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ABSTRACT

Since their introduction, diffusion models have quickly become the prevailing
approach to generative modeling in many domains. They can be interpreted
as learning the gradients of a time-varying sequence of log-probability density
functions. This interpretation has motivated classifier-based and classifier-free
guidance as methods for post-hoc control of diffusion models. In this work, we
build upon these ideas using the score-based interpretation of diffusion models, and
explore alternative ways to condition, modify, and reuse diffusion models for tasks
involving compositional generation and guidance. In particular, we investigate why
certain types of composition fail using current techniques and present a number
of solutions. We conclude that the sampler (not the model) is responsible for this
failure and propose new samplers, inspired by MCMC, which enable successful
compositional generation. Further, we propose an energy-based parameterization
of diffusion models which enables the use of new compositional operators and
more sophisticated, Metropolis-corrected samplers. Intriguingly we find these
samplers lead to notable improvements in compositional generation across a wide
variety of problems such as classifier-guided ImageNet modeling and compositional
text-to-image generation.

1 INTRODUCTION

In recent years, tremendous progress has been made in generative modeling across a variety of
domains (Brown et al., 2020; Brock et al., 2018; Ho et al., 2020). These models now serve as
powerful priors for downstream applications such as code generation (Li et al., 2022), text-to-image
generation (Saharia et al., 2022), question-answering (Brown et al., 2020) and many more. However,
to fit this complex data, generative models have grown inexorably larger (requiring 10’s or even 100’s
of billions of parameters) (Kaplan et al., 2020) and require datasets containing non-negligible fractions
of the entire internet, making it costly and difficult to train and or finetune such models. Despite this,
some of the most compelling applications of large generative models do not rely on finetuning. For
example, prompting (Brown et al., 2020) has been a successful strategy to selectively extract insights
from large models. In this paper, we explore an alternative to finetuning and prompting, through
which we may repurpose the underlying prior learned by generative models for downstream tasks.

Diffusion Models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) are a recently
popular approach to generative modeling which have demonstrated a favorable combination of
scalability, sample quality, and log-likelihood. A key feature of diffusion models is the ability for
their sampling to be “guided” after training. This involves combining the pre-trained Diffusion Model
pθ(x) with a predictive model pθ(y|x) to generate samples from pθ(x|y). This predictive model can
be either explicitly defined (such as a pre-trained classifier) (Sohl-Dickstein et al., 2015; Dhariwal &
Nichol, 2021) or an implicit predictive model defined through the combination of a conditional and
unconditional generative model (Ho & Salimans, 2022). These forms of conditioning are particularly
appealing (especially the former) as they allow us to reuse pre-trained generative models for many
downstream applications, beyond those considered at training time.

These conditioning methods are a form of model composition, i.e. combining probabilistic models
together to create new models. Compositional models have a long history back to early work on
Mixtures-Of-Experts (Jacobs et al., 1991) and Product-Of-Experts models (Hinton, 2002; Mayraz &
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Figure 1: Creating new models through composition. Simple operators enable diffusion models to be
composed without retraining in settings such (a) products, (b) classifier conditioning, (c) compositional text-to-
image generation with a product (left) and a mixture (right). All samples generated by trained models.

Hinton, 2000). Here, many simple models or predictors were combined to increase their capacity.
Much of this early work on model composition was done in the context of Energy-Based Mod-
els (Hinton, 2002), an alternative class of generative model which bears many similarities to diffusion
models.

In this work, we explore the ways that diffusion models can be reused and composed with one-
another. First, we introduce a set of methods which allow pre-trained diffusion models to be
composed, with one-another and with other models, to create new models without retraining. Second,
we illustrate how existing methods for composing diffusion models are not fully correct, and propose
a remedy to these issues with MCMC-derived sampling. Next, we propose the use of an energy-based
parameterization for diffusion models, where the unnormalized density of each reverse diffusion
distribution is explicitly modeled. We illustrate how this parameterization enables both additional
ways to compose diffusion models, as well as the use of more powerful Metropolis-adjusted MCMC
samplers. Finally, we demonstrate the effectiveness of our approach in settings from 2D data to
high-resolution text-to-image generation. An illustration of our domains can be found in Figure 1.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models seek to model a data distribution q(x0). We augment this distribution with auxiliary
variables {xt}Tt=1 defining a Gaussian diffusion q(x0, . . . , xT ) = q(x0)q(x1|x0) . . . q(xT |xT−1)
where each transition is defined q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) for some 0 < βt ≤ 1. This

transition first scales down xt−1 by
√
1− βt and then adds Gaussian noise of variance βt. For large

enough T , we will have q(xT ) ≈ N (0, I).

Our model takes the form pθ(xt−1|xt) and seeks to learn the reverse distribution of q(xt|xt−1) which
seeks to denoise xt to xt−1. In the limit of small βt this reversal becomes Gaussian (Sohl-Dickstein
et al., 2015) so we parameterize our model pθ(xt−1|xt) = N (xt−1;µθ(xt, t), β̃tI) with:

µθ(xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
ϵθ(xt, t)

)
. (1)

where ϵθ(xt, t) is a neural network, and αt, ᾱt, β̃t are functions of {βt}Tt=1.

A useful feature of the diffusion process q is that we can analytically derive any time marginal
q(xt|x0) = N (xt;

√
1− σ2

t x0, σ
2
t I) where again σt is a function of {βt}Tt=1. We can sample xt

from this distribution using reparameterization, i.e xt(x0, ϵ) =
√

1− σ2
t x0+σtϵ where ϵ ∼ N (0, I).

Exploiting this, diffusion models are typically trained with the loss

L(θ) =
∑T

t=1 Lt(θ), Lt(θ) = Eq(x0)N (ϵ;0,I)

[
||ϵ− ϵθ(xt(x0, ϵ), t)||2

]
. (2)

Once ϵθ(x, t) is trained, we recover µθ(x, t) with Equation 1 to parameterize pθ(xt−1|xt) and
perform ancestral sampling (also known as the reverse process) to reverse the diffusion, i.e sample
xT ∼ N (0, I), then for t = T − 1 → 1, sample xt−1 ∼ pθ(xt−1|xt). A more detailed description
can be found in Appendix B.
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2.2 ENERGY-BASED MODELS AND MCMC SAMPLING

Energy-Based Models (EBMs) are a class of probabilistic model which parameterize a distribution as
pθ(x) =

efθ(x)

Z(θ) where the normalizing constant Z(θ) =
∫
efθ(x)dx is not modeled. Choosing not to

model this quantity gives the model much more flexibility but comes with considerable limitations.
We can no longer efficiently compute likelihoods or draw samples from the model. This complicates
training, as most generative models are trained by maximizing likelihood.

