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ABSTRACT

In this paper, we propose a novel channel pruning method to solve the problem of
compression and acceleration of Convolutional Neural Networks (CNNs). Previous
channel pruning methods usually ignore the relationships between channels and
layers. Many of them parameterize each channel independently by using gates or
similar concepts. To fill this gap, a hyper-structure network is proposed to generate
the architecture of the main network. Like the existing hypernet, our hyper-
structure network can be optimized by regular backpropagation. Moreover, we use
a regularization term to specify the computational resource of the compact network.
Usually, FLOPs is used as the criterion of computational resource. However, if
FLOPs is used in the regularization, it may over penalize early layers. To address
this issue, we further introduce learnable layer-wise scaling factors to balance
the gradients from different terms, and they can be optimized by hyper-gradient
descent. Extensive experimental results on CIFAR-10 and ImageNet show that our
method is competitive with state-of-the-art methods.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have accomplished great success in many machine learning
and computer vision tasks (Krizhevsky et al., 2012; Redmon et al., 2016; Ren et al., 2015; Simonyan
& Zisserman, 2014a; Bojarski et al., 2016). To deal with real world applications, recently, the design
of CNNs becomes more and more complicated in terms of width, depth, etc. (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014b; He et al., 2016; Huang et al., 2017). Although these complex CNNs
can attain better performance on benchmark tasks, their computational and storage costs increase
dramatically. As a result, a typical application based on CNNs can easily exhaust an embedded or
mobile device due to its enormous costs. Given such costs, the application can hardly be deployed on
resource-limited platforms. To tackle these problems, many methods (Han et al., 2015b;a) have been
devoted to compressing the original large CNNs into compact models. Among these methods, weight
pruning and structural pruning are two popular directions.

Unlike weight pruning or sparsification, structural pruning, especially channel pruning, is an effective
way to truncate the computational cost of a model because it does not require any post-processing
steps to achieve actual acceleration and compression. Many existing works (Liu et al., 2017; Ye
et al., 2018; Huang & Wang, 2018; Kim et al., 2020; You et al., 2019) try to solve the problem of
structure pruning by applying gates or similar concepts on channels of a layer. Although these ideas
have achieved many successes in channel pruning, there are some potential problems. Usually, each
gate has its own parameter, but parameters from different gates do not have dependence. As a result,
they can hardly learn inter-channel or inter-layer relationships. Due to the same reason, the slimmed
models from these methods could overlook the information between different channels and layers,
potentially bringing sub-optimal model compression results.

To address these challenges, we propose a novel channel pruning method inspired by hypernet (Ha
et al., 2016). In hypernet, they propose to use a hyper network to generate the weights for another
network, while the hypernet can be optimized through backpropagation. We extend a hypernet to
a hyper-structure network to generate an architecture vector for a CNN instead of weights. Each
architecture vector corresponds to a sub-network from the main (original) network. By doing so, the
inter-channel and inter-layer relationships can be captured by our hyper-structure network.
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Besides the hyper-structure network, we also introduce a regularization term to control the computa-
tional budget of a sub-network. Recent model compression methods focus on pruning computational
FLOPs instead of parameters. The problem of applying FLOPs regularization is that the gradients
of the regularization will heavily penalize early layers which can be regarded as a bias towards
latter layers. Such a bias will restrict the potential search space of sub-networks. To make our
hyper-structure network explore more possible structures, we further introduce layer-wise scaling
factors to balance the gradients from different losses for each layer. These factors can be optimized
by hyper-gradient descent.

Our contributions are summarized as follows:

1) Inspired by hypernet, we propose to use a hyper-structure network for model compression
to capture inter-channel and inter-layer relationships. Similar to hypernet, the proposed
hyper-structure network can be optimized by regular backpropagation.

2) Gradients from FLOPs regularization are biased toward latter layers, which truncate the
potential search space of a sub-network. To balance the gradients from different terms, layer-
wise scaling factors are introduced for each layer. These scaling factors can be optimized
through hyper-gradient descent with trivial additional costs.

3) Extensive experiments on CIFAR-10 and ImageNet show that our method can outperform
both conventional channel pruning methods and AutoML based pruning methods on ResNet
and MobileNetV2.

2 RELATED WORKS

2.1 MODEL COMPRESSION

Recently, model compression has drawn a lot of attention from the community. Among all model
compression methods, weight pruning and structural pruning are two popular directions.

