.64 492 9.64 7.84 | 0.2374 0.3481 0.3930
ReProver 11.79 28.78 36.69 | 19.80 10.90 7.23 1478 15.81 12.08 | 0.3351 0.4072 0.4617
Ours 15.17 3820 46.53 | 26.80 14.87 930 | 19.38 2141 15.51 | 0.3731 0.4698 0.5163
UniXcoder-base | 4.54 17.55 24.16 | 6.68 6.18 4.54 5.41 9.15 7.64 | 02303 0.3258 0.3768
E5-large-v2 480 1821 2473 | 742 6.55 4.69 5.83 9.64 7.88 | 0.2356 0.3407 0.3878
RI | BGE-m3 452 1769 2376 | 7.05 6.19 4.45 5.51 9.17 7.49 | 02306 0.3312 0.3788
ReProver 5.05 1426 1948 | 930 577 4.10 6.54 8.22 6.77 | 0.2442 0.3059 0.3563
Ours 7.79 2338 3091 | 1476 9.30 6.38 | 10.20 13.31 10.58 | 0.2731 0.3736 0.4322
UniXcoder-base | 3.94 1545 2272 | 670 5.66 4.32 4.96 8.29 7.25 | 0.1958 0.2804 0.3272
E5-large-v2 3.66 14.65 21.65 | 6.25 5.47 4.23 4.61 7.96 7.08 | 0.1849 0.2735 0.3229
PL | BGE-m3 399 1465 20.53 | 7.06 5.41 3.92 5.10 7.90 6.59 | 0.1974 0.2781 0.3218
ReProver 11.16 26.83 3396 | 19.64 1031 6.83 1423 1490 11.38 | 0.3059 0.3699 0.4232
Ours 14.39 3499 41.61 | 25.18 13.80 845 | 1831 19.80 14.04 | 0.3479 0.4319 0.4781
UniXcoder-base | 2.69 15.03 2191 5.19 6.92 5.43 3.54 9.48 8.70 | 0.2251 0.3426 0.3973
ES5-large-v2 3.08 1444 22.11 5.84 6.70 5.39 4.04 9.16 8.67 | 0.2300 0.3464 0.4023
PF | BGE-m3 2.59 13.85 2005 | 542 6.27 4.86 3.51 8.63 7.83 | 0.2320 0.3404 0.3910
ReProver 829 2274 30.21 | 1899 11.83 830 | 11.54 15.57 13.02 | 0.3257 0.3966 0.4544
Ours 11.44 31.02 38.88 | 26.38 1596 10.52 | 1596 21.08 16.56 | 0.3764 0.4693 0.5238

Table 3. Ablation studies on pre-training, tokenizer, and similarity calculation on Random split dataset for the CFR module. Here P means
the model is pre-trained or not, T means the model uses a new tokenizer or not, S means similarity calculation.

Method Recall Precision F1-score nDCG
P T S R@l R@5 R@10 | P@l P@5 P@I0 | Fel F@5 F@l10 n@1 n@5 n@10
x x Eq.(3) | 463 2009 29.05 8.35 7.45 5.62 5.96 10.87 9.42 0.2443 0.3503 0.4030
x v Eq.(3) | 493 2049 30.33 8.04 7.50 5.79 6.11 1098 9.72 0.2368 0.3493 0.4034
v x Eq.(3) | 631 2381 3421 | 1034 8.77 6.59 7.84 12.82 11.05 | 0.2484 0.3655 0.4240
v v Eq.(2) | 565 2587 36.78 9.36 9.55 7.12 7.05 1395 1192 | 0.2382 0.3662 0.4238
v v Eq.(3) | 594 2581 37.70 9.80 9.53 7.24 740 1392 12.15 | 0.2422 0.3674 0.4293

likely due to its specifically designed parameter-tuning strat-
egy. Furthermore, ReProver utilizes ByT5 (Xue et al., 2022),
a byte-level tokenizer, which may allow the model to bet-
ter handle the special symbols and structures in the Lean
language. Our method, on the other hand, improves perfor-
mance by retraining the tokenizer on the Lean corpus and
pre-training the retrieval model, allowing it to better adapt
to the syntax and semantic features of Lean.

For different data splitting strategies, we observe that ran-
dom data splitting is relatively easy. However, when the the-
orems in the test set involve longer proofs or require a larger
number of premises, the performance of the model tends to
be lower. The reference isolated method, where the premises
in the test set have not appeared during training, is the most
challenging. It requires the model to exhibit strong gener-
alization ability. Nevertheless, under each of these split-
ting strategies, our model consistently outperforms other
baseline methods, which indicates that our model exhibits
superior adaptability.

