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ABSTRACT

We introduce CriticSMC, a new algorithm for planning as inference built from
a composition of sequential Monte Carlo with learned Soft-Q function heuristic
factors. These heuristic factors, obtained from parametric approximations of
the marginal likelihood ahead, more effectively guide SMC towards the desired
target distribution, which is particularly helpful for planning in environments
with hard constraints placed sparsely in time. Compared with previous work,
we modify the placement of such heuristic factors, which allows us to cheaply
propose and evaluate large numbers of putative action particles, greatly increasing
inference and planning efficiency. CriticSMC is compatible with informative
priors, whose density function need not be known, and can be used as a model-free
control algorithm. Our experiments on collision avoidance in a high-dimensional
simulated driving task show that CriticSMC significantly reduces collision rates
at a low computational cost while maintaining realism and diversity of driving
behaviors across vehicles and environment scenarios.

1 INTRODUCTION

Sequential Monte Carlo (SMC) (Gordon et al., 1993) is a popular, highly customizable inference
algorithm that is well suited to posterior inference in state-space models (Arulampalam et al., 2002;
Andrieu et al., 2004; Cappe et al., 2007). SMC is a form of importance sampling, that breaks down a
high-dimensional sampling problem into a sequence of low-dimensional ones, making them tractable
through repeated application of resampling. SMC in practice requires informative observations at
each time step to be efficient when a finite number of particles is used. When observations are sparse,
SMC loses its typical advantages and needs to be augmented with particle smoothing and backward
messages to retain good performance (Kitagawa, 1994; Moral et al., 2009; Douc et al., 2011).

SMC can be applied to planning problems using the planning-as-inference framework (Ziebart
et al., 2010; Neumann, 2011; Rawlik et al., 2012; Kappen et al., 2012; Levine, 2018; Abdolmaleki
et al., 2018; Lavington et al., 2021). In this paper we are interested in solving planning problems
with sparse, hard constraints, such as avoiding collisions while driving. In this setting, such a
constraint is not violated until the collision occurs, but braking needs to occur well in advance
to avoid it. Figure 1 demonstrates on a toy example how SMC requires an excessive number of
particles to solve such problems. In the language of optimal control (OC) and reinforcement learning
(RL), collision avoidance is a sparse reward problem. In this setting, parametric estimators of
future rewards (Nair et al., 2018; Riedmiller et al., 2018) are learned in order to alleviate the credit
assignment problem (Sutton & Barto, 2018; Dulac-Arnold et al., 2021) and facilitate efficient learning.

In this paper we propose a novel formulation of SMC, called CriticSMC, where a learned critic,
inspired by Q-functions in RL (Sutton & Barto, 2018), is used as a heuristic factor (Stuhlmüller
et al., 2015) in SMC to ameliorate the problem of sparse observations. We borrow from the recent
advances in deep-RL (Haarnoja et al., 2018a; Hessel et al., 2018) to learn a critic which approximates
future likelihoods in a parametric form. While similar ideas have been proposed in the past (Rawlik
et al., 2012; Piché et al., 2019), in this paper we instead suggest (1) using soft Q-functions (Rawlik
et al., 2012; Chan et al., 2021; Lavington et al., 2021) as heuristic factors, and (2) choosing the
placement of such factors to allow for efficient exploration of action-space through the use of putative
particles (Fearnhead, 2004). Additionally, we design CriticSMC to be compatible with informative
prior distributions, which may not include an associated (known) log-density function. In planning
contexts, such priors can specify additional requirements that may be difficult to define via rewards,
such as maintaining human-like driving behavior.
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(a) SMC (10 particles) (b) SMC (10k particles) (c) CriticSMC (10 particles)

Figure 1: Illustration of the difference between CriticSMC and SMC in a toy environment in which a
green ego agent is trying to reach the red goal without being hit by any of the three chasing adversaries.
All plots show overlaid samples of environment trajectories conditioned on the ego agent achieving
its goal. While SMC will asymptotically explore the whole space of environment trajectories,
CriticSMC’s method of using the critic as a heuristic within SMC encourages computationally
efficient discovery of diverse high reward trajectories. SMC with a small number of particles fails
here because the reward is sparse and the ego agent’s prior behavioral policy assigns low probability
to trajectories that avoid the barrier and the other agents.

We show experimentally that CriticSMC is able to refine the policy of a foundation (Bommasani
et al., 2021) autonomous-driving behavior model to take actions that produce significantly fewer
collisions while retaining key behavioral distribution characteristics of the foundation model. This is
important not only for the eventual goal of learning complete autonomous driving policies (Jain et al.,
2021; Hawke et al., 2021), but also immediately for constructing realistic infraction-free simulations
to be employed by autonomous vehicle controllers (Suo et al., 2021; Bergamini et al., 2021; Ścibior
et al., 2021; Lioutas et al., 2022) for training and testing. Planning, either in simulation or real world,
requires a model of the world (Ha & Schmidhuber, 2018). While CriticSMC can act as a planner
in this context, we show that it can just as easily be used for model-free online control without a
world model. This is done by densely sampling putative action particles and using the critic to select
amongst these sampled actions. We also provide ablation studies which demonstrate that the two
key components of CriticSMC, namely the use of the soft Q-functions and putative action particles,
significantly improve performance over relevant baselines with similar computational resources.

2 PRELIMINARIES

Since we are primarily concerned with planning problems, we work within the framework of Markov
decision processes (MDPs). An MDP M = {S,A, f,P0,R,Π} is defined by a set of states
s ∈ S, actions a ∈ A, reward function r(s, a, s′) ∈ R, deterministic transition dynamics function
f(s, a), initial state distribution p0(s) ∈ P0, and policy distribution π(a|s) ∈ Π. Trajectories are
generated by first sampling from the initial state distribution s1 ∼ p0, then sequentially sampling
from the policy at ∼ π(at|st) and then the transition dynamics st+1 ← f(st, at) for T -1 time
steps. Execution of this stochastic process produces a trajectory τ = {(s1, a1), . . . , (sT , aT )} ∼ pπ ,
which is then scored using the reward function r. The goal in RL and OC is to produce a policy
π∗ = argmaxπ Epπ [

∑T
t=1 r(st, at, st+1)]. We now relate this stochastic process to inference.

