

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EDCO: DYNAMIC CURRICULUM ORCHESTRATION FOR DOMAIN-SPECIFIC LARGE LANGUAGE MODEL FINE-TUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Domain-specific large language models (LLMs), typically developed by fine-tuning a pre-trained general-purpose LLM on specialized datasets, represent a significant advancement in applied AI. A common strategy in LLM fine-tuning is curriculum learning, which pre-orders training samples based on metrics like difficulty to improve learning efficiency compared to a random sampling strategy. However, most existing methods for LLM fine-tuning rely on a static curriculum, designed prior to training, which lacks adaptability to the model's evolving needs during fine-tuning. To address this, we propose EDCO, a novel framework based on two key concepts: *inference entropy* and *dynamic curriculum orchestration*. Inspired by recent findings that maintaining high answer entropy benefits long-term reasoning gains, EDCO prioritizes samples with high inference entropy in a continuously adapted curriculum. EDCO integrates three core components: an efficient entropy estimator that uses prefix tokens to approximate full-sequence entropy, an entropy-based curriculum generator that selects data points with the highest inference entropy, and an LLM trainer that optimizes the model on the selected curriculum. **Comprehensive experiments in wireless/data communication, medicine and legal domains, EDCO outperforms common curriculum strategies for fine-tuning Qwen3-1.7B/4B and Llama3.2-3B models under supervised and reinforcement learning settings.** Furthermore, our efficient entropy estimation reduces computational time by 83.5% while maintaining high accuracy.

1 INTRODUCTION

Enabling large language models (LLMs) to perform effectively across diverse domains represents a hallmark of machine intelligence (OpenAI, 2023; Google, 2023). Research has recently shifted toward developing domain-specific LLMs, yielding notable applications in fields such as medicine, law, and communication (Wang et al., 2025; Shu et al., 2024; Zhang et al., 2025b). A common approach to constructing such models is fine-tuning a general-purpose pre-trained LLM on specialized datasets. While conventional fine-tuning typically employs random data sampling, emerging evidence indicates that the fine-tuning efficacy is constrained by the training curriculum (Chen et al., 2025), i.e., the order in which training samples are presented. *This is particularly critical for fine-tuning domain LLMs because high-quality domain data is typically scarce and costly.*

However, most existing curriculum learning (CL) strategies for LLMs rely on static data ordering, determined based on heuristic metrics such as difficulty or perplexity (Kim & Lee, 2024). Such fixed curricula remain unchanged throughout training, failing to adapt to the model's evolving ability and knowledge acquisition dynamics, limiting potential gains in both efficiency and final performance. A notable exception is SEC (Chen et al., 2025), which introduces a learnable curriculum policy for curriculum selection. Nevertheless, it suffers from instability because of training the curriculum policy as a bandit problem.

To address these limitations, we propose Entropy-based Dynamic Curriculum Orchestration (EDCO) method, which continuously adapts the training curriculum to the model's evolving learning status. EDCO is grounded in two key ideas: *inference entropy* as a measure of sample impact, and *dynamic curriculum orchestration*. Inspired by recent findings that maintaining high inference

054 entropy during training provides beneficial learning signals (Cui et al., 2025), EDCO prioritizes
 055 samples that maximize inference entropy throughout the training process. This ensures that the
 056 model is consistently exposed to data points that challenge its current capabilities and reduce un-
 057 certainty most effectively. The EDCO framework integrates three core technical components: (1)
 058 *an efficient entropy estimation module*. Due to the computational costs for sweeping over the whole
 059 dataset, EDCO uses only prefix tokens to approximate the full-sequence entropy, clearly reducing
 060 computational overhead; (2) *a dynamic curriculum generator* that constructs training batches by se-
 061 lecting instances with the highest estimated inference entropy at each training stage; and (3) an *LLM*
 062 *fine-tuning* model for optimizing the LLM. We evaluate EDCO extensively under communication,
 063 medical and legal domains. The experimental results demonstrate that EDCO is compatible with
 064 supervised fine-tuning and reinforcement learning-based training methods, consistently improving
 065 the performance of various types of models in domain-specific fine-tuning.

066 The contributions of this work are summarized as follows. We leverage the critical insight that
 067 *entropy collapse* hinders model learning to propose EDCO, a dynamic curriculum framework. By
 068 actively orchestrating training samples to maintain high inference entropy, EDCO prevents prema-
 069 ture convergence and sustains effective exploration throughout the fine-tuning process. Besides,
 070 we propose prioritizing high inference entropy samples in a *reverse curriculum pattern*, departing
 071 from traditional “easy-to-hard” curricula (Kim & Lee, 2024), and introduce a novel efficient entropy
 072 estimation technique that reduces computational overhead while preserving accuracy. Moreover,
 073 we demonstrate extensive validation and broad applicability through experiments across diverse
 074 communication tasks, showing consistent performance gains under supervised and reinforcement
 075 learning-based fine-tuning paradigms.

076 2 BACKGROUND

077 2.1 PROBLEM FORMULATION AND LLM FINE-TUNING

078 Consider we have a domain-specific dataset $\mathcal{D} = \{(x, y_i)\}_{i=1}^M$ and a pre-trained LLM \mathcal{M}_θ par-
 079 ameterized by θ . Here, x is the input prompt (typically a question), and y is the target answer. For
 080 simplicity, we use $y \sim \mathcal{M}(\cdot|x)$ to denote sampling an answer y from \mathcal{M} given the question x . The
 081 primary objective is to optimize the LLM to achieve high answer accuracy on an unseen dataset,
 082 represented as \mathcal{D}' . LLMs are typically pre-trained on large-scale corpora to acquire general lin-
 083 guistic capabilities. To adapt them to specific domains or tasks, a common approach is to perform
 084 continual pre-training followed by fine-tuning on domain-specific datasets. Two primary fine-tuning
 085 paradigms are supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT).
 086

087 In SFT, the model is further trained on a curated dataset of input-output pairs specific to the target
 088 domain. The objective is to minimize the cross-entropy loss between the model’s predictions and
 089 the ground-truth labels:

$$090 \mathcal{L}_{\text{SFT}} = -\mathbb{E}_{(x, y) \sim \mathcal{D}_{\text{SFT}}} \left[\sum_{t=1}^T \log \mathcal{M}_\theta(y_t | y_{<t}, x) \right], \quad (1)$$

091 where x is the input prompt, y is the target sequence, T denotes the sequence length, y_t denotes the
 092 i -th token, and \mathcal{M}_θ is the LLM policy parameterized by θ .

093 While SFT is effective for instruction following and style adaptation, it relies heavily on the quality
 094 and diversity of the labeled data. In contrast, RLFT leverages RL to optimize the model toward
 095 a reward signal, which can be more flexible and scalable, enabling the model to explore diverse
 096 solutions. The objective in RLFT is to maximize the expected cumulative reward:

$$097 J_{\text{RL}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \mathcal{M}_\theta(\cdot|x)} [r(y)], \quad (2)$$

098 where $r(y)$ is a reward function that evaluates the quality of the generated sequence y , which can be
 099 obtained in the form of self-evaluation (Pang et al., 2024), rule-based (Mu et al., 2024), or verifiable
 100 (Su et al., 2025) reward. Common RL algorithms for LLMs include Policy Gradient (Sutton &
 101 Barto, 1998), PPO (Schulman et al., 2017), and group-based variants like GRPO (Shao et al., 2024).