One popular method for EBM training is denoising score matching. This approach minimizes the
Fisher Divergence1 between the model and a Gaussian-smoothed version of the data distribution
qσ(x) =

∫
q(x′)N (x;x′, σ2I)dx′ by minimizing the following objective

Jσ(θ) = Eq(x)N (ϵ;0,I)

[∣∣∣∣ ϵ
σ +∇xfθ(x+ σϵ)

∣∣∣∣2] . (3)

When minimized, this ensures that efθ(x) ∝ qσ(x) and therefore ∇xfθ(x) = ∇x log qσ(x). To
estimate likelihoods or sample from our model, we must rely on approximate methods, such as
MCMC sampling or numerical ODE integration. MCMC works by simulating a Markov chain
beginning at x0 ∼ p(x0) and using a transition distribution xt ∼ k(xt|xt−1). If k(·|·) has certain
properties, namely invariance w.r.t. the target and ergodicity, then as t → ∞, xt converges to a
sample from our target distribution.

Perhaps the most popular MCMC sampling algorithm for EBMs is Unadjusted Langevin Dynamics
(ULA) (Roberts & Tweedie, 1996; Du & Mordatch, 2019; Nijkamp et al., 2020) which is defined by

k(xt|xt−1) = N
(
xt;xt−1 +

σ2

2 ∇xfθ(xt−1), σ
2I
)
. (4)

This resembles a step of gradient ascent (with step-size σ2

2 ) with added Gaussian noise of variance
σ2. This transition is based on a discretization of the Langevin SDE. In the limit of infinitesimally
small σ this approach will draw exact samples. To handle the error accrued when using larger step
sizes, a Metropolis correction can be added giving the Metropolis-Adjusted-Langevin-Algorithm
(MALA) (Besag, 1994). With Metropolis correction, we first generate a proposed update x̂ ∼
k(x|xt−1), then with probability min

(
1, efθ(x̂)

efθ(xt−1)

k(xt−1|x̂)
k(x̂|xt−1)

)
we set xt = x̂, otherwise xt = xt−1.

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 1996) is a more advanced MCMC
sampling method which augments the state-space with auxiliary momentum variables and numerically
integrates energy-conserving Hamiltonian dynamics to advance the sampler. HMC is typically applied
with a Metropolis correction, but an approximate variant can be used without it (U-HMC) (Geffner &
Domke, 2021). See Appendix C.1 for details of HMC variants we use.

2.3 RELATIONSHIP BETWEEN DIFFUSION MODELS AND EBMS

Diffusion models and EBMs are closely related. For instance, Song & Ermon (2019) uses an EBM
perspective to propose a close cousin to diffusion models. We can see from inspection that the training
objective of diffusion models is identical (up to a constant) to the denoising score matching objective

σ2
tJσt

(θ) = Eq(x)N (ϵ;0,I)

[
||ϵ+ σt∇xfθ(x+ σtϵ)||2

]
= Lt(θ) (5)

where we have replaced ϵθ(x, t) with −σt∇xfθ(x + σtϵ). Thus by training ϵθ(x, t) to minimize
Equation 2, we can recover the diffused data distribution score with ∇x log qσ(x) ≈ − ϵθ(x,t)

σt
. From

this, we can define ϵθ(x, t) = ∇xfθ(x, t) (the derivative of an explicitly defined scalar function) to
learn a noise-conditional potential function fθ(x, t). We later demonstrate the benefits of this in two
ways; it enables the use of more sophisticated sampling algorithms and more forms of composition.

2.4 CONTROLLABLE GENERATION

It may be convenient to train a model of p(x) where x is, say, the distribution of all images, but
in practice we often want to generate samples from p(x|y) where y is some attribute, label, or
feature. This can be accomplished within the framework of diffusion models by introducing a learned

1The Fisher divergence is defined: F(p||q) = Ep

[
||∇x log p(x)−∇x log q(x)||2

]
.
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predictive model pθ(y|x; t), i.e a time-conditional model of the distribution of some feature y given
x. We can then exploit Bayes’ rule to notice that (for λ = 1),

∇x log pθ(x|y; t) = ∇x log pθ(x; t) + λ∇x log pθ(y|x; t). (6)

In practice, when using the right side of Equation 6 for sampling, it is beneficial to increase the
‘guidance scale’ λ to be > 1 (Dhariwal & Nichol, 2021). Thus, we can re-purpose the unconditional
diffusion model and turn it into a conditional model.

If instead of a classifier, we have a both an unconditional diffusion model ∇x log pθ(x; t) and a
conditional diffusion model ∇x log pθ(x|y; t), we can again utilize Bayes’ rule to derive an implicit
predictive model’s gradients

∇x log pθ(y|x; t) = ∇x log pθ(x|y; t)−∇x log pθ(x; t) (7)

which can be used to replace the explicit model in Equation 6, giving what is known as classifier-free
guidance (Ho & Salimans, 2022). This method has led to incredible performance, but comes at a
cost to modularity. This contrasts with the classifier-guidance setting, where we only need to train
a single (costly) generative model. We can then attach any predictive model we would like to for
conditioning. This is beneficial as it is often much easier and cheaper to train predictive models than a
flexible generative model. In the classifier-free setting, we must know exactly which y we would like
to condition on, and incorporate these labels into model training. In both guidance settings, we use
our (possibly implicit) predictive model to modify the learned score of our model. We then perform
diffusion model sampling as we would in the unconditional setting. We will see later that even in toy
settings, this is often not the optimal thing to do.

3 COMPOSITIONAL GENERATION BEYOND GUIDANCE

Most work on conditional diffusion models has come in the form of classifier or classifier-free
guidance, but these are far from the only ways we can compose distributions to obtain new models.
These ideas have been studied primarily in the context of EBMs because most compositional operators
leave the resulting distribution unnormalized. We outline various options below.

Products: We can take a product of N distributions and re-normalize to create a new distribution,
roughly equivalent to the “intersection” of the composite distributions,

qprod(x) = 1
Z

∏N
i=1 q

i(x), Z =
∫ ∏N

i=1 q
i(x)dx. (8)

Regions of high probability under qprod(x) will typically have high probability under all qi(x). A
simple product model can be seen in Figure 2. These ideas were initially proposed to increase
the capacity of weaker models by allowing individual “experts” to model specific features in the
input (Hinton, 2002), and were recently demonstrated at scale in the image domain using Deep
Energy-Based Models (Du et al., 2020a).

The approaches to guidance discussed in Section 2.4 define product models with only two experts.
The first models the relative density of the input data and the second models the conditional probability
of y. Combining these by a product models likely inputs which have the desired property y. This
form of composition has become popular for diffusion models since they do not directly model the
probability, but instead the gradient of the log-probability which can also be composed in this way.

Mixtures: Complementary to the product or intersection is the mixture or union of multiple
distributions. We can combine N distributions through a mixture to create a new distribution
equivalent to the union of the concepts captured in each distribution

qmix(x) = 1
N

∑N
i=1 q

i(x) (9)

where regions of high probability consist of regions of high probability under any qi(x). We cannot
compose score-functions to define mixtures (unlike products). Instead, we need a model which
specifies probability. Generating from mixtures of energy based models requires knowing the ratio
of normalizers between the models. In our experiments, we assume this ratio is 1. A simple
compositional mixture model can be seen in Figure 2.

