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Transformer quantum state: A multipurpose model for quantum many-body problems
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Inspired by the advancements in large language models based on transformers, we introduce the transformer
quantum state (TQS): a versatile machine learning model for quantum many-body problems. In sharp contrast
to Hamiltonian/task specific models, TQS can generate the entire phase diagram, predict field strengths with

experimental measurements, and transfer such a knowledge to new systems it has never been trained on
before, all within a single model. With specific tasks, fine-tuning the TQS produces accurate results with small
computational cost. Versatile by design, TQS can be easily adapted to new tasks, thereby pointing towards a
general-purpose model for various challenging quantum problems.

DOLI: 10.1103/PhysRevB.107.075147

I. INTRODUCTION

Determining the state of a quantum many-body system
is one of the fundamental problems in physics. While the
exponential growth of the Hilbert space precludes brute-force
calculations, computational methods such as quantum Monte
Carlo [1] and tensor network-based methods [2] allow for
efficient simulations of certain problems, each with their own
strengths and weaknesses.

More recently, the advancements in machine learning tech-
niques and models have influenced the physics community.
In fact, the introduction of neural networks (NNs) as vari-
ational states for quantum many-body problems has greatly
expanded the types and sizes of systems that can be efficiently
tackled. For instance, the restricted Boltzmann machine [3,4]
was the first NN model applied to correlated quantum sys-
tems [5], followed by models with different architectures such
as feedforward [6,7], convolutional [8,9], recurrent [10], and
autoregressive [11-13] ones. With the ability to encode area
and volume-law entanglement [14], NNs are especially ad-
vantageous in dealing with high-dimensional systems. And
with proper tricks, they can also greatly ease the fermion
sign problem [6]. Yet, despite these successes, the previous
approaches are limited to specific tasks.

Recently, a new task-agnostic model has been put forward
by the machine learning community: the transformer archi-
tecture [15]. Since its introduction, this model has dominated
the field by achieving state-of-the-art results in almost every
natural language processing task [16—19], thus rendering the
recurrent neural networks obsolete in merely a few years.
Transformers have also been adapted to different tasks such
as image recognition [20], audio processing [21], and graph
classification [22], all achieving remarkable results.

This feat relies on an impressive aspect of transformer
models: their ability to scale to very large sizes [19,23]. When
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faced with a new task, few-shot learning [19] allows a general
purpose model to easily adapt with merely a few examples
in natural language. And when better performance is desired,
fine-tuning on a small data set produces satisfactory results
within a short time [18].

These results give hope that such an architecture may be
of great help in quantum physics as well. However, the appli-
cation of transformers in this field is still rather limited, with
a few results concerning quantum lattice models [13], open
systems [24], quantum state tomography [25], and quantum
circuit simulation [26], while the task-agnostic property is
barely used. Therefore, the full potential of the transformer
architecture has yet to be explored.

Contrary to the general-purpose models mentioned above,
NN models in physics are usually highly specialized, serving
a single purpose such as representing wave functions [5-12],
preparing and controlling quantum states [26,27], recognizing
phase transitions [28,29], realizing quantum state tomog-
raphy [25,30,31], etc. Such tasks share a lot of common
knowledge, making it ideal to have a single, unified model
that handles them all, with the possibility of discovering new
physics at the intersection of different tasks.

As a first step, we may consider using NNs as variational
wave functions. Traditionally, each NN can only represent a
specific quantum state, and tasks such as generating a phase
diagram requires retraining of the same NN from scratch for
hundreds of times, even if nearby data points have similar
features.

In this paper, we consider a different perspective: instead
of modeling a specific quantum state, we attempt to represent
a family of quantum states within a single neural network.
More precisely, we focus on the joint distribution of the wave
function and relevant physical parameters such as interaction
strength, external field, and/or system size. For the underlying
NN, we choose the transformer architecture for its versatility
and strong performance across different tasks.

We call this model a transformer quantum state (TQS) and
show that it is capable of generating the entire phase diagram
of a many-body system, predicting field strengths with as few
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FIG. 1. Structure of a TQS. Left: the overall architecture of our model. We use the standard encoder-only transformer architecture, utilizing
an embedding layer to map different inputs into a single unified feature space, and pass them through N identical transformer encoder blocks,
followed by two different output heads, parametrizing the amplitude P and phase ¢, respectively. Middle: the structure of a transformer encoder
block. Right: the mask structure in a masked self-attention operator. Squares with a cross represent the masks, blocking the flow of information,
so that each site only has access to its predecessors. This ensures that the autoregressive property is satisfied.

as one experimental measurement and transferring knowledge
to new systems it has never seen before, all within a single
model.