2.1 REINFORCEMENT LEARNING AS INFERENCE

RL-as-inference (RLAI) considers the relationship between RL and approximate posterior inference
to produce a class of divergence minimization algorithms able to estimate the optimal RL policy. The
posterior we target is defined by a set of observed random variables O1:T and latent random variables
τ1:T . Here, O defines “optimality” random variables which are Bernoulli distributed with probability
proportional to exponentiated reward values (Ziebart et al., 2010; Neumann, 2011; Levine, 2018).
They determine whether an individual tuple τt = {st, at, st+1} is optimal (Ot = 1) or sub-optimal
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(c) CriticSMC version

Figure 2: Main loop of SMC without heuristic factors (left), with naive heuristic factors ht (middle)
and with the placement we use in CriticSMC (right). We use ŵ for pre-resampling weights and w̄

for post-resampling weights and we elide the normalizing factor Wt =
∑N
i=1 ŵ

i
t for clarity. The

placement of ht in CriticSMC crucially enables using putative action particles in Section 3.3.

(Ot = 0). We replace Ot = 1 with Ot in the remainder of the paper for conciseness. While we can
rarely compute the posterior p(s1:T , a1:T |O1:T ) in closed form, we assume the joint distribution

p(s1:T , a1:T , O1:T ) = p0(s1)

T∏
t=1

p(Ot|st, at, st+1)δf(st,at)(st+1)π(at|st), (1)

where δf(st,at) is a Dirac measure centered on f(st, at). This joint distribution can be used following
standard procedures from variational inference to learn or estimate the posterior distribution of
interest (Kingma & Welling, 2014). How close the estimated policy is to the optimal policy often
depends upon the chosen reward surface, the prior distribution over actions, and chosen policy
distribution class. Generally, the prior is chosen to contain minimal information in order to maximize
the entropy of the resulting approximate posterior distribution (Ziebart et al., 2010; Haarnoja et al.,
2018a). Contrary to classical RL, we are interested in using informative priors whose attributes we
want to preserve while maximizing the expected reward ahead. In order to manage this trade-off, we
now consider more general inference algorithms for state-space models.

2.2 SEQUENTIAL MONTE-CARLO

SMC (Gordon et al., 1993) is a popular algorithm that can be used to sample from the posterior
distribution in non-linear state-space models and HMMs. In RLAI, SMC sequentially approximates
the filtering distributions p(st, at|O1:t) for t ∈ 1 . . . T using a collection of weighted samples called
particles. The crucial resampling step adaptively focuses computation on the most promising particles
while still producing an unbiased estimation of the marginal likelihood (Moral, 2004; Chopin et al.,
2012; Pitt et al., 2012; Naesseth et al., 2014; Le, 2017). The primary sampling loop for SMC in a
Markov decision process is provided in Figure 2a, and proceeds by sampling an action at given a state
st, generating the next state st+1st+1st+1 using the environment or a model of the world, computing a weight
ŵt using the reward function rrr, and resampling from this particle population. The post-resampling
weights w̄t are assumed to be uniform for simplicity but non-uniform resampling schemes exist
(Fearnhead & Clifford, 2003). Here, each timestep only performs simple importance sampling linking
the posterior p(st, at|O1:t) to p(st+1, at+1|O1:t+1). When the observed likelihood information is
insufficient, the particles may fail to cover the portion of the space required to approximate the next
posterior timestep. For example, if all current particles have the vehicle moving at high speed towards
the obstacle, it may be too late to brake and causing SMC to erroneously conclude that a collision
was inevitable, while in fact it just did not explore braking actions earlier on in time.

As shown by Stuhlmüller et al. (2015), we can introduce arbitrary heuristic factors hththt into SMC
before resampling, as shown in Figure 2b, mitigating the insufficient observed likelihood information.
ht can be a function of anything sampled up to the point where it is introduced, does not alter the
asymptotic behavior of SMC, and can dramatically improve finite sample efficiency if chosen carefully.
In this setting, the optimal choice for ht is the marginal log-likelihood ahead

∑T
t log p(Ot:T |st, at),
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which is typically intractable to compute but can be approximated. In the context of avoiding
collisions, this term estimates the likelihood of future collisions from a given state. A typical
application of such heuristic factors in RLAI, as given by Piché et al. (2019), is shown in Figure 2b.

3 CRITICSMC

Historically, heuristic factors in SMC are placed alongside the reward, which is computed by taking a
single step in the environment (Figure 2b). The crucial issue with this methodology is that updating
weights requires computing the next state (Line 3 in Figure 2b), which can both be expensive in
complex simulators, and would prevent the use in online control without a world model. In order
to avoid this issue while maintaining the advantages of SMC with heuristic factors, we propose to
score particles using only the heuristic factor, resample, then compute the next state and the reward,
as shown in Figure 2c. We choose ht which only depends on the previous state and actions observed
and not the future state, so that we can sample and score a significantly larger number of so-called
putative action particles, thereby increasing the likelihood of sampling particles with a large ht. In
this section we first show how to construct such ht, then how to learn an approximation to it, and
finally how to take full advantage of this sampling procedure using putative action particles.

3.1 FUTURE LIKELIHOODS AS HEURISTIC FACTORS

We consider environments where planning is needed to satisfy certain hard constraints C(st) and
define the violations of such constraints as infractions. This makes the reward function (and thus the
log-likelihood) defined in Section 2 sparse,

log p(Ot|st, at, st+1) = r(st, at, st+1) =

{
0, if C(st+1) is satisfied
−βpen, otherwise

(2)

where βpen > 0 is a penalty coefficient. At every time-step, the agent receives a reward signal
indicating if an infraction occurred (e.g. there was a collision). To guide SMC particles towards
states that are more likely to avoid infractions in the future, we use ht which approximate future
likelihoods (Kim et al., 2020) defined as ht ≈ log p(Ot:T |st, at). Such heuristic factors up-weight
particles proportionally to how likely they are to avoid infractions in the future but can be difficult to
accurately estimate in practice.