4.3. Ablation Studies

Impacts of Pre-Training, Tokenizer, and Similarity Cal-
culation We evaluate the impacts of pre-training the model,
training the specific tokenizer for Lean, and the proposed
similarity calculation in Table 3, respectively. To ensure a
fair comparison, we filter out the impact of the re-ranking
module and only compare the results provided by the re-
trieval module. This table shows a performance improve-
ment when the model is pre-trained on the Lean corpus
compared to not performing pre-training. This indicates that
the pre-training process helps the model acquire semantic
information about Lean in advance. The experiment also
shows that if we only pre-train the model without training
a new tokenizer, the performance when k = 1 is slightly
better but degrades a lot when £ = 5 or 10. In addition, we
evaluate the impacts of different similarity calculation meth-
ods on the retrieval results. The results in Table 3 emphasize
the benefits of assessing similarity in a fine-grained manner.

The Effect of Re-ranking We validate the effectiveness
of using the proposed re-ranking module. As shown in

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

—— Qurs —=— Qurs w/o rerank —— ReProver

RI

Recall@k
Recall@k

1 5 10 15 20

Recall@k
Recall@k

Figure 4. The Recall@k of our method with or without re-ranking
on each split, compared with ReProver.

Figure 4, when only the CFR module is used, our model
outperforms the ReProver only for larger values of k in Re-
call@k (e.g., k > 10). Applying the CAR module improves
the recall of our model when k < 10, so that our model can
consistently outperform ReProver and users are likely to find
useful premises in a relatively short list. Figure 5 presents
a comparison for our model and other baselines in terms
of model size and inference GFLOPs. Without re-ranking,
our model achieves the lowest GFLOPs and it outperforms
in Recall@1 most of the baselines except ReProver. When
re-ranking the top-5 retrieval results by our CAR module,
our model outperforms all the baselines and its GFLOPs
and model size are comparable to those of ReProver.

4.4. Robustness Experiments

Effect of Data Perturbation Considering the generally
high quality of proofs in Mathlib, models trained on this
dataset may be sensitive to the common issues of redundant
variables, missing conditions, and disordered sequences in
the context of proof states, resulting in poor generalization
ability. We evaluate our retrieval model’s robustness to
low-quality inputs by perturbing the query states in the test
set. Specifically, we applied two perturbation strategies to
a subset of the test data: shuffling the context or randomly
removing 20% of the context from states with a context
length of 15 or more. As shown in Figure 6, all the metrics
exhibit a moderate decline as the perturbation ratio increases,
with a maximum drop of approximately 6% when k = 5, 10
compared to the unperturbed case. Especially, the model’s

Model Performance Comparison

16
Ours
144 w/ re-rank
ﬁ\ 134.3M
12 : J
— K//ReProver
X 101 217.66M
B (o]
urs
9 81 wj/o re-rank
S S s am
O .
2 61
o @
4
UniXcoder-base
291 125.93M
BGE-m3
567.75M

0 50 100 150 200 250 300 350
GFLOPs

Figure 5. The performance and efficiency comparison on Random
split datasets. The size of each point reflects the parameter size of
each model.

performance even improves when k = 1. These results
demonstrate that our retrieval model is robust to variations
in the order of query states and the potential absence of
certain local hypotheses.

Impact of Reduced Training Data The sparsity of data is
an inherent challenge in formalization tasks. We test the sen-
sitivity of our retrieval model to the amount of training data.
The tests are conducted on the Random split dataset. The
results in Figures 6 show that the model trained on the full
dataset outperforms the model trained on only 25% of the
data by approximately 25% in terms of £ = 5, 10. The con-
sistent performance improvement suggests that there is still
potential for further enhancement by increasing the amount
of training data. When k = 1, the performance seems to
reach a bottleneck as the data size increases. Therefore,
it may be necessary to incorporate re-ranking or explore
alternative methods to further improve performance.