II. TRANSFORMER QUANTUM STATE

Consider the probability distribution P(s,J) =
PGty .50, Jdty ooy ), where s;ie€{0,1,...,d —1}
are discrete variables representing the physical degrees of
freedom such as spin or occupation number and J; correspond
to other physical parameters, either continuous or discrete.
Such a state space grows exponentially with the number of
variables and a compact representation is desired.

To represent P(s, J), we adopt the transformer architecture,
and autoregressively model the entire distribution as a product
of conditional distributions,

P(s,J):P(J)HP(s,-|s1,...,si_l,J). (€))

i=1

The structure of the transformer is shown in Fig. 1, with
each output of the neural network representing one of the
conditional distributions. For a detailed explanation of the
transformer architecture, see Appendix A.

Contrary to energy-based models such as restricted Boltz-
mann machines [5], the autoregressive structure allows for
efficient sampling [11]. Since each conditional probability
P(sils1, ..., si—1,J) does not depend on any variable s; with
J > i, starting from s, one can sequentially sample s; ac-
cording to the previously sampled configurations, using the
ith conditional distribution only. Using the idea developed
in [12], efficiency of the sampling algorithm can be further
improved by only sampling unique configuration strings and
the details are explained in Appendix C.

We assume that J has a predefined prior distribution P(J),
which, in general, can be chosen as a uniform distribution
over the range of interest (e.g., to study the transition in the
Heisenberg J;-J, model [9,32], one can fix J; = 1 and make
J> uniform over [0, 1]).

Our aim is to model quantum states | (J)), which are
complex-valued quasiprobability distributions. To this end,
we expand them in the computational basis and separate their
amplitude A and phase ¢,

W) =Y (s, Dis) =) A, Hexplio(s, Dlls).
S S (2)

Since squared amplitude has the probability interpretation,

we choose
A(s, J) =/ P(s, ), (3

with P(s, J) specified in Eq. (1). The phase ¢ has no restric-
tions and can be either positive or negative, and we represent
it with a similar autoregressive structure:

¢, )= dCsilsr, ... 50, 1) “

A. Ground state of a family of Hamiltonians

The first task we consider is finding the ground state |ir)
of many-body Hamiltonians. Per the standard procedure, this
can be done by minimizing the variational energy estimation,
(W|H ), over the target Hamiltonian H. A minor complica-
tion is that, instead of a single Hamiltonian H, we have now
a family of Hamiltonians {H(J)}. In Appendix B, we show
that the family of ground states |y¥(J)) corresponds to the

ground state | W) of the super-Hamiltonian A= D, % in
8

the extended Hilbert space, and we can optimize the TQS by
minimizing (V|H|W¥), which follows the standard procedure.
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Once we have the family of ground states (s, J), an im-
mediate application is to estimate the physical parameters J
using samples s from the wave function. This follows trivially
from the conditional probability:

P(s,J)

PJIs) = PGs)

&)

In practice, given a set of measurements {s;}, J can be pre-
dicted using standard maximum likelihood estimation [33], by
maximizing the log-likelihood functional,

LA) =) log P(s¢|). (©6)
k

In this way, we can efficiently determine physical properties
of a quantum system with few measurements. Details of the
implementation can be found in Appendix E.

This task is somewhat similar to shadow tomogra-
phy [34,35], in the sense that we are predicting properties of
a quantum system with a few measurements, but with more
restrictions and with certain prior knowledge required. On the
other hand, Ref. [28] considered another similar task of rec-
ognizing phases from measurements using machine learning,
which is formulated as a classification task. In comparison,
our task falls in the middle of the two mentioned above and,
to the best of our knowledge, it has never been proposed.
Under this setting, the TQS can handle this task extremely
efficiently. In fact, with the prior knowledge that a quantum
state 1) comes from a family of states |y (J)), we can effi-
ciently determine the physical parameters J, with as few as
one measurement only.

Furthermore, we show that the TQS can transfer knowl-
edge to new systems it has never seen before. This follows the
pretraining plus fine-tuning methodology commonly adopted
in natural language models [16,17]. In the zero-shot set-
ting [19], after training on the family of Hamiltonians H (J),
TQS can generate the ground state of new Hamiltonians
H(J*) with J* ¢ {J}, albeit with slightly larger error. When
higher accuracy is desired, one can fine-tune the TQS on the
specific Hamiltonian H(J*), to obtain accurate results within
a much shorter time comparED to learning from scratch.

III. RESULTS

As a prototypical test bed, we first examine the 1D trans-
verse field Ising (TFI) model, whose Hamiltonian is

n—1

A=-J) oo}, — hzn:o;‘, 7
i=1 i=1

where J is the coupling constant and ¢° and o* are Pauli
matrices. In Appendix G 3, we also provide numerical results
on the 1D XYZ model.