Negation: Finally, given two distributions p0(x) and p1(x), we can explicitly invert the density of
p1(x) with respect to p0(x), which constructs a new distribution which assigns high likelihood to
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Figure 2: An illustration of product and mixture compositional models, and the improved sampling
performance of MCMC in both cases. Left to right: Component distributions, ground truth composed
distribution, reverse diffusion samples, HMC samples. Top: product, bottom: mixture. Reverse diffusion fails to
sample from composed models.
points in p0(x) that are not in p1(x) (Du et al., 2020a), where α controls the degree we invert p1(x)
(we use α = 0.5 in our experiments).

qneg(x) ∝ q0(x)
q1(x)α . (10)

We can combine negation with our previous operators, in a nested manner to construct complex
combinations of distributions (Figure 5).

In section 2.3, we showed how diffusion models can be interpreted as approximating the gradient
∇x log q(x), but do not learn an explicit model of the log-likelihood log q(x). This means with the
standard ϵθ(x, t)-parameterization we can, in theory, utilize product and negation composition, but
not mixture composition.

4 SCALING COMPOSITIONAL GENERATION WITH DIFFUSION MODELS

While highly compositional, EBMs present many challenges. The lack of a normalized probability
function makes training, evaluation, and sampling very difficult. Much progress has been made to
scale these models (Du & Mordatch, 2019; Nijkamp et al., 2020; Grathwohl et al., 2019; Du et al.,
2020b; Grathwohl et al., 2021), but EBMs still lag behind other approaches in terms of efficiency and
scalability. In contrast, diffusion models have demonstrated very impressive scalability. Fortuitously,
diffusion models have similarities to EBMs, such as their training objective and their score-based
interpretation, which makes many forms of composition readily applicable.

Unfortunately, when two diffusion models are composed into, for example, a product model
qprod(x) ∝ q1(x)q2(x), issues arise if the model which reverses the diffusion uses a score esti-
mate obtained by adding the score estimates of the two models. We see in Figure 2 that composing
two models in such a way leads indeed to sub-par samples. This is because to sample from this
product distribution using standard reverse diffusion (Song et al., 2021), one would need to compute
instead the score of the diffused target product distribution given by

∇x log q̃
prod
t (xt) = ∇x log

(∫
dx0q

1(x0)q
2(x0) q(xt|x0)

)
. (11)

For t > 0, this quantity is not equal to the sum of the scores of the two models which is given by

∇x log q
prod
t (xt) = ∇x log

(∫
dx0q

1(x0)q(xt|x0)
)
+∇x log

(∫
dx0q

2(x0)q(xt|x0)
)
. (12)

Therefore, plugging the composed score function into the standard ancestral sampling procedure
discussed in Section 2.1, which we refer to as “reverse diffusion,” does not correspond to sampling
from the composed model, and thus reverse diffusion sampling will generate incorrect samples from
composed distributions. This effect can be seen in Figure 2, with details in Appendix D.

The score of the distribution qprod
t (xt) in Equation 12 is easy to compute, unlike that of q̃ prod

t (xt) from
Equation 11. In addition, qprod

t (xt) describes a sequence of distributions which smoothly interpolate
between qprod(x) at t = 0 and N (0, I) at t = T , though this sequence of distributions does not
correspond to the distributions that result from the standard forward diffusion process described in
Section 2.1, leading the reverse diffusion sampling to generate poor samples. We discuss how we
may utilize MCMC samplers, which use our knowledge of ∇x log q

prod
t (xt), to correctly sample from

intermediate distributions q̃ prod
t (xt), leading to accurate composed sample generation.

4.1 IMPROVING SAMPLING WITH MCMC

In order to sample from qprod(x) using the combined score function from Equation 12, we can use
annealed MCMC sampling, described below in Algorithm 1. This method applies MCMC transition
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Model Sampler Product Mixture
RAISE ↑ LL ↑ Var ↓ ln(MMD) ↓ LL ↑ Var ↓

Score
Reverse 1.55 -6.47 0.063 - - -
ULA 2.37 1.79 0.026 - - -
U-HMC 2.52 2.40 0.021 - - -
Reverse (equal steps) 2.27 -2.92 0.046 - - -

EBM

Reverse 1.37 -6.03 0.064 -3.84 -2.17 0.020
ULA 2.36 1.84 0.027 -4.21 0.57 0.013
MALA 2.64 2.73 0.013 -4.38 1.29 0.008
U-HMC 2.63 2.45 0.022 -4.69 1.03 0.010
HMC 2.71 2.72 0.009 -4.48 1.30 0.007

Table 1: Quantitative results on 2D composition. Energy based parameterization enables mixture
compositional models, and MCMC sampling leads to better samples from compositional diffusion models.

kernels to a sequence of distributions which begins with a known, tractable distribution and concludes
at our target distribution. Annealed MCMC has a long history enabling sampling from very complex
distributions (Neal, 2001; Song & Ermon, 2019).

Algorithm 1 Annealed MCMC
Input: Transition kernels kt(·|·), Initial
distribution pT (·), Number of steps N
xT ∼ pT (x) # Initialize.
for t = T, . . . , 0 do

for i = 1, . . . , N do
xt ∼ kt(·|xt)

end for
xt−1 = xt

end for
return x0

We explore two types of transition kernels kt(·|·) based on
Langevin Dynamics (Equation 4) and HMC. When using
the standard ϵθ(x, t)-parameterization, we do not have
access to an explicitly defined energy-function meaning
we cannot utilize any MCMC sampler with Metropolis
corrections. Thus, we only utilize the ULA and U-HMC
samplers described in Section 2.2. These samplers are not
exact, but can in practice generate good results. In the
next section we detail how Metropolis corrections may be
incorporated. Full details of our samplers can be found
in Appendix C.1. While continuous time sampling in
diffusion models Song et al. (2021) is also referred to as
ULA, the MCMC sampling procedure is run across time
(and corresponds to the same sampling procedure as discretized diffusion discussed in Section 2.1),
as opposed to being used to sample from each intermediate distribution q̃ prod

t (xt). Thus applying
continuous sampling gives the same issues as reverse diffusion sampling.

We can see again in Figure 2 that applying this MCMC sampling procedure allows samples from
the composed distribution to be faithfully generated with no modification to the underlying diffusion
models. Quantitative results can be found in Table 1 which further imply that the choice of sampler
may be responsible for prior failures in compositional generation with diffusion models.

4.2 ENERGY-BASED PARAMETERIZATION

As noted in Section 3, we are unable to use mixture composition without an explicitly parameterized
likelihood function. But, if we parameterize a potential function fθ(x, t) and implicitly define
ϵθ(x, t) = ∇xfθ(x, t) we can recover an explicit estimate of the (unnormalized) log-likelihood –
enabling us to utilize all presented forms for model composition.

