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ABSTRACT

Domain-specific large language models (LLMs), typically developed by fine-
tuning a pre-trained general-purpose LLM on specialized datasets, represent a
significant advancement in applied AI. A common strategy in LLM fine-tuning
is curriculum learning, which pre-orders training samples based on metrics like
difficulty to improve learning efficiency compared to a random sampling strategy.
However, most existing methods for LLM fine-tuning rely on a static curriculum,
designed prior to training, which lacks adaptability to the model’s evolving needs
during fine-tuning. To address this, we propose EDCO, a novel framework based
on two key concepts: inference entropy and dynamic curriculum orchestration.
Inspired by recent findings that maintaining high answer entropy benefits long-
term reasoning gains, EDCO prioritizes samples with high inference entropy in
a continuously adapted curriculum. EDCO integrates three core components: an
efficient entropy estimator that uses prefix tokens to approximate full-sequence
entropy, an entropy-based curriculum generator that selects data points with the
highest inference entropy, and an LLM trainer that optimizes the model on the se-
lected curriculum. Comprehensive experiments in wireless/data communication,
medicine and legal domains, EDCO outperforms common curriculum strategies
for fine-tuning Qwen3-1.7B/4B and Llama3.2-3B models under supervised and
reinforcement learning settings. Furthermore, our efficient entropy estimation re-
duces computational time by 83.5% while maintaining high accuracy.

1 INTRODUCTION

Enabling large language models (LLMs) to perform effectively across diverse domains represents
a hallmark of machine intelligence (OpenAI, 2023; Google, 2023). Research has recently shifted
toward developing domain-specific LLMs, yielding notable applications in fields such as medicine,
law, and communication (Wang et al., 2025; Shu et al., 2024; Zhang et al., 2025b). A common
approach to constructing such models is fine-tuning a general-purpose pre-trained LLM on special-
ized datasets. While conventional fine-tuning typically employs random data sampling, emerging
evidence indicates that the fine-tuning efficacy is constrained by the training curriculum (Chen et al.,
2025), i.e., the order in which training samples are presented. This is particularly critical for fine-
tuning domain LLMs because high-quality domain data is typically scarce and costly.

However, most existing curriculum learning (CL) strategies for LLMs rely on static data ordering,
determined based on heuristic metrics such as difficulty or perplexity (Kim & Lee, 2024). Such fixed
curricula remain unchanged throughout training, failing to adapt to the model’s evolving ability and
knowledge acquisition dynamics, limiting potential gains in both efficiency and final performance.
A notable exception is SEC (Chen et al., 2025), which introduces a learnable curriculum policy for
curriculum selection. Nevertheless, it suffers from instability because of training the curriculum
policy as a bandit problem.

To address these limitations, we propose Entropy-based Dynamic Curriculum Orchestration
(EDCO) method, which continuously adapts the training curriculum to the model’s evolving learn-
ing status. EDCO is grounded in two key ideas: inference entropy as a measure of sample impact,
and dynamic curriculum orchestration. Inspired by recent findings that maintaining high inference
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entropy during training provides beneficial learning signals (Cui et al., 2025), EDCO prioritizes
samples that maximize inference entropy throughout the training process. This ensures that the
model is consistently exposed to data points that challenge its current capabilities and reduce un-
certainty most effectively. The EDCO framework integrates three core technical components: (1)
an efficient entropy estimation module. Due to the computational costs for sweeping over the whole
dataset, EDCO uses only prefix tokens to approximate the full-sequence entropy, clearly reducing
computational overhead; (2) a dynamic curriculum generator that constructs training batches by se-
lecting instances with the highest estimated inference entropy at each training stage; and (3) an LLM
fine-tuning model for optimizing the LLM. We evaluate EDCO extensively under communication,
medical and legal domains. The experimental results demonstrate that EDCO is compatible with
supervised fine-tuning and reinforcement learning-based training methods, consistently improving
the performance of various types of models in domain-specific fine-tuning.

The contributions of this work are summarized as follows. We leverage the critical insight that
entropy collapse hinders model learning to propose EDCO, a dynamic curriculum framework. By
actively orchestrating training samples to maintain high inference entropy, EDCO prevents prema-
ture convergence and sustains effective exploration throughout the fine-tuning process. Besides,
we propose prioritizing high inference entropy samples in a reverse curriculum pattern, departing
from traditional “easy-to-hard” curricula (Kim & Lee, 2024), and introduce a novel efficient entropy
estimation technique that reduces computational overhead while preserving accuracy. Moreover,
we demonstrate extensive validation and broad applicability through experiments across diverse
communication tasks, showing consistent performance gains under supervised and reinforcement
learning-based fine-tuning paradigms.

2 BACKGROUND

2.1 PROBLEM FORMULATION AND LLM FINE-TUNING

Consider we have a domain-specific dataset D = {(x, y)i}Mi=1 and a pre-trained LLMMθ param-
eterized by θ. Here, x is the input prompt (typically a question), and y is the target answer. For
simplicity, we use y ∼ M(·|x) to denote sampling an answer y fromM given the question x. The
primary objective is to optimize the LLM to achieve high answer accuracy on an unseen dataset,
represented as D′. LLMs are typically pre-trained on large-scale corpora to acquire general lin-
guistic capabilities. To adapt them to specific domains or tasks, a common approach is to perform
continual pre-training followed by fine-tuning on domain-specific datasets. Two primary fine-tuning
paradigms are supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT).

In SFT, the model is further trained on a curated dataset of input-output pairs specific to the target
domain. The objective is to minimize the cross-entropy loss between the model’s predictions and
the ground-truth labels:

LSFT = −E(x,y)∼DSFT

[
T∑

t=1

logMθ(yt|y<t, x)

]
, (1)

where x is the input prompt, y is the target sequence, T denotes the sequence length, yt denotes the
i-th token, andMθ is the LLM policy parameterized by θ.