A. Ground state calculations

To begin with, we pretrain the TQS on the family of TFI
Hamiltonians H (n, h), specified in Eq. (7). We fix J =1
and assume a uniform distribution of the transverse field & €
[0.5, 1.5]. The system size n can take any even integer value
with equal probability in the range of [10, 40]. We explicitly
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FIG. 2. Results on the ground state of the TFI Hamiltonian,
Eq. (7), with n = 40. Lines and data points are medians of 10
estimations, while shaded regions and error bars enclose 10th to
90th percentile. Dotted lines are generalizations to regions TQS has
not been trained on. (a) The relative error of the ground state en-
ergy, AE = |(E — Egouna)/Eground|- Egrouna 18 estimated with DMRG,
which is accurate up to 107!°. (b) Absolute value of the magnetiza-
tion along the z direction, (|m;.|). We can observe the transition near
h=1.

enforced parity and spin flip symmetry on the TQS, with
details elaborated in Appendix D.

After pretraining for 10° iterations, we plot the ground
state energy, E, and magnetization along the z direction,
m, =) {(o7)/N, for n =40, h € [0, 2], in Fig. 2. Since we
explicitly symmetrized the TQS with the |0) <> |1) spin flip
symmetry, we always have (m;) = 0, so (|m,|) is plotted in-
stead. Note that while the TQS is only trained in the range of
h € [0.5, 1.5], it can infer the properties of the ground state
when & € [0,0.5) and & € (1.5, 2] with slightly larger error,
without any additional inputs except the value of &.

Finite-size scaling can be easily carried out using TQS.
With a variable input length, we can represent an arbitrary
number of degrees of freedom within a single TQS model.
Using the same model trained with & € [0.5, 1.5], in Fig. 3
we show that finite-size scaling analysis on the TFI model
correctly identifies the phase transition point 47 = 1, and
the predicted critical exponents satisfy 8/v = 0.130 £ 0.010,
which match the theoretical predictions 8 = 1/8, v = 1. De-
tails of the calculation can be found in Appendix G 2.

Similar experiments are carried out where the TQS is
trained in the range h € [0, 0.5] U [1.5, 2] and the results are
shown in Fig. 4. Although training is only carried out either
deep in the ferromagnetic phase or paramagnetic phase, TQS
can still infer the ground state energy and magnetization of
TFI near the phase transition with reasonable accuracy.
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FIG. 3. Finite-size scaling calculations on the TFI model, using
the TQS trained with /# € [0.5, 1.5]. (a) Binder cumulant [36], Uy =

1— 3((':‘:2))’% , plotted for various system sizes N. At the critical point
he, Uy is invariant with the system size N, and finding the crossing of
various Uy curves can help us determine the critical point. In this fig-
ure, we identify 4. = 1, which agrees with the theoretical prediction.
(b) Finite-size scaling of the mean-square-root magnetization [37] at
the critical point 2 = 1. Using the finite-size scaling ansatz [38], at
the critical point, \/(m2)|,, ~ N7#/". A linear fit on the log-log scale
gives B/v = 0.130 & 0.010, which matches the theoretical values

p=1/8andv = 1.

However, in Appendix G2 we show that this interpolated
state undergoes phase transition at 4 = 1.24 instead of 1 = 1,
with critical exponents different from the usual Ising transi-
tion. Without access to training data near the phase boundary,
TQS cannot accurately predict the phase transition. Rather,
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FIG. 4. Relative error of the ground state energy of the TFI
Hamiltonian, Eq. (7), with n = 40. Lines and data points are medians
of 10 estimations, while shaded regions and error bars enclose 10th
to 90th percentile. Dotted lines are generalizations to regions TQS
has not been trained on. Data points below 10~7 are not shown for a
clearer illustration.
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FIG. 5. Relative error of the ground state energy of the TFI
Hamiltonian, Eq. (7), with 2 = 1. Lines and data points are medians
of 10 estimations, while shaded regions and error bars enclose 10th to
90th percentile. Dashed lines are generalizations to regions TQS has
not been trained on. The pretrained TQS can infer the ground state
energy of much larger systems than what it is trained on, without
any additional input except the system size n, albeit with slightly
larger error. By fine-tuning with an additional 2 x 103 iterations, the
accuracy improves by an order of magnitude.

it generates a fictitious physical system with its own critical
behaviors.

At this point, we further fine-tune the TQS on specific
points H (n*, h*) for an additional 2 x 10° iterations and the
results are also shown in Figs. 2 and 4. Outside of the pre-
trained region, the accuracy improved dramatically up to a
few orders of magnitude. Within the pretrained region, there is
also a small improvement in accuracy, but not as much since
the pretrained model already works well.