Weight pruning eliminates redundant connections without assumptions on the structures of weights.
Weight pruning methods can achieve a very high compression rate while they need specially designed
sparse matrix libraries to achieve acceleration and compression. As one of the early works, Han
et al. (2015b) proposes to use L1 or L2 magnitude as the criterion to prune weights and connections.
SNIP (Lee et al., 2019) updates the importance of each weight by using gradients from loss function.
Weights with lower importance will be pruned. Lottery ticket hypothesis (Frankle & Carbin, 2019)
assumes there exist high-performance sub-networks within the large network at initialization time.
They then retrain the sub-network with the same initialization. In rethinking network pruning (Liu
et al., 2019b), they challenging the typical model compression process (training, pruning, fine-tuning),
and argue that fine-tuning is not necessary. Instead, they show that training the compressed model
from scratch with random initialization can obtain better results.

One of the previous works (Li et al., 2017) in structural pruning uses the sum of the absolute value
of kernel weights as the criterion for filter pruning. Instead of directly pruning filters based on
magnitude, structural sparsity learning (Wen et al., 2016) is proposed to prune redundant structures
with Group Lasso regularization. On top of structural sparsity, GrOWL regularization is applied to
make similar structures share the same weights (Zhang et al., 2018). One of the problems when using
Group Lasso is that weights with small values could still be important, and it’s difficult for structures
under Group Lasso regularization to achieve exact zero values. As a result, Louizos et al. (2018)
propose to use explicit L0 regularization to make weights within structures have exact zero values.
Besides using the magnitude of structure weights as a criterion, other methods utilize the scaling
factor of batchnorm to achieve structure pruning, since batchnorm (Ioffe & Szegedy, 2015) is widely
used in recent neural network designs (He et al., 2016; Huang et al., 2017). A straightforward way to
achieve channel pruning is to make the scaling factor of batchnorm to be sparse (Liu et al., 2017).
If the scaling factor of a channel fell below a certain threshold, then the channel will be removed.
The scaling factor can also be regarded as the gate parameter of a channel. Methods related to this
concept include (Ye et al., 2018; Huang & Wang, 2018; Kim et al., 2020; You et al., 2019). Though
it has achieved many successes in channel pruning, using gates can not capture the relationships
between channels and across layers. Besides using gates, Collaborative channel pruning (Peng et al.,
2019) try to prune channels by using Taylor expansion. Our method is also related to Automatic
Model Compression(AMC) (He et al., 2018b). In AMC, they use policy gradient to update the policy
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Figure 1: Overview of our proposed method. The width and height dimension of weight tensors are
omitted. The architecture vector v is firstly generated from fixed input ai, i = 1, . . . , L. Then, a
sub-network is sampled according to the architecture vector v. The parameters of HSN are updated
by using gradients from the loss function when evaluating the sub-network.

network, which potentially provides both inter-channel and inter-layer information. However, the
high variance of policy gradient makes it less efficient and effective compared to our method. In
this paper, we focus on channel pruning, since it provides a natural way to reduce computation and
memory costs.

Besides weight and channel pruning methods, there are works from other perspectives, including
bayesian pruning (Molchanov et al., 2017; Neklyudov et al., 2017), weight quantization (Courbariaux
et al., 2015; Rastegari et al., 2016), and knowledge distillation (Hinton et al., 2015).

2.2 HYPERNET

Hypernet (Ha et al., 2016) was introduced to generate weights for a network by using a hyper network.
Hyper networks have been applied to many machine learning tasks. von Oswald et al. (2020) uses
a hyper network to generate weights based on task identity to combat catastrophic forgetting in
continual learning. MetaPruning (Liu et al., 2019a) utilizes a hyper network to generate weights
when performing evolutionary algorithm. SMASH (Brock et al., 2018) is a neural architecture search
method that can predict the weights of a network given its architecture. GPN (Zhang et al., 2019)
extends the idea of SMASH and can be used on any directed acyclic graph. Other applications include
Bayesian neural networks (Krueger et al., 2017), multi-task learning (Pan et al., 2018), generative
models (Suarez, 2017) and so on. Different from original hyper network, the proposed hyper-structure
network aims to generate the architecture of a sub-network.