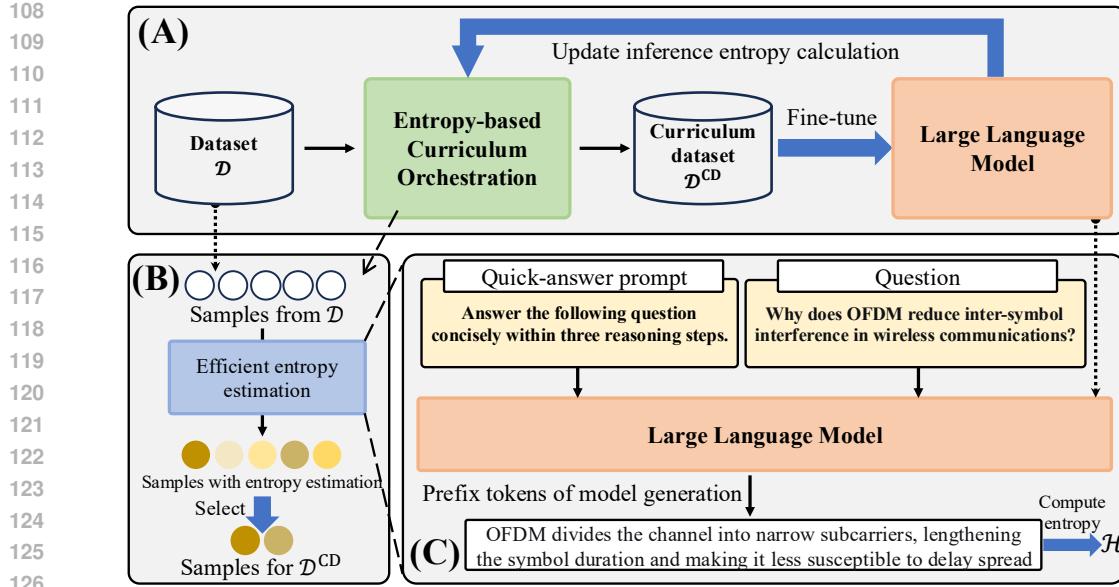


Figure 1: An overview of EDCO method, with three panels: (A) Overall training procedure; (B) Entropy-based curriculum orchestration module that periodically updates the training curriculum; (C) Efficient entropy estimation module that calculates the sample entropy.

2.2 THE ROLE OF ENTROPY IN MAINTAINING EXPLORATION

A critical challenge in RLFT is the rapid collapse of the model’s inference entropy, often occurring within the first few hundred training steps (Cui et al., 2025). This leads to overconfident models that fail to explore alternative reasoning paths. Empirical studies demonstrate a strong correlation between entropy collapse and performance saturation, modeled by the relationship:

$$R = -a \exp(\mathcal{H}) + b, \quad (3)$$

where R is the validation performance and \mathcal{H} is the LLM’s inference entropy. This suggests that performance improvements are effectively “traded” for a reduction in entropy, with the performance upper bound approached as entropy is used up ($\mathcal{H} \rightarrow 0$).

Therefore, actively maintaining inference entropy is crucial for sustained exploration and improved generalization. A direct yet promising strategy is prioritizing high-entropy samples during training, ensuring the model encounters challenging examples that hinder entropy collapse and promote ongoing learning.

3 METHOD

This section will present our primary contribution, EDCO, a novel training framework that dynamically adapts the curriculum to the model’s evolving learning state through periodic inference entropy estimation. Unlike static curricula that follow a predetermined order, EDCO continuously re-evaluates the training sample’s significance by calculating the inference entropy on samples with current model. As the overall framework of EDCO shown in Fig. 1, the core procedure operates through: (1) applying an LLM-driven quality filter to exclude low-quality samples; (2) computing inference entropy for the remaining high-quality training samples using our efficient estimation techniques; (3) selecting the top-N highest-entropy samples from this pool to form the training curriculum for the next phase; (4) fine-tuning the model on this selected subset; and (5) repeating the process (2-4) until convergence. This dynamic approach is compatible with both supervised fine-tuning (SFT) and reinforcement learning (RL) paradigms, addressing the critical need for sustained exploration, particularly in RL where entropy collapse can rapidly hinder progress.

162 3.1 LLM-DRIVEN QUALITY FILTER
163

164 Before entropy-based sample selection, we apply a crucial quality control step to ensure the in-
165 tegrity of the dynamic curriculum. In LLM fine-tuning, it is paramount to prevent noisy, ambiguous,
166 or incorrect samples from polluting the training process. Our LLM-driven filter evaluates each can-
167 didate sample (x, y) across four dimensions: problem clarity, answer accuracy, logical coherence
168 and textual format, and is assigned a score. The quality filtering process produces a refined dataset
169 \mathcal{D}_{hq} . This high-quality subset serves as the foundation for all subsequent entropy calculations and
170 curriculum generation, ensuring that the model learns from challenging yet correct and well-formed
171 examples.

172 3.2 DYNAMIC CURRICULUM ORCHESTRATION VIA INFERENCE ENTROPY
173

174 An important motivation for EDCO is that maintaining high inference entropy are more beneficial to
175 training (Cui et al., 2025), as they represent points of maximum uncertainty encourage the model to
176 explore the solution. This constitutes a reverse curriculum strategy that prioritizes more challenging
177 examples rather than following the conventional easy-to-hard progression. EDCO is dynamically
178 adaptive: as the model learns and its uncertainty distribution shifts, the curriculum is updated to
179 reflect new challenging frontiers.

180 Formally, at training interval k , we compute the inference entropy $H(y|x; \theta_k)$ for each sample (x, y)
181 in the training dataset \mathcal{D} , where θ_k denotes the model parameters at interval k . The entropy for a
182 given sample is defined as:

$$184 H(y|x; \theta_k) = -\mathbb{E}_{y \sim \mathcal{M}_{\theta_k}(\cdot|x)} [\log \mathcal{M}_{\theta_k}(y|x)]. \quad (4)$$

185 Samples are then ranked by their entropy values, and the top N with the highest entropy are selected
186 to form the curriculum dataset \mathcal{D}_k^{CD} for the next interval:
187

$$188 \mathcal{D}_k^{CD} = \{(x, y) \in \mathcal{D} \mid H(y|p_{\text{quick}}, x; \pi_{\theta_k}) \text{ ranks in top } N\}. \quad (5)$$

189 The model is subsequently fine-tuned on \mathcal{D}_k for a fixed number of steps or until the next curricu-
190 lum update. This periodic reassessment and selection mechanism ensures the training curriculum
191 remains aligned with the model’s continuously evolving capabilities, preventing plateaus and main-
192 taining high learning efficiency throughout the training process.
193

194 3.3 EFFICIENT ENTROPY ESTIMATION WITH PREFIX TOKENS
195

196 A significant challenge in implementing dynamic curriculum is the computational expense of cal-
197 culating full-sequence inference entropy across the entire dataset. To address this, we introduce two
198 innovative techniques that substantially reduce computational overhead while preserving estimation
199 accuracy.
200

201 3.3.1 QUICK-ANSWER PROMPTING
202

203 Traditional LLM inference often involves lengthy chain-of-thought reasoning, which is computa-
204 tionally expensive for entropy estimation. We propose *Quick-Answer Prompting* (QAP) technique
205 to modify the input prompt to encourage the model to output the final answer directly without in-
206 termediate reasoning steps. Specifically, instead of using a standard instruction like “Solve the
207 following problem step by step”, we use a QAP p_{quick} : “*Answer the following question concisely
208 within three reasoning steps*”. By *pushing thinking trace towards the answer*, the prefix tokens are
209 more effective in reflecting the model’s understanding of the samples, providing a more efficient and
210 concentrated entropy signal. We investigate the effect of QAP in Appendix D.1.