As a further test, we fix h = 1, and compute the ground
state energy of systems with different sizes n € [10, 80] (using
the model trained in & € [0.5, 1.5]). The result is plotted in
Fig. 5. Again, even if the pretrained model has never seen any
system with more than 40 spins, it can generalize to much
larger systems, and their energy estimations can be greatly
improved by fine-tuning for an additional 2 x 10? iterations.

B. Predicting parameters

Next, with the learned distribution P(s, n, h), we want to
predict the transverse field /& using experimentally available
measurements. To this end, we simulate the experiment by
computing the ground state of the TFI model using the density
matrix renormalization group (DMRG) [2,39] and generate a
synthetic data set with projective measurements in the com-
putational basis. Details of DMRG calculations can be found
in Appendix F.

We fix n = 40 and predict 4 by maximizing Eq. (6), the
log-likelihood functional, with varying number of measure-
ments. The results are shown in Fig. 6. Surprisingly, with as
few as one measurement, TQS gives reasonable estimations
of h. Increasing the number of measurements improves the
quality of prediction, and an empirical power law scaling of
the prediction error versus the number of measurements is
observed.
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FIG. 6. (a) Predicted field strength & vs the actual field strength
h, with varying number of measurements. Solid lines are mean
values of 10 predictions, and shaded regions enclose one standard
deviation. The dashed line represents the expected result, i = h.
(b) Scaling of the prediction error, | — h|, and standard deviation,
03, vs the number of measurements. Each data point is computed
with 10 predictions. We observe an empirical power law scaling, with
|il _ hl ~ N7205 and o} ~ N—169

measure measure *

IV. DISCUSSION

In summary, our results demonstrate how the TQS learns
various ground state properties of a physical system and
appropriately uses the acquired knowledge to solve new prob-
lems. TQS marks the first step towards a general purpose
model for quantum physics. Although we only explored here
the ground states of many-body Hamiltonians, it is possible to
encode many additional operations and information into the
TQS, such as unitary transformations, time evolution, positive
operator-valued measurements, etc. Thanks to the flexibility
of neural sequence models and the transformer architecture,
all the additional information can be formulated as new tokens
to be passed into the embedding layer, thus maintaining the
model structure simple and unified.

Limited by available computational resources, we were
unable to train larger models for a wider range of tasks. But
we believe that, with the advancements in the development
of new computing paradigms such as MemComputing [40],
such models can be pushed even further. This would help
researchers understand various challenging quantum phenom-
ena and assist them in the design and characterization of
near-term quantum devices.

The code for all simulations performed in this paper, the
weights of a pretrained TQS on the Ising model, and a syn-
thetic data set generated using DMRG are available at [41].
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APPENDIX A: TRANSFORMER IMPLEMENTATION
DETAILS

As illustrated in Fig. 1, we adopt the standard encoder-
only transformer structure [15]. The discrete spin variables
s; are first one-hot encoded [42] and the parameters J; are
represented with a scaled one-hot vector. To input inter-
action strengths and external fields, the scale is the value
of the interaction itself. To input the system size n, we choose
the scale to be In n and append another parity dimension to the
input vector, indicating whether »n is even or odd.

Since the input does not entirely consist of one-hot vec-
tors, the embedding layer performs a linear transformation,
mapping the input vectors into a d.-dimensional embedding
space.

We use a mixed-style positional encoding. The spin
variables s; have a well-defined position and we use the D-
dimensional sinusoidal positional encoding [15,43] on them,
where D is the spatial dimension of the physical system. This
ensures that the neural network can correctly generalize to
larger system sizes it has never been trained on before. On
the other hand, the parameters J; do not have a position and
we use a learnable positional encoding [20] instead.

After embedding and positional encoding, we pass the
embedded inputs through N identical transformer encoder lay-
ers, with structures defined in [15]. The feedforward sublayer
consists of two linear layers, with the hidden dimension in
the middle also being d,. We use multihead self-attention [15]
with eight heads for the larger model and two heads for the
smaller model. ReLU activation [44] is used throughout the
neural network.

After N transformer encoder layers, we use two output
heads to model the amplitude and phase of the target wave
function. The amplitude head is a linear layer followed by a
softmax activation [45] and the phase head is a linear layer
followed by a softsign activation, which is defined in [10] and
computes the function (—oco0 < x < 4-00)

softsign(x) = (A1)

1+ x|
We scale the softsign output by 7 to output a phase in the
range of (—m, 7).

The TQS mentioned in the main text has N = 8 trans-
former encoder layers with embedding size d, = 32 and the
number of parameters is about 7.7 x 10*. The smaller model
in Appendix G 1 has N = 2 transformer encoder layers with
embedding size d, = 16, resulting in 5.2 x 10? parameters.
The implementation of TQS is carried out using the PyTorch
library [46].