As has been shown in previous work (Rawlik et al., 2012; Levine, 2018; Piché et al., 2019; Lavington
et al., 2021), log p(Ot:T |st, at) corresponds to the “soft” version of the state-action value function
Q(st, at) used in RL, often called the critic. Following Levine (2018), we use the same symbol Q for
the soft-critic. Under deterministic state transitions st+1 ← f(st, at), the soft Q function satisfies the
following equation, which follows from the exponential definition of the reward given in Equation 2
(a proof is provided in Section A.2 of the Appendix),

Q(st, at) := log p(Ot:T |st, at) = r(st, at, st+1) + log E
at+1∼π(at+1|st+1)

[
eQ(st+1,at+1)

]
. (3)

CriticSMC sets the heuristic factor ht = Q(st, at), as shown in Figure 2c. We note that alternatively
one could use the state value function for the next state V (st+1) = logEat+1

[exp(Q(at+1, st+1))],
as shown in Figure 2b. This would be equivalent to the SMC algorithm of Piché et al. (2019) (see
Section A.2 of the Appendix), which was originally derived using the two-filter formula (Bresler, 1986;
Kitagawa, 1994) instead of heuristic factors. The primary advantage of the CriticSMC formulation
is that the heuristic factor can be computed before the next state, thus allowing the application of
putative action particles.

3.2 LEARNING CRITIC MODELS WITH SOFT Q-LEARNING

Because we do not have direct access to Q, we estimate it parametrically with Qϕ. Equation 3
suggests the following training objective for learning the state-action critic (Lavington et al., 2021)

LTD(ϕ) = E
st,at,st+1∼dSAO

[(
Qϕ(st, at)− r(st, at, st+1)− log E

at+1∼π(at+1|st+1)

[
eQ⊥(ϕ)(st+1,at+1)

])2]
≈ E
st,at,st+1∼dSAO

[
E

a1:Kt+1∼π(at+1|st+1)

[(
Qϕ(st, at)− Q̃TA(st, at, st+1, â

1:K
t+1)

)2]]
, (4)
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where dSAO is the state-action occupancy (SAO) induced by CriticSMC, ⊥ is the stop-gradient
operator (Foerster et al., 2018) indicating that the gradient of the enclosed term is discarded, and the
approximate target value Q̃TA is defined as

Q̃TA(st, at, st+1, â
1:K
t+1) = r(st, at, st+1) + γ log

1

K

K∑
j=1

eQ⊥(ϕ)(st+1,â
j
t+1). (5)

The discount factor γ is introduced to reduce variance and improve the convergence of Soft-Q
iteration (Bertsekas, 2019; Chan et al., 2021). For stability, we replace the bootstrap term Q⊥(ϕ)

with a ϕ-averaging target network Qψ (Lillicrap et al., 2016), and use prioritized experience replay
(Schaul et al., 2016), a non-uniform sampling procedure. These modifications are standard in deep
RL, and help improve stability and convergence of the trained critic (Hessel et al., 2018). We note
that unlike Piché et al. (2019), we learn the soft-Q function for the (static) prior policy, dramatically
simplifying the training process, and allowing faster sampling at inference time.

3.3 PUTATIVE ACTION PARTICLES

Algorithm 1 Critic Sequential Monte Carlo
procedure CRITICSMC(p0, f , π, r, Q N , K, T )

Sample s1:N1 ∼ p0(s1)
Set w̄1:N

0 ← 1
N

for t ∈ 1 . . . T do
for n ∈ 1 . . . N do

for k ∈ 1 . . .K do
Sample ân,k

t ∼ π(at|snt )
Set ŵn·N+k

t ← 1
K
w̄n

t−1e
Q(snt ,â

n,k
t )

end for
end for
Set Wt ←

∑N·K
i=1 ŵi

t

Sample α1:N
t ∼ RESAMPLE

(
ŵ1:N·K

t
Wt

)
for n ∈ 1 . . . N do

Set i← ⌊αn
t /K⌋+ 1

Set j ← (αn
t mod K) + 1

Set an
t ← âi,j

t

Set snt+1 ← f(sit, â
i,j
t )

Set w̄n
t ← 1

N
Wte

r(sit,â
i,j
t ,snt+1)−Q(sit,â

i,j
t )

end for
end for
return s1:N1:T , a1:N

1:T , w̄1:N
1:T

end procedure

Sampling actions given states is often compu-
tationally cheap when compared to generat-
ing states following transition dynamics. Even
when a large model is used to define the prior
policy, it is typically structured such that the
bulk of the computation is spent processing the
state information and then a relatively small
probabilistic head can be used to sample many
actions. To take advantage of this, we tem-
porarily increase the particle population size
K-fold when sampling actions and then reduce
it by resampling before the new state is com-
puted. This is enabled by the placement of
heuristic factors between sampling the action
and computing the next state, as highlighted in
Figure 2c. Specifically, at each time step t for
each particle i we sample K actions âi,jt , re-
sulting in N ·K putative action particles (Fearn-
head, 2004). The critic is then applied as a
heuristic factor to each putative particle, and a
population of size N re-sampled following the
next time-step using these weighted examples.
The full algorithm is given in Algorithm 1.

For low dimensional action spaces, it is possi-
ble to sample actions densely under the prior, eliminating the need for a separate proposal distribution.
This is particularly beneficial in settings where the prior policy is only defined implicitly by a sampler
and its log-density cannot be quickly evaluated everywhere. In the autonomous driving context,
the decision leading to certain actions can be complex, but the action space is only two- or three-
dimensional. Using CriticSMC, a prior generating human-like actions can be provided as a sampler
without the need for a density function. Lastly, CriticSMC can be used for model-free online control
through sampling putative actions from the current state, applying the critic, and then selecting a
single action through resampling. This can be regarded as a prior-aware approach to selecting actions
similar to algorithms proposed by Abdolmaleki et al. (2018); Song et al. (2019).

4 EXPERIMENTS

We demonstrate the effectiveness of CriticSMC for probabilistic planning where multiple future
possible rollouts are simulated from a given initial state using CriticSMC using two environments: a
multi-agent point-mass toy environment and a high-dimensional driving simulator. In both environ-
ments infractions are defined as collisions with either other agents or the walls. Since the environment
dynamics are known and deterministic, we do not learn a state transition model of the world and there
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is no need to re-plan actions in subsequent time steps. We also show that CriticSMC successfully
avoids collisions in the driving environment when deployed in a model-free fashion in which the
proposed optimal actions are executed directly in the environment at every timestep during the
CriticSMC process. Finally, we show that both the use of putative particles and the Soft-Q function
instead of the standard Hard-Q result in significant improvement in terms of reducing infractions and
maintaining behavior close to the prior.

