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Abstract. LLM-driven multi-agent-based simulations have been gain-
ing traction with applications in game-theoretic and social simulations.
While most implementations seek to exploit or evaluate LLM-agentic
reasoning, they often do so with a weak notion of agency and simplified
architectures. We implement a role-based multi-agent strategic interac-
tion framework tailored to sophisticated recursive reasoners, providing
the means for systematic in-depth development and evaluation of strate-
gic reasoning. Our game environment is governed by the umpire respon-
sible for facilitating games, from matchmaking through move validation
to environment management. Players incorporate state-of-the-art LLMs
in their decision mechanism, relying on a formal hypergame-based model
of hierarchical beliefs. We use one-shot, 2-player beauty contests to eval-
uate the recursive reasoning capabilities of the latest LLMs, providing a
comparison to an established baseline model from economics and data
from human experiments. Furthermore, we introduce the foundations of
an alternative semantic measure of reasoning to the k-level theory. Our
experiments show that artificial reasoners can outperform the baseline
model in terms of both approximating human behaviour and reaching
the optimal solution.

Keywords: Multi-agent Systems · Social Simulations · Strategic Rea-
soning.

1 Introduction

Multi-agent systems provide environments for individual-based modelling and
simulations [28]. Game theory and multi-agent-based simulation (MABS) have
established a mutually beneficial relationship: MAS leverages game-theoretic in-
teraction models and strategic tools [31], and game theory relies on multi-agent-
based social simulations to investigate strategic decision-making [36]. Large lan-
guage models (LLMs) have received particular interest in their potential to sim-
ulate human-like reasoning and decision-making, and MABS frameworks are
used to evaluate LLM capabilities in game-theoretic environments [17]. Tradi-
tional approaches often rely on simplified agent frameworks implemented with
a weaker concept of agency [45], which may impose limitations on the system’s
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adaptability and the agent’s reasoning sophistication. In contrast, our approach
involves a stronger, modular agent concept enabling a decoupled investigation
of reasoning processes. Our agents are hosted in a role-based multi-agent frame-
work governed by an umpire who manages game environments and facilitates
agent interactions.

We focus on beauty contest games, a well-established concept for studying
recursive reasoning [10]. We evaluate the reasoning capabilities of LLM-enhanced
agents, integrating recursive reasoning via a formal hypergame representation.
Our experiments compare the performance of LLM-enhanced agents against both
a baseline economic model and human data, providing insights into the models’
ability to approximate human strategic behaviour. Furthermore, we introduce a
self-evaluation method κ, a revised measure of reasoning depth that complements
traditional k-level theory, offering a more nuanced understanding of reasoning
sophistication.

Our key contributions include:

– A flexible multi-agent-based simulation platform capable of hosting a wide
array of reasoners, offering a detailed view of reasoning processes;

– LLM-enhanced agents that leverage a hypergame-based model for recursive
reasoning;

– Introduction of κ, a complementary measure to k-level reasoning;
– Experiments comparing our LLM-based reasoners to the baseline model and

human data.

Our results suggest that artificial reasoners can benefit from the expanded
architectural complexity and can not only match but potentially outperform
baseline models in both approximating human behaviour and achieving optimal
solutions in strategic settings.

2 Background

2.1 Game Theory

Game theory provides a mathematical framework for analyzing decision-making
in multi-agent – human or artificial – strategic interactions [30]. A game is for-
mally defined by its players, their available strategies, and utility functions that
evaluate the players’ outcomes [33]. Beauty contest games (BCGs) provide an
experimental testbed for iterative reasoning, where players have to guess a num-
ber which they believe will be the closest to the mean of all guesses weighted by
a parameter p [10]. BCGs are a popular choice for studies concerning the k-level
theory, as optimal play requires thinking about others’ thoughts: given the range
[0, 100] and p = 2

3 , 0-level players pick 50 and level-k thinkers choose 50 2
3

k. Ex-
perimental evidence consistently shows that most human players exhibit 1st or
2nd-level reasoning, with few advancing beyond level 3 [29, 14, 7].

Hypergames extend standard game theory by modelling individual player
perspectives, allowing hypergame models to capture misaligned perceptions [4].
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Multi-level hypergames provide a formalized model of hierarchical games rep-
resenting nested beliefs [40]. A third-level hypergame between players i, j, is a
composite structure of lower-level hypergames representing individual players’
perspectives: H3 = {H2

i , H
2
j }, where H2

i = {H1
ii, H

1
ji} and H1

ji = {H0
iji, H

0
jji}.