Additionally, an explicit estimate of log-likelihood enables the use of more accurate samplers. As
explained above, with the standard ϵθ(x, t)-parameterization we can only utilize unadjusted samplers.
While they can perform well in practice, there exist many distributions from which they cannot
generate decent samples (Roberts & Tweedie, 1996) such as targets with lighter-than-Gaussian tails
where the ULA chain is transient. Additionally, for an accurate approximation to the Langevin SDE,
ULA will need increasingly small stepsizes as the curvature of the log-likelihood gradient increases
which can lead to arbitrarily slow mixing (Durmus & Moulines, 2019). In these settings a Metropolis
correction can greatly improve sample quality and convergence. Again this issue can be solved by
defining ϵθ(x, t) = ∇xfθ(x, t) for some explicitly defined scalar potential function fθ(x, t).

Energy-based parameterizations have been explored in the past (Salimans & Ho, 2021) and were
found to perform comparably to score-based models for unconditional generative modeling. In that
setting the score parameterization is then preferable as computing the gradient of the energy requires
more computation. In the compositional setting, however, the additional flexibility enabled by explicit
(unnormalized) log-probability estimation motivates a re-exploration of the energy-parameterization.
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Figure 3: (a) Composition enables the positions of multiple shapes to be simultaneously controlled, while
training only conditions on the location of one object per image. Reverse diffusion samples place shapes
in incorrect locations. MCMC generates samples that satisfy all constraints. (b) Metropolis adjustment
significantly improves generation performance across sampling steps. As more MCMC steps are run (at
each timestep), generation accuracy of combinations of 5 cubes improves significantly.

We explored a number of energy-based parameterizations for diffusion models and ran a pi-
lot study on ImageNet. In this study we found it best to parameterize the log probability as
fθ(x, t) = −||sθ(x, t)||2, where sθ(x, t) is a vector-output neural network, like those used in
ϵθ(x, t)-parameterized diffusion models. Full details on our study can be found in Appendix E. From
here on, all energy-based diffusion models take the above form.

Our energy-parameterized models enable us to use MALA and HMC samplers which produce our
best compositional generation results by a large margin. An additional benefit of these samplers
is that, through monitoring their acceptance rates, we are able to derive an effective automated
method for tuning their hyper-parameters (a notoriously difficult task prior) which is not available for
unadjusted samplers. Details of our samplers and tuning procedures can be found in Appendix C.1.

5 EXPERIMENTS

We experiment with various model parameterizations and sampling schemes for compositional
generation with diffusion models. We first investigate these ideas on some illustrative 2D datasets,
then move to the image domain with an artificial dataset of shapes. Here, we compose a model
conditioned on the location of a single shape with itself to condition on the location of all of the
shapes in the image. After this we experiment with classifier guidance on the ImageNet dataset.
Finally, we self-compose text-to-image models to generate from compositions of various text prompts.
Full details of all experiments can be found in Appendix G. Throughout we compare our proposed
improvements with a score-parameterized model using standard reverse diffusion sampling. We note
that this baseline is exactly the approach of Liu et al. (2022).

5.1 2D DENSITIES

We train diffusion models using both parameterizations and study the impact of various sampling
approaches for compositional generation. Samples are evaluated using RAISE (Burda et al., 2015)
(which gives lower bounds on log-likelihood) and MMD2, LL (log-likelihood of generated samples
under composed distribution), and Var (L2 difference of variance of GMMs fit on generated samples
compared to GMMs of the composed distribution). Results can be found in Table 1 and visualizations
can be seen in Figure 2. All MCMC sampling methods improve sample quality and likelihood, with
Metropolis adjusted methods performing the best. All MCMC experiments use the same number
of score function evaluations. We include a baseline, labeled “Reverse (equal steps)” which is a
diffusion model trained with more steps such that reverse diffusion sampling has the same cost as our
MCMC samplers. We see that simply adding more time-steps does not solve compositional sampling.

5.2 COMPOSING CUBES

Next, we train models on a dataset of images containing between 1 and 5 examples of various shapes
taken from CLEVR (Johnson et al., 2017). We train our models to fit p(x|y) where y is the location
of one of the shapes in the image. We then compose this conditional model with itself to create a
product model which defines the distribution of images conditioned on c shapes as

2For the mixture we use MMD to replace RAISE likelihood based evaluation as we encountered numerical
stability issues with RAISE when applying to the mixture.
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Figure 4: Classifier-guided generation on ImageNet. HMC leads to higher fidelity and more class-identified
images than reverse diffusion sampling.

Model Sampler Combinations
1 2 3 4 5

Score
Reverse 70.8 68.2 66.3 64.1 57.4
ULA 75.0 73.4 71.8 67.9 60.2
U-HMC 79.1 76.0 73.6 71.1 62.3

EBM

Reverse 71.0 67.1 62.5 58.1 51.0
ULA 81.3 71.8 66.6 59.6 54.8
MALA 85.4 74.4 71.1 65.6 63.9
U-HMC 84.5 81.3 79.2 74.2 68.1
HMC 91.6 82.9 80.1 76.5 72.7

Table 2: MCMC Sampling enables more com-
positional cube generation on CLEVR.

Model Sampler Inception Score ↑ FID ↓ Accuracy ↑

Score
Reverse 29.10 30.46 18.64
LA 29.35 30.49 65.81
U-HMC 32.19 26.89 89.93

EBM

Reverse 28.05 33.58 18.60
LA 28.12 33.45 66.28
MALA 30.43 32.22 83.65
U-HMC 31.39 32.08 90.83
HMC 33.46 30.52 94.61

Table 3: MCMC Sampling enables better classifier
guidance on 128x128 ImageNet dataset.

log pθ(x|y1, . . . , yc) = log pθ(x) +

c∑
i=1

(log pθ(x|yi)− log pθ(x)) . (13)

We then sample using various methods, where for each number of combination of cubes, the same
number of score function evaluations are used, and evaluate each by the fraction of samples which have
all objects placed in the correct location (as determined by a learned classifier). Results can be found
in Table 2, where we see MCMC sampling leads to improvements and the Metropolis adjustment
enabled by the energy-based parameterization leads to further improvements. We qualitatively
illustrate results in Figure 3, and see more accurate generations with more steps of sampling, with
more substantial increases with Metropolis adjustment.

5.3 CLASSIFIER CONDITIONING

Next, we train unconditional diffusion models and a noise-conditioned classifier on ImageNet. We
compose these models as

∇x log pθ(x|y, t) = ∇x log pθ(x|t) +∇x log pθ(y|x, t). (14)

and sample using the corresponding score functions. We compare various samplers and model
parameterizations on classifier accuracy, FID (Heusel et al., 2017) and Inception Score. Quantitative
results can be seen in Table 3 and qualitative results seen in Figure 4. We find that MCMC improves
performance over reverse sampling, with further improvements from Metropolis corrections.