APPENDIX B: VARIATIONAL OPTIMIZATION
OF THE GROUND STATE ENERGY

TQS is trained by minimizing the ground state energies of
a family of Hamiltonians, {H(J)}. For a single Hamiltonian
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H, the energy derivative reads [5]

9E 0 log ¥ (5)"
3_01( = 2Re <<E10C(S) 90k >P(s))’ ®D

where (-)pes) denotes expectation over the distribution P(s)
and

Eioe(s) = ZH( L) (B2)

1//()

is the local energy estimator.

Since the autoregressive wave function is explicitly nor-
malized, it is shown in [10] that the variance of the gradient
can be reduced by subtracting a baseline energy,

oE 01 *
<= 2Re(<(Eloc(s> - <Eloc(s/)>p<sf))M> )
P(s)

89k aGk
(B3)
without introducing bias. This follows from
d log ¥ (s)*
Re<<Eloc(S/))P(s’)&>
90 P(s)
1 9P(s)
E
= (Eioce(s) pmz (s )2P(s) 5
= ——1 =0. B4
2 8t9k Z ® = 2 96 B4)

In our problem setting, we have a family of Hamiltonians
H(J) parametrized by J, with ground state energies E,(J).
Without loss of generality, we suppose all E, < 0; otherwise
we can simply shift the energy levels by adding a constant.
Then, we define the super-Hamiltonian,

. AQ)
H= , B5
GP B ©

to be the direct sum of all (possibly infinite) Hamiltonians
H(J), weighted by their ground state energies, B (J)‘ Note
that 7 is block diagonal, with no interaction across different
J. One can easily show that the ground state of # is the direct
sum of all ground states, |¥) = @J [ ),

N H
#1w) = @lE;J‘;' By
_ @ﬁ(J)W(J»
D e,
= ), (B6)

-Plvad) =
J

with eigenvalue —1. Therefore, we can follow the standard
procedure and minimize

WDIHDIY )
Z i

U|H| W) =
(FIHE) [Eg(D)]

(B7)
J

We do not have access to the exact ground state energies
E,(J), so we instead approximate them with variationally ap-
proximated ground state energies, Eg(J ) = {Eloe(s, J)), which
become increasingly more accurate as optimization goes on.

In practice, at each optimization iteration, we sample a ran-
dom J according to P(J) and compute the energy derivative
Eq. (B3), scaled by m We set an upper limit of 5 to the

8

scaling factor, to avoid divergences when E,(J) — 0 during
optimization.

The entire training procedure is carried out using the Adam
optimizer [47], with 8; = 0.9 and 8, = 0.98. We varied the
learning rate during training according to the formula

Ir(igiep) = 5, min (i35, istepisgamup) (B8)
where d, is the embedding size of the model, i, is the
current number of training steps, and iwarmup i the number
of warmup steps. We used iwamup = 4000. This corresponds
to linearly increasing the learning rate during the first 4000
iterations and polynomially decreasing it during the rest of
the training. This learning rate schedule is inspired from [15].
During fine-tuning, we use a different learning rate schedule:

It (istep) = 5d, % (iseep + 10°)707. (B9)

APPENDIX C: SAMPLING ALGORITHM

The autoregressive structure of TQS already makes sam-
pling efficient and the efficiency is further improved by
adopting the sampling algorithm in [12], which only samples
unique configuration strings.

During sampling, we first fix a large batch size, Nych,
and autoregressively sample the spins to form partial strings,
sk = 5155+ -+ 5;, with associated number of occurrences, 7.
At the (i + 1)th sampling step, s;+; is sampled from the
conditional distribution P(s;j+1]s1, - .., i, J), resulting in ng
occurrences of s;;1 = 0 and ny; occurrences of s5;,; = 1, with
nyo + ng = ng. After this step, we obtain two unique partial
strings, s0 = 555 ---5;0 and s*' = sy5,---5;1, with occur-
rences ny and nyp, respectively. This procedure starts from an
empty set and is repeated until the number of unique strings
reaches a maximum, Nygigue, after which no new partial string
branches are generated and the remaining spins are sampled
in the regular way.

The complexity of this sampling algorithm is approxi-
mately proportional t0 Nypique and does not depend on Npach-
Therefore, we can choose extremely large batch sizes to
greatly improve on the accuracy of estimated expectation
values, with negligible increase in computation time. For all
the experiments mentioned in this paper, we choose Nyych =
10°, Nunique = 10? during training, and Nypique = 10° during
evaluations.

APPENDIX D: IMPLEMENTING SYMMETRIES

The transformer architecture itself does not observe any
symmetry, but most Hamiltonians do. To impose symmetries
without spoiling the autoregressive structure, we follow the
approaches in previous works [7,10,11] and explicitly sym-
metrize the wave function in a similar way.