211 3.3.2 PREFIX ENTROPY APPROXIMATION
212

213 Calculating the exact entropy over the entire output sequence y requires autoregressively generating
214 all tokens and remains prohibitively expensive. We propose *Prefix Entropy Approximation*, which
215 estimates the full-sequence entropy using only the first few tokens of the output. This approach
is motivated by the observation that the entropy of the initial tokens strongly correlates with the

216 **Algorithm 1** Entropy-based Dynamic Curriculum Orchestration (EDCO)

217 **Require:** The preprocessed high-quality dataset \mathcal{D}_{hq} , initial model parameters θ_0 , prefix length L .
218 1: $k \leftarrow 0$
219 2: **while** not converged **do**
220 3: $\mathcal{D}_k \leftarrow \emptyset$
221 4: **for** each sample $(x, y) \in \mathcal{D}_{\text{hq}}$ **do**
222 5: Construct quick-answer prompt $x' \leftarrow (p_{\text{quick}}, x)$
223 6: Compute prefix entropy $H \leftarrow -\sum_{t=1}^L \log \mathcal{M}_{\theta_k}(y_t | y_{<t}, x')$
224 7: Add (x, y, H) to \mathcal{D}_k
225 8: **end for**
226 9: Sort \mathcal{D}_k by entropy in descending order
227 10: Select top N samples as the curriculum dataset $\mathcal{D}_k^{\text{CD}}$
228 11: Fine-tune θ_k on $\mathcal{D}_k^{\text{CD}}$ for N steps using SFT (Eq. (1)) or RLFT (Eq. (2))
229 12: $k \leftarrow k + 1$
230 13: **end while**
231 14: **return** θ_k

232 uncertainty of the complete generation. Specifically, we approximate the full-sequence entropy as:
233

$$236 H(y|y_{<t}, p_{\text{quick}}, x; \theta_k) \approx -\sum_{t=1}^L \log \mathcal{M}_{\theta_k}(y_t | y_{<t}, p_{\text{quick}}, x), \quad (6)$$

237 where L is a small fixed number of prefix tokens (e.g., $L = 50$). This approximation reduces the
238 computational complexity from $O(T)$ to $O(L)$ per sample, where T is the average output length. In
239 practical, Our experiments demonstrate that this prefix-based entropy maintains a strong rank corre-
240 lation with the full-sequence entropy, ensuring reliable sample selection while achieving significant
241 speedups.
242

244 3.4 COMPATIBILITY WITH FINE-TUNING PARADIGMS

246 EDCO is designed to be agnostic to the underlying fine-tuning algorithm, seamlessly integrating
247 with both SFT and RLFT frameworks. In SFT, the training objective on the selected high-entropy
248 subset \mathcal{D}_k remains the standard cross-entropy loss in Eq. (1). The dynamic curriculum ensures
249 that the model focuses on samples that are currently most challenging, preventing overfitting to
250 easy patterns and promoting broader generalization. In RLFT, EDCO addresses the critical issue of
251 entropy collapse by continuously supplying high-entropy samples that encourage exploration. The
252 RL objective (Eq. (2)) is applied to the selected subset. By maintaining exposed to high inference
253 entropy examples, EDCO effectively delays entropy collapse, allowing the model to explore a wider
254 range of behaviors and discover superior policies.

255 3.5 ALGORITHM SUMMARY

257 Algorithm 1 summarizes the complete EDCO training procedure. The process begins with the pre-
258 processed high-quality dataset \mathcal{D}_{hq} (obtained via the LLM-driven filter described in Sec. 3.1) and
259 initial model parameters. At each curriculum update interval, we compute the efficient inference
260 entropy for all samples using quick-answer prompting and prefix entropy approximation. The top N
261 highest-entropy samples are selected to form the training batch for the subsequent phase. The model
262 is then fine-tuned on this subset using either SFT or RL objectives. This cycle repeats until train-
263 ing convergence, ensuring the model is consistently challenged by appropriately difficult examples
264 throughout the learning process.

265 4 RELATED WORK

266 Our work lies at the intersection of domain-specific adaptation for large language models and cur-
267 riculum learning. Accordingly, we review relevant literature in three areas.

270 4.1 DOMAIN-SPECIFIC LARGE LANGUAGE MODELS
271

272 Recent advances have demonstrated the growing importance of domain-specific LLMs across vari-
273 ous professional fields where accuracy, terminology precision, and specialized reasoning are critical
274 requirements (Song et al., 2025; Jeong, 2024; Pal et al., 2024). In medicine, LLMs have evolved
275 from basic information retrieval tools to sophisticated clinical reasoning systems capable of sup-
276 porting complex diagnostic processes (Berger et al., 2025). Similarly, researchers in the law domain
277 have explored numerous LLMs applications for document analysis, case prediction, and legal rea-
278 soning. However, challenges remain in handling complex domain-specific relationships that general
279 models often misunderstand (Colombo et al., 2024). The adaptation of general-domain LLMs for
280 specialized applications in law typically focuses on fine-tuning approaches rather than introduc-
281 ing new architectural innovations (Chen et al., 2024). In communication systems, recent surveys
282 have investigated the integration of LLMs across different network domains, including mobile net-
283 works and related technologies, highlighting both opportunities and challenges in this emerging field
284 (Boateng et al., 2024). However, these approaches ignore the training curriculum structure, treating
285 all samples equally valuable regardless of the model’s evolving proficiency.

286 4.2 UNCERTAINTY-DRIVEN AND ENTROPY-BASED DATA SELECTION
287

288 Uncertainty quantification has become a pivotal metric for evaluating LLM reliability and data qual-
289 ity. Recent works have leveraged entropy and confidence scores for various selection tasks. For
290 instance, Liang et al. (2025) utilize predictive entropy to identify unreliable responses in medical
291 VLMs. Similarly, Zhang et al. (2025a) introduce Long-text Uncertainty Quantification to enhance
292 selective question answering. However, these approaches typically apply uncertainty metrics either
293 as a static pre-filtering step (Liu et al., 2025) or for inference-time control (Agrawal et al., 2025),
294 rather than as a dynamic signal to guide the training trajectory. Unlike active learning methods that
295 focus on selecting unlabeled data for annotation to reduce labeling costs (Xia et al., 2025), EDCO fo-
296 cuses on training efficiency by dynamically re-weighting existing data based on the model’s real-
297 time inference entropy, ensuring the model always learns from samples at its capability frontier.

298 4.3 CURRICULUM LEARNING FOR LARGE LANGUAGE MODELS
299

300 CL has emerged as a promising approach to improve the efficiency and effectiveness of LLM train-
301 ing. Traditional curriculum strategies often follow an “easy-to-hard” progression, starting with
302 simpler tasks and gradually introducing more complex examples (Kim & Lee, 2024). Some ap-
303 proaches have utilized data distribution characteristics to determine sample ordering, with Static
304 DDCCL (Chaudhry & Sharma, 2025) representing an innovative method in utilizing data distribution
305 for curriculum organization. More recently, researchers have begun exploring dynamic curriculum
306 approaches that adapt during training, such as the framework combining CL with LLM reason-
307 ing that allows for adaptive adjustment of difficulty levels based on model performance (Zhang
308 et al., 2024b). To overcome the limitations of static curricula, dynamic data selection strategies
309 have gained attention. Hübötter et al. (2024) propose active fine-tuning for test-time adaptation,
310 while Middo (Tang et al., 2025b) introduces a model-informed data optimization loop to enhance
311 fine-tuning quality. Reverse curriculum approaches (Florensa et al., 2017) in reinforcement learning
312 have also demonstrated potential by starting with more complex examples and progressing back-
313 ward. Yet, these methods remain unexplored for domain-specific LLM fine-tuning. Crucially, no
314 prior work dynamically reorders samples based on the model’s instantaneous uncertainty during
315 fine-tuning, an essential factor for maximizing learning efficiency in data-constrained domains.