5.4 TEXT-2-IMAGE

Perhaps the most well-known results achieved with diffusion models are in text-to-image
generation (Ramesh et al., 2022; Saharia et al., 2022). Here we model pθ(ximage|ytext).
While generated images generated are photo-realistic, they can fail to generate images
from prompts which specify multiple concepts at a time (Liu et al., 2022) such as
ytext = “A horse on a sandy beach or a grass plain on a not sunny day′′. To deal with these issues
we can dissect the prompt into smaller components y1, . . . , yc, parameterize models conditioned on
each component pθ(x|yi) and compose these models using our introduced operators. We can parse
the above example into

“A horse” AND (“A sandy beach” OR “Grass plains”) AND (NOT “Sunny”)

which can be used to define the following (unnormalized) distribution

pcomp
θ (x|ytext) ∝∼

pθ(x|“A horse”)
[
1
2pθ(x|“A sandy beach”) + 1

2pθ(x|“Grass plains”)
]

pθ(x|“Sunny”)α

Liu et al. (2022) demonstrated that composing models this way can improve the efficacy of these
kinds of generations, but was restricted to composition using classifier-free guidance. We train a
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“A horse”

“A horse”
AND

“Grass plains”

“A horse”
AND

“A sandy beach”

“A horse” AND
(“A sandy beach” OR 

“Grass plains”)

“A horse” AND
(“A sandy beach” OR 

“Grass plains”)
AND (NOT (“Sunny ”))

Figure 5: Energy based parameterization enables high-resolution compositional text-to-image synthesis.

energy-parameterized diffusion model for text conditional 64x64 image generation and illustrate
composed results in Figure 5 (upsampled to 1024x1024). We find that composition enables more
faithful generations of scenes in Figure 6 with more results in Appendix A.

“A lake with 
purple trees.”

“A lake with purple 
trees.” AND

“Purple trees.”

Figure 6: Composing text descriptions enables more accurate scene generation.

6 DISCUSSION

Limitations. Our work demonstrates that diffusion models, in combination with MCMC-based
sampling procedures, can be composed in novel ways capable of generating high-quality samples.
However, our proposed solutions have a number of drawbacks. First, more sophisticated MCMC
samplers come at a higher cost than the standard sampling approach and can take 5-times longer to
generate samples than typical diffusion sampling. Second, we have shown that energy-parameterized
models enable the use of more sophisticated sampling techniques, garnering further improvements.
Unfortunately, this requires a second backward-pass through the model to compute the derivative
implicitly, leading them to have double the memory and compute cost of score-parameterized models.

While these are considerable drawbacks, we note the focus of this work is to demonstrate that such
things are possible within the framework of diffusion models. We believe there is much that can be
done to achieve the benefits of our sampling procedures at less cost such as distillation (Salimans &
Ho, 2022) and easier-to-differentiate neural networks (Chen & Duvenaud, 2019).

Finally we note that not all models can be effectively composed together. For example if we wanted
to model the product of N (−10, 1)N (10, 1), the resulting distribution’s support is far outside the
support of the constituent models. To accurately model this, our constituent models would need to be
near-perfect far outside the training distribution. Thus it is unlikely for good results to be obtained.
The same care should be taken in the text-2-image setting with, for example, contradicting prompts.

Conclusion. In this work we have explored the ways that pretrained diffusion models can be
composed to model new distributions. We demonstrate ways that naı̈ve implementations fail, and
present two ways that performance can be improved: MCMC sampling and energy-parameterized
diffusion models. We find our proposed methods lead to notable improvement across a variety of
domains, scales, and different compositional operators.
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Appendix
In this appendix, we present additional text-to-image results in Section A. We present detailed
derivations of diffusion models in Section B. We present additional information on MCMC sampling
in Section C.1. We provide additional derivations on composing diffusion models in Section D.
We discuss different parameterizations of energy based diffusion models in Section E. We further
provide additional example 2D compositions in Section F. Finally, we provide experimental details in
Section G.

A TEXT-TO-IMAGE RESULTS

We present additional use cases of composing models in different text-to-image domains. First, in
Figure A1, we illustrate how composing two separate energy parameterized diffusion models enables
us to more accurately generate images that have more detailed information in the caption. Next, in
Figure A2, we illustrate how composing two separate energy parameterized diffusion models further
enable us to accurately generate images with the correct colors assigned to each object. We further
show in Figure A3 how composing the negation of one energy parameterized diffusion model with
another other enables us to generate images where one commonly occurring co-founding factor does
occur (i.e. a sandy beach without coastal water). Finally, we illustrate in Figure A4, how composing
multiple diffusion models enables us to render the number of objects in a scene accurately.

Central Park 1900s. 
Its snowy in New 

York.

Central Park 1900s. 
AND Its snowy in 

New York.

Taj Mahal 1900s.
Snow falling 

down.

Taj Mahal 1900s.
AND Snow
falling down

Figure A1: By composing energy based diffusion models, we can render more detailed information in images.
In the above images, we can more accurately render details such as Central Park (top) or the effect of snowing
(bottom).
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A red car in front 
of a pink forest

A red car in front 
of pink forest 

AND pink forest

A lake with 
purple trees

A lake with 
purple trees AND 

purple trees

Figure A2: By composing energy based diffusion models, we can more accurately render different colors of
objects in a scene.

B DETAILED DERIVATION OF DIFFUSION MODELS

Diffusion models seek to model a data distribution q(x0) (written this way for notational convenience)
and define a series of latent variables x1, . . . , xT generated from a Markov process xt ∼ q(xt|xt−1)
where

q(xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
. (A1)

A unique and useful property of this process is that all time marginals q(xt|x0) can be computed in
closed form and are Gaussian

q(xt|x0) = N
(
xt;

√
1− σ2

t x0, σ
2
t I

)
. (A2)

where σ2
t = 1 − ᾱt and ᾱt =

∏T
t=1(1 − βt). We can see that if all βt > 0, then as t → ∞

q(xt|x0) → N (xt; 0, I).

We seek to train a model pθ(xt−1|xt) which reverses q(xt|xt−1) step-wise with a parametric model.
We can analytically derive the variance of the reversal as β̃t =

1−ᾱt−1

1−ᾱt
and define

pθ(xt|xt+1) = N (xt;µθ(xt−1, t), β̃tI) (A3)
and set p(xT ) = N (0, I). We train this model to maximize a variational bound on the marginal
likelihood

log pθ(x0) ≥ Eq(x1,...,xT |x0)[log pθ(x0|x1) +

T∑
t=1

DKL(q(xt|xt−1, x0)||p(xt||xt−1)) (A4)

+DKL(q(xT |x0)||p(xT ))]. (A5)
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Sandy Beach

Sandy Banch AND 
(NOT (Coastal 

Water))

Forest

Forest AND 
(NOT (Green 

Foliage))

Figure A3: By composing an energy parameterized diffusion model with the negation of another energy
parameterized diffusion model, we can render images in unusual configurations not typically found in the data.

The first term lacks parameters and the final is approximately 0 from the convergence of the q-process
so we focus on the middle terms.

Typically, the model µθ(xt−t, t) is not parameterized to predict the mean of xt. Instead it is parameter-
ized to predict the noise added to xt to arrive at xt−1. This motivates the following parameterization

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
. (A6)

In this form we can rewrite the important terms in the objective as

DKL(q(xt|xt−1, x0)||p(xt||xt−1)) = −CtEq(x0)N (ϵ;0,I)

[
||ϵ− ϵθ(xt, t)||2

]
= CtL(x, σ) (A7)

where Ct is a time-dependent constant. Typically these are dropped and all objectives are weighted
equally.