3 PROPOSED METHOD

3.1 NOTATIONS

To better describe our proposed approach, necessary notations are introduced first. In a CNN, the
feature map of ith layer can be represented by Fi ∈ <Ci×Wi×Hi , i = 1, . . . , L, where Ci is the
number of channels, Wi and Hi are height and width of the current feature map, L is the number of
layers. The mini-batch dimension of feature maps is ignored to simplify notations. sigmoid(·) is the
sigmoid function. round(·) rounds inputs to nearest integers.

3.2 HYPER-STRUCTURE NETWORK

In the context of channel pruning, we need to decide whether a channel should be pruned or not.
We can use 0 or 1 to depict the removal or keep of a channel. Consequently, the architecture of a
sub-network can be represented as a concatenated vector (containing 0 or 1) from all layers. Our goal
is then to use a neural network to generate this vector to represent the corresponding sub-network.
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layer-wise setting

(a) Original FLOPs regularization (b) FLOPs reg + Layer-wise scaling

unreachable

Figure 2: (a) For the original FLOPs regularization, some architectures may become unreachable. (b)
After layer-wise scaling, the potential search space of architectures for a sub-network is increased.

For ith layer, the following output vector is generated:

oi = HSN(ai; Θ), (1)

where HSN is our proposed hyper-structure network composed of gated recurrent unit (GRU) (Cho
et al., 2014) and dense layers, ai is a fixed random vector generated from a uniform distribution
U(0, 1), and Θ is the parameter of HSN. The detailed setup of HSN can be found in Appendix C. In
short, GRU is used to capture sequential relationships between layers, and dense layers are capable
of capturing inter-channel relationships. Note that ai is a constant vector during training, if ai is
randomly sampled, it will make learning more difficult and result in sub-optimal performance.

Now we have the output oi, we need to convert it to a 0-1 vector to evaluate the sub-network. The
binarization process can be demonstrated by the following equations:

zi = sigmoid((oi + g)/τ),

vi = round(zi), and vi ∈ {0, 1}Ci ,
(2)

where g follows Gumbel distribution: g ∼ Gumbel(0, 1), vi is the architecture vector of ith layer,
and τ is the temperature hyper-parameter. Since the round operation is not differentiable, we use
straight through estimator (STE) (Bengio et al., 2013) to enable gradient calculation: ∂J∂zi = ∂J

∂vi
. This

process can be summarized as using ST Gumbel-Softmax (Jang et al., 2016) with fixed temperature
to approximate Bernoulli distribution. The idea of HSN can also be viewed as mapping from constant
vectors {ai}Li=1 to the architecture of a sub-network. When we evaluate a sub-network, the feature
map of ith layer is modified as follows:

F̂i = v̂i �Fi, (3)

where � is element-wise multiplication, v̂i is the expanded version of vi, and v̂i has the same size of
Fi. The feature map Fi is from the output of Conv-Bn-Relu block. The overall loss function is:

min
Θ
J (Θ) := L

(
f(x;W,v), y

)
+ λR(T (v), pTtotal) (4)

where v = (v1, . . . , vL), T (v) is the current FLOPs decided by the architecture vector v, Ttotal is the
total FLOPs of the original model, p ∈ (0, 1] is a predefined parameter deciding the remaining fraction
of FLOPs, λ is the hyper-parameter controlling the strength of FLOPs regularization, f(x;W,v) is
the CNN parameterized byW and the sub-network structure is determined by architecture vector
v, L is the cross entropy loss function and R is the regularization term for FLOPs, and Θ again
is the parameters of HSN. The regularization term R used in this paper is R(T (v), pTtotal) =
log(|T (v)− pTtotal|+ 1).

3.3 LAYER-WISE SCALING

The FLOPs regularization considered in Eq. 4 will heavily penalize layers with a larger amount of
FLOPs (early layers for most architectures). Consequently, the resulting architecture from the original
FLOPs regularization will have a larger pruning rate at early layers. The alternative architectures with
similar FLOPs could be omitted. This phenomenon is also demonstrated in Fig. 2. Further analysis is
provided in Appendix B.