316 4.4 ENTROPY AS A LEARNING SIGNAL

317 Entropy has gained attention as a valuable signal for guiding LLM training (Tang et al., 2025a). Mi-
318 croscopic Strategy on Responses method (Li et al., 2025) has shown that high entropy in token selec-
319 tion corresponds to greater diversity in training samples, which can make LLM training more robust
320 and less prone to overfitting. Several studies have explored entropy-based data selection techniques
321 to effectively reduce the amount of training data required while maintaining performance (Yin et al.,
322 2024). In RL contexts for LLMs, entropy-based terms have served as robust, self-regularization sig-
323 nals that guide learning without altering the original gradient flow of the base model (Cheng et al.,
324 2025). The EDT method (Zhang et al., 2024a) has also investigated dynamic adjustment of LLM

324 decoding behavior based on confidence metrics related to entropy. Vocabulary curriculum methods
 325 ([Yu, 2025](#)) have employed entropy-guided expansion strategies to enable models to learn transfer-
 326 able representations more effectively. Despite these advances, the application of inference entropy as
 327 a dynamic curriculum generation mechanism for domain-specific LLM fine-tuning remains largely
 328 underexplored, particularly in contexts where SFT and RL training are required.
 329

330 5 EXPERIMENT

332 In this section, we conduct extensive experiments to verify the effectiveness of EDCO on domain-
 333 specific LLM fine-tuning. We conduct experiments across two challenging communication domains,
 334 *Data Communication* and *Wireless Communication*, to answer the following key research questions:
 335 (1) How does EDCO perform compared to existing curriculum learning methods for LLM fine-
 336 tuning ([Sec. 5.2](#))? (2) What is the underlying mechanism of dynamic curriculum orchestration ([Sec.](#)
 337 [5.3](#))? (3) How effective and efficient is the proposed entropy estimation module ([Sec. 5.4](#))? (4) How
 338 does the prefix token length affect entropy estimation accuracy ([Sec. 5.4](#))?
 339

340 5.1 EXPERIMENTAL SETTING

342 **Datasets and domains.** We evaluate EDCO mainly on two challenging communication domains:
 343 *Data Communication* (Datacom) and *Wireless Communication* (Wireless). We construct a special-
 344 ized dataset for each domain comprising 20,000 question-answer pairs (filtered to 12,000 high-
 345 quality samples) synthesized from a diverse corpus of product documentation, technical solutions,
 346 and domain knowledge bases. The datasets encompass diverse question types, including single-
 347 choice, multiple-choice, and open-ended QA, covering fundamental principles, product concepts,
 348 terminology understanding, and multi-step reasoning tasks. [These training dataset could be utilized](#) for SFT and RLFT. All methods are evaluated on a held-out test set of 230 challenging, unseen problems from the same domains. Additionally, we involve datasets from medicine (MedQA ([Jin et al., 2021](#))) and legal (JEC-QA ([Zhong et al., 2020](#))) domains to provide more comprehensive evaluation. We provide more details about the dataset and domain description in Appendix C.1.

352 **Baseline for comparison.** We compare EDCO against representative baselines with both static and
 353 dynamic curriculum learning strategies: (1) **Random Sampling (RS)**: The standard, curriculum-
 354 free approach for LLM fine-tuning; (2) **Length-based Curriculum (Length)**: A simple heuristic
 355 ordering samples by input sequence length (easy-to-hard based on brevity). (3) **Answer Complexity**
 356 (**AC**): A heuristic that orders samples by the number of sentences in the answer, representing reasoning
 357 depth. (4) **Perplexity-based Curriculum (PPL)**: A classic model-based approach representing
 358 the “easy-to-hard” paradigm, where difficulty is determined by a pre-trained model’s perplexity ([Hu et al., 2024](#)). (5) **Self-evolving curriculum (SEC)** ([Chen et al., 2025](#)): Learn a curriculum policy
 359 with UCB algorithm ([Auer, 2002](#)) to select the training batch. (6) **Dynamic-PPL**: The dynamic
 360 version of PPL method, which updates the curriculum with same interval as EDCO.
 361

362 **Implementation details.** All experiments are implemented using the MindspeedRL framework
 363 ([Feng et al., 2025](#)). We use Qwen3-1.7B and Qwen3-4B ([Qwen, 2025](#)) as the base LLMs to demon-
 364 strate applicability across model scales. [For RLFT, we employ the GRPO algorithm](#) ([Shao et al., 2024](#)) to train the language models. The rewards are generated by Deepseek-V3 ([DeepSeek-AI, 2024](#)) performing automated verification of model responses against ground-truth answers for wireless and datacom domains, and generated from rule-based verification for medical and legal domains. All experiments are conducted on a computing cluster with 256 KUNPENG 920 CPU cores and 8 Ascend 910B3 NPUs. Appendix C.4 lists the hyperparameters used for experiments.

370 5.2 MAIN RESULTS FOR RLFT AND SFT

372 **Results for supervised fine-tuning.** Fig. 2(A, B) shows SFT results with Qwen3-4B on commu-
 373 nication domains. EDCO also achieves the best performance with 33.7% (Wireless) and 36.3%
 374 (Datacom) accuracy. Notably, EDCO outperforming PPL methods by 2.0% in Wireless and 3.3% in
 375 Datacom, demonstrating the advantage of EDCO over other model-involved CL method. Besides,
 376 several “easy-to-hard” baselines (Length, AC, PPL) fail to improve upon or even degrade perfor-
 377 mance compared to the base model on the Wireless dataset. This reveals a critical pitfall: a poorly
 378 designed static curriculum can be actively detrimental to learning, especially in specialized domains

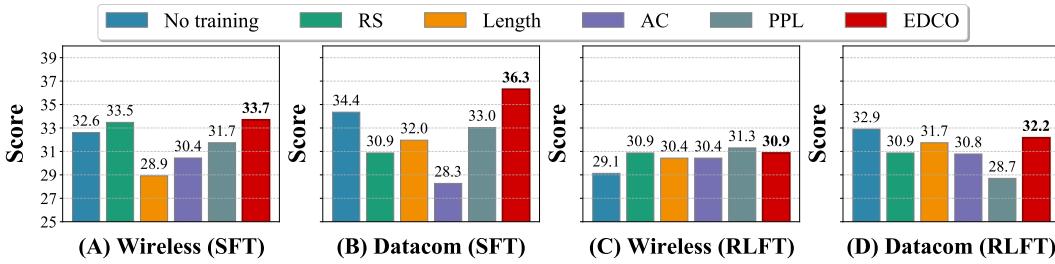


Figure 2: Performance of various fine-tuning strategies on communication domains. The reported results represent the answer accuracy, averaged over three evaluations.

where syntactic simplicity does not equate to conceptual ease. For instance, the poor performance of the AC method in Datacom SFT (28.3%) highlights how a static focus on syntactically complex answers fails to adapt to the model’s growing knowledge, leading it to struggle with samples that remain too difficult repeatedly. These results prove that dynamic curriculum orchestration is a more robust and effective strategy across different training paradigms.