Finally, H0
iji = Giji is i’s perceptual game defining player i’s belief of j’s belief

of i’s perspective of G. This theoretical framework provides the foundation for
studying how agents engage in recursive strategic reasoning and form hierarchical
beliefs about others’ decision-making processes.

2.2 Language Models

Large language models (LLMs) are sophisticated neural networks – usually based
on the transformers architecture [15] and a pre-trained model on a vast amount
of data [32] – that target natural language processing applications [48]. Chain-of-
thought (CoT) prompting is a technique that improves LLMs reasoning capabil-
ities by having LLMs decompose complex tasks into smaller problems [42]. Such
prompts can be demonstrative examples showcasing what the expected response
may pertain to and/or descriptive instructions that guide the model on reaching
the expected response [46].

Claude 3.5 Claude 3.5 is a family of state-of-the-art LLM models from An-
thropic, supporting multimodal applications [3]. In this work, we evaluate two
Claude models: Sonnet offers large context windows and advanced analytical ca-
pabilities, suitable for complex tasks and process automation; Haiku is a smaller,
cost-efficient, fast model targeting interactive and sub-agent tasks.

GPT-4 GPT-4 is OpenAI’s SOTA system supporting multimodal input and
output and a long context window arming models with a broad general knowl-
edge and advanced problem-solving abilities [1]. We implement two models:
GPT-4o possesses a generally high reasoning performance across various bench-
marks; 4o-mini is a lightweight variant for resource-constrained environments.

2.3 Recursive Reasoning

We describe recursive reasoning as an agent’s ability to reason about each other’s
physical and cognitive states [44]. The cognitive hierarchy model introduced the
concept of k-level thinkers, proposing that players engage in different levels of
strategic thinking, where players on level k best respond to k−1 level strategies,
assuming every other player must be at most at level k − 1 [10]. Epistemic
game theory is a branch of game theory which provides a formal mathematical
framework for representing and operating with belief hierarchies [11]. Hypergame
theory aims to analyse conflict under asymmetric information and misaligned
perceptions [5], providing a game-oriented representation of sequential beliefs.
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3 Multi-agent Simulation via Centralized Hypergames

Our simulations are materialized in game environments composed of and hosting
an umpire, a set of players, and a set of hypergames. We revise hierarchical
hypergames from [40] to integrate 2-player BCGs as individual perceptual games
capturing the agent’s beliefs and reasoning level.

3.1 Perceptual Beauty Contest Games

In our framework, we define BCGs formally as G = (N,A,U, Ψ), where N = i, j
is the set of two players, A = Ai × Aj is the action space, where Ai, Aj ⊆ Z
represent the available actions for players i and j respectively, U : A→ R2 is the
utility function, where for each player: Ui(ai, aj) = −|ai − p · µ|, with µ =

ai+aj

2
and p as the BCG’s scalar parameter and Ψ = (ψ1 = σ, ψ2, . . . , ψκ) is an ordered
sequence of κ number of perspectives, where the first component ψ1 denotes the
interpreter (creator) of the game perspective, σ. To help position player beliefs
in our BCGs in the context of belief hierarchies, we suggest simplifying assump-
tions as follows. Given a κ = 2 level reasoner i, βi(βj(βk)) [11] corresponds to
i’s beliefs about player j’s beliefs about player k’s reasoning. Then we assume
βi(βj(βk)) ∼= Gijk, where Gijk is the perceptual game capturing the same beliefs,
with subscripts denoting the sequential order of perspectives: i’s reconstruction
of G based on his beliefs about j’s beliefs of k’s perspective. However, the rig-
orous analysis of the proposed relationship is beyond the scope of this work.
Finally, the set of individual perceptual games invokes the hypergame Hκ, cap-
turing both players’ beliefs, where at least one of the players exhibits the highest
level of reasoning κ.

3.2 Recursive Reasoners

Agents in our framework are implemented following the standard intelligent
agent architecture [34] and inspired by the Observe-Orient-Decide-Act decision-
making model [8, 38] – as shown on Figure 1a. An iteration of the game envi-
ronment comprises the umpire’s matchmaking activities and the players’ rea-
soning processes. Given the space of natural language game descriptions X,
the umpire υ sends game requests to each pair of players to participate in
G∗ = ({i, j}, {Ai, Aj}, U, (υ)). In the facilitated games, the umpire is a passive
participant – a pseudoplayer [33].