4.1 TOY ENVIRONMENT

In the toy environment, depicted in Figure 1, the prior policy is a Gaussian random walk towards
the goal position without any information about the position of the other agents and the barrier. All
external agents are randomly placed and move adversarially and deterministically toward the ego
agent. The ego agent commits an infraction if any of the following is true: 1) colliding with any of
the other agents, 2) hitting a wall, 3) moving outside the perimeter of the environment. Details of this
environment can be found in the Appendix.

We compare CriticSMC using 50 particles and 1024 putative action particles on the planning task
against several baselines, namely the prior policy, rejection sampling with 1000 maximum trials, and
the SMC method of Piché et al. (2019) with 50 particles. We randomly select 500 episodes with
different initial conditions and perform 6 independent rollouts for each episode. The prior policy has
an infraction rate of 0.84, rejection sampling achieves 0.78 and SMC of Piché et al. (2019) yields
an infraction rate of 0.14. CriticSMC reduces infraction rate to 0.02.

4.2 HUMAN-LIKE DRIVING BEHAVIOR MODELING

Human-like driving behavior models are increasingly used to build realistic simulation for training
self-driving vehicles (Suo et al., 2021; Bergamini et al., 2021; Ścibior et al., 2021), but they tend
to suffer from excessive numbers of infractions, in particular collisions. In this experiment we
take an existing model of human driving behavior, ITRA (Ścibior et al., 2021), as the prior policy
and attempt to avoid collisions, while maintaining the human-likeness of predictions as much as
possible. The environment features non-ego agents, for which we replay actions as recorded in the
INTERACTION dataset (Zhan et al., 2019). The critic receives a stack of the last two ego-centric
ego-rotated birdview images (Figure 3) of size 256×256×3 as partial observations of the full state.
This constitutes a challenging, image-based, high-dimensional continuous control environment, in
contrast to Piché et al. (2019), who apply their algorithm to low dimensional vector-state spaces in the
Mujoco simulator Todorov et al. (2012); Brockman et al. (2016). The key performance metric in this
experiment is the average collision rate, but we also report the average displacement error (ADE6)
using the minimum error across six samples for each prediction, which serves as a measure of human-
likeness. Finally, the maximum final distance (MFD) metric is reported to measure the diversity of
the predictions. The evaluation is performed using the validation split of the INTERACTION dataset,
which neither ITRA nor the critic saw during training.

We evaluate CriticSMC on a model-based planning task against the following baselines: the prior
policy (ITRA), rejection sampling with 5 maximum trials and the SMC incremental weight update
rule proposed by Piché et al. (2019) using 5 particles. CriticSMC uses 5 particles and 128 putative
particles, noting the computational cost of using the putative particles is negligible. We perform
separate evaluation in each of four locations from the INTERACTION dataset, and for each example
in the validation set we execute each method six times independently to compute the performance
metrics. Table 1 shows that CriticSMC reduces the collision rate substantially more than any of the
baselines and that it suffers a smaller decrease in predictive error than the SMC of Piché et al. (2019).
All methods are able to maintain diversity of sampled trajectories on par with the prior policy.

Next, we test CriticSMC as a model-free control method, not allowing it to interact with the environ-
ment until an action for a given time step is selected, which is equivalent to using a single particle
in CriticSMC. Specifically, at each step we sample 128 putative action particles and resample one
of them based on critic evaluation as a heuristic factor. We use Soft Actor-Critic (SAC) (Haarnoja
et al., 2018a) as a model-free baseline, noting that other SMC variants are not applicable in this
context, since they require inspecting the next state to perform resampling. We show in Table 2 that
CriticSMC is able to reduce collisions without sacrificing realism and diversity in the predictions.
Here SAC does notably worse in terms of both collision rate as well as ADE. This is unsurprising as
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Figure 3: Collision avoidance arising from using CriticSMC for control of the red ego agent in a scenario from
the INTERACTION dataset. There are three rows: the top shows the sequence of states leading to a collision aris-
ing from choosing actions from the prior policy, the middle row shows that control by CriticSMC’s implicit policy
avoids the collision, and the third row is a contour plot illustrating the relative values of the critic (brighter corre-
sponds to higher expected reward) evaluated at the current state over the entire action space of acceleration (verti-
cal axis) and steering (horizontal axis). The black dots are 128 actions sampled from the prior policy. The white
dot indicates the selected action. Best viewed zoomed onscreen. For more examples see Figure 6 in the Appendix.

Table 1: Infraction rates for different inference methods performing model-predictive planning tested
on four locations from the INTERACTION dataset (Zhan et al., 2019).

Location Method
Collision

Infraction Rate MFD ADE6

DR DEU Merging MT

Prior 0.02522 2.2038 0.3024
Rejection Sampling 0.01758 2.3578 0.3071

SMC by Piché et al. (2019) 0.02191 2.3388 0.4817
CriticSMC 0.01032 2.2009 0.3448

DR USA Intersection MA

Prior 0.00874 3.1369 0.3969
Rejection Sampling 0.00218 3.2100 0.3908

SMC by Piché et al. (2019) 0.00351 2.8490 0.4622
CriticSMC 0.00085 2.8713 0.4479

DR USA Roundabout FT

Prior 0.00583 3.1004 0.4080
Rejection Sampling 0.00133 3.0211 0.4046

SMC by Piché et al. (2019) 0.00166 3.0086 0.4814
CriticSMC 0.00066 2.9736 0.4439

DR DEU Roundabout OF

Prior 0.00583 3.5536 0.4389
Rejection Sampling 0.00216 3.4992 0.4287

SMC by Piché et al. (2019) 0.00342 3.2836 0.5701
CriticSMC 0.00083 3.4248 0.4450

CriticSMC takes advantage of samples from the prior, which is already performant in both metrics,
while SAC must be trained from scratch. This example highlights how CriticSMC utilizes prior
information more efficiently than black-box RL algorithms like SAC.

4.3 METHOD ABLATION

Effect of Using Putative Action Particles We evaluate the importance of putative action particles,
via an ablation study varying the number of particles and putative particles in CriticSMC and standard
SMC. Table 3 contains results that show both increasing the number of particles and putative articles
have a significant impact on performance. Putative particles are particularly important since a large
number of them can typically be generated with a small computational overhead.