Results for reinforcement learning fine-tuning. The RLFT setting, shown in Fig. 2(C, D) with the Qwen3-1.7B model, presents a more challenging fine-tuning landscape. In the Datacom domain, most methods struggle to surpass the base model’s performance, highlighting the intrinsic difficulty of RL-based alignment in this specialized area. We hypothesis that this is due to there lacks a pre-training step on the domain-specific data to insert relevant knowledge. Even so, EDCO emerges as the top-performing method among all curriculum strategies, demonstrating its robustness even under challenging conditions. On the Wireless dataset, while all methods performed similarly, EDCO remained competitive. The inconsistent performance of the PPL-based curriculum, which underperforms even random sampling in the Datacom domain (28.7% vs. 30.9%), further reinforces the unreliability of static difficulty metrics. In contrast, the relative success of EDCO in this demanding RLFT scenario aligns with our central hypothesis: maintaining high inference entropy provides more robust and effective learning signals, especially when reward signals are sparse or complex.

Table 1: Performance comparison on medical and legal domains using Llama3.2-3B.

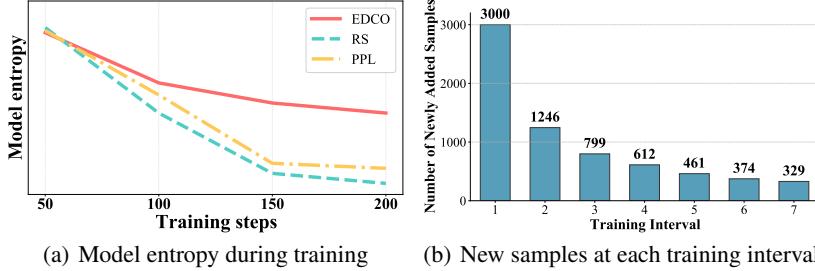
Dataset	No Training	RS	Length	AC	PPL	EDCO
MedQA	32.1	32.9	35.1	32.4	24.6	36.7
JEC-QA	16.2	16.2	10.5	14.6	12.4	17.4

Results on medical and legal domains. To demonstrate the generalizability of EDCO beyond telecommunications, we extended our evaluation to two qualitatively different domains using the Llama3.2-3B model (Grattafiori et al., 2024). As the result shown in Tab. 1, EDCO consistently outperforms RS and static curricula (Length, AC, PPL) in these new domains. Notably, on MedQA, EDCO achieves 36.7% accuracy compared to 32.9% for RS and 24.6% for PPL. Similarly, on JEC-QA, EDCO leads with 17.4%. These results validate that prioritizing high inference entropy is a fundamental principle for efficient fine-tuning across diverse fields and is effective across different model architectures (Qwen vs. Llama) and sizes (1.7B to 4B).

Comparison with dynamic baselines. To further assess the competitiveness of EDCO at the state of the art, we compared it against two advanced dynamic curriculum strategies on the Datacom domain using the Qwen3-4B model: SEC and Dynamic-PPL. As shown in Tab. 2, EDCO significantly outperforms Dynamic-PPL (47.0% vs. 41.3%). This indicates that the frequency of updates alone is insufficient; the metric used for selection is critical. While perplexity often fails to capture the learning value for fine-tuning, inference entropy effectively identifies the model’s capability frontier. Furthermore, EDCO outperforms the bandit-based SEC method (34.78%), which suffered from instability during the policy learning phase in this setting.

432
 433 Table 2: **Comparison against learnable and dynamic baselines on the Datacom domain (Qwen3-4B).**
 434 **EDCO outperforms both the bandit-based SEC and the dynamic perplexity strategy.**

435 436 437 438 439 440 441 442 443 444 445 446 447 448	Domain	No Training	RS	SEC	Dynamic-PPL	EDCO
	Datacom	40.0	40.4	34.78	41.3	47.0



449 Figure 3: Analysis of the training process of EDCO method. **(A)** The model’s inference entropy
 450 during the training. **(B)** The number of first-time samples added in each training interval.

451 5.3 ANALYSIS OF THE TRAINING PROCESS

452 The previous subsection presents that EDCO achieves better performance for domain LLM fine-
 453 tuning. Now we investigate the mechanisms behind EDCO’s superior performance through detailed
 454 training process analysis.

455 **Entropy change during the training process.** The motivation behind EDCO is to maintain high
 456 inference entropy during the training. Fig. 3(a) validates this principle empirically. Specifically,
 457 during the training process, we record the model’s inference entropy. While the model trained with
 458 random sampling sees its entropy decay rapidly, EDCO successfully sustains a high-entropy, high-
 459 challenge learning environment throughout training. This demonstrates that our dynamic selection
 460 process prevents the model from settling into a low-uncertainty state, constantly pushing it to refine
 461 its understanding of more complex or nuanced samples. This sustained challenge directly correlates
 462 with its superior final performance.

463 **Curriculum selection dynamics.** Fig. 3(b) visualizes the composition of the training curriculum
 464 at each update interval. The numbers in the figure stand for the number of samples that have never
 465 been selected for training previously. The analysis reveals that the curriculum is *constantly evolving*.
 466 At each interval, EDCO strategically selects a mix of entirely new, high-entropy samples alongside
 467 previously seen samples that remain challenging (i.e., still exhibit high entropy) for the model’s
 468 current state. This dynamic ensures that complex concepts are not prematurely discarded but are
 469 revisited until mastered, while simultaneously introducing new challenges to broaden the model’s
 470 knowledge. This adaptive “re-challenge” mechanism is a key differentiator from static curricula,
 471 which follow a rigid, one-pass sequence.

472 5.4 EFFECTIVENESS OF ENTROPY ESTIMATION & ABLATION STUDY

473 We further verify the effectiveness of the entropy estimation in EDCO through two dimensions:
 474 *estimation accuracy* and *computational efficiency*.

475 **Accuracy of Prefix-based Estimation.** Fig. 4(a) compares the entropy calculated using only a
 476 128-token prefix against the entropy from the full sequence. The results reveal a strong positive correlation,
 477 with a *Pearson coefficient of 0.63*. This result is significant: it confirms that the prefix-based approximation serves as a reliable alternative for full-sequence entropy, validating our approach to reduce computational cost without decreasing the integrity of the curriculum signal.

478 **Computational efficiency.** As detailed in Tab. 3, the efficiency gains of prefix-based estimation are
 479 substantial: it reduces the per-sample estimation time from 2.24s to just 0.37s—an 83.5% reduction
 480 in computational overhead. This dramatic speedup transforms dynamic curriculum generation
 481 from a computationally prohibitive concept into a practical, scalable strategy. Furthermore, when

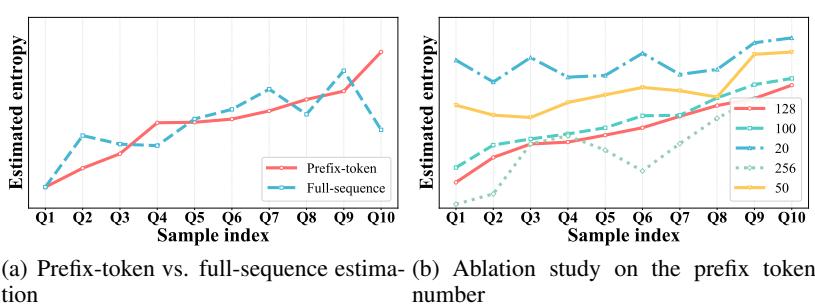


Figure 4: Analysis of the efficient entropy estimation module in EDCO. **(A)** Comparison of entropy estimation using a 128-token prefix versus the full sequence. **(B)** Ablation study on the prefix token number. To better visualize data trends, the sample indices are arranged in ascending order of the entropy estimated with the 128-token prefix. Ablation study on quick-answer prompt is in Appendix D.1.

parallelized across 8 NPUs, the estimation time plummets to 0.04 seconds per sample, making near-real-time curriculum updates feasible even for large datasets. Note that the wall-clock time for EDCO’s RL training for 500 steps is 33.58 hours, compared to RS’s 30.67 hours (10% difference). The overhead of entropy estimation is dwarfed by the RL training process itself. Thus, the entropy estimation introduce acceptable overhead for the training.