Each player’s reasoning processes are then decoupled and defined as follows:

– The player’s revision module – Figure 1b – processes the game description,
reasons about what the opponent’s move could be, and constructs a per-
ceptual game. These steps are integrated into an interpretation function
I : G×N → G′, that creates an instance of G reflecting the player’s beliefs:
• ρ : X → Ξ,R is the reasoning function: ρ(x) = ξi, âj where ξi ∈ Ξ is i’s

natural language reasoning based on game description x ∈ X on what
the opponent j’s guess âj is expected to be;
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(a) The modular agent relies
on its sensor (green) to per-
ceive its environment, uses its
mind (purple) to revise the
perception and decide which
action to take, and acts upon
the environment via its effec-
tor (red).

(b) Upon perception of a game request with textual
description x, the player revises x, generating a rea-
soning ξi and producing an expected opponent choice
âj . After ϕ(ξi) derives κ, the perceptual game Gi...κ is
established. δ(âj) = a∗

i is what i decides and acts on.

Fig. 1: Overview of centralised MAS framework.

• ϕ : Ξ → N is the reasoning analysis function: ϕ(ξi) = κ, where κ is the
player’s estimated reasoning level based on the number of nested beliefs
present in the reasoning ξi;

• i’s perceptual game is then: Gi...κ = (i, {i, j}, A, U, Ψ = (ψi, . . . , ψκ)).

– The decision module selects an action based on the revised expectation:

• δ : R → Ai is the decision function selecting i’s preferred action a∗i based
on the expected opponent guess: δ(âj) = a∗i ;

While k-levels are derived from players’ numerical choices, κ provides an al-
ternative measure based on the explicit reasoning steps we observe in players’
natural language explanations. These reasoning steps are represented as perspec-
tives ψ in the perceptual game G, allowing us to analyze the depth of strategic
thinking through players’ own articulation of their decision process.

3.3 Model Prompting Design

We integrate CoT prompting into our multi-step reasoning process across the
agent’s revise and decide phases. During revise, the LLM mind processes infor-
mation through sequential steps: first reasoning about the situation to predict
opponent guesses, then analyzing the reasoning depth to determine κ, resulting in
the κth order perceptual game. The mind’s decision function then interprets this
processed information to derive the final guess, completing the multi-step reason-
ing process. LLM prompts follow a modular structure: (1) optional agent profile
for context-specific reasoning [25], (2) role and task definition, (3) game/task
specific request, and (4) implementation-specific requirements (e.g., “surround
the chosen number in curly brackets: n”).
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3.4 Baseline Model

The self-tuning experience weighted attraction model (EWA) is a benchmark
model for reproducing human-like strategic interaction in game-theoretic exper-
iments [18].

Aj
i (t) =

ϕ ·N(t− 1) ·Aj
i (t− 1) + [δ + (1− δ) · I(sji , si(t))] · πi(s

j
i , s−i(t))

N(t− 1) · ϕ · (1− κ)
(1)

Equation 1 defines player i’s associated attention to strategy j at time (or
round) t, where

– πi(s
j
i , s−i(t)) denotes i′s payoff for choosing strategy j against s−i at time t;

– N is the experience weight N(t) = (1− κ) · ϕ ·N(t− 1) + 1 [9];
– ϕ is the change detector function ϕ(t) = 1− 1

2Si(t);
– the surprise index is denoted by Si(t) =

∑m−i

k=1 (hki (t)− rki (t))
2 with

rki (t) = I(sk−i, s−i(t)) and hki (t) =
∑t

τ=1 I(sk−i,s−i(τ))

t ;

– δ is the weight to foregone payoffs: δij(t) =

{
1 if πi(s

j
i , s−i(t)) ≥ πi(t),

0 otherwise.
;

– and I(x, y) is an index function returning 0 if x = y and 1 otherwise.

Let t = 0 denote the agent’s initial state. We then define the initial attraction
Aj

i (0) according to the cognitive hierarchy model and the Poission distribution
function P (k) = e−ττk

k! [10] and set N(0) = 1. The self-tuning EWA model was
trained and tested on a 7-player beauty contest with p = 0.7 and p = 0.9 [19], for
which Ho et al. determined λ = 2.39 for the sensitivity of the response function
and τ = 1.5 for deriving the first-period plays via the CHM-derived Poisson
distribution. We adopt these parameters in our experiments without further

tuning. Finally, agents choose an action according to P i
j (t+ 1) = eλ·Aj

i
(t)∑mi

k=1 eλ·Ak
i
(t)

.