While SFT is effective for instruction following and style adaptation, it relies heavily on the quality
and diversity of the labeled data. In contrast, RLFT leverages RL to optimize the model toward
a reward signal, which can be more flexible and scalable, enabling the model to explore diverse
solutions. The objective in RLFT is to maximize the expected cumulative reward:

JRL(θ) = Ex∼D,y∼Mθ(·|x) [r(y)] , (2)

where r(y) is a reward function that evaluates the quality of the generated sequence y, which can be
obtained in the form of self-evaluation (Pang et al., 2024), rule-based (Mu et al., 2024), or verifiable
(Su et al., 2025) reward. Common RL algorithms for LLMs include Policy Gradient (Sutton &
Barto, 1998), PPO (Schulman et al., 2017), and group-based variants like GRPO (Shao et al., 2024).
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Figure 1: An overview of EDCO method, with three panels: (A) Overall training procedure; (B)
Entropy-based curriculum orchestration module that periodically updates the training curriculum;
(C) Efficient entropy estimation module that calculates the sample entropy.

2.2 THE ROLE OF ENTROPY IN MAINTAINING EXPLORATION

A critical challenge in RLFT is the rapid collapse of the model’s inference entropy, often occurring
within the first few hundred training steps (Cui et al., 2025). This leads to overconfident models
that fail to explore alternative reasoning paths. Empirical studies demonstrate a strong correlation
between entropy collapse and performance saturation, modeled by the relationship:

R = −a exp(H) + b, (3)

where R is the validation performance and H is the LLM’s inference entropy. This suggests that
performance improvements are effectively “traded” for a reduction in entropy, with the performance
upper bound approached as entropy is used up (H → 0).

Therefore, actively maintaining inference entropy is crucial for sustained exploration and improved
generalization. A direct yet promising strategy is prioritizing high-entropy samples during train-
ing, ensuring the model encounters challenging examples that hinder entropy collapse and promote
ongoing learning.

3 METHOD

This section will present our primary contribution, EDCO, a novel training framework that dy-
namically adapts the curriculum to the model’s evolving learning state through periodic inference
entropy estimation. Unlike static curricula that follow a predetermined order, EDCO continuously
re-evaluates the training sample’s significance by calculating the inference entropy on samples with
current model. As the overall framework of EDCO shown in Fig. 1, the core procedure operates
through: (1) applying an LLM-driven quality filter to exclude low-quality samples; (2) comput-
ing inference entropy for the remaining high-quality training samples using our efficient estimation
techniques; (3) selecting the top-N highest-entropy samples from this pool to form the training cur-
riculum for the next phase; (4) fine-tuning the model on this selected subset; and (5) repeating the
process (2-4) until convergence. This dynamic approach is compatible with both supervised fine-
tuning (SFT) and reinforcement learning (RL) paradigms, addressing the critical need for sustained
exploration, particularly in RL where entropy collapse can rapidly hinder progress.
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3.1 LLM-DRIVEN QUALITY FILTER

Before entropy-based sample selection, we apply a crucial quality control step to ensure the in-
tegrity of the dynamic curriculum. In LLM fine-tuning, it is paramount to prevent noisy, ambiguous,
or incorrect samples from polluting the training process. Our LLM-driven filter evaluates each can-
didate sample (x, y) across four dimensions: problem clarity, answer accuracy, logical coherence
and textual format, and is assigned a score. The quality filtering process produces a refined dataset
Dhq. This high-quality subset serves as the foundation for all subsequent entropy calculations and
curriculum generation, ensuring that the model learns from challenging yet correct and well-formed
examples.

3.2 DYNAMIC CURRICULUM ORCHESTRATION VIA INFERENCE ENTROPY

An important motivation for EDCO is that maintaining high inference entropy are more beneficial to
training (Cui et al., 2025), as they represent points of maximum uncertainty encourage the model to
explore the solution. This constitutes a reverse curriculum strategy that prioritizes more challenging
examples rather than following the conventional easy-to-hard progression. EDCO is dynamically
adaptive: as the model learns and its uncertainty distribution shifts, the curriculum is updated to
reflect new challenging frontiers.

Formally, at training interval k, we compute the inference entropy H(y|x; θk) for each sample (x, y)
in the training dataset D, where θk denotes the model parameters at interval k. The entropy for a
given sample is defined as:

H(y|x; θk) = −Ey∼Mθk
(·|x) [logMθk(y|x)] . (4)

Samples are then ranked by their entropy values, and the top N with the highest entropy are selected
to form the curriculum dataset DCD

k for the next interval:

DCD
k = {(x, y) ∈ D | H(y|pquick, x;πθk) ranks in top N}. (5)

The model is subsequently fine-tuned on Dk for a fixed number of steps or until the next curricu-
lum update. This periodic reassessment and selection mechanism ensures the training curriculum
remains aligned with the model’s continuously evolving capabilities, preventing plateaus and main-
taining high learning efficiency throughout the training process.

3.3 EFFICIENT ENTROPY ESTIMATION WITH PREFIX TOKENS

A significant challenge in implementing dynamic curriculum is the computational expense of cal-
culating full-sequence inference entropy across the entire dataset. To address this, we introduce two
innovative techniques that substantially reduce computational overhead while preserving estimation
accuracy.