Once we finish training, we can draw samples from our model by first sampling xT ∼ p(xT ) and

then equentially sampling xt = µθ(xt−1, t) +

√
β̃tϵ where ϵ ∼ N (0, I).

C MCMC SAMPLING DETAILS

C.1 HAMILTONIAN MONTE-CARLO AND ITS VARIANTS

Hamiltonian Monte-Carlo (Neal, 1996) seeks to sample from an unnormalized probability distribution
log p(x) = f(x) + logZ. To do this, we augment our distribution over x with auxillury variables v
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Two Oranges

Two of the same 
fruit

Two Oranges 
AND Two of the 

same fruit

Figure A4: By composing multiple energy parameterized diffusion models, we can more accurately render the
underlying number of objects in ascene.

and define the joint distribution p(x, v) = p(x)N (v; 0,M) where the covariance M is known as the
“mass-matrix.” We now seek to draw samples x, v ∼ p(x, v) and since x and v are independent under
the joint, we can simply throw away our v samples leaving us with a sample x ∼ p(x).

Like other MCMC methods we sequentially update a particle (xi, vi) in such a way that as i → ∞
we arrive at a sample from p(x, v). For a step of HMC, starting at (xi, vi) we first sample
vi′ ∼ N (vi; 0,M) since the target distribution factorizes and p(v) is known and tractable. We
then integrate a likelihood-conserving ODE defined on x, v known as “Hamiltoninan Dynamics.” We
can use the likelihood-preserving leapfrog integrator which will guarentee that the transition distri-
bution is symmetric, i.e k(x′, v′|x, v) = k(x, v|x′, v′). Thus, the Metropolis acceptance probability
simplifies to min

(
1, p(x′,v′)

p(x,v)

)
. An overview of the HMC algorithm can be found in Algorithm 2. We

refer the reader to Neal (1996) for a more complete description of the algorithm.

Algorithm 2 Hamiltonian Monte-Carlo

Input: Initial state x0, Mass matrix M , Number of steps N , Number leapfrog steps L, step-size ϵ
for i = 1, . . . , N do

Sample vi ∼ N (0,M) # Sample momentum
x′, vi′ = Leapfrog(xi−1, vi; ϵ, L) # Integrate dynamics with stepsize ϵ for L steps
a = min

(
1, p(x′,vi′)

p(xi−1,vi)

)
# Compute acceptance probability

With probability a
set xi = x′

else
set xi = xi−1

end for
return xN

Since our ϵθ(x, t) parameterized models do not admit an explicit likelihood function, we use an
unadjusted variant of HMC (U-HMC) where the accept/reject step is simply ignored.
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We can see in Algorithm 2 that at every step, the momentum is re-sampled. This can be sub-optimal,
as the momentum determines the initial direction of x’s movement and if a good direction is found, it
may be beneficial to continue in that direction. To deal with this, Neal (1996) proposes a variant of
HMC where the momentum v is partially retained between sampling steps. We add an additional
sampler parameter γ ∈ [0, 1] (known as the “damping-factor”) which controls the amount to which v
is retained. When γ is close to 1, v is mostly kept and when it is near 0, v is mostly refreshed. This
variant is summarized in Algorithm 3. The potentially confusing momentum negations ensure the
validity of the sampler. Intuitively, when the proposal is accepted, the momentum is retained and
when it is rejected the momentum is flipped. For this reason, one should maintain a reasonably high
acceptance rate when using this approch.

Algorithm 3 Hamiltonian Monte-Carlo with Partial Momentum Refreshment

Input: Initial state x0, Mass matrix M , Number of steps N , Number leapfrog steps L, step-size ϵ,
damping-factor γ

Sample v0 ∼ N (0,M) # Sample initial momentum
for i = 1, . . . , N do
λ ∼ N (0,M)

v(i−1)′ = γvi−1 +
√
1− γ2λ # Partially refresh momentum

x′, v′ = Leapfrog(xi−1, v(i−1)′; ϵ, L) # Integrate dynamics with stepsize ϵ for L steps
v′ = −v′ # Negate momentum
a = min

(
1, p(x′,v′)

p(xi−1,v(i−1)′)

)
# Compute acceptance probability

With probability a
set xi = x′, vi = v′

else
set xi = xi−1, vi = v(i−1)′

vi = −vi # Negate momentum
end for
return xN

C.2 MCMC TUNING

A crucial component to ensure successful MCMC sampling in diffusion models is the choice of
step sizes for samplers. We initialize step sizes for all samplers at each distribution t to be roughly
proportional to the βt noise values added to distribution t in the diffusion process.

To tune step sizes across timesteps for both HMC and MALA samplers, to set step sizes at each
timestep t to be constant multiplied by βt. We searched different constants to multiply βt, and
chose a value so that the average acceptance rate of MALA and HMC samplers across timesteps is
approximately 60% and 70% respectively. For un-adjusted variants of these samplers, we set step
sizes to be the same as adjusted samplers, and found limited gains when step sizes were specifically
tuned towards the un-adjusted samplers. We utilize a mass matrix of βt for HMC samplers.

Precise details on the exact MCMC steps sizes used in experiments can be detailed in Section G.

C.3 MCMC IMPLEMENTATION DETAILS

When initially running MCMC sampling on diffusion models in the image domain, we found that
our samplers tended to converge to images which had uniform textures. After experimentation, we
found that the primary cause of this issue was fact that by default, typical implementations of the
reverse diffusion process clip samples at intermediate time-steps of sampling to be between -1 and 1.
To enable proper MCMC sampling, we found that it was important to not clip intermediate values of
diffusion sampling.

When running MCMC sampling on image domains, we further found that it was helpful for mixing
to run a single step of the reverse process to initialize MCMC sampling, before running many steps
of MCMC sampling at each timestep t, and in all MCMC sampling settings on the image domain,
we run one step of the reverse process before running MCMC sampling. Such a MCMC sampling
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procedure is similar to the predictor-corrector sampling procedure introduced in (Song et al., 2021)
for alleviating discretization errors when sampling continuous time diffusion models.

D COMPOSITIONAL DIFFUSIONS

In Equations 11 and 12, we demonstrate that for diffused distributions {qit(xt)} where qit(xt) =∫
qi(x0)q(xt|x0)dx0, the diffusion of the product of qi’s is not the same as the product of the

diffusions, meaning plugging the product of diffusions into standard reverse diffusion sampling will
not draw samples from the product model. We present similar results for tempering and predictive
model composition.

D.1 SAMPLING FROM A TEMPERED VERSION OF q USING DIFFUSION?

It is tempting to believe that we can sample from a tempered/annealed version of the data distribution

qλ(x) ∝ q(x)λ

using the tempered diffused data distribution λ∇ logt q(xt) but this is incorrect. For this procedure
to be correct, we would need to have ∇ log qλt (xt) = λ∇ log qt(xt) for all t. However, while we do
have ∇ log qλ0 (x0) = λ∇ log q0(x0), this equality does not hold for t > 0

∇ log qλt (xt) = ∇ log

∫
qλ(x0)q(xt|x0)dx0

̸= λ∇ log

∫
q(x0)q(xt|x0)dx0

= λ∇ log qt(xt).