To alleviate the problem caused by original FLOPs regularization, we introduce layer-wise scaling
factors to dynamically balance gradients from the regularization termR and the loss term L. Only

4



Under review as a conference paper at ICLR 2021

Algorithm 1: Model Compression via Hyper-Structure Network
Input: dataset for training HSN: DHSN; perversed rate of FLOPs: p; hyper-parameter: λ; training

epochs: nE ; pre-trained CNN: f ; learning rate β when updating {αi}Li=1.
Initialization: initialize Θ randomly; initialize αi = 1, i = 1, . . . , L; freezeW in f .
for e := 1 to nE do

shuffle(DHSN)
for a batch (x, y) in DHSN do

1. produce architecture vector v from HSN (Eq. 1 and 2)
2. calculate gradients w.r.t Θ (Eq. 5).
3. calculate hyper-gradient for αi (Eq. 6).

4. update layer-wise scaling factor αti = αt−1
i − β ∂J(u(θt−2

i ,αt−1
i ))

∂αi
, i = 1, . . . , L.

5. update Θ by ADAM optimizer.
end

end
return HSN with the final Θ.

gradients in dense layers are balanced since GRU is shared by all layers. The gradients w.r.t the
parameters of ith dense layer can be written in the following equation:

∂J
∂θi

= αi
∂L
∂θi

+ λ
∂R
∂θi

, (5)

where θi is the parameter of ith dense layer, αi is the layer-wise scaling factor for ith layer. If no
layer-wise scaling is applied, αi = 1. αi can be regarded as a balancing factor between ∂R

∂θi
and ∂L

∂θi
.

αi only appears in gradient calculation, as a result, it can not be directly optimized. To optimize
αi, we follow similar deriving process from (Baydin et al., 2018). We first define the update rule
θti = u(θt−1

i , αti) and it can be applied to any optimization algorithms. For example, under stochastic
gradient descent, u(θt−1

i , αti) = θt−1
i − η(αti

∂L
∂θt−1
i

+ λ ∂R
∂θt−1
i

). Ideally, our goal is to update αi
so that the corresponding architecture can obtain lower loss value with loss function J . To do so,
we want to min

αi
J(u(θt−1

i , αti)) before update θi. For simplicity, the expectation is omitted. The

hyper-gradient with respect to αi can be calculated by:

∂J(u(θt−1
i , αti))

∂αi
= (

∂J
∂u

)T
∂u(θt−1

i , αti)

∂αi
= (

∂J
∂θti

)T
∂u(θt−1

i , αti)

∂αi
. (6)

Given the hyper-gradient of αi, it can be updated by regular gradient descent method. In experiments,

the update rule is ADAM optimizer (Kingma & Ba, 2014), and the detail derivation of ∂J(u(θt−1
i ,αti))

∂αi
for ADAM optimizer is described in Appendix E.

3.4 MODEL COMPRESSION VIA HYPER-STRUCTURE NETWORK

In Fig. 6, we provide the flowchart of HSN. The overall algorithm of model compression via hyper-
structure network is shown in Alg. 1. As shown in Alg. 1, our method can prune any pre-trained
CNNs without modifications. It should be emphasized again that the gradient of GRU is not affected
by αi, which is simply ∂L

∂θGRU
+ λ ∂R

∂θGRU
, and θGRU is the parameter for GRU. Moreover, HSN does

not need a whole dataset for training, and a small fraction of the dataset is enough, which makes
the training of HSN quite efficient. After the training of HSN, we then use HSN to generate an
architecture vector v, and prune the model according to this vector. Also, note that there is certain
randomness (Eq. 2 approximates Bernoulli distribution) when generating v, but we find that there
is no need to generate the vector multiple times, and average them or conduct majority vote. When
generating the vector multiple times, most parts of vectors are the same, the different parts are trivial
and do not have impacts on the final performance.
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Method Architecture Baseline Acc Pruned Acc ∆-Acc ↓ FLOPs
Channel Pruning (He et al., 2017)

ResNet-56

92.80% 91.80% -1.00% 50.0%
AMC (He et al., 2018b) 92.80% 91.90% -0.90% 50.0%

Pruning Filters (Li et al., 2017) 93.04% 93.06% +0.02% 27.6%
Soft Prunings (He et al., 2018a) 93.59% 93.35% -0.24% 52.6%

DCP (Zhuang et al., 2018) 93.80% 93.59% -0.31% 50.0%
DCP-Adapt (Zhuang et al., 2018) 93.80% 93.81% +0.01% 47.0%

CCP (Peng et al., 2019) 93.50% 93.42% -0.08% 52.6%
MCH(ours) 92.99% 93.23% +0.24% 50.0%

WM (Zhuang et al., 2018)
MobileNetV2

94.47% 94.17% -0.30% 26.0%
DCP (Zhuang et al., 2018) 94.47% 94.69% +0.22% 26.0%

MCH(ours) 94.23% 94.68% +0.38% 40.0%

Table 1: Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2. ∆-Acc
represents the performance changes before and after model pruning. +/- indicates increase or decrease
compared to baseline results.