3.3.1 QUICK-ANSWER PROMPTING

Traditional LLM inference often involves lengthy chain-of-thought reasoning, which is computa-
tionally expensive for entropy estimation. We propose Quick-Answer Prompting (QAP) technique
to modify the input prompt to encourage the model to output the final answer directly without in-
termediate reasoning steps. Specifically, instead of using a standard instruction like “Solve the
following problem step by step”, we use a QAP pquick: “Answer the following question concisely
within three reasoning steps”. By pushing thinking trace towards the answer, the prefix tokens are
more effective in reflecting the model’s understanding of the samples, providing a more efficient and
concentrated entropy signal. We investigate the effect of QAP in Appendix D.1.

3.3.2 PREFIX ENTROPY APPROXIMATION

Calculating the exact entropy over the entire output sequence y requires autoregressively generating
all tokens and remains prohibitively expensive. We propose Prefix Entropy Approximation, which
estimates the full-sequence entropy using only the first few tokens of the output. This approach
is motivated by the observation that the entropy of the initial tokens strongly correlates with the
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Algorithm 1 Entropy-based Dynamic Curriculum Orchestration (EDCO)
Require: The preprocessed high-quality dataset Dhq, initial model parameters θ0, prefix length L.

1: k ← 0
2: while not converged do
3: Dk ← ∅
4: for each sample (x, y) ∈ Dhq do
5: Construct quick-answer prompt x′ ← (pquick, x)

6: Compute prefix entropy H ← −
∑L

t=1 logMθk(yt|y<t, x
′)

7: Add (x, y,H) to Dk

8: end for
9: Sort Dk by entropy in descending order

10: Select top N samples as the curriculum dataset DCD
k

11: Fine-tune θk on DCD
k for N steps using SFT (Eq. (1)) or RLFT (Eq. (2))

12: k ← k + 1
13: end while
14: return θk

uncertainty of the complete generation. Specifically, we approximate the full-sequence entropy as:

H(y|y<t, pquick, x; θk) ≈ −
L∑

t=1

logMθk(yt|y<t, pquick, x), (6)

where L is a small fixed number of prefix tokens (e.g., L = 50). This approximation reduces the
computational complexity from O(T ) to O(L) per sample, where T is the average output length. In
practical, Our experiments demonstrate that this prefix-based entropy maintains a strong rank corre-
lation with the full-sequence entropy, ensuring reliable sample selection while achieving significant
speedups.

3.4 COMPATIBILITY WITH FINE-TUNING PARADIGMS

EDCO is designed to be agnostic to the underlying fine-tuning algorithm, seamlessly integrating
with both SFT and RLFT frameworks. In SFT, the training objective on the selected high-entropy
subset Dk remains the standard cross-entropy loss in Eq. (1). The dynamic curriculum ensures
that the model focuses on samples that are currently most challenging, preventing overfitting to
easy patterns and promoting broader generalization. In RLFT, EDCO addresses the critical issue of
entropy collapse by continuously supplying high-entropy samples that encourage exploration. The
RL objective (Eq. (2)) is applied to the selected subset. By maintaining exposed to high inference
entropy examples, EDCO effectively delays entropy collapse, allowing the model to explore a wider
range of behaviors and discover superior policies.

3.5 ALGORITHM SUMMARY

Algorithm 1 summarizes the complete EDCO training procedure. The process begins with the pre-
processed high-quality dataset Dhq (obtained via the LLM-driven filter described in Sec. 3.1) and
initial model parameters. At each curriculum update interval, we compute the efficient inference
entropy for all samples using quick-answer prompting and prefix entropy approximation. The top N
highest-entropy samples are selected to form the training batch for the subsequent phase. The model
is then fine-tuned on this subset using either SFT or RL objectives. This cycle repeats until train-
ing convergence, ensuring the model is consistently challenged by appropriately difficult examples
throughout the learning process.

4 RELATED WORK

Our work lies at the intersection of domain-specific adaptation for large language models and cur-
riculum learning. Accordingly, we review relevant literature in three areas.

5
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4.1 DOMAIN-SPECIFIC LARGE LANGUAGE MODELS

Recent advances have demonstrated the growing importance of domain-specific LLMs across vari-
ous professional fields where accuracy, terminology precision, and specialized reasoning are critical
requirements (Song et al., 2025; Jeong, 2024; Pal et al., 2024). In medicine, LLMs have evolved
from basic information retrieval tools to sophisticated clinical reasoning systems capable of sup-
porting complex diagnostic processes (Berger et al., 2025). Similarly, researchers in the law domain
have explored numerous LLMs applications for document analysis, case prediction, and legal rea-
soning. However, challenges remain in handling complex domain-specific relationships that general
models often misunderstand (Colombo et al., 2024). The adaptation of general-domain LLMs for
specialized applications in law typically focuses on fine-tuning approaches rather than introduc-
ing new architectural innovations (Chen et al., 2024). In communication systems, recent surveys
have investigated the integration of LLMs across different network domains, including mobile net-
works and related technologies, highlighting both opportunities and challenges in this emerging field
(Boateng et al., 2024). However, these approaches ignore the training curriculum structure, treating
all samples equally valuable regardless of the model’s evolving proficiency.

4.2 UNCERTAINTY-DRIVEN AND ENTROPY-BASED DATA SELECTION

Uncertainty quantification has become a pivotal metric for evaluating LLM reliability and data qual-
ity. Recent works have leveraged entropy and confidence scores for various selection tasks. For
instance, Liang et al. (2025) utilize predictive entropy to identify unreliable responses in medical
VLMs. Similarly, Zhang et al. (2025a) introduce Long-text Uncertainty Quantification to enhance
selective question answering. However, these approaches typically apply uncertainty metrics either
as a static pre-filtering step (Liu et al., 2025) or for inference-time control (Agrawal et al., 2025),
rather than as a dynamic signal to guide the training trajectory. Unlike active learning methods that
focus on selecting unlabeled data for annotation to reduce labeling costs (Xia et al., 2025), EDCO fo-
cuses on training efficiency by dynamically re-weighting existing data based on the model’s real-
time inference entropy, ensuring the model always learns from samples at its capability frontier.