D.2 GUIDANCE

For conditional generation, we should use in the reverse diffusion the score of the diffused conditional
distribution ∇ log qt(xt|y) where

qt(xt|y) =
∫

q(x0|y)q(xt|x0)dx0.

We also have
∇ log qt(xt|y) = ∇ log qt(xt) +∇ log qt(y|xt)

so that
∇ log qt(y|xt) := ∇ log qt(xt|y)−∇ log qt(xt)

allows you to do guidance without having to train say a classifier if y is categorical.

In practice, it was found that using in the reverse time diffusion the score

∇ log qt(xt) + λ∇ log qt(y|xt)

generates much nicer images for λ > 1. However, it is also often claimed that it samples from a
modified posterior where the likelihood has been annealed. This is incorrect. For a modified posterior
with annealed likelihood, we would have

qλ(x0|y) ∝ q(x0|y) {q(y|x0)}λ

and it is not true again that

∇ log qλt (xt|y) = ∇ log

∫
qλ(x0|y)q(xt|x0)dx0

̸= ∇ log qt(xt) + λ∇ log qt(y|xt).
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D.3 SAMPLING FROM COMPOSED DISTRIBUTIONS

We can see that products, tempering, and guidance applied to diffused distributions do not give
diffusions of the modified target distributions. Thus, we should not expect to arrive at our desired
result by applying a sampling procedure which reverses a diffusion applied to the target distribution.
Thankfully, as stated in Section 4, these operators do give us a sequence of distributions which anneals
from N (0, I) to the composed target which means we can utilize the family of annealed MCMC
sampling methods mentioned in Section 4.1 to draw samples from our composed models in all of
these settings, directly using the available score estimate.

E ENERGY-BASED PARAMETERIZATIONS

As mentioned in section 4.2, when using the ϵθ(x, t) parameterization, we can recover an estimate of
the time-conditional score function with ∇x log pt(x) ≈ − ϵθ(x,t)

σt
. This estimate of the log-likelihood

gradient can be used for MCMC sampling methods which only require the log-likelihood gradient –
such as ULA or U-HMC. These methods can work well, but will never generate exact samples when
using non-zero step-sizes. Exact samplers can be derived from approximate samplers like the above
methods using Metropolis corrections. Unfortunately, even if the samplers’ transition distribution
ki(·, ·) does not require log pθ(xt) evaluation, the Metropolis correction probability:

min

(
1,

efθ(x̂)

efθ(xt−1)

k(xt−1|x̂)
k(x̂|xt−1)

)
does. Futhermore, when we only have an estimate of the score at our disposal, we are only able to
compose models using products.

To enable the use of Metropolis corrections and more compositional operators, we propose to change
the parameterization of our diffusion model. Instead of using a neural net ϵθ(x, t) : {Rd × N} → Rd,
we define a scalar-output neural network fθ(x, t) : {Rd × N} → R. We then compute the gradient of
this function and define ϵθ(x, t) = ∇xfθ(x, t). From here, we use this implicitly-defined ϵθ(x) as in
standard diffusion model training. As before, we can recover ∇x log pt(x) ≈ − ϵθ(x,t)

σt
, but now we

are also able to recover log pt(x) ≈ − fθ(x,t)
σt

+ logZ which enables the application of Metropolis
corrected sampling.

Much prior work on EBMs parameterizes fθ(x, t) using a feed-forward neural network, whose
final layer has a single output (Nijkamp et al., 2020; Du & Mordatch, 2019). Salimans & Ho
(2021) compare this approach with the standard ϵθ(x, t) parameterization and find the ϵθ(x, t)
parameterization to perform better for unconditional image generation. We believe this has to do
with the relative sparsity of the gradients of feed-forward neural networks. This can cause difficulties
when training to optimize a function of their implicitly computed gradients.

Intriguingly, Salimans & Ho (2021) also explore a more structured energy function definition inspired
by denoising autoencoders:

fDAE
θ (x, t) = −1

2
||x− sθ(x, t)||2

where sθ(x, t) : {Rd × N} → Rd is a neural network (identical to the standard ϵθ(x, t)) model. We
can simply evaluate the gradients of this function to obtain

∇xf
DAE
θ (x, t) = (x− sθ(x, t))− (x− sθ(x, t))∇xsθ(x, t).

In their study, this parameterization was found to perform near identically to the ϵθ(x, t) param-
eterization while admitting an explicit energy function. We believe this energy parameterization
performs better because its gradients include the feed-forward network sθ(x, t), making optimization
easier. Salimans & Ho (2021) conclude that the ϵθ(x, t) parameterization should be favored since
the computing ∇xf

DAE
θ (x, t) requires computing ∇sθ(x, t) which requires an extra backward pass

through the neural network, increasing compute.

We reexamine this energy parameterization and two other choices now that our application motivates
having access to an explicit energy function. The other parameterizations are based different transfor-
mations of the sθ(x, t) architecture; the negative L2 norm (L2) and an inner product (IP). They are
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defined as:

fL2
θ (x, t) = −1

2
||sθ(x, t)||2

∇xf
L2(x, t) = −sθ(x, t)∇xsθ(x, t)

and:

f IP
θ (x, t) = xT sθ(x, t)

∇xf
IP (x, t) = sθ(x, t) + xT∇xsθ(x, t).

We train models with each parameterization on ImageNet and compare using FID for unconditional
sampling. Results can be seen in Table A1. We see that L2 and Inner-Product perform the best, but
are both outperformed by the standard parameterization. We initially experimented with these two
parameterizations but found that the L2-norm parameterization to be more stable for compositional
sampling due, we believe, to the fact that the energy-function is bounded above meaning that MCMC
sampling is incapable of running off to infinity to increase likelihood.

Parameterization
(1) DAE (2) L2 Norm (3) Inner-Product ϵθ(x, t)

97.4 91.5 90.9 86.7

Table A1: FID (1k samples) of various energy-parameterizations on unconditional ImageNet generation.

F SYNTHETIC DISTRIBUTION COMPOSITIONS

Mixture We provide additional 2D illustrations of mixtures of two diffusion models in Figure A5.
We find that HMC sampling enables more accurate mixtures of different synthetic distributions.

𝑝!(𝑥) 𝑝"(𝑥)

=

Reverse Diffusion HMC

=

+

+

Figure A5: Examples of mixture applied to diffusion models. Left to right: Component distributions, reverse
diffusion, HMC sampling. Reverse diffusion fails to sample accurately from mixed distributions distributions.

Negation We provide additional 2D illustrations of negating two diffusion model with respect to
each other in Figure A7. We find that HMC sampling enables accurate negations of different sythetic
distributions.

𝑝!(𝑥) 𝑝"(𝑥)

- =

Reverse Diffusion HMC

- =

Figure A6: Examples of negation applied to diffusion models. Left to right: Component distributions, reverse
diffusion, HMC sampling. Reverse diffusion fails to sample accurately from negated distributions.