Comparison of Training the Critic With the Soft-Q and Hard-Q Objective We compare the
fitted Q iteration (Watkins & Dayan, 1992), which uses the maximum over Q at the next stage to
update the critic (i.e., maxat+1

Q(st+1, at+1)), with the fitted soft-Q iteration used by CriticSMC
(Eq. 4). The results, displayed in Table 4, show that the Hard-Q heuristic factor leads to a significant
reduction in collision rate over the prior, but produces a significantly higher ADE6 score. We attribute
this to the risk-avoiding behavior induced by hard-Q.
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Table 2: Infraction rates for performing model-free online control against the prior and SAC policies
tested on four locations from the INTERACTION dataset (Zhan et al., 2019).

Location Method
Collision

Infraction Rate MFD ADE6

DR DEU Merging MT
Prior 0.02522 2.2038 0.3024
SAC 0.03899 0.0 1.1548

CriticSMC 0.01376 2.1985 0.3665

DR USA Intersection MA
Prior 0.00874 3.1369 0.3969
SAC 0.02700 0.0 4.1141

CriticSMC 0.00285 2.9595 0.4641

DR USA Roundabout FT
Prior 0.00583 3.1004 0.4080
SAC 0.04501 0.0 1.7987

CriticSMC 0.00183 3.0125 0.4567

DR DEU Roundabout OF

Prior 0.00583 3.5536 0.4389
SAC 0.06400 0.0 3.4583

CriticSMC 0.00233 3.5173 0.4459

Table 3: Infraction rates for SMC and CriticSMC with a varying number of particles and putative
particles, tested on 500 random initial states using the proposed toy environment.

Method Putative Particles Particles
1 5 10 20 50

SMC 1 0.774 0.488 0.383 0.288 0.183
CriticSMC 1 0.774 0.368 0.298 0.162 0.072

SMC 1024 0.772 0.415 0.281 0.179 0.119
CriticSMC 1024 0.094 0.031 0.021 0.016 0.008
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Figure 4: Execution time
comparison between the baseline
methods and CriticSMC for
both model-predictive planning
and model-free online control.
The collision infraction rate is
averaged across the 4 INTERAC-
TION locations.

Execution Time Comparison Figure 4 shows the average execu-
tion time it takes to predict 3 seconds into the future given 1 second
of historical observations for the driving behavior modeling exper-
iment. This shows that the run-time of all algorithms is of the same
order, while the collision rate of CriticSMC is significantly lower,
demonstrating the low overhead of using putative action particles.

5 RELATED WORK

SMC methods (Gordon et al., 1993; Kitagawa, 1996; Liu & Chen,
1998), also known as particle filters, are a well-established family
of inference methods for generating samples from posterior distribu-
tions. Their basic formulations perform well on the filtering task, but
poorly on smoothing (Godsill et al., 2004) due to particle degeneracy.
These issues are usually addressed using backward simulation (Lind-
sten & Schön, 2013) or rejuvenation moves (Gilks & Berzuini, 2001;
Andrieu et al., 2010). These solutions improve sample diversity but
are not sufficient in our context, where normal SMC often fails to find
even a single infraction-free sample. Lazaric et al. (2007) used SMC
for learning actor-critic agents with continuous action environments. Similarly to CriticSMC, Piché
et al. (2019) propose using the value function as a backward message in SMC for planning. Their
method is equivalent to what is obtained using the equations from Figure 2b with ht = V (st+1) =
logEat+1 [exp(Q(at+1, st+1))] (see proof in Section A.2 of the Appendix). This formulation cannot
accommodate putative action particles and learns a parametric policy alongside V (st+1), instead of
applying the soft Bellman update (Asadi & Littman, 2017; Chan et al., 2021) to a fixed prior.

In our experiments we used the bootstrap proposal (Gordon et al., 1993), which samples from the
prior model, but in cases where the prior density can be efficiently computed, using a better proposal
distribution can bring significant improvements. Such proposals can be obtained in a variety of
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Table 4: Infraction rates for the Hard-Q and the Soft-Q objectives tested on the location
DR DEU Merging MT from the INTERACTION dataset (Zhan et al., 2019).

Method Critic Objective
Collision

Infraction Rate MFD ADE6 Progress

Prior - 0.02522 2.2038 0.3024 16.43

CriticSMC Hard-Q 0.01911 0.9383 1.0385 14.98
Soft-Q 0.01376 2.1985 0.3665 15.91

ways, including using unscented Kalman filters (van der Merwe et al., 2000) or neural networks
minimizing the forward Kullback-Leibler divergence (Gu et al., 2015). CriticSMC can accommodate
proposal distributions, but even when the exact smoothing distribution is used as a proposal, backward
messages are still needed to avoid the particle populations that focus on the filtering distribution.

As we show in this work, CriticSMC can be used for planning as well as model-free online control.
The policy it defines in the latter case is not parameterized explicitly, but rather obtained by combining
the prior and the critic. This is similar to classical Q-learning (Watkins & Dayan, 1992), which
obtains the implicit policy by taking the maximum over all actions of the Q function in discrete action
spaces. This approach has been extended to continuous domains using ensembles (Deisenroth &
Rasmussen, 2011; Ryu et al., 2020; Lee et al., 2021) and quantile networks (Bellemare et al., 2017).
The model-free version of CriticSMC is also very similar to soft Q-learning described as described
by Haarnoja et al. (2017); Abdolmaleki et al. (2018), and analyzed by Chan et al. (2021).

Imitating human driving behavior has been successful in learning control policies for autonomous
vehicles (Bojarski et al., 2016; Hawke et al., 2019) and to generate realistic simulations (Bergamini
et al., 2021; Ścibior et al., 2021). In both cases, minimizing collisions, continues to present one of the
most important issues in autonomous vehicle research. Following a data-driven approach, Suo et al.
(2021) proposed auxiliary losses for collision avoidance, while Igl et al. (2022) used adversarially
trained discriminators to prune predictions that are likely to result in infractions. To the best of our
knowledge, ours is the first work to apply a critic targeting the backward message in this context.

6 DISCUSSION

CriticSMC increases the efficiency of SMC for planning in scenarios with hard constraints, when the
actions sampled must be adjusted long before the infraction takes place. It achieves this efficiency
through the use of a learned critic which approximates the future likelihood using putative particles
that densely sample the action space. The performance of CriticSMC relies heavily on the quality
of the critic and in this work we display how to take advantage of recent advances in deep RL to
obtain one. One avenue for future work is devising more efficient algorithms for learning the soft Q
function such as proximal updates (Schulman et al., 2017) or the inclusion of regularization which
guards against deterioration of performance late in training (Kumar et al., 2020).