Table 3: Computational efficiency of entropy estimation methods (seconds per sample).

Method	Single process	Parallel with 8 cards
Full-sequence	2.24	0.24
Prefix-based (Ours)	0.37	0.04

Effect of prefix token number. We conduct an ablation study on prefix token length to provide practical implementation guidelines, with results in Fig. 4(b). The analysis shows that while a very short prefix (e.g., 20 tokens) can lead to unstable estimations, the entropy trends stabilize significantly for prefixes of 50 tokens or more. This indicates that a prefix length of 50-128 tokens strikes an optimal balance between estimation stability and computational efficiency, offering a robust default configuration for future applications.

6 CONCLUSION

This work addresses the challenge of efficiently specializing LLMs for specific domains, where data scarcity demands maximally effective fine-tuning strategies. We propose EDCO, a novel framework that introduces a dynamic, entropy-driven curriculum to continuously align the training process with the model’s evolving learning state. The key contribution lies in shifting away from static curricula by prioritizing samples with maximum inference entropy, which is efficiently implemented via quick-answer prompting and prefix-based entropy approximation. Extensive experiments in communication domains demonstrate that EDCO consistently enhances performance under both SFT and RLFT paradigms. However, there are still some limitations. First, the efficiency of entropy estimation, while improved from prefix token approximation, still introduces periodic computational overhead compared to standard fine-tuning. Future work could explore more lightweight techniques to predict sample significance without full forward passes. Second, the current method operates on a fixed update interval for curriculum orchestration. An adaptive scheduling mechanism, triggered by performance threshold or entropy convergence, could further optimize the training dynamics. Finally, while we demonstrate effectiveness in communication tasks, the generalizability of EDCO to a wider array of domains (e.g., low-resource languages or highly technical scientific fields) warrants further validation. We believe these interesting directions are worth further exploration for developing more powerful and efficient domain-specific LLMs.

540
541
ETHICS STATEMENT

542 We adhere to the ICLR Code of Ethics. Our work introduces a method for improving the efficiency
 543 of fine-tuning LLMs on domain-specific data. The datasets used in our experiments (from the com-
 544 munications domain) were based on public technical standards and synthetic data, containing no
 545 personal information. However, the ethical implications of any model built with our method are
 546 contingent on the underlying data and its application. Practitioners should ensure their training data
 547 is responsibly sourced and mitigate potential biases. The technique itself is neutral but could be
 548 misused; we therefore advocate for its responsible application in alignment with domain-specific
 549 ethical guidelines.

550
551
REPRODUCIBILITY STATEMENT
552

553 To ensure the reproducibility of our work, we have made substantial efforts to provide all necessary
 554 resources and implementation details. We openly the implementation details used in our experi-
 555 ments in Sec. 5. Additionally, the full source code and curriculum generation scripts for EDCO will
 556 be made publicly available upon acceptance. Detailed experimental settings, including dataset de-
 557 scriptions, evaluation protocols, hyperparameters, and prompts are provided in the appendix. We
 558 believe these materials will facilitate the replication of our results and support future research in
 559 dynamic curriculum learning for domain-specific LLM fine-tuning.

560
561
REFERENCES
562

563 Aakriti Agrawal, Rohith Aralikatti, Anirudh Satheesh, Souradip Chakraborty, Amrit Singh Bedi, and
 564 Furong Huang. Uncertainty-aware answer selection for improved reasoning in multi-llm systems.
 565 In *EMNLP*, 2025.

566 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *Journal of Machine*
 567 *Learning Research*, 3:397–422, 2002.

568 Armin Berger, Sarthak Khanna, David Berghaus, and Rafet Sifa. Reasoning llms in the medical
 569 domain: A literature survey. *arXiv*, abs/2508.19097, 2025.

570 Gordon Owusu Boateng, Hani Sami, Ahmed Alagha, Hanae Elmekki, Ahmad Hammoud, Rabeb
 571 Mizouni, Azzam Mourad, Hadi Otrok, Jamal Bentahar, Sami Muhibat, Chamseddine Talhi,
 572 Zbigniew Dziong, and Mohsen Guizani. A survey on large language models for communica-
 573 tion, network, and service management: Application insights, challenges, and future directions.
 574 *arXiv*, abs/2412.19823, 2024.

575 Shonal Chaudhry and Anuraganand Sharma. Dynamic data distribution-based curriculum learning.
 576 *Information Sciences*, 702:121924, 2025.

577 Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
 578 Yoshua Bengio, and Ehsan Kamaloo. Self-evolving curriculum for LLM reasoning. *arXiv*,
 579 abs/2505.14970, 2025.

580 Zhiyu Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun Yang, Ju-
 581 lian J. McAuley, Linda Ruth Petzold, and William Yang Wang. A survey on large language models
 582 for critical societal domains: Finance, healthcare, and law. *Transactions on Machine Learning*
 583 *Research*, 2024.

584 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
 585 Furu Wei. Reasoning with exploration: An entropy perspective on reinforcement learning for
 586 llms. *arXiv*, abs/2506.14758, 2025.

587 Pierre Colombo, Telmo Pessoa Pires, Malik Boudiaf, Dominic Culver, Rui Melo, Caio Corro, André
 588 F. T. Martins, Fabrizio Esposito, Vera Lúcia Raposo, Sofia Morgado, and Michael Desa. SaulLM-
 589 7B: A pioneering large language model for law. *arXiv*, abs/2403.03883, 2024.

594 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 595 Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
 596 Bowen Zhou, and Ning Ding. The entropy mechanism of reinforcement learning for reasoning
 597 language models. *arXiv*, abs/2505.22617, 2025.

598 DeepSeek-AI. Deepseek-v3 technical report. *arXiv*, abs/2412.19437, 2024.

600 Laingjun Feng, Chenyi Pan, Xinjie Guo, Fei Mei, Benzhe Ning, Jianxiang Zhang, Xinyang Liu,
 601 Beirong Zhou, Zeng Shu, Chang Liu, Guang Yang, Zhenyu Han, Jiangben Wang, and Bo Wang.
 602 Mindspeed RL: distributed dataflow for scalable and efficient RL training on ascend NPU cluster.
 603 *arXiv*, abs/2507.19017, 2025.

604 Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
 605 riculum generation for reinforcement learning. In *CoRL*, 2017.

606 Google. Gemini: A family of highly capable multimodal models. *arXiv*, abs/2312.11805, 2023.

607 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 609 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
 610 of models. *arXiv*, abs/2407.21783, 2024.

612 Yutong Hu, Quzhe Huang, Mingxu Tao, Chen Zhang, and Yansong Feng. Can perplexity reflect
 613 large language model's ability in long text understanding? In *Tiny Papers @ ICLR*, 2024.

614 Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
 615 Active fine-tuning of llms. *arXiv*, abs/2410.08020, 2024.

617 Cheonsu Jeong. Fine-tuning and utilization methods of domain-specific llms. *arXiv*,
 618 abs/2401.02981, 2024.

619 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
 620 ease does this patient have? a large-scale open domain question answering dataset from medical
 621 exams. *Applied Sciences*, 11(14):6421, 2021.

623 Jisu Kim and Juhwan Lee. Strategic data ordering: Enhancing large language model performance
 624 through curriculum learning. *arXiv*, abs/2405.07490, 2024.