4 EXPERIMENTAL RESULTS

4.1 IMPLEMENTATION DETAILS

Similar to many model compression works, CIFAR-10 (Krizhevsky & Hinton, 2009) and Ima-
geNet (Deng et al., 2009) are used to evaluate the performance of our method. Our method requires
one hyper-parameter p to control the FLOPs budget. The detailed choices of p are listed in Appendix
F.

For CIFAR-10, we compare with other methods on ResNet-56 and MobileNetV2. For ImageNet,
we select ResNet-34, ResNet-50, ResNet-101 and MobileNetV2 as our target models. The reason
we choose these models is because that ResNet (He et al., 2016) and MobileNetV2 (Sandler et al.,
2018) are much harder to prune than earlier models like AlexNet (Krizhevsky et al., 2012) and
VGG (Simonyan & Zisserman, 2014b). λ decides the regularization strength in our method. We
choose λ = 4 in all CIFAR-10 experiments and λ = 8 for all ImageNet experiments.

For CIFAR-10 models, we train ResNet-56 from scratch following the pytorch examples. After
pruning, we finetune the model for 160 epochs using SGD with a start learning rate 0.1, weight
decay 0.0001 and momentum 0.8, the learning rate is multiplied by 0.1 at epoch 80 and 120. For
ImageNet models, we directly use the pre-trained models released from pytorch (Paszke et al., 2017;
2019). After pruning, we finetune the model for 100 epochs using SGD with a start learning rate
0.01, weight decay 0.0001 and momentum 0.9, and the learning rate is scaled by 0.1 at epoch 30, 60
and 90. For MobileNetV2 on ImageNet, we choose weight decay as 0.00004 which is the same with
the original paper (Sandler et al., 2018).

For the training process of HSN, we use ADAM (Kingma & Ba, 2014) optimizer with a constant
learning rate 0.001 and train HSN for 200 epochs. τ in Eq. 2 is set as 0.4. The β for αi is chosen as
0.01, and αi is updated as shown in Alg. 1. To build dataset DHSN, we random sample 2, 500 and
10, 000 samples for for CIFAR-10 and ImageNet separately. In the experiments, we found that a
stand-alone validation set is not necessary, all samples in DHSN come from the original training set.
All codes in this paper are implemented with pytorch (Paszke et al., 2017; 2019). The experiments
are conducted on a machine with 4 Nvidia Tesla P40 GPUs.

4.2 CIFAR-10 RESULTS

In Tab. 1, we present the comparison results on CIFAR-10 dataset. Our method is abbreviated as
MCH (Model Compression via Hyper Structure Network) in the experiment section. For ResNet-
56, our method can prune 50% of FLOPs while obtain 0.24% performance gain in accuracy. On
MobileNetV2, our method can obtain 0.38% gain in accuracy. Compared to all other methods, our
method can achieve the best results. Our method can outperform the second best method (DCP-Adapt)
by 0.23% on ResNet-56. On MobileNetV2, our method can outperform the the second best method
by 0.16% while pruning 14% more FLOPs. For both models, our method performs much better than
early methods (He et al., 2017; 2018b; Li et al., 2017; He et al., 2018a). Our method can outperform
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Method Architecture Pruned Top-1 Pruned Top-5 ∆ Top-1 ∆ Top-5 ↓ FLOPs
Pruning Filters (Li et al., 2017)

ResNet-34

72.17% - -1.06% - 24.8%
Soft Prunings (He et al., 2018a) 71.84% 89.70% -2.09% -1.92% 41.1%

IE (Molchanov et al., 2019) 72.83% - -0.48% - 24.2%
FPGM (He et al., 2019) 72.63% 91.08% -1.29% -0.54% 41.1%