Failure Cases Next we illustrate a failure case of composition using our approach in Figure A7.
Our approach fails to generate the product of two distribution when they are disjoint with respect to
each other.
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×

𝑝!(𝑥) 𝑝"(𝑥)

=

Reverse Diffusion HMC

=+

Figure A7: Failure Cases of Our Approach. Left to right: Component distributions, reverse diffusion, HMC
sampling. Our approach fails to generate products of distributions with no overlap.

G EXPERIMENTAL DETAILS

We provide detailed experimental details including underlying quantitative metrics, training details,
and architectures on 2D synthetic, CLEVR, ImageNet, and test-to-image settings below. To enable
stable training of energy-based diffusion models in image settings, we clip gradient norms to be less
than 10, and initialize convolutional layers using zero-initialization (Zhang et al., 2019).

Synthetic Datasets For synthetic datasets, we train both score and energy based diffusion models
using a small residual MLP model with 4 residual blocks, with a internal hidden dimension of 128
dimensions. We train models for 15000 iterations (10 minutes on a 8 TPUv2 cores) using the Adam
optimizer with learning rate of 1e-3, and train diffusion models on 100 discrete timesteps with linear
schedule of β values.

When evaluating product of diffusion models, we generate two separate distributions, where train
two separate diffusion models. In our first distribution, we construct a GMM of 8 Gaussians in a ring
of radius 0.5 around the origin, with each Gaussian having a standard deviation of 0.3. In our second
dataset, we construct a uniform distribution of points with x between -0.1 and 0.1 and y between -1
and 1. When evaluating mixture diffusion models, we generate one distribution consisting of a mixture
of 3 Gaussian with standard deviation 0.03 and centers at (−0.25, 0.5), (−0.25, 0.0), (−0.25,−0.5),
and another distribution consisting of a mixture of 3 Gaussian with standard deviation 0.03 and
centers at (0.25, 0.5), (0.25, 0.0), (0.25,−0.5).

To construct MCMC samplers from models on synthetic datasets, we run 3 steps of HMC per timestep,
with 3 leapfrog steps per step of HMC. We run 10 steps of MALA sampling per timestep. We found
that MCMC performed robustly in the 2D dimensional setting and set the step size of MALA to be
0.002 across all distributions and the step size of HMC to be 0.03 across all distributions (with a mass
matrix of 1)

CLEVR For CLEVR, we generated a dataset of 200,000 64 × 64 images with between 1 to 5
different cubes using dataset generation code in (Liu et al., 2021). To evaluate the accuracy in which
generated images had cubes at each specified position, we trained a binary classifier on these images,
and marked a cube as correctly generated if the confidence of the binary confidence of classifier is
greater than 0.5.

To parameterize our diffusion architecture, we follow the architecture of (Ho et al., 2020), where we
use a base hidden dimension of 128, and multiply the hidden dimensions by [1, 2, 3, 4] at different
resolutions of the image. We utilize 3 residual blocks at each resolution of the image. We trained
diffusion models with 100 discrete timesteps with a linear β schedule. CLEVR models were
trained for 20000 iterations with a batch size of 1024 using the Adam optimizer with step size 1e-4,
corresponding to roughly 8 hours on 8 TPUv2 cores.

To initialize MCMC sampling on the CLEVR domain, at each timestep, before applying MCMC
sampling, we run one step of the reverse process in the trained diffusion model. We run 40 steps of
MCMC sampling per timestep for MALA samplers, and 13 steps of HMC sampling (with 3 leapfrog
step per HMC step) (with the mass matrix of HMC samplers set to β). We use HMC with partial
momentum refreshment, and use a dampening coefficient of 0.9 across HMC iterations. MALA step
sizes are set to 0.035 ∗ βt , and HMC step sizes are set to 0.1 ∗ βt

ImageNet For ImageNet, we train an unconditional diffusion model 128× 128 images. We train
diffusion models for 1 million iterations of ImageNet with a batch size of 64 (3 days on 16 TPUv2
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cores), using Adam optimizer with learning rate 1e-4, for 1 million iterations. We train diffusion
models with 1000 discrete timesteps using the

On the ImageNet dataset, we report three seperate metrics. To report classifier accuracy, we feed
generated sample into a ImageNet classifier trained on clean images, and label a image as correctly
generated if the classifier of a generated image having the specified class is greater than 50%. We
further report the Inception Score and FID, which are calculated on 50000 generated samples.

We follow the architecture of (Ho et al., 2020), where we use a base hidden dimension of 128 and
multiply the hidden dimensions by [1, 1, 2, 3, 4] at the different resolution of the image. We utilize 2
residual blocks at each resolution of the image.

To initialize MCMC sampling on the ImageNet domain, at each timestep, before applying MCMC
sampling, we run one step of the reverse process in the trained diffusion model. We run 6 steps of
MCMC sampling per timestep for MALA samplers, and 2 steps of HMC sampling (with 3 leapfrog
steps per HMC step and with the mass matrix of HMC samplers set to β). MALA step sizes are set to
0.5 ∗ βt , and HMC step sizes are set to 0.6 ∗ β1.5

t

Text-to-Image For text-to-image models, we train models for one week on an internal text/image
dataset consisting of 400 million images using 32 TPUv3 cores, with a training data batch size of
256. We train our energy-based text-to-image model using a total of 1000 timesteps with a cosine
beta schedule. We follow the architecture of (Ho et al., 2020), where we use a base hidden dimension
of 256, and multiply the hidden dimensions by [1, 2, 3, 4] at different resolution of the image. We
utilize 3 residual blocks at each resolution of the image.

To upsample images from 64 × 64 resolution to 1024 × 1024 resolution, we utilize two trained
unconditional diffusion models, one trained to upsample from 64 × 64 resolution to 256 × 256
resolution and one trained to upsample from 256× 256 resolution to 1024× 1024 resolution.

To initialize MCMC sampling on the text-to-image domain, at each timestep, before applying MCMC
sampling, we run one step of the reverse process in the trained diffusion model. We ran 2 steps of
HMC sampling per timestep, with 3 leapfrog step per HMC step and a mass matrix of HMC samplers
set to β). We use HMC with partial momentum refreshment, and use a dampening coefficient of 0.9
across HMC iterations. HMC step sizes are set to 0.1 ∗ βt

21


	Introduction
	Background
	Diffusion Models
	Energy-Based Models and MCMC Sampling
	Relationship Between Diffusion Models and EBMs
	Controllable Generation

	Compositional Generation Beyond Guidance
	Scaling Compositional generation with Diffusion Models
	Improving Sampling with MCMC
	Energy-Based Parameterization

	Experiments
	2D densities
	Composing Cubes
	Classifier conditioning
	Text-2-Image

	Discussion
	Text-to-Image Results
	Detailed Derivation of Diffusion Models
	MCMC Sampling Details
	Hamiltonian Monte-Carlo and its Variants
	MCMC Tuning
	MCMC Implementation Details

	Compositional Diffusions
	Sampling from a tempered version of q using diffusion?
	Guidance
	Sampling from Composed Distributions

	Energy-Based Parameterizations
	Synthetic Distribution Compositions
	Experimental Details