4.3 CURRICULUM LEARNING FOR LARGE LANGUAGE MODELS

CL has emerged as a promising approach to improve the efficiency and effectiveness of LLM train-
ing. Traditional curriculum strategies often follow an “easy-to-hard” progression, starting with
simpler tasks and gradually introducing more complex examples (Kim & Lee, 2024). Some ap-
proaches have utilized data distribution characteristics to determine sample ordering, with Static
DDCL (Chaudhry & Sharma, 2025) representing an innovative method in utilizing data distribution
for curriculum organization. More recently, researchers have begun exploring dynamic curriculum
approaches that adapt during training, such as the framework combining CL with LLM reason-
ing that allows for adaptive adjustment of difficulty levels based on model performance (Zhang
et al., 2024b). To overcome the limitations of static curricula, dynamic data selection strategies
have gained attention. Hübotter et al. (2024) propose active fine-tuning for test-time adaptation,
while Middo (Tang et al., 2025b) introduces a model-informed data optimization loop to enhance
fine-tuning quality. Reverse curriculum approaches (Florensa et al., 2017) in reinforcement learning
have also demonstrated potential by starting with more complex examples and progressing back-
ward. Yet, these methods remain unexplored for domain-specific LLM fine-tuning. Crucially, no
prior work dynamically reorders samples based on the model’s instantaneous uncertainty during
fine-tuning, an essential factor for maximizing learning efficiency in data-constrained domains.

4.4 ENTROPY AS A LEARNING SIGNAL

Entropy has gained attention as a valuable signal for guiding LLM training (Tang et al., 2025a). Mi-
croscopic Strategy on Responses method (Li et al., 2025) has shown that high entropy in token selec-
tion corresponds to greater diversity in training samples, which can make LLM training more robust
and less prone to overfitting. Several studies have explored entropy-based data selection techniques
to effectively reduce the amount of training data required while maintaining performance (Yin et al.,
2024). In RL contexts for LLMs, entropy-based terms have served as robust, self-regularization sig-
nals that guide learning without altering the original gradient flow of the base model (Cheng et al.,
2025). The EDT method (Zhang et al., 2024a) has also investigated dynamic adjustment of LLM

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

decoding behavior based on confidence metrics related to entropy. Vocabulary curriculum methods
(Yu, 2025) have employed entropy-guided expansion strategies to enable models to learn transfer-
able representations more effectively. Despite these advances, the application of inference entropy as
a dynamic curriculum generation mechanism for domain-specific LLM fine-tuning remains largely
underexplored, particularly in contexts where SFT and RL training are required.

5 EXPERIMENT

In this section, we conduct extensive experiments to verify the effectiveness of EDCO on domain-
specific LLM fine-tuning. We conduct experiments across two challenging communication domains,
Data Communication and Wireless Communication, to answer the following key research questions:
(1) How does EDCO perform compared to existing curriculum learning methods for LLM fine-
tuning (Sec. 5.2)? (2) What is the underlying mechanism of dynamic curriculum orchestration (Sec.
5.3)? (3) How effective and efficient is the proposed entropy estimation module (Sec. 5.4)? (4) How
does the prefix token length affect entropy estimation accuracy (Sec. 5.4)?

5.1 EXPERIMENTAL SETTING

Datasets and domains. We evaluate EDCO mainly on two challenging communication domains:
Data Communication (Datacom) and Wireless Communication (Wireless). We construct a special-
ized dataset for each domain comprising 20,000 question-answer pairs (filtered to 12,000 high-
quality samples) synthesized from a diverse corpus of product documentation, technical solutions,
and domain knowledge bases. The datasets encompass diverse question types, including single-
choice, multiple-choice, and open-ended QA, covering fundamental principles, product concepts,
terminology understanding, and multi-step reasoning tasks. These training dataset could be utilized
for SFT and RLFT. All methods are evaluated on a held-out test set of 230 challenging, unseen prob-
lems from the same domains. Additionally, we involve datasets from medicine (MedQA (Jin et al.,
2021)) and legal (JEC-QA (Zhong et al., 2020)) domains to provide more comprehensive evaluation.
We provide more details about the dataset and domain description in Appendix C.1.

Baseline for comparison. We compare EDCO against representative baselines with both static and
dynamic curriculum learning strategies: (1) Random Sampling (RS): The standard, curriculum-
free approach for LLM fine-tuning; (2) Length-based Curriculum (Length): A simple heuristic
ordering samples by input sequence length (easy-to-hard based on brevity). (3) Answer Complexity
(AC): A heuristic that orders samples by the number of sentences in the answer, representing reason-
ing depth. (4) Perplexity-based Curriculum (PPL): A classic model-based approach representing
the ”easy-to-hard” paradigm, where difficulty is determined by a pre-trained model’s perplexity (Hu
et al., 2024). (5) Self-evolving curriculum (SEC) (Chen et al., 2025): Learn a curriculum policy
with UCB algorithm (Auer, 2002) to select the training batch. (6) Dynamic-PPL: The dynamic
version of PPL method, which updates the curriculum with same interval as EDCO.