4.5. Theorem Proving Experiments

As mentioned in Section 3.3, we fine-tune ByT5 (Xue et al.,
2022) and obtain a tactic generator. Facilitating the genera-
tor, we conduct theorem-proving experiments with retrieval.
The results in Figure 7 show that assisted by our model, the
generator averagely performs better than ReProver (Yang
et al., 2024). Additionally, we evaluate our method on the
Minif2f benchmark (Zheng et al., 2022) using the model
trained on the random split dataset. Our approach achieves
a pass@1 rate of 30.74%, while ReProver reached 28.28%,
indicating that our method is more effective. This means
that retrieval-augmented language models are effective: For
tasks such as formal theorem proving, which relies on exter-
nal theorem libraries, an effective retrieval model is expected

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

120 Recall 14 Recall
—o R@1 —— R@1
1151 = R@5 13 = R@S
Y 1.10{ —* R@10] —— R@10
105 | 812
el o
100 f11
T 0.95 T A—//
g E1o
S0.90 S
0.85 09
0.80 0.8
000 025 050 0.75 1.00 0.25 0.50 0.75 1.00
Perturbation Proportion Training Data Proportion
1.20 Precision 14 Precision
—o— P@1 —— P@1
1157 = p@s 13| = P@s
Y 1.10{ —* PE10] —— P@10
105 o| S12
el el
& 100 f11
© ©
g0 E1o
2090 S
0.9
0.85
080350 025 o050 o075 100 Bols 0.50 0.75 1.00

Perturbation Proportion Training Data Proportion
Figure 6. The variation of the normalized values of the model’s
metrics under different data perturbations and different training
data proportion. In data perturbation experiments, the metric with
no perturbation vy is adopted as baseline. The normalized value
v* = v/vg. In data proportion experiments, the metric with 25%
training data is adopted as baseline.

to enhance generation performance.

On test sets with high premise frequency but relatively short
proof, our model performs better than ReProver, demonstrat-
ing the advantages of a more powerful retriever. In contrast,
on test sets with long proof but low premise frequency, our
model performs almost on par with ReProver. However, on
the RD test sets, our model performs slightly worse than
ReProver, despite the improvement in retrieval accuracy.
‘We attribute this outcome to several factors. First, incor-
porating retrieved premises into the prompt increases the
length of the context that the model must process compared
to providing only the proof state. This imposes certain re-
quirements on the model’s parameter size and architecture,
as smaller models may struggle to accurately identify useful
information within longer contexts. We will explore this
issue in our future work.

5. Conclusion

In this paper, we propose an innovative method that lever-
ages data extracted from Mathlib4 to train a retrieval model
specifically designed for Lean premise retrieval. Experi-
ments show that our method outperforms previous models
and demonstrates the potential of domain-specific smaller
models in data-sparse tasks, such as formal premise retrieval.
We have developed a search engine for premise retrieval
based on our model. We hope that our work can help ac-
celerate mathematical formalization and contributes to the

s Ours ReProver - Ours Avg - ReProver Avg

Proved Th

e e
[
g
S v

RI PL PF
Data Split

Figure 7. Retrieval-augmented theorem proving results.

researchers in the community.

Although our method has yielded promising results, there
is still room for optimization in the retriever’s backbone
model. For the Lean premise retrieval task, the data cor-
pus contains valuable semantic information, such as the
hierarchy of Lean’s type system, that has yet to be fully
explored. Moreover, the results of theorem proving experi-
ments need further clarification with stronger provers, such
as DeepSeek-Prover-V2 (Ren et al., 2025), to demonstrate
the effects of premise selection for automated theorem prov-
ing. In the future, we will focus on leveraging this untapped
semantic information more effectively and developing better
models.

Acknowledgements

Yicheng Tao and Shanwen Wang are supported by Na-
tional Key Technologies R&D Program of China, Grant
No. 2024YFA1014001. Haotian Liu and Hongteng Xu are
supported by Beijing Natural Science Foundation (Grant
No. L233008), the fund for building world-class univer-
sities of Renmin University of China, and the funds from
Beijing Key Laboratory of Research on Large Models and
Intelligent Governance, and Engineering Research Center
of Next-Generation Intelligent Search and Recommenda-
tion, Ministry of Education. We thank Beijing International
Center for Mathematical Research(BICMR) at Peking Uni-
versity and Institute for Mathematical Sciences(IMS) at
National University of Singapore for organizing Lean work-
shops, which provides great opportunities for learning and
communication.

Impact Statement

The formalization community has been exploring the poten-
tial of Al tools as assistants. In this work we develop an
intelligent search engine for formal theorems based on proof
states, aiming to accelerating the process of mathematical
formalization.

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

References

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre,
J.-C., Gimenez, E., Herbelin, H., Huet, G., Munoz, C.,
Murthy, C., et al. The Coq proof assistant reference
manual: Version 6.1. PhD thesis, Inria, 1997.