625 Haoyu Li, Xuhong Li, Yiming Dong, and Kun Liu. From macro to micro: Probing dataset diversity
 626 in language model fine-tuning. *arXiv*, abs/2505.24768, 2025.

628 Xiao Liang, Di Wang, Zhicheng Jiao, Ronghan Li, Pengfei Yang, Quan Wang, and Tat-Seng Chua.
 629 Uncertainty-driven expert control: Enhancing the reliability of medical vision-language models.
 630 In *ICCV*, 2025.

631 Ziche Liu, Rui Ke, Yajiao Liu, Feng Jiang, and Haizhou Li. Take the essence and discard the dross:
 632 A rethinking on data selection for fine-tuning large language models. *NAACL*, 2025.

633 Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
 634 Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model
 635 safety. In *NeurIPS*, 2024.

637 OpenAI. GPT-4 technical report. *arXiv*, abs/2303.08774, 2023.

638 Soumen Pal, Manojit Bhattacharya, Sang-Soo Lee, and Chiranjib Chakraborty. A domain-specific
 639 next-generation large language model (llm) or chatgpt is required for biomedical engineering and
 640 research. *Annals of biomedical engineering*, 52, 2024.

642 Jing-Cheng Pang, Pengyuan Wang, Kaiyuan Li, Xiong-Hui Chen, Jiacheng Xu, Zongzhang Zhang,
 643 and Yang Yu. Language model self-improvement by reinforcement learning contemplation. In
 644 *ICLR*, 2024.

645 Qwen. Qwen3 technical report. *arXiv*, abs/2505.09388, 2025.

646 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 647 optimization algorithms. *arXiv*, abs/1707.06347, 2017.

648 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Yu-Kun Li,
 649 Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 650 language models. *arXiv*, abs/2402.03300, 2024.

651

652 Dong Shu, Haoran Zhao, Xukun Liu, David Demeter, Mengnan Du, and Yongfeng Zhang. Lawllm:
 653 Law large language model for the US legal system. In *CIKM*, 2024.

654

655 Zirui Song, Bin Yan, Yuhang Liu, Miao Fang, Mingzhe Li, Rui Yan, and Xiuying Chen. Inject-
 656 ing domain-specific knowledge into large language models: A comprehensive survey. *arXiv*,
 657 abs/2502.10708, 2025.

658

659 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 660 Crossing the reward bridge: Expanding RL with verifiable rewards across diverse domains. *arXiv*,
 661 abs/2503.23829, 2025.

662

663 Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. *IEEE Transac-
 664 tions on Neural Networks*, 9, 1998.

665

666 Xinyu Tang, Zhenduo Zhang, Yurou Liu, Wayne Xin Zhao, Zujie Wen, Zhiqiang Zhang, and Jun
 667 Zhou. Towards high data efficiency in reinforcement learning with verifiable reward. *arXiv*,
 668 abs/2509.01321, 2025a.

669

670 Zinan Tang, Xin Gao, Qizhi Pei, Zhusi Pan, Mengzhang Cai, Jiang Wu, Conghui He, and Lijun
 671 Wu. Middo: Model-informed dynamic data optimization for enhanced llm fine-tuning via closed-
 672 loop learning. In *EMNLP*, 2025b.

673

674 Wenxuan Wang, Zizhan Ma, Zheng Wang, Chenghan Wu, Jiaming Ji, Wenting Chen, Xiang Li, and
 675 Yixuan Yuan. A survey of llm-based agents in medicine: How far are we from baymax? In *ACL*,
 676 2025.

677

678 Yu Xia, Subhojoyoti Mukherjee, Zhouhang Xie, Junda Wu, Xintong Li, Ryan Aponte, Hanjia Lyu,
 679 Joe Barrow, Hongjie Chen, Franck Dernoncourt, et al. From selection to generation: A survey of
 680 llm-based active learning. *ACL*, 2025.

681

682 Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong Liu, Ruiming
 683 Tang, Defu Lian, and Enhong Chen. Entropy law: The story behind data compression and LLM
 684 performance. *arXiv*, abs/2407.06645, 2024.

685

686 Fangyuan Yu. Scaling LLM pre-training with vocabulary curriculum. *arXiv*, abs/2502.17910, 2025.

687

688 Caiqi Zhang, Fangyu Liu, Marco Basaldella, and Nigel Collier. Luq: Long-text uncertainty quan-
 689 tification for llms. *arXiv*, abs/2403.20279, 2025a.

690

691 Shima Zhang, Yu Bao, and Shujian Huang. EDT: improving large language models' generation by
 692 entropy-based dynamic temperature sampling. *arXiv*, abs/2403.14541, 2024a.

693

694 Songge Zhang, Guoliang Cheng, Xinyu Huang, Zuguang Li, Wen Wu, Lingyang Song, and Xuemin
 695 Shen. Split fine-tuning for large language models in wireless networks. *arXiv*, abs/2501.09237,
 696 2025b.

697

698 Yipeng Zhang, Xin Wang, Hong Chen, Jiapei Fan, Weigao Wen, Hui Xue, Hong Mei, and Wenwu
 699 Zhu. Large language model with curriculum reasoning for visual concept recognition. In *KDD*,
 700 2024b.

701 Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang Zhang, Zhiyuan Liu, and Maosong Sun. Jec-qa:
 a legal-domain question answering dataset. In *AAAI*, 2020.

702

703

704

705

706

707

708

Appendix

Table of Contents

A The Use of Large Language Models	15
B Discussions about Reverse Curriculum Learning	15
C More Experiment Details	15
C.1 More Details about the Evaluation Domains	15
C.2 Prompts Used in Experiments	16
C.3 Examples of the Dataset	16
C.4 Hyperparameters	16
D Additional Experimental Results	16
D.1 Ablation Study on Quick-answer Prompting	16
D.2 Curriculum Difficulty from Different CL Methods	18
D.3 Curriculum Orchestration with Moderate-entropy Window	18

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A THE USE OF LARGE LANGUAGE MODELS**
757758 In the research presented in this paper, LLMs are utilized for two main purposes:
759760

- 761 • **Experimental core:** The core contribution of this work involves the fine-tuning of LLMs.
762 Specifically, we developed and evaluated our proposed dynamic curriculum learning frame-
763 work, EDCO, by fine-tuning the general-purpose Qwen3-1.7B and Qwen3-4B models on
764 specialized datasets from the communication domain.
- 765 • **Writing assistance:** An LLM (not Qwen3) was used solely as a tool for polishing the
766 language of this manuscript. It assisted in improving grammar, sentence fluency, and word
767 choice. The model did not contribute to the research ideation, methodology, experimental
768 design, or analysis. The authors take full responsibility for the entire scientific content,
769 findings, and assertions of the paper.

770 **B DISCUSSIONS ABOUT REVERSE CURRICULUM LEARNING**
771772 This work’s prioritization of high-entropy samples represents a departure from the traditional ”easy-
773 to-hard” CL paradigm, effectively creating a ”reverse curriculum.” This section provides additional
774 justification for this choice in the context of fine-tuning pre-trained LLMs within specific domains.775 Traditional CL is inspired by human’s education process, where a learner starts with foundational
776 concepts and gradually progresses to more complex topics. This is effective when training a model
777 from scratch, as it stabilizes the initial learning stages and prevents divergence caused by overly
778 challenging samples.779 However, fine-tuning a pre-trained LLM presents a fundamentally different scenario. The goal of
780 fine-tuning is not to teach the model basic concepts but to specialize its existing knowledge for a
781 specific domain. In this context:782

- 783 • **”Easy” samples offer diminishing returns.** Samples that the model can already answer
784 with low uncertainty (low entropy) are largely redundant with its pre-existing knowledge.
785 Training on them provides a weak learning signal (i.e., small gradients) and does little to
786 refine its domain-specific abilities.
- 787 • **”Hard” samples are most informative.** Samples with high inference entropy are precisely
788 those where the model’s general knowledge is insufficient or conflicts with domain-specific
789 nuances. These are the points of highest uncertainty and, therefore, the greatest potential
790 for information gain. By focusing on these samples, EDCO ensures that each training step
791 is maximally efficient at reducing the model’s domain-specific predictive uncertainty.