Implementation details. All experiments are implemented using the MindspeedRL framework
(Feng et al., 2025). We use Qwen3-1.7B and Qwen3-4B (Qwen, 2025) as the base LLMs to demon-
strate applicability across model scales. For RLFT, we employ the GRPO algorithm (Shao et al.,
2024) to train the language models. The rewards are generated by Deepseek-V3 (DeepSeek-AI,
2024) performing automated verification of model responses against ground-truth answers for wire-
less and datacom domains, and generated from rule-based verification for medical and legal do-
mains. All experiments are conducted on a computing cluster with 256 KUNPENG 920 CPU cores
and 8 Ascend 910B3 NPUs. Appendix C.4 lists the hyperparameters used for experiments.

5.2 MAIN RESULTS FOR RLFT AND SFT

Results for supervised fine-tuning. Fig. 2(A, B) shows SFT results with Qwen3-4B on commu-
nication domains. EDCO also achieves the best performance with 33.7% (Wireless) and 36.3%
(Datacom) accuracy. Notably, EDCO outperforming PPL methods by 2.0% in Wireless and 3.3% in
Datacom, demonstrating the advantage of EDCO over other model-involved CL method. Besides,
several “easy-to-hard” baselines (Length, AC, PPL) fail to improve upon or even degrade perfor-
mance compared to the base model on the Wireless dataset. This reveals a critical pitfall: a poorly
designed static curriculum can be actively detrimental to learning, especially in specialized domains
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Figure 2: Performance of various fine-tuning strategies on communication domains. The reported
results represent the answer accuracy, averaged over three evaluations.

where syntactic simplicity does not equate to conceptual ease. For instance, the poor performance
of the AC method in Datacom SFT (28.3%) highlights how a static focus on syntactically complex
answers fails to adapt to the model’s growing knowledge, leading it to struggle with samples that
remain too difficult repeatedly. These results prove that dynamic curriculum orchestration is a more
robust and effective strategy across different training paradigms.

Results for reinforcement learning fine-tuning. The RLFT setting, shown in Fig. 2(C, D) with
the Qwen3-1.7B model, presents a more challenging fine-tuning landscape. In the Datacom domain,
most methods struggle to surpass the base model’s performance, highlighting the intrinsic difficulty
of RL-based alignment in this specialized area. We hypothesis that this is due to there lacks a pre-
training step on the domain-specific data to insert relevant knowledge. Even so, EDCO emerges as
the top-performing method among all curriculum strategies, demonstrating its robustness even under
challenging conditions. On the Wireless dataset, while all methods performed similarly, EDCO re-
mained competitive. The inconsistent performance of the PPL-based curriculum, which underper-
forms even random sampling in the Datacom domain (28.7% vs. 30.9%), further reinforces the
unreliability of static difficulty metrics. In contrast, the relative success of EDCO in this demand-
ing RLFT scenario aligns with our central hypothesis: maintaining high inference entropy provides
more robust and effective learning signals, especially when reward signals are sparse or complex.

Table 1: Performance comparison on medical and legal domains using Llama3.2-3B.

Dataset No Training RS Length AC PPL EDCO

MedQA 32.1 32.9 35.1 32.4 24.6 36.7
JEC-QA 16.2 16.2 10.5 14.6 12.4 17.4

Results on medical and legal domains. To demonstrate the generalizability of EDCO beyond
telecommunications, we extended our evaluation to two qualitatively different domains using the
Llama3.2-3B model (Grattafiori et al., 2024). As the result shown in Tab. 1, EDCO consistently
outperforms RS and static curricula (Length, AC, PPL) in these new domains. Notably, on MedQA,
EDCO achieves 36.7% accuracy compared to 32.9% for RS and 24.6% for PPL. Similarly, on JEC-
QA, EDCO leads with 17.4%. These results validate that prioritizing high inference entropy is a
fundamental principle for efficient fine-tuning across diverse fields and is effective across different
model architectures (Qwen vs. Llama) and sizes (1.7B to 4B).

Comparison with dynamic baselines. To further assess the competitiveness of EDCO at the state
of the art, we compared it against two advanced dynamic curriculum strategies on the Datacom do-
main using the Qwen3-4B model: SEC and Dynamic-PPL. As shown in Tab. 2, EDCO significantly
outperforms Dynamic-PPL (47.0% vs. 41.3%). This indicates that the frequency of updates alone
is insufficient; the metric used for selection is critical. While perplexity often fails to capture the
learning value for fine-tuning, inference entropy effectively identifies the model’s capability fron-
tier. Furthermore, EDCO outperforms the bandit-based SEC method (34.78%), which suffered from
instability during the policy learning phase in this setting.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison against learnable and dynamic baselines on the Datacom domain (Qwen3-4B).
EDCO outperforms both the bandit-based SEC and the dynamic perplexity strategy.

Domain No Training RS SEC Dynamic-PPL EDCO

Datacom 40.0 40.4 34.78 41.3 47.0
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(a) Model entropy during training
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(b) New samples at each training interval

Figure 3: Analysis of the training process of EDCO method. (A) The model’s inference entropy
during the training. (B) The number of first-time samples added in each training interval.

5.3 ANALYSIS OF THE TRAINING PROCESS

The previous subsection presents that EDCO achieves better performance for domain LLM fine-
tuning. Now we investigate the mechanisms behind EDCO’s superior performance through detailed
training process analysis.

Entropy change during the training process. The motivation behind EDCO is to maintain high
inference entropy during the training. Fig. 3(a) validates this principle empirically. Specifically,
during the training process, we record the model’s inference entropy. While the model trained with
random sampling sees its entropy decay rapidly, EDCO successfully sustains a high-entropy, high-
challenge learning environment throughout training. This demonstrates that our dynamic selection
process prevents the model from settling into a low-uncertainty state, constantly pushing it to refine
its understanding of more complex or nuanced samples. This sustained challenge directly correlates
with its superior final performance.