The design of CriticSMC is motivated by the desire to accommodate implicit priors defined as
samplers, such as the ITRA model (Ścibior et al., 2021) we used in our self-driving experiments. For
this reason, we avoided learning explicit policies to use as proposal distributions since maintaining
similarity with the prior can be extremely complicated. Where the prior density can be computed,
learned policies could be successfully accommodated. This is particularly important when the action
space is high-dimensional and it is difficult to sample it densely using putative particles.

In this work, we focused on environments with deterministic transition dynamics but CriticSMC
could also be applied when dynamics are stochastic (i.e. st+1 ∼ p(st+1|st, at)). In these settings,
the planning as inference framework suffers from optimism bias (Levine, 2018; Chan et al., 2021),
even when exact posterior can be computed, which is usually mitigated by carefully constructing the
variational family. For applications in real-world planning, CriticSMC relies on having a model of
transition dynamics and the fidelity of that model is crucial for achieving good performance. Learning
such models from observations is an active area of research (Ha & Schmidhuber, 2018; Chua
et al., 2018; Nagabandi et al., 2020). Finally, we focused on avoiding infractions, but CriticSMC is
applicable to planning with any reward surfaces and to sequential inference problems more generally.
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A APPENDIX

A.1 SEQUENTIAL MONTE CARLO

Here we briefly give an overview of the sequential Monte Carlo (SMC) algorithm adapted for Markov
decision processes (MDPs). We borrow the notation from Section 2 in the main paper. Obtaining
state-action pairs (s1:T , a1:t) that maximize the expected sum of rewards corresponds to sampling
state-action pairs from the posterior p(s1:T , a1:T |O1:T ). The SMC inference algorithm (Gordon
et al., 1993) approximate the filtering distributions p(st, at|O1:t). In general, SMC is assuming the
existence of a proposal distribution q(st+1, at+1|st, at) but for simplicity we instead use bootstrap
proposals that use the prior policy. The algorithm samples N independent particles from the initial
distribution sn1 ∼ p0(s1) where each particle has uniform weights wn0 = 1/N . At each iteration, the
algorithm advances each particle one step forward by sampling actions from ânt ∼ π(at|snt ) and
then compute the next states by ŝnt+1 ∼ p(st+1|snt , ânt ) accumulating the optimality likelihoods
p(On

t |snt , ânt , ŝnt+1) = er(s
n
t ,â

n
t ,ŝ

n
t+1) in the corresponding particle weight, saving the sum of weights

and normalizing them before proceeding to the next time step. In our setting, we assume the state
dynamics p(st+1|st, at) of the environment to be deterministic st+1 ← f(st, at). SMC suffers from
weight disparity which can lead to a reduced effective sample size of particles. This is mitigated by
introducing a resampling step RESAMPLE(w̄1:N

t ) at every iteration to help SMC select promising
particles with high weights that have higher chance of surviving whereas particles with low weights
most likely will get discarded. See Douc & Cappe (2005) for an extensive overview of different
resampling schemes. Algorithm 2 summarizes the SMC process for MPDs using bootstrap proposals.

Algorithm 2 Sequential Monte Carlo
procedure SMC(p0, f , π, r N , T )

Sample s1:N1 ∼ p0(s1)
Set w̄1:N

0 ← 1
N

for t ∈ 1 . . . T do
for n ∈ 1 . . . N do

Sample ân
t ∼ π(at|snt )

Set ŝnt+1 ← f(snt , â
n
t )

Set ŵn
t ← w̄n

t−1e
r(snt ,ân

t ,ŝnt+1)

end for
Set Wt ←

∑N
i=1 ŵ

i
t

Sample α1:N
t ∼ RESAMPLE

(
ŵ1:N

t
Wt

)
for n ∈ 1 . . . N do

Set an
t ← â

αn
t

t

Set snt+1 ← ŝ
αn
t

t+1

Set w̄n
t ← 1

N
Wt

end for
end for
return s1:N1:T , a1:N

1:T , w̄1:N
1:T

end procedure

A.2 DERIVATIONS

Soft-Q function Below is the derivation of the soft-Q function defined as the log probability of the
backward message.

Q(st, at) := log p(Ot:T |st, at)
= log p(Ot|st, at) + log p(Ot+1:T |st, at), (6)

where

log p(Ot|st, at) = E
st+1∼p(st+1|st,at)

[r(st, at, st+1)] , (7)
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and

log p(Ot+1:T |st, at) = log

∫
st+1

∫
at+1

p(st+1|st, at)π(at+1|st+1)p(Ot+1:T |st+1, at+1)dat+1dst+1

= log E
st+1∼p(st+1|st,at)

[
E

at+1∼π(at+1|st+1)

[
eQ(st+1,at+1)

]]
. (8)

If we assume the dynamics p(st+1|st, at) of the environment to be deterministic st+1 ← f(st, at),
we can simplify Equation 6 to

Q(st, at) = r(st, at, st+1) + log E
at+1∼π(at+1|st+1)

[
eQ(st+1,at+1)

]
. (9)

SMC using value function as heuristic factors Piché et al. (2019) proposed using state values
V (st) as backward messages in SMC for planning. Based on the two-filter formula (Bresler, 1986;
Kitagawa, 1994), they derive the following weight update rule

wt = wt−1 E
st+1∼p(st+1|st,at)

[
exp

(
r(st, at, st+1) + V (st+1)− log E

st∼p(st|st−1,at−1)
[exp (V (st))]

)]
. (10)

We omit the term − log πθ(at|st) since we assume to use bootstrap proposals instead of learning
them. Thus, the current action is sampled as at ∼ π(at|st). In our framework, for simplicity, we
assume the use of deterministic state transition dynamics p(st+1|st, at) which simplifies the update
rule to

wt = wt−1 exp

(
r(st, at, st+1) + V (st+1)− V (st)

)
. (11)

Piché et al. (2019) in practice trained an SAC-based policy and used the learned state-action value
functions Q(st, at) to approximate state values V (st). Following a similar experimentation setting,
we use a soft approximation of the value function terms using state-action value functions Q(st, at)
as described by Levine (2018) using

V (st) = log E
at∼π(at|st)

[exp(Q(st, at))] . (12)

This results in the following particle weight update rule

wt = wt−1 exp

(
r(st, at, st+1) + log E

ât+1∼π(at+1|st+1)
[exp(Q(st+1, ât+1))]− log E

ât∼π(at|st)
[exp(Q(st, ât))]

)
.