MCH(ours) 72.85% 91.15% -0.45% -0.27% 44.0%
IE (Molchanov et al., 2019)

ResNet-50

74.50% - -1.68% - 45.0%
FPGM (He et al., 2019) 74.83% 92.32% -1.32% -0.55% 53.5%
GAL (Lin et al., 2019) 71.80% 90.82% -4.35% -2.05% 55.0%

DCP (Zhuang et al., 2018) 74.95% 92.32% -1.06% -0.61% 55.6%
CCP (Peng et al., 2019) 75.21% 92.42% -0.94% -0.45% 54.1%

MetaPruning (Liu et al., 2019a) 75.40% - -1.20% - 51.2%
GBN (You et al., 2019) 75.18% 92.41% -0.67% -0.26% 55.1%
HRank (Lin et al., 2020) 74.98% 92.33% -1.17% -0.54% 43.8%
Hinge (Li et al., 2020) 74.70% - -1.40% - 54.4%

LeGR (Chin et al., 2020) 75.30% - -0.80% - 54.0%
MCH(ours) 75.60% 92.67% -0.55% -0.20% 56.0%

Rethinking (Ye et al., 2018)

ResNet-101

77.37% - -2.10% - 47.0%
IE (Molchanov et al., 2019) 77.35% - -0.02% - 39.8%

FPGM (He et al., 2019) 77.32% 93.56% -0.05% 0.00% 41.1%
MCH(ours) 77.58% 93.81% +0.21% +0.25% 56.0%

MobileNetV2 0.75 (Sandler et al., 2018)

MobileNetV2

69.80% 89.60% -2.00% -1.40% 30.0%
AMC (He et al., 2018b) 70.80% - -1.00% - 30.0%

MetaPruning (Liu et al., 2019a) 71.20% - -0.80% - 30.7%
LeGR (Chin et al., 2020) 71.40% - -0.40% - 30.0%

MCH(ours) 71.54% 90.08% -0.58% -0.33% 30.1%
MCH(cos scheduler) 71.73% 90.17% -0.39% -0.24% 30.1%

Table 2: Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-101 and
MobileNetV2. ∆-Acc represents the performance changes before and after model pruning. +/-
indicates increase or decrease compared to baseline results.

CCP by 0.32% in terms of ∆-Acc, which demonstrate that learning both inter-layer and inter-channel
relationships are better than only considering inter-channel relationships.

4.3 IMAGENET RESULTS

In Tab. 2, the results on ImageNet are presented, Top-1/Top-5 accuracy after pruning are presented.
Most of our comparison methods comes from recently published papers including IE (Molchanov
et al., 2019), FPGM (He et al., 2019), GAL (Lin et al., 2019), CCP (Peng et al., 2019), MetaPrun-
ing (Liu et al., 2019a), GBN (You et al., 2019), Hinge (Li et al., 2020), abd HRank (Lin et al.,
2020).

ResNet-34. Our proposed MCH can prune 44.0% of FLOPs with 0.45% and 0.27% performance loss
on Top-1 and Top-5 accuracy. Such a result is better than any other method. Proposed MCH performs
similarly compared to IE (Molchanov et al., 2019) in Top-1 and ∆ Top-1 accuracy (72.85%/−0.45%
vs. 72.83%/ − 0.43%), while our method can prune almost 20% more FLOPs. Given similar
FLOPs pruning rate, our method achieves better results compared to FPGM (He et al., 2019)
(−0.45%/−0.27% vs. −1.29%/−0.54% for ∆ Top-1/∆ Top-5). Besides IE and FPGM, The margin
between our method and rest methods are even larger.

ResNet-50. ResNet-50 is a very popular model for evaluating model compression methods. With
such intense competition, our method can still achieve the best Top-1/Top-5 and ∆ Top-1/∆ Top-5
results. The second best method in terms of Top-1 accuracy is MetaPruning (Liu et al., 2019a), which
can achieve 75.40% Top-1 result after pruning. Our method outperforms MetaPruning by 0.20%
in Top-1 accuracy while our method can prune 5% more FLOPs. MetaPruning utilizes hypernet
to generate weights when evaluating sub-networks, however, such a design paradigm prohibits
MetaPruning to be directly used on pre-trained models. The weights inherited from the pre-trained
model might be one of the reasons why our method can outperform MetaPruning. GBN (You et al.,
2019) obtains the second-best ∆ Top-1 accuracy, however, the accuracy after pruning is quite low
compared to other methods. Our method can outperform GBN by 0.42% in Top-1 accuracy. Besides
GBN and MetaPruning, our method can outperform two recent methods HRank (Lin et al., 2020) and
Hinge (Li et al., 2020) by 0.62% to 0.90% on Top-1 accuracy.