Curriculum selection dynamics. Fig. 3(b) visualizes the composition of the training curriculum
at each update interval. The numbers in the figure stand for the number of samples that have never
been selected for training previously. The analysis reveals that the curriculum is constantly evolving.
At each interval, EDCO strategically selects a mix of entirely new, high-entropy samples alongside
previously seen samples that remain challenging (i.e., still exhibit high entropy) for the model’s
current state. This dynamic ensures that complex concepts are not prematurely discarded but are
revisited until mastered, while simultaneously introducing new challenges to broaden the model’s
knowledge. This adaptive ”re-challenge” mechanism is a key differentiator from static curricula,
which follow a rigid, one-pass sequence.

5.4 EFFECTIVENESS OF ENTROPY ESTIMATION & ABLATION STUDY

We further verify the effectiveness of the entropy estimation in EDCO through two dimensions:
estimation accuracy and computational efficiency.

Accuracy of Prefix-based Estimation. Fig. 4(a) compares the entropy calculated using only a
128-token prefix against the entropy from the full sequence. The results reveal a strong positive cor-
relation, with a Pearson coefficient of 0.63. This result is significant: it confirms that the prefix-based
approximation serves as a reliable alternative for full-sequence entropy, validating our approach to
reduce computational cost without decreasing the integrity of the curriculum signal.

Computational efficiency. As detailed in Tab. 3, the efficiency gains of prefix-based estimation are
substantial: it reduces the per-sample estimation time from 2.24s to just 0.37s—an 83.5% reduc-
tion in computational overhead. This dramatic speedup transforms dynamic curriculum generation
from a computationally prohibitive concept into a practical, scalable strategy. Furthermore, when
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Figure 4: Analysis of the efficient entropy estimation module in EDCO. (A) Comparison of entropy
estimation using a 128-token prefix versus the full sequence. (B) Ablation study on the prefix length.
To better visualize data trends, the sample indices are arranged in ascending order of the entropy
estimated with the 128-token prefix. Ablation study on quick-answer prompt is in Appendix D.1.

parallelized across 8 NPUs, the estimation time plummets to 0.04 seconds per sample, making near-
real-time curriculum updates feasible even for large datasets. Note that the wall-clock time for
EDCO’s RL training for 500 steps is 33.58 hours, compared to RS’s 30.67 hours (1̃0% difference).
The overhead of entropy estimation is dwarfed by the RL training process itself. Thus, the entropy
estimation introduce acceptable overhead for the training.

Table 3: Computational efficiency of entropy estimation methods (seconds per sample).
Method Single process Parallel with 8 cards
Full-sequence 2.24 0.24
Prefix-based (Ours) 0.37 0.04

Effect of prefix token number. We conduct an ablation study on prefix token length to provide prac-
tical implementation guidelines, with results in Fig. 4(b). The analysis shows that while a very short
prefix (e.g., 20 tokens) can lead to unstable estimations, the entropy trends stabilize significantly
for prefixes of 50 tokens or more. This indicates that a prefix length of 50-128 tokens strikes an
optimal balance between estimation stability and computational efficiency, offering a robust default
configuration for future applications.

6 CONCLUSION

This work addresses the challenge of efficiently specializing LLMs for specific domains, where data
scarcity demands maximally effective fine-tuning strategies. We propose EDCO, a novel framework
that introduces a dynamic, entropy-driven curriculum to continuously align the training process with
the model’s evolving learning state. The key contribution lies in shifting away from static curric-
ula by prioritizing samples with maximum inference entropy, which is efficiently implemented via
quick-answer prompting and prefix-based entropy approximation. Extensive experiments in com-
munication domains demonstrate that EDCO consistently enhances performance under both SFT
and RLFT paradigms. However, there are still some limitations. First, the efficiency of entropy es-
timation, while improved from prefix token approximation, still introduces periodic computational
overhead compared to standard fine-tuning. Future work could explore more lightweight techniques
to predict sample significance without full forward passes. Second, the current method operates on
a fixed update interval for curriculum orchestration. An adaptive scheduling mechanism, triggered
by performance threshold or entropy convergence, could further optimize the training dynamics. Fi-
nally, while we demonstrate effectiveness in communication tasks, the generalizability of EDCO to
a wider array of domains (e.g., low-resource languages or highly technical scientific fields) war-
rants further validation. We believe these interesting directions are worth further exploration for
developing more powerful and efficient domain-specific LLMs.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our work introduces a method for improving the efficiency
of fine-tuning LLMs on domain-specific data. The datasets used in our experiments (from the com-
munications domain) were based on public technical standards and synthetic data, containing no
personal information. However, the ethical implications of any model built with our method are
contingent on the underlying data and its application. Practitioners should ensure their training data
is responsibly sourced and mitigate potential biases. The technique itself is neutral but could be
misused; we therefore advocate for its responsible application in alignment with domain-specific
ethical guidelines.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made substantial efforts to provide all necessary
resources and implementation details. We openly the implementation details used in our experi-
ments in Sec. 5. Additionally, the full source code and curriculum generation scripts for EDCO will
be made publicly available upon acceptance. Detailed experimental settings, including dataset de-
scriptions, evaluation protocols, hyperparameters, and prompts are provided in the appendix. We
believe these materials will facilitate the replication of our results and support future research in
dynamic curriculum learning for domain-specific LLM fine-tuning.
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A THE USE OF LARGE LANGUAGE MODELS

In the research presented in this paper, LLMs are utilized for two main purposes:

• Experimental core: The core contribution of this work involves the fine-tuning of LLMs.
Specifically, we developed and evaluated our proposed dynamic curriculum learning frame-
work, EDCO, by fine-tuning the general-purpose Qwen3-1.7B and Qwen3-4B models on
specialized datasets from the communication domain.