Suppose 7 is a discrete symmetry of H, with 7" =1
(m € N). By definition, we have [H, 71 =0, and one can
simultaneously diagonalize both operators within the same
eigenbasis. Under this basis, the ground state |¢) is also an
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eigenstate of 7A‘,
TIV) = o4 ¥), (D1)

where w4 = e¥mikim 'k e N. Expanding Eq. (D1) in the com-
putational basis, we get

Y(T7's) = oz (s). (D2)
In terms of amplitude and phase, Eq. (D2) becomes
A(Ts) = A(s),
. 2k
9(Ts) = p(s) = =~ (D3)

The output wave function from TQS clearly does not sat-
isfy Eq. (D3). To explicitly enforce the symmetry 7, we define

3 1=
P(s) = — > P(T"s).
n=0

m—1
(so) = Arg(Z wd"so)),

n=0

A - 27k
$(Ts0) = (so) — ——.
m

(D4)

where ¥/ (s) = \/P(s)e®), P, ¢ are outputs from the TQS,
and P, ¢ are symmetrized probability and phase, respectively.
So is an arbitrary initial configuration in each symmetry sector,
predefined so that the phases within the symmetry sector can
be assigned consistently. We choose s to be the configuration
with the smallest decimal value, converted from its binary
bitstring, within each symmetry sector.

Sampling from the symmetrized wave function has almost
no additional computational cost. We follow the same pro-
cedure detailed in the previous section and apply a random
symmetry operation 7™ to the sampled configuration s in the
end [10,11]. However, to compute the exact value of v (s),
one needs to evaluate all configurations within the symmetry
sector and explicitly calculate Eq. (D4), which is m times
more expensive.

Another symmetry worth mentioning is the U (1) symme-
try of the Heisenberg model, which leads to zero magneti-
zation. This symmetry is particularly easy to implement and
we follow the same method developed in [10], by setting the
probability of a partial string to zero whenever the number of
up spins or down spins exceeds half of the system size.

Note that, while the Hamiltonian A may satisfy several
symmetries '7' ’75 ..., it is possible that ['7', ’75] # 0, making
it impossible to diagonalize all symmetries at the same time.
However, this does not pose a problem for us. Although 71 and
75 do not commute in general, they do commute in certain
symmetry sectors (for example, w4 = w4, = 1). To imple-
ment symmetries, we need to know w4 as a prior knowledge
and this information then helps us determine all compatible
symmetries.

As another remark, in our implementation of TQS, we only
enforced the symmetries 7~ with w4 = 1. We noticed that
any symmetry with w4 # 1 would impose a nontrivial phase
structure to the wave function, which is somewhat arbitrary
and could significantly slow down the training.

APPENDIX E: PREDICTING PARAMETERS

With the learned distribution P(s, J), we can predict the
parameters J from a batch of measurements {s;}. As illustrated
in the main text, this is achieved through maximizing the log-
likelihood functional Eq. (6).

We carried out the maximization using the Nelder-Mead
method [48], a heuristic searching algorithm based on a mov-
ing simplex, implemented in the SciPy library [49], with a
tolerance of 107°.

An alternative method to predict the parameters would
be supervised fine-tuning, which adds a parameter prediction
head as an additional output of TQS. This would have the
advantage of reducing the computational cost to one forward
pass, at the expense of fine-tuning cost. We leave this as a
future work.

Note that we did not use any phase information during the
prediction. To make use of the phase structure, one needs to
perform measurements in different bases and compute a gen-
eralized likelihood function that takes all bases into account.
For this, we refer the readers to [30]. Alternatively, it is possi-
ble to use informationally complete positive operator-valued
measurements (IC-POVM) to encode the complete informa-
tion of a quantum state, which is developed in [50]. We can
adapt the TQS structure to be compatible with IC-POVM,
which we also leave as a future work.

APPENDIX F: DMRG CALCULATIONS

For the 1D transverse field Ising model in the main text
and the 1D XYZ model in Appendix G 3, we use the density
matrix renormalization group (DMRG) as a benchmark to
evaluate the performance of our algorithm. DMRG can be
extremely accurate for 1D systems, yet performs rather poorly
in two or more dimensions [2].

We used the TeNPy library [39] to perform DMRG calcu-
lations. For all DMRG results mentioned in the paper, we use
a maximum bond dimension of 100 and terminate when the
energy tolerance 10~!? is achieved.

APPENDIX G: ADDITIONAL NUMERICAL RESULTS

1. Performance benchmarking

In this section, we compare the accuracy and training cost
of TQS with the restricted Boltzmann machine (RBM) [5], an-
other widely adopted framework for neural network quantum
states.