Chen, J., Xiao, S., Zhang, P, Luo, K. Lian, D.,
and Liu, Z. M3-embedding: Multi-linguality, multi-
functionality, multi-granularity text embeddings through
self-knowledge distillation. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association
for Computational Linguistics: ACL 2024, pp. 2318—
2335, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.

findings-acl.137. URL https://aclanthology.

org/2024.findings—-acl.137/.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597-1607. PMLR, 2020.

De Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von
Raumer, J. The lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International
Conference on Automated Deduction, Berlin, Germany),
August 1-7, 2015, Proceedings 25, pp. 378-388. Springer,
2015.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171-4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423/.

Gao, G., Ju, H,, Jiang, J, Qin, Z., and Dong, B.
A semantic search engine for mathlib4. In Al-
Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 8001-8013, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
470. URL https://aclanthology.org/2024.
findings—emnlp.470.

Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin,
J. UniXcoder: Unified cross-modal pre-training for code
representation. In Muresan, S., Nakov, P., and Villavi-
cencio, A. (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics

10

(Volume 1: Long Papers), pp. 7212-7225, Dublin, Ire-
land, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-1ong.499. URL https:
//aclanthology.org/2022.acl-1long.499/.

Harman, D. K. Overview of the third text retrieval confer-
ence (TREC-3). Number 500. DIANE Publishing, 1995.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738,
2020.

Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski,
P, Joulin, A., and Grave, E. Unsupervised dense in-
formation retrieval with contrastive learning. Transac-
tions on Machine Learning Research, 2022. ISSN 2835-
8856. URL https://openreview.net/forum?
1d=9KN1pX1i7b0.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. Dense passage
retrieval for open-domain question answering. In Web-
ber, B., Cohn, T., He, Y., and Liu, Y. (eds.), Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 6769—
6781, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.
550. URL https://aclanthology.org/2020.
emnlp-main.550/.

Li, C., Liu, Z., Xiao, S., Shao, Y., and Lian, D. Llama2vec:
Unsupervised adaptation of large language models for
dense retrieval. In Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3490-3500, 2024.

Ma, X., Wang, L., Yang, N., Wei, F,, and Lin, J. Fine-tuning
llama for multi-stage text retrieval. In Proceedings of the
47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 2421—
2425, 2024.

Mikuta, M., Antoniak, S., Tworkowski, S., Piotrowski,
B., Jiang, A., Zhou, J. P, Szegedy, C., Kucinski, L.,
Mitos, P., and Wu, Y. Magnushammer: A transformer-
based approach to premise selection. In The 3rd Work-
shop on Mathematical Reasoning and Al at NeurIPS’23,
2023. URL https://openreview.net/forum?
id=WgaVCqgZeIU.

Nipkow, T., Wenzel, M., and Paulson, L. C. Isabelle/HOL:
a proof assistant for higher-order logic. Springer, 2002.

Nogueira, R. and Cho, K. Passage re-ranking with bert.
CoRR, abs/1901.04085, 2019. URL http://arxiv.
org/abs/1901.04085.

https://aclanthology.org/2024.findings-acl.137/
https://aclanthology.org/2024.findings-acl.137/
https://aclanthology.org/N19-1423/
https://aclanthology.org/2024.findings-emnlp.470
https://aclanthology.org/2024.findings-emnlp.470
https://aclanthology.org/2022.acl-long.499/
https://aclanthology.org/2022.acl-long.499/
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://aclanthology.org/2020.emnlp-main.550/
https://aclanthology.org/2020.emnlp-main.550/
https://openreview.net/forum?id=WgaVCqZeIU
https://openreview.net/forum?id=WgaVCqZeIU
http://arxiv.org/abs/1901.04085
http://arxiv.org/abs/1901.04085

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

Qiao, Y., Xiong, C., Liu, Z., and Liu, Z. Understand-
ing the behaviors of bert in ranking. arXiv preprint
arXiv:1904.07531, 2019.

Qu, Y., Ding, Y., Liu, J,, Liu, K., Ren, R., Zhao, W. X.,
Dong, D., Wu, H., and Wang, H. RocketQA: An opti-
mized training approach to dense passage retrieval for
open-domain question answering. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, 1., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 5835-5847, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.466. URL https://aclanthology.
org/2021.naacl-main.466/.

Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao,
W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z. F,,
Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D.,
and Ruan, C. Deepseek-prover-v2: Advancing formal
mathematical reasoning via reinforcement learning for
subgoal decomposition, 2025. URL https://arxiv.
org/abs/2504.21801.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333-389, 2009.