• Writing assistance: An LLM (not Qwen3) was used solely as a tool for polishing the
language of this manuscript. It assisted in improving grammar, sentence fluency, and word
choice. The model did not contribute to the research ideation, methodology, experimental
design, or analysis. The authors take full responsibility for the entire scientific content,
findings, and assertions of the paper.

B DISCUSSIONS ABOUT REVERSE CURRICULUM LEARNING

This work’s prioritization of high-entropy samples represents a departure from the traditional ”easy-
to-hard” CL paradigm, effectively creating a ”reverse curriculum.” This section provides additional
justification for this choice in the context of fine-tuning pre-trained LLMs within specific domains.

Traditional CL is inspired by human’s education process, where a learner starts with foundational
concepts and gradually progresses to more complex topics. This is effective when training a model
from scratch, as it stabilizes the initial learning stages and prevents divergence caused by overly
challenging samples.

However, fine-tuning a pre-trained LLM presents a fundamentally different scenario. The goal of
fine-tuning is not to teach the model basic concepts but to specialize its existing knowledge for a
specific domain. In this context:

• ”Easy” samples offer diminishing returns. Samples that the model can already answer
with low uncertainty (low entropy) are largely redundant with its pre-existing knowledge.
Training on them provides a weak learning signal (i.e., small gradients) and does little to
refine its domain-specific abilities.

• ”Hard” samples are most informative. Samples with high inference entropy are precisely
those where the model’s general knowledge is insufficient or conflicts with domain-specific
nuances. These are the points of highest uncertainty and, therefore, the greatest potential
for information gain. By focusing on these samples, EDCO ensures that each training step
is maximally efficient at reducing the model’s domain-specific predictive uncertainty.

Thus, for domain specialization, a dynamic curriculum that consistently presents the most challeng-
ing material, as measured by the model’s current state, is more effective than a static, easy-to-hard
progression. EDCO’s approach ensures the model is perpetually operating at the frontier of its com-
petence, accelerating its adaptation to the target domain.

C MORE EXPERIMENT DETAILS

C.1 MORE DETAILS ABOUT THE EVALUATION DOMAINS.

Wireless. The wireless domain is a key branch of information technology, focusing on the research,
development, and application of wireless communication technologies. This domain covers a variety
of technologies and products, such as 5G, 4G, Wi-Fi, Bluetooth, and NFC, which together build a
modern wireless communication infrastructure that supports a variety of application scenarios from
mobile communications and the IoT (Internet of Things) to smart homes. 5G technology provides
higher data transmission rates, lower latency, and higher connection density, supporting large-scale
IoT applications and HD video transmission. Wi-Fi technology is widely used in homes, offices,
and public places to provide high-speed wireless network connections.

Datacom. The data communication domain is a vital branch of information technology, focused on
the efficient and secure transmission of data. This domain includes various technologies and prod-
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ucts, such as network devices like routers, switches, firewalls, and associated software solutions.
Together, these technologies and products form the foundation of modern network infrastructure,
supporting a wide array of applications, from home broadband connections to enterprise-level data
centers. The field of data communication is constantly evolving, with emerging technologies like
SDN (Software-Defined Networking) and NFV (Network Functions Virtualization) driving trans-
formations in network architecture, enhancing flexibility and manageability.

Evaluation protocol. To develop LLM tailored for the communication field and enhance their per-
formance and applicability in the datacom and wireless domains, we construct SFT datasets for
both domains. Leveraging a rich set of original corpora, including product documents and solu-
tions from the datacom and wireless domain, we use the LLM synthesis method to generate 20,000
data samples for each domain. These datasets encompass various formats, including single-choice,
multiple-choice, and True/False questions, addressing training requirements such as basic principles,
product concepts, terminology understanding, and multi-point knowledge reasoning.

In addition, in order to better evaluate the model capability, high-quality evaluation datasets of two
domains are constructed. In the first step, the original corpus is collected and obtained through
manual quality inspection. The second step is to use the LLM to synthesize objective questions such
as selection and judgment based on these corpus. In the third step, the LLM and manual quality
inspection are used to review and filter the synthesized objective questions from key dimensions
such as question integrity and answer accuracy. Finally, 230 evaluation data samples are constructed
for each domain.

C.2 PROMPTS USED IN EXPERIMENTS

We provide the prompts used in our experiments as follow.

• Prompts for quick answer: Please answer the following question in no more than three
sentences. If necessary reasoning is required, please minimize the reasoning process as
much as possible. Problems: \{problems\}

• Prompts for Single-choice question: For the following single-choice question, there is
only one correct answer. Please analyze the questions and answer options and place the
correct option number in \boxed{}, for example, \boxed{A}.

• Prompts for Multi-choice question: For the following multiple-choice question, there are
only multiple correct answers. Please analyze the questions and answer options and place
the correct option numbers in \boxed{}, for example, \boxed{A,B,D}.

• Prompts for True/False question: For the following question, analyze whether the de-
scription in the questions is correct or incorrect, and put the final answer in \boxed{}.
If the answer is correct, output \boxed{correct}. If the answer is incorrect, output
\boxed{error}.

C.3 EXAMPLES OF THE DATASET

Tab. C.3 presents the examples from the datasets used for training and evaluation in our experiments.

C.4 HYPERPARAMETERS

The hyper-parameters for implementing EDCO and experiments are presented in Tab. 5. When
implementing baseline methods, we use the same hyper-parameters as EDCO.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ABLATION STUDY ON QUICK-ANSWER PROMPTING

As shown in Sec. 5.4, our prefix-token entropy estimation correlates well with full-sequence es-
timation. This accuracy is critically supported by the use of Quick-answer Prompting (QAP). We
conducted an ablation study to demonstrate its importance.
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Domain Example question Target answer
Wireless-training ”What should I do if the DSP GTP-

PATH command output shows that
the GTP path is in the DEETECT
state when the alarm is generated?”