To ensure a fair comparison, we trained a smaller TQS
with 5.2 x 10° parameters (embedding size d, = 16, two
transformer encoder blocks), to compare with an RBM with
approximately the same number of parameters (hidden-to-
variable ratio o = 3). The TQS is trained using the setting
described in the previous sections, with Nyique = 2000,
while the RBM is trained using stochastic reconfiguration
(SR) [5,51], contrastive divergence with 10 sampling steps
(CD-10) [52], and batch size 24800. Under this setting, the
computational cost for each training iteration is approximately
the same. To model continuous physical parameters in RBMs,
we use continuous visible neurons normalized to [—2, 2],
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FIG. 7. Comparison of TQS and RBM on the ground state of
the TFI model, with a variable transverse field 4. (a) Energy per
spin and (b) relative error of the ground state energy, AE = [(E —
Eground)/Egrouna|. Both models are trained in the range i € [0.5, 1.5].

together with regular binary neurons with values £1 for the
spin variables.

At this point, we try to reproduce the experiment described
in the main text using RBMs. We focus on the transverse
field Ising (TFI) model, with the transverse field 4 as an
additional input to the neural network. The RBM is trained
for 10° iterations and the learning rate decreases according to
the formula

lr(islep) = lrmax is_gbs s (G 1 )

where i, is the current number of training steps and Iryax =
0.02. TQS is also trained for 107 iterations and the results are
shown in Figs. 7 and 8.

In Fig. 7, the training range is & € [0.5, 1.5] and the RBM
learned an energy curve that is almost linear in 4. And in Fig. 8
the training range is & € [0, 0.5] U [1.5, 2], but the RBM only
learned the properties in the [1.5, 2] range. In comparison,
TQS did an almost perfect job in both cases.

This result is expected, since TQS is designed for flexibility
and is able to learn different quantum states at the same time,
even with a tiny model size. On the other hand, RBM can
accurately represent a single quantum state, but it is much less
flexible when it comes to a family of quantum states.

As another test, we train both models at a single data point
h =1 for 10° iterations and the result is shown in Fig. 9.
RBM works very well in this case, converging in about 10°
iterations, and does not improve much afterwards. On the
other hand, TQS converges much slower, but continues to see
improvements up to 103 iterations.

Again, this result is expected. With a simple structure,
RBM can be easily trained using the SR algorithm, lead-
ing to a fast convergence. However, TQS has a much more

(a)-0.5- .
= — RBM
o —_
& -10] N TQS
o I ---- DMRG
o oo
5 _1 5 ~........ “‘.“, o -~ ....\.
=
c
W5 \
(b)
“al N — T —— RBM
-3 .}“"._
w10 1
< N
10—5 | ’\’\,V\N—\/\,\/\

0.0 05 1.0 1.5 2.0
h
FIG. 8. Comparison of TQS and RBM on the ground state of the
TFI model, with a variable transverse field 4. (a) Energy per spin and

(b) relative error of the ground state energy. Both models are trained
in the range / € [0, 0.5] U [1.5, 2].

sophisticated structure and needs a warmup period in the
learning rate schedule for a smoother convergence. This
makes the training slower, but with a potentially higher final
accuracy.

2. Finite-size scaling

The idea of finite-size scaling [53] can help us understand
divergent behaviors in the thermodynamic limit using only
numerical results in finite systems. Assume we have some
physical quantity €2 that diverges in the thermodynamic limit
at a critical value A,

Q(h) ~ |AR|7?, (G2)
. —— RBM
w10 TQs
<1
2107
()
e
=10
©
4
1071

10° 10" 10° 10> 10" 10°
Iterations

FIG. 9. Training curve of TQS and RBM on the ground state of
the TFI model with transverse field 2 = 1. On a single data point,
RBM converges faster than TQS.
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where Ah = (h—h.)/h. — 0. The correlation length,
E(h) ~ |AR|™Y, also diverges with critical exponent v.
Therefore, 2 correlates with £ as

Q~ &, (G3)

For a finite system of linear size N, the behavior of Q2(h, N)
deviates according to the ratio £ /N. When & <« N, finite-size
effects are negligible and Eq. (G3) is preserved. However,
since the correlation length cannot exceed the system size in
finite systems, if £ 3> N, Q has to scale with N instead. This
leads to the finite-size scaling ansatz

Q(h,N) ~ £ f(N/§), (G4)
where f(x) is a scaling function that satisfies
const, x — 00,
fx) ~ :xw/v’ o (G5)
By defining g(x) = x~“ f(x"), we can rewrite Eq. (G4) as
Q(h,N) ~ N*/"g(N'/"|Ah)). (G6)
Therefore, at the critical point A, €2 scales as
Q(h,,N) ~ N°. (G7)

Determining h, is another task on its own. A common
method is to compute the Binder cumulant [36],

i)y

3{m2)y

N

which is invariant with system size N at the critical point [36].
Therefore, the crossing point of Uy — & curves for different N
gives the critical point /..