4 Experiments

We use beauty contest games as the test bench for evaluating our agents’ recur-
sive reasoning capabilities, as guessing games are closely associated with k-level
reasoning [10]. In this context, k level reasoners best respond to the k − 1 level
players’ choices and at k = 0 players choose randomly. In order to classify play-
ers by their reasoning, we adopt the guess-based conversion approach presented
in [29]. We assume level 0 reasoners choose 50; then we set each kth reasoning
level at 50pk. More specifically, we use 2-player BCGs to conduct our evaluation.
In n-player BCGs, reasoners eliminate weakly dominated strategies iteratively
– which process can be extended to infinity – until the theoretical solution of
everyone choosing 0 is reached [10]. The two-player game provides a simpler so-
lution concept, where the smaller number wins [16]. Zero is a weakly dominated
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strategy that always wins, which, in theory, significantly simplifies the iterative
reasoning process.

We evaluate our agents on the experiment from [16], involving 132 student
participants, pooled from first-year students with no prior game-theoretic train-
ing nor existing familiarity with beauty contests and 130 professionals with ex-
tensive game-theoretic domain knowledge.

In the first instance, we replayed the 2-player beauty contests using the origi-
nal experiment design, simulating 25 independent rounds with each LLM. Addi-
tionally, we conducted 60 rounds with pairs of agents using the EWA model as the
benchmark. Artificial agents were provided with a description worded similarly
to what human participants would be given – however, obfuscated to mitigate
reliance on game-theoretic analyses in the models’ training data –, without any
explicit instructions on their reasoning and decision-making. Providing a persona
description as context pushes the LLM to behave in the desired way by guiding
the reasoning process according to the profile specification [25]. Similarly, in the
second set of experiments, we expand our prompting mechanism with an agent
profile, allowing us to specify the level of domain knowledge the agent should use
for its reasoning. Following the original group descriptions from [16], we ran 15-
15 games with the specifications of “first years students with no game-theoretic
knowledge” and “professors with expert domain knowledge in game theory” with
Claude 3.5 Haiku and GPT-4o – chosen based on their proximity to the human
performance and the optimal strategy, 0.

GPT-4o GPT-4o-mini Self-tuning
EWA

Claude 3.5
Haiku

Claude 3.5
Sonnet

All LLMs Human
Students

Human
Professionals

0

5

10

15

20

25

30

35

11.2 15.3 11.2

29.7
22.9 19.8

35.6
27.7

Average Performance without Agent Profiles

All Humans' Mean
k=1
k=2
k=3
k=4
Mean of guesses

Fig. 2: Per model means, standard deviations and estimated k-levels. Human
data for standard deviation was unavailable.

All models outperformed human participants significantly, except for Claude
3.5 Haiku, which approximates the results of the professionals and the joint
human player population – Figure 2. On the other hand, Figure 3 depicts the
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GPT-4o
Professional

GPT-4o
Student

Claude 3.5 Haiku
Professional

Claude 3.5 Haiku
Student

Human
Professionals

Human
Students

0

5

10

15

20

25

30

35

10.5 14.0
25.2 28.9 27.7

35.6

Average Performance with Agent Profiles

k=1
k=2
k=3
k=4
Mean of guesses

Fig. 3: Per model means (LLMs with profiles), standard deviations and estimated
k-levels. Human data for standard deviation was unavailable.

results of the second experiment, where player profiles are successfully integrated
into both agents’ reasoning processes. Similar to the human groups with different
levels of domain expertise, the models acting as students performed noticeably
poorer than the models that were described as professionals. However, while
9.85% of human students and 36.02% of human professionals managed to reach
0, none of the artificial reasoners – nor the baseline model – chose the optimal
strategy in either experiment. Most studies concentrate on BCGs involving more
than 2 players, where 0 is not an obvious solution to the game. This bias is
likely inherently present in the LLMs training data, potentially tainting the
information used to generate reasoning in the 2-player BCG.

K-level reasoning provides another metric for comparing human and artifi-
cial agents’ thought processes. Table 1 reinterprets the mean results through
k-level classifications, showing that while humans exhibit 1st-level reasoning,
only Claude 3.5 Haiku produced comparable results. Other models performed at
the 2nd and 3rd levels, with EWA and GPT-4o approaching level 4 reasoning.
Additionally, the “Mean κ” and “Median κ” columns report the LLM agents’ rea-
soning steps involved, corresponding to perspectives in their perceptual games.