ResNet-101. For ResNet-101, our method can increase the performance of the baseline model by
0.21% and 0.25% on Top-1 and Top-5 accuracy, while removes 56% of FLOPs. The second best
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(a) λ, ResNet (b) λ, MobileNetV2 (c) LWS, ResNet (d) LWS, MobileNetV2

Figure 3: (a,b): Effect of λ on the performance of sub-networks. (c,d): Effect of layer-wise scaling
on the performance of sub-network. All experiments are done on CIFAR-10.

(a) ResNet-56 (b) MobileNetV2

Figure 4: Layer-wise preserved rate with or without layer-wise scaling (LWS) for ResNet-56 and
MobileNetV2 on CIFAR-10.

method FPGM (He et al., 2019) can maintain the performance and reducing 41% of FLOPs. In short,
compared to FPGM, our method can obtain performance gain while pruning 15% more FLOPs.

MobileNetV2. On MobileNetV2, we mainly compare with AMC (He et al., 2018b) and MetaPrun-
ing (Liu et al., 2019a). Both of them can be regarded as representative works for AutoML related
model compression methods (AMC uses reinforcement learning; MetaPruning uses evolutionary
algorithm and hypernet). Our method can achieve 71.54% Top-1 accuracy while pruning around 30%
of FLOPs, which is 0.34% and 0.74% higher than MetaPruning and AMC. These results show that
our method can outperform AutoML based methods.

In summary, our method can outperform these comparison methods and achieve the state-of-the-art
performance. These experimental results also indicate that inter-channel and inter-layer relationships
should be considered when designing model compression methods.

4.4 EFFECTS OF LAYER-WISE SCALING

We further study the impact of λ and layer-wise scaling (LWS) when training HSN on CIFAR-10.
In Fig. 3 (a,b), we can see that changing λ does not have a large impact on the final performance
of a sub-network, and our method is not sensitive to it. One possible reason is that αi adapts to λ
when using ADAM optimizer. In general, we do not spend too much time on tuning λ. In Fig. 3
(c,d), it shows that using LWS can improve the final performance of a sub-network and obtain
lower loss. Moreover, early layers usually have a larger preserved rate with LWS as shown in Fig 4,
indicating that alternative sub-network architectures can be discovered from LWS. Without LWS, the
final performance of ResNet-56 will decrease 0.19%, achieves 93.04% final accuracy on CIFAR-10.
Similar observations hold for MobileNetV2 (94.45% final accuracy and the relative gap is 0.16%).
These observations show that LWS indeed helps the training of the HSN.

4.5 DETAILED ANALYSIS

In this section, we provide detailed analysis to answer the following questions: (1) why we use fixed
inputs for ai? (2) Can we replace HSN with dense layers? (3) Does LWS work for different learning
rate settings? (4) Does LWS still work for other optimization methods?

8
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(a) ai, ResNet (b) ai, MobileNetV2 (c) Settings, ResNet (d) Settings, MobileNetV2

(e) lr, ResNet (f) lr, MobileNetV2 (g) SGD/LARS, ResNet (h) SGD/LARS, MobileNetV2

Figure 5: (a,b): Effect of different scheme for the inputs of HSN ai. (c,d): Effect of different settings
of HSN. (e,f): Effect of different learning rates with LWS. (g,h): Effect of different optimizer on with
LWS. For plots in (c,d,g,h), shaded areas represents variance from 5 trials.

To answer the first question, we examine three different settings: learnable inputs, fixed inputs, and
randomly generated inputs from the uniform distribution. From Fig. 5 (a,b), we observe that fixed
inputs have similar performance to learned inputs, and both of them outperform random inputs. The
idea of using fixed inputs is that we want to project the optimal sub-network to fixed vectors in the
input space, which is generally simple (compared to learned inputs) and easy to train (compared to
random inputs). The above results justify why we use fixed inputs.