(13)

We can then define the heuristic factor used in Figure 2b of the main paper as

ht = log E
ât+1∼π(at+1|st+1)

[exp(Q(st+1, ât+1))]− log E
ât∼π(at|st)

[exp(Q(st, ât))] (14)

which utilizes a soft approximation of the value function. It is worth emphasising that a next state
sample st+1 from the environment model is required which makes the use of putative action particles
(see Section 3.3 of the main paper) inefficient and expensive contrary to the proposed CriticSMC
method.

A.3 TOY ENVIRONMENT EXPERIMENT DETAILS

In this environment, the ego agent is described by et = (xet , y
e
t , r

e) where x, y is the position
in the square coordinate system [0, 1]2 and re is the radius. We randomly position other agents
oit = (xo

i

t , yo
i

t , ro
i

) where i ∈ [0, 5]. In addition, there is a partial barrier in the middle with gates
gk = (xg

k

, yg
k

, wg
k

) where xg
k

, yg
k

are the coordinates of the center of the gate k, wg
k

is the
width of the opening and k ∈ [1, 3]. Finally, a goal position G = (xG, yG, rG) is positioned on
the other side of the barrier. The ego and the other agents are moving by displacement actions
at = (∆xt,∆yt).

The state representation consists of relative distances between the ego agent and the other agents, the
center of the gates and the goal position. A two-layer fully connected neural network with a ReLU
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activation function and size of 64 takes as input this representation and produces a state encoding. A
similar network takes as input the two-dimensional displacement actions and produces the action
encoding. Finally, another two-layer network takes as input the concatenation of the state and actions
encodings and produce the Q values.

We train the model using a single Nvidia RTX 2080Ti GPU. The prioritized experience replay buffer
has a size of 1 million stored experiences. The discount factor is set to 0.99, the batch size to 256 and
the learning rate to 0.001. Finally, we sample 1024 actions during running CriticSMC while training
the critic model.

A.4 DRIVING BEHAVIOR MODEL EXPERIMENT DETAILS

The prior model we picked for this experiment is ITRA (Ścibior et al., 2021) but any other probabilistic
behavior model can be used. We follow the same architecture and training procedure as described in
Ścibior et al. (2021). The prior model is trained on the INTERACTION (Zhan et al., 2019) dataset
and the task is that given 10 timesteps of observed behavior, predict the next 30 timesteps of future
trajectories. For the critic, we used the same convolution neural network architecture as the prior
model. The critic takes as input the last two observed birdviews images and encodes them separately.
The concatenation of the two representations along with the action encoding is processed by a final
layer that produces the Q value. The architecture for these layers is the same as in Section A.3.

We train the critic model using a single Nvidia RTX 2080Ti GPU. The prioritized experience replay
buffer has a size of 1.5 million stored experiences. The discount factor is set to 0.99, the batch size to
256 and the learning rate to 0.001. Finally, we sample 128 actions during running CriticSMC while
training the critic model.

A.4.1 REINFORCEMENT LEARNING ENVIRONMENT

The environment used to train the RL agents takes as input a location from the INTERACTION
dataset and trains a single-agent policy where all non-ego actors rollout according to ground truth.
Because the CriticSMC algorithm rolls out every agent according to ground truth for the first ten
frames of each trajectory before prediction, we simply remove these frames and begin executing
the policy on frame eleven. At time step t, the policy takes the previous and current birdview
images (bt−1, bt) where each image has a size 256×256×1. The stacked birdview images make the
total input for the policy and value function to be 2×256×256×1. The policy produces an action
at ∈ [−1, 1]2 which corresponds to the bicycle kinematic model’s relative action space (see Ścibior
et al. (2021) for more details). The differentiable simulator (Ścibior et al., 2021) then uses at to
update its state and returns the next birdview image bt+1. In this setting the policy distribution that
is learned follows a squashed normal distribution (Haarnoja et al., 2018b), as is standard for the
SAC implementations (Haarnoja et al., 2018b). The stochastic policy learned by SAC is tailored
towards exploration and thus behaves poorly. For this reason we only report its deterministic behavior
(e.g. the mode of the policy) in Table 2 of the main paper. For each of the four locations that were
evaluated, the RL agents were run over three different learning rate schedules and three different
reward structures for a minimum of 150k time steps. The policy uses the same convolutional neural
network architecture as in CriticSMC and is updated according to the soft actor-critic algorithm
in stable-baselines3 (Brockman et al., 2016). Table 5 shows the hyper-parameter settings used for
training.

Reward Surfaces In the three rewards settings which we tested, there were a number of different
feedback mechanisms which were used to produce the desired behavior (i.e. low-collision probability
and low ADE). The first, was a score based reward upon an estimate of the log-probability under
ITRA. To compute this “score reward”, the environment passes the pair of birdview images (bt, bt+1)
to ITRA, which generates the hypothetical action aITRA

t that ITRA would have taken to make the state
transition from bt to bt+1. Then, the environment sets the reward to be a monotonic function of the
likelihood of at under a normal distribution centred around aITRA

t : rt+1 ≡ tanh
(
log p(at; a

ITRA
t ,Σ)

)
where p(·; aITRA

t ,Σ) = N (aITRA
t ,Σ) for some covariance Σ.

Next, we include five simpler reward surfaces which have been shown to improve performance in the
literature (Reda et al., 2020). First, the “action reward” is a linear function of the absolute difference
between the action output by the policy and the action which ITRA would have taken at time step t:
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Reinforcement Learning Baseline Parameters
Parameter Name Parameter Value(s) Parameter Description
Σ I2 The covariance matrix of the multivariate

normal distribution centred around hypo-
thetical ITRA action aITRA

t .
α1 0.15 Coefficient for score reward, this parameter

scales how closely the agent should track
estimated log-likelihood of actions under
the ITRA model.

α2 2 Coefficient for action reward, this incen-
tives the policy to be as close to the mode
of ITRA as possible without access to a
score function over those actions.