792 Thus, for domain specialization, a dynamic curriculum that consistently presents the most challeng-
793 ing material, as measured by the model’s current state, is more effective than a static, easy-to-hard
794 progression. EDCO’s approach ensures the model is perpetually operating at the frontier of its com-
795 petence, accelerating its adaptation to the target domain.796 **C MORE EXPERIMENT DETAILS**
797798 **C.1 MORE DETAILS ABOUT THE EVALUATION DOMAINS.**801 **Wireless.** The wireless domain is a key branch of information technology, focusing on the research,
802 development, and application of wireless communication technologies. This domain covers a variety
803 of technologies and products, such as 5G, 4G, Wi-Fi, Bluetooth, and NFC, which together build a
804 modern wireless communication infrastructure that supports a variety of application scenarios from
805 mobile communications and the IoT (Internet of Things) to smart homes. 5G technology provides
806 higher data transmission rates, lower latency, and higher connection density, supporting large-scale
807 IoT applications and HD video transmission. Wi-Fi technology is widely used in homes, offices,
808 and public places to provide high-speed wireless network connections.809 **Datacom.** The data communication domain is a vital branch of information technology, focused on
810 the efficient and secure transmission of data. This domain includes various technologies and prod-

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248

864
865
866
867
868
869

870	871	872	873	874	875	876	877	878	879	880	881	882	883	884	885	886	887	888	889	890	891	892	893	894	895	896	897	898	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917
Domain	Example question			Target answer																																											
Wireless-training	"What should I do if the DSP GTP- PATH command output shows that the GTP path is in the DEETECT state when the alarm is generated?"																				"...1.First, check whether the peer GSN address specified in the alarm information is valid...;2.Next, execute the PING command to check if the link is normal...;3.Confirm whether the peer GSN can respond to ECHO messages..."																										
Wireless-testing	"During the deployment and operation of the LMT, the LMT is forcibly connected in HTTPS or WSS mode to ensure secure connection. In this mode, digital certificates are required for authentication. In addition, ... In such a deployment scenario, if the MAE of a carrier is set to HTTP login mode and the LMT is set to forcible HTTPS connection mode, what will happen? A. ...B. If the LMT connection mode is set to Force HTTPS, MAE proxy login fails to access the LMT due to protocol mismatch. The connection cannot be established even if the OM channel is normal. C. ...D."																				"The answer is "																										
Datacom-training	"When configuring the Segment VXLAN feature, how can you enable EVPN as the VXLAN control plane on Transit Leaf1 and Transit Leaf2, and configure BGP EVPN peer relationships?"																				"...1.Enter the BGP view or BGP multi-instance view...;2.Enter the BGP-EVPN address family view...;3.Configure the split group for BGP EVPN peers (groups)...;4.Enable the function to mark routes received from BGP EVPN peers as re-originated..."																										
Datacom-testing	"...The device supports creating subinterfaces on Layer 2 Ethernet and Layer 2 Eth-Trunk interfaces for VLAN termination to achieve inter-VLAN forwarding. However, the USG9500 series devices do not support creating subinterfaces on these two types of interfaces."																				"The answer is error"																										

Table 4: Examples from the datasets used in our experiments.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Table 5: Hyper-parameters for training EDCO and baselines.

Hyper-parameters	Value
Prefix token Num.	128
Epoch Num.	2
Batch Size	8
Learning Rate	$1.25e - 6$
Learning Rate Decay Style	<i>cosine</i>
Train Iterations	3000
Sequence Length	4096
Actor Learning Rate	$1e - 6$
Actor Learning Rate Decay Style	<i>constant</i>
Gamma	1
Lambda for RL	0.95
Mini Batch Size	4
Clip Ratio for RL	0.2

The purpose of QAP is to push the model to begin generating the substantive part of its answer within the prefix window (e.g., the first 128 tokens). Without QAP, the model might use the entire prefix to simply rephrase the question or begin a lengthy preamble, delaying the actual answer. In such cases, the prefix entropy would only reflect the model’s uncertainty about the question’s phrasing, not its uncertainty about the underlying answer, making it a poor proxy for sample difficulty.

As shown in Fig. 5, when QAP is removed, **the Pearson correlation coefficient between prefix-based and full-sequence entropy drops significantly from 0.63 to 0.32**. This confirms that QAP is essential for making the prefix-token entropy a reliable and effective signal for our dynamic curriculum.

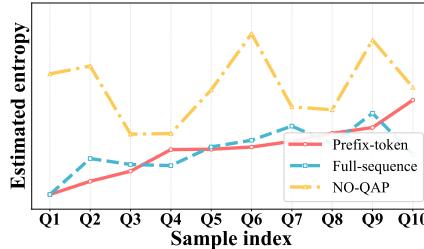


Figure 5: Ablation study on the quick-answer prompting (QAP). **Prefix-token entropy estimation has a strong correlation with the full-length estimation (see blue and red lines in the figure).**

D.2 CURRICULUM DIFFICULTY FROM DIFFERENT CL METHODS

To better understand the behavior of different CL strategies, we analyzed the intrinsic difficulty of the samples selected by each method at the beginning of training. We measured difficulty by evaluating the base model’s accuracy (Qwen3-1.7B before any fine-tuning) on the first batch of samples chosen by each curriculum.

As shown in Table 6, EDCO and AC select the most difficult samples, with the base model achieving very low accuracy on them. However, AC’s extremely low accuracy also shows that answer length fails to indicate the problem difficulty in this setting. In contrast, Length-based and Perplexity-based curricula select comparatively easier samples.

D.3 CURRICULUM ORCHESTRATION WITH MODERATE-ENTROPY WINDOW

To investigate whether selecting the samples with highest entropy arise from nonsensical edge cases or OOD errors, which is harmful to model optimization, we conduct a “Moderate-entropy” experiment. Instead of selecting the top-N highest entropy samples (Top 0-6.67%), we selected a “Mod-

972
 973 Table 6: Base model accuracy on the initial training batch selected by different curriculum strategies.
 974 Lower accuracy indicates a selection of harder, more informative samples for the pre-trained model.

Method	Accuracy
EDCO	20%
Length	38.75%
AC	3.75%
PPL	31.25%

981
 982 Table 7: Experiments with moderate-entropy for sample selection.

	No training	RS	Top 5-11.67%	Top 0-6.67%
Score	40	40.43	44.78	46.96

983
 984 “erate” window (e.g., Top 5-11.67%) and compared the fine-tuning performance. We conducted
 985 experiments on Datacom domain with Qwen3-4B, as the results shown in the Tab. 7.

986 The original EDCO outperform the Moderate-entropy strategy by 2.18%. We attribute this ro-
 987 bustness to the LLM-driven quality filter (Sec. 3.1) in EDCO’s pipeline. Because the filter for
 988 logical coherence and correctness before entropy ranking, “nonsensical” high-entropy outliers are
 989 removed early. Consequently, the remaining high-entropy samples represent legitimate “hard” ex-
 990 amples (frontier knowledge) rather than noise, validating the effectiveness of the reverse curriculum
 991 strategy.