”. . . 1.First, check whether the
peer GSN address specified
in the alarm information is
valid. . . ;2.Next, execute the
PING command to check if
the link is normal. . . ;3.Confirm
whether the peer GSN can
respond to ECHO messages. . . ”

Wireless-testing ”During the deployment and opera-
tion of the LMT, the LMT is forcibly
connected in HTTPS or WSS mode
to ensure secure connection. In this
mode, digital certificates are required
for authentication. In addition, . . . In
such a deployment scenario, if the
MAE of a carrier is set to HTTP
login mode and the LMT is set to
forcible HTTPS connection mode,
what will happen? A. . . . B. If the
LMT connection mode is set to Force
HTTPS, MAE proxy login fails to ac-
cess the LMT due to protocol mis-
match. The connection cannot be es-
tablished even if the OM channel is
normal. C. . . . D. . . . ”

”The answer is ”

Datacom-training ”When configuring the Segment
VXLAN feature, how can you enable
EVPN as the VXLAN control plane
on Transit Leaf1 and Transit Leaf2,
and configure BGP EVPN peer rela-
tionships?”

”. . . 1.Enter the BGP view
or BGP multi-instance
view. . . ;2.Enter the BGP-
EVPN address family
view. . . ;3.Configure the split
group for BGP EVPN peers
(groups). . . ;4.Enable the func-
tion to mark routes received
from BGP EVPN peers as
re-originated. . . ”

Datacom-testing ”. . . The device supports creating
subinterfaces on Layer 2 Ethernet
and Layer 2 Eth-Trunk interfaces for
VLAN termination to achieve inter-
VLAN forwarding. However, the
USG9500 series devices do not sup-
port creating subinterfaces on these
two types of interfaces.”

”The answer is error”

Table 4: Examples from the datasets used in our experiments.
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Table 5: Hyper-parameters for training EDCO and baselines.
Hyper-parameters Value
Prefix token Num. 128
Epoch Num. 2
Batch Size 8
Learning Rate 1.25e− 6
Learning Rate Decay Style cosine
Train Iterations 3000
Sequence Length 4096
Actor Learning Rate 1e− 6
Actor Learning Rate Decay Style constant
Gamma 1
Lambda for RL 0.95
Mini Batch Size 4
Clip Ratio for RL 0.2

The purpose of QAP is to push the model to begin generating the substantive part of its answer within
the prefix window (e.g., the first 128 tokens). Without QAP, the model might use the entire prefix to
simply rephrase the question or begin a lengthy preamble, delaying the actual answer. In such cases,
the prefix entropy would only reflect the model’s uncertainty about the question’s phrasing, not its
uncertainty about the underlying answer, making it a poor proxy for sample difficulty.

As shown in Fig. 5, when QAP is removed, the Pearson correlation coefficient between prefix-
based and full-sequence entropy drops significantly from 0.63 to 0.32. This confirms that QAP
is essential for making the prefix-token entropy a reliable and effective signal for our dynamic cur-
riculum.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Sample index

E
st
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Prefix-token
Full-sequence
NO-QAP

Figure 5: Ablation study on the quick-answer prompting (QAP). Prefix-token entropy estimation
has a strong correlation with the full-length estimation (see blue and red lines in the figure).

D.2 CURRICULUM DIFFICULTY FROM DIFFERENT CL METHODS

To better understand the behavior of different CL strategies, we analyzed the intrinsic difficulty of the
samples selected by each method at the beginning of training. We measured difficulty by evaluating
the base model’s accuracy (Qwen3-1.7B before any fine-tuning) on the first batch of samples chosen
by each curriculum.

As shown in Table 6, EDCO and AC select the most difficult samples, with the base model achieving
very low accuracy on them. However, AC’s extremely low accuracy also shows that answer length
fails to indicate the problem difficulty in this setting. In contrast, Length-based and Perplexity-based
curricula select comparatively easier samples.

D.3 CURRICULUM ORCHESTRATION WITH MODERATE-ENTROPY WINDOW

To investigate whether selecting the samples with highest entropy arise from nonsensical edge cases
or OOD errors, which is harmful to model optimization, we conduct a ”Moderate-entropy” experi-
ment. Instead of selecting the top-N highest entropy samples (Top 0-6.67%), we selected a ”Mod-
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Table 6: Base model accuracy on the initial training batch selected by different curriculum strategies.
Lower accuracy indicates a selection of harder, more informative samples for the pre-trained model.

Method Accuracy
EDCO 20%
Length 38.75%
AC 3.75%
PPL 31.25%

Table 7: Experiments with moderate-entropy for sample selection.
No training RS Top 5-11.67% Top 0-6.67%

Score 40 40.43 44.78 46.96

erate” window (e.g., Top 5-11.67%) and compared the fine-tuning performance. We conducted
experiments on Datacom domain with Qwen3-4B, as the results shown in the Tab. 7.

The original EDCO outperform the Moderate-entropy strategy by 2.18%. We attribute this ro-
bustness to the LLM-driven quality filter (Sec. 3.1) in EDCO’s pipeline. Because the filter for
logical coherence and correctness before entropy ranking, ”nonsensical” high-entropy outliers are
removed early. Consequently, the remaining high-entropy samples represent legitimate ”hard” ex-
amples (frontier knowledge) rather than noise, validating the effectiveness of the reverse curriculum
strategy.
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