In Fig. 3(a) in the main text, we used the Binder cumulant
to show that TQS can correctly identify the TFI phase transi-
tion at & = 1. And in Fig. 3(b), we computed the ratio 8/v by
fitting the scaling of magnetization m;, to Eq. (G7). On a side
note, since TQS is explicitly symmetrized to have (m.) = 0,
we followed the method in [37] and used the mean-square-
root magnetization ,/(m?) instead.

The results in Fig. 3 are obtained using a TQS model
trained in & € [0.5, 1.5] near the phase boundary. What if
the TQS has never been trained on any data near the critical
point? To test this, we performed the same analysis using
TQS trained in & € [0, 0.5] U [1.5, 2], either deep in the para-
magnetic or ferromagnetic regime. The results are shown in
Fig. 10. This time, TQS failed to find the correct critical
point &, = 1. However, quite surprisingly, TQS managed to
find a plausible interpolation between the two phases, with
a new critical point 2 = 1.24 and critical exponents /v =
0.277 £ 0.006.

Of course, this interpolated phase transition is not physical
and the computed critical exponents seem to suggest that this
fictitious system has a fractal dimension between 1 and 2. It
would be an interesting future work to look into the neural
network and analyze what actually happened here.

Uy=1- (G8)

3. Heisenberg XYZ model

In this section, we further benchmark the performance of
TQS with additional numerical experiments. We focus on the

a =
(@) 3,6
<
]
S 0.4
£
3
C 02
(0]
©
£
& 0.0 i
0.0 05 1.0 15 2.0
(b) h
0.501 ©_
e
..
AN e~ N-0277:0.006
* e
0.40 ~.\‘*\
[ N
[ N
LY R
® ~®
10 20 30 40

System size N

FIG. 10. Finite-size scaling calculations on the TFI model, using
the TQS trained in 2 € [0, 0.5] U [1.5, 2]. (a) Binder cumulant [36],

4
Uy=1- %, plotted for various system sizes N. The curves
Z/N.

cross at h = 1.24. (b) Finite-size scaling of the mean-square-root
magnetization at the critical point 4 = 1.24. A linear fit on the log-
log scale gives /v = 0.277 £ 0.006.

1D Heisenberg XYZ model in a longitudinal field [54], whose
Hamiltonian is given by

n—1

A=7) [(+y)ic), + 1 -y,

i=1

+ Aaizgiz-rl] +h Z ;.
i=1

(G9)

1.0 10
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107
< 00
-3
-0.5 10
-1.0 _
107

000 025 050 075 1.00
h

FIG. 11. Relative error of the ground state energy, [(E —
Eground)/ Egrouna |, plotted against the external field # and longitudinal
interaction strength A, with n = 40. In this figure, 7 and A are in the
pretraining range.
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FIG. 12. Relative error of the ground state energy, |(E —
Eground)/Egrounal, in an extended parameter range. The bottom left
corner is part of the pretraining range, separated with black dashed
lines for visual clarity.

We fix J =1, y = 0.2, and consider the parameter range
h e [0, 1], A € [—1, 1]. The system size n can take any even
integer value with equal probability in the range of [10, 40].
The TQS has the same structure as the one described in
the main text, with eight layers and embedding size 32. We
trained the TQS for 10° iterations without implementing any
symmetry and the relative errors of the ground state energy,
[(E — Eground)/Eground|, for system size n = 40, are plotted in
Figs. 11 and 12.

Figure 11 shows the results in the pretrained range, / €
[0, 1], A € [—1, 1], and the accuracy is at the order of 1073,

10

00 05 1.0 15 20
h

FIG. 13. Relative error of the ground state energy, |(E —
Eground)/Egrounal, after fine-tuning the TQS on specific parameter
points for 2 x 103 iterations.

In Fig. 12, we extended the parameter range to i € [0, 2], A €
[0, 2], with pretrained and extended parameter ranges sepa-
rated by black dashed lines. TQS can still reasonably infer the
ground state properties outside of the pretrained range, but its
accuracy gradually decreases as we move further away.

To improve on the energy estimations, we fine-tune the
pre-trained TQS at selected parameters for 2 x 10° iterations.
The results are plotted in Fig. 13. With fine-tuning, the ground
state energy accuracy improved by another order of magni-
tude, allowing us to more accurately estimate the ground state
properties on a much wider parameter range, with minimal
computational cost.
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