α3 0.05 Coefficient for action difference reward,
this incentivizes the agent to produce se-
quences of actions which are smoother, and
therefore often more human-like.

α4,5,6 0 or 1 Boolean coefficients selecting whether in-
fraction, survival, or ground truth rewards
are used.

γ 0.99 Discount factor, set to encourage lower vari-
ance gradient estimates, but greedier policy
behavior (Sutton & Barto, 2018).

Learning Rate 0.0002, 0.00012,
0.00008

Learning rate for optimization (in this case
the Adam Optimizer).

Batch Size 256 Number of examples used in each gradient
decent update for both the critic and policy
networks.

Buffer Size 500000 Size of SAC experience buffer (equivalent
to maximum number of steps which can be
taken within the environment).

Learning Starts 1000 Number of exploration steps used (e.g. a
uniform distribution over actions) before
learned stochastic policy is used to gather
interactions.

τ 0.005 Polyak parameter averaging coefficient
which improves convergence of deep
Q learning algorithms (Haarnoja et al.,
2018b).

Latent-Features 256 Number of neurons used in the output
of the feature encoder, and which is fed
to the standard two layer multi-layer per-
ceptron defined by standard SAC algo-
rithms (Haarnoja et al., 2018b).

Table 5: Hyper-parameters for the reinforcement learning baseline used in Section 4.2. All hyper-
parameters which were not listed above, use the default values provided by the SAC implementation
of stable-baselines3 (Brockman et al., 2016).

(
2− ||at − aITRA

t ||1
)
. Second, the action difference reward is the scaled absolute difference between

the current and previous actions: ||at − at−1||1. Third, the environment computes the “ground-truth
reward” rt+1 by evaluating st against the ground truth data from the INTERACTION dataset. In
particular, the environment sets the reward to be a linear function of the negative Euclidean distance
at time t+ 1 between the xy-coordinate of the ego-vehicle according to the simulator, st+1, and that
according to ground truth, sGT

t+1: 100− ||st+1 − sGT
t+1||2. Fourth, we include a “survival reward” of 1

if the agent does not commit an infraction at step t. Lastly, the infraction reward is -5 if the agent
commits any type of infraction at step t and 5 otherwise.
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Using these five feedback mechanisms, we consider three different reward surfaces. Each of which
are defined following reward calculation:

rt+1 = α1r
SCORE
t+1 + α2r

ACTION
t+1 + α3r

ACTION DIFF
t+1

+ α4r
INFRACTION
t+1 + α5r

SURVIVE
t+1 + α6r

GROUND TRUTH
t+1 (15)

In the first reward setting which was considered, we set all coefficients αi to zero except the SURVIVE
reward, and thus refer to this reward type as the survival reward setting. Next we consider a setting
where we set all αi to zero except the GROUND TRUTH reward, and refer to this setting as the
ground-truth setting. Lastly, we considered a setting where: α1 = 0.15, α2 = 2.0, α3 = 0.05, and
the remaining αi are all set to zero. We refer to this setting as the ITRA setting, as it includes the
most information about the ITRA model. To arrive at the final result, models where trained under all
three of these settings, evaluated, and then chosen based upon the lowest collision infraction rate.

A.5 CRITICSMC AS AN EFFICIENT SMC INFERENCE ALGORITHM

We include in the supplementary material a demo code implementation of CriticSMC applied to the
following linear Gaussian state-space model (LGSSM) with well-defined critic function

f(st, at) := st + at (16)
p(s0) = N (0, 1) (17)

p(at|st) = N (0.5 ∗ st, 1) (18)
p(st+1|st, at) = δf(st,at)(st+1) (19)

log p(Ot|st, at, st+1) =

{
0, if − 1× 10−2 ≤ st+1 ≤ 1× 10−2

−10000, otherwise
(20)

= Q(st, at) (21)
≈ −1000|st + at|+ ϵ (22)

where the state transition function f(st, at) is assumed to be computationally expensive. The
conditional posterior samples from p(s1:T , a1:T |O1:T ) are defined as states that are within the range
defined in Equation 20. We use T = 10 in our experiments.

Figure 5 demonstrates the performance of CriticSMC compared to SMC for estimating the (negative)
log-marginal likelihood p(O1:T ) relative to the computational time needed to execute the inference
algorithm.
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Figure 5: Given a well-defined linear Gaussian state-space model, we evaluate the performance
of SMC and CriticSMC estimating the (negative) log-marginal likelihood (bar plots on the left
column) relative to the speed of inference measured in wall-clock time (bar plots on the right column).
We pick the number of particles as N ∈ {1, 5, 10} and the number of putative action particles as
K ∈ {1, 100, 1000}. CriticSMC is able to better estimate the marginal likelihood significantly faster
than SMC by taking advantage of a large population of putative action particles and a computationally
efficient critic function used as a heuristic factor to guide inference.
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A.6 NOTATIONS AND ABBREVIATIONS

s1:T ≜ sequence of states
a1:T ≜ sequence of actions

π(at|st) ≜ prior policy
p(st+1|st, at) ≜ state transition dynamics density
r(st, at, st+1) ≜ reward value received at timestep t

p(Ot|st, at, st+1) ≜ optimality probability defined as the exponentiated reward
Q(st, at) ≜ soft state-action value function referred to as the critic

Qϕ ≜ parametric approximation of the critic
Qψ ≜ fixed target critic model used for computing the TD error
ht ≜ heuristic factor at timestep t
ŵt ≜ pre-resampling particle weight
w̄t ≜ post-resampling particle weight
Wt ≜ normalizing factor
αit ≜ ancestral indices for each particle i

βpen ≜ penalty coefficient
γ ≜ discount factor
T ≜ horizon length

t ∈ 1 . . . T ≜ timesteps
n ∈ 1 . . . N ≜ particle number
k ∈ 1 . . .K ≜ putative action particle number

Table 6: Notations

SMC: Sequential Monte Carlo
MDP: Markov Decision Process

RL: Reinforcement Learning
HMM: Hidden Markov Model
RLAI: Reinforcement Learning as Inference

TD: Temporal Difference
SAC: Soft Actor Critic
MPC: Model Predictive Control
ADE: Average Displacement Error
MFD: Maximum Final Distance

Table 7: Abbreviations
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Figure 6: More examples similar to Figure 3 of the main paper.
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