Salton, G. and Buckley, C. Term-weighting approaches
in automatic text retrieval. Information processing &
management, 24(5):513-523, 1988.

Song, P., Yang, K., and Anandkumar, A. Towards large
language models as copilots for theorem proving in lean.
In The 3rd Workshop on Mathematical Reasoning and Al
at NeurIPS’23, 2023. URL https://openreview.
net/forum?id=C9X5sXa2kl.

Song, X., Salcianu, A., Song, Y., Dopson, D., and Zhou, D.
Fast wordpiece tokenization. In EMNLP (1), pp. 2089—
2103, 2021. URL https://aclanthology.org/
2021 .emnlp-main.160.

Taylor, W. L. “cloze procedure”: A new tool for measuring
readability. Journalism quarterly, 30(4):415-433, 1953.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L.,
Jiang, D., Majumder, R., and Wei, F. Text embeddings
by weakly-supervised contrastive pre-training. arXiv
preprint arXiv:2212.03533, 2022.

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R.,
and Wei, F. Improving text embeddings with large lan-
guage models. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of

11

the Association for Computational Linguistics (Volume
1: Long Papers), pp. 11897-11916, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.642. URL https:
//aclanthology.org/2024.acl-long.642/.

Welleck, S. and Saha, R. llmstep: LLM proofstep sugges-
tions in lean. In The 3rd Workshop on Mathematical
Reasoning and Al at NeurIPS’23, 2023. URL https:
//openreview.net/forum?id=0DOJuAM4Q].

Xue, L., Barua, A., Constant, N., Al-Rfou, R., Narang, S.,
Kale, M., Roberts, A., and Raffel, C. Byt5: Towards
a token-free future with pre-trained byte-to-byte mod-
els. Transactions of the Association for Computational
Linguistics, 10:291-306, 2022.

Yang, K., Swope, A., Gu, A., Chalamala, R., Song, P,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Zheng, K., Han, J. M., and Polu, S. minif2f: a cross-system
benchmark for formal olympiad-level mathematics. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1d=9ZPegFuFTEv.

https://aclanthology.org/2021.naacl-main.466/
https://aclanthology.org/2021.naacl-main.466/
https://arxiv.org/abs/2504.21801
https://arxiv.org/abs/2504.21801
https://openreview.net/forum?id=C9X5sXa2k1
https://openreview.net/forum?id=C9X5sXa2k1
https://aclanthology.org/2021.emnlp-main.160
https://aclanthology.org/2021.emnlp-main.160
https://aclanthology.org/2024.acl-long.642/
https://aclanthology.org/2024.acl-long.642/
https://openreview.net/forum?id=ODOJuAM4Qj
https://openreview.net/forum?id=ODOJuAM4Qj
https://openreview.net/forum?id=9ZPegFuFTFv
https://openreview.net/forum?id=9ZPegFuFTFv

Learning an Effective Premise Retrieval Model for Efficient Mathematical Formalization

A. Data Extraction

Several tools have been developed to extract data from a Lean project. To meet our requirements, we utilize the script from
LeanDojo and incorporate additional features. We applied this pipeline to Mathlib*. The extracted information covers all
the premises and proofs in this project, along with metadata such as file dependencies. For each premise, we extract its
argument list and output. The proofs are lists of tactics, with the state before/after the tactics and premises used in each step.
Figure 8 illustrates the statistics related to context length and the number of premises in the dataset. The context length
represents the length of I', while the premise number indicates how many premises are utilized in a specific tactic. It is
important to note that tactics that do not have any premises are excluded from these statistics.

Contexts Length Distribution Premise Number Distribution
0.067 [] Mean: 11.96 1 [Mean: 3.39
B 3 sta: 8.17 0-20 = std: 2.95
20.05- n
c € 0.151
() o
;S 0.041 A
2 > —
= 0.031 = 0.101
Ko} QO
3 0.02] _‘ 3
o o
0.01 ‘
0.00— ‘ : : ‘ 0.00 ‘ ‘ ‘
0 20 40 60 80 0 10 20 30
Length Number

Figure 8. The probability density distribution of context lengths and premise numbers in the extracted dataset.

“We used tag v4.10.0 of mathlib4. https://github.com/leanprover—community/mathlib4/tree/v4.10.0

12

https://github.com/leanprover-community/mathlib4/tree/v4.10.0