The second experiment revealed that the estimated k and κ levels are aligned
with the expectation that reasoners with domain expertise would outperform and
exhibit a higher order of reasoning than non-professionals. While κ can provide
a semantics-backed estimate of the reasoning steps involved in the process, it
does not yet tell us much about the quality of the agent’s reasoning. The results
suggest that a semantic qualitative reasoning classification may complement the
current numerically defined measures.
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Model/Group Mean Guess Mean k-level Mean κ Median κ

Human Students 35.57 0.84 N.A. N.A.
Human Professionals 27.73 1.45 N.A. N.A.
Claude 3.5 Haiku 29.7 1.28 2.17 2
Claude 3.5 Sonnet 22.9 1.92 2.17 2
GPT-4o-mini 15.3 2.92 2.57 3
GPT-4o 11.2 3.69 2.27 2
Self-tuning EWA 11.2 3.69 N.A. N.A.

Claude 3.5 Haiku Student 28.9 1.35 1.97 2
Claude 3.5 Haiku Professional 25.2 1.69 2.5 2.5
GPT-4o Student 14 3.14 1.8 2
GPT-4o Professional 10.5 3.85 2.4 3

Table 1: Mean k-levels are estimated from mean guesses, while mean and median
κ levels correspond to LLM agents’ self-reported reasoning steps.

5 Related Work

The recent emergence of LLM agents [39] and LLM-MAS [22] has influenced
social simulations. Multi-agent strategic interactions are used to evaluate LLM
reasoning [27, 13], and LLM-based simulations are leveraged for empirical inves-
tigations on strategic behaviours [25, 26]. Recent work on LLM-driven reason-
ing in BCGs focuses on studying agent rationality and reasoning levels [47, 24,
17]. Centralized role-based architectures rely on an umpire [35] or a game man-
ager [21] to coordinate game-based interactions – such as artificial trading [43] or
utility markets [23, 49]. Hypergame theory, while effective for analyzing complex
conflicts post-hoc [5], has seen limited practical application [6] due to challenges
in automation. Most agent-based implementations only borrow conceptually [12,
2], with few examples of full integration [20, 37].

While prior approaches typically implement a looser agentic concept – a
weaker notion of agency [45] – potentially constraining the system’s flexibility
and bounding LLMs’ reasoning [41], our framework offers enhanced flexibility
and depth. Our conceptually elaborate multi-agent architecture enables a more
nuanced evaluation process, facilitating a systematic review of LLM reasoning
and automating the generation of hypergames. This approach provides valuable
insights into LLMs’ capabilities for recursive reasoning, particularly their ability
to form beliefs about beliefs and develop a theory of mind.

6 Conclusions and Future Work

We present a MABS framework integrating hypergames for multi-level reason-
ing in BCGs. Our contributions are threefold. First, we introduce a flexible
multi-agent simulation platform capable of hosting both simple models like the
self-tuning EWA and sophisticated multi-step reasoners powered by state-of-the-
art LLMs. The platform’s architecture emphasizes a strong notion of agency,
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allowing for systematic development and evaluation of strategic reasoning ca-
pabilities. In contrast, existing approaches often employ simplified architectures
with weaker notions of agency, which can limit both applicability and evalua-
tion depth. Second, we introduce κ as a complementary measure to the k-level
theory for evaluating reasoning. While k-levels are solely derived from players’
numerical choices, κ represents the sequential perspectives in an agent’s rea-
soning process, providing an alternative measure of reasoning depth that could
offer valuable insights alongside numerical k-level analysis. Third, our 2-player
BCG experiments demonstrate that our proposed approach can match and out-
perform the baseline model in approximating human results and reaching the
optimal solution. Additionally, our profile-enhanced agents successfully mirrored
the performance gap observed between student and professional human players.

The presented system and experiments highlight the potential for extensions.
Integrating semantic analysis techniques for evaluating the quality and coherence
of agent reasoning processes would allow us to develop κ into a deeper qualitative
measure of reasoning sophistication. Recreating the BCG experiment with hu-
man reasoning data would allow us to investigate (dis)similarities in how humans
and LLM agents approach recursive strategic thinking, both in terms of k and
κ levels. Implementing multi-round and n-player games would enable studying
learning processes in artificial and human agents. These extensions would con-
tribute to a more comprehensive understanding of recursive reasoning in artificial
– and potentially human – agents while advancing the practical applications of
LLM-driven multi-agent systems in strategic decision-making scenarios.
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