To verify the effectiveness of different components of HSN, we use three different settings: vanilla
HSN, HSN only with dense layers and gates (definition is given in Appendix). From Fig. 5 (c,d), it
can be shown that HSN has the best performance, which again shows that we should not separately
treat each channel or each layer.

In Fig. 5 (e,f), we plot training curves for different learning rates with or without LWS. It can be seen
that LWS can lead to better performance, given different learning rates. Finally, in Fig 5 (g,h), we
examine whether LWS is still useful given two additional optimizer: SGD and LARS (You et al.,
2017). LARS applies layer-wise learning rates on overall gradients, which can be complementary to
LWS. When applying LWS on these two methods, it still improves performance. SGD is not a good
choice when the optimization involves discrete values, as suggested by the previous study (Alizadeh
et al., 2019).

5 CONCLUSION

In this paper, we proposed a hyper-structure network for model compression to capture inter-channel
and inter-layer relationships. An architecture vector can be generated from HSN to select a sub-
network from the original model. At the same time, we evaluated this sub-network by using
classification and resource losses. The HSN can be updated by the gradients from them. Moreover,
we also identified the problem of FLOPs constraint (bias towards latter layers), which limits the final
search space of HSN. To solve it, we further proposed layer-wise scaling to balance the gradients.
With the aforementioned novel techniques, our method can achieve state-of-the-arts performance on
ImageNet with four different architectures.
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A VISUALIZATION OF PRUNED ARCHITECTURES

In Fig 6, we visualize the pruned architecture for ResNet-50 and MobileNetV2.

B BIAS OF FLOPS REGULARIZATION

We briefly discuss two types of FLOPs regularization used in our paper and trainable gate (TG) (Kim
et al., 2020). First, we provide the specific definition of T (vi) (FLOPs of ith layer):

T (vi) = K2
i

1T vi−1

Gl
1T viWiHi, (7)

where Gi is the number of groups in a convolution layer, Ki is the kernel size, 1 is a all one vector,
and 1T vi is the number of perversed channels in ith layer. With T (vi), T (v) =

∑L
i=1 T (vi).

In TG, they simply use mean square error (MSE) as the regularization term, and in their paper
RMSE(T (v), pTtotal) = (T (v)− pTtotal)

2. The gradients w.r.t vi is:

∂RMSE

∂vi
= 2(T (v)− pTtotal)

∂T (vi)

∂vi
, (8)

For the regularization used in our method: R(T (v), pTtotal) = log(|T (v)−pTtotal|+1), the gradients
w.r.t vi is:

∂R
∂vi

=
1

|T (v)− pTtotal|+ 1

T (v)− pTtotal

|T (v)− pTtotal|
∂T (vi)

∂vi
. (9)

For both regularization functions, the ratio between the gradients w.r.t vi of two layers k, j is

∂T (vk)
∂vk

/
∂T (vj)
∂vj

=
K2
k

1T vk−1
Gk

WkHk

K2
j

1T vj−1
Gl

WjHj

. Take ResNet-50 as an example, let j, k be the middle layers

of a bottleneck block, and we random initialize HSN. If j is in the first block, and k is in the last
block, then Kk = Kj = 3, Wj = Hj = 56, Wk = Hk = 7, 1T vj−1 ≈ 0.5 × 64 (due to random
initialization), 1T vk−1 ≈ 0.5 × 512, finally, ∂T (vk)

∂vk
/
∂T (vj)
∂vj

≈ 3×3×256×7×7
3×3×32×56×56 ≈

1
8 , which is not

trivial.

When calculating the gradients w.r.t θi, we have ∂R
∂θi

= cR
∂T (vi)
∂vi

∂vi
∂θi

, all θi share the same cR decided
by the regularization function. Without loss of generality, we assume the magnitude of ∂vi∂θi

is similar
given different layers. The assumption is based on the following derivation (to simplify derivation,
we omit weight norm in dense layers):

∂vi
∂θi

=
∂zi
∂θi

,

=
∂zi
∂oi

∂oi
∂θi

,

=
1

τ
sigmoid((oi + g)/τ)(1− sigmoid((oi + g)/τ))

∂oi
∂θi
≤ 1

4τ
bTi .

where sigmoid(x)(1 − sigmoid(x)) ≤ 1
4 , and bi is the input to ith dense layer, which is also the

outputs of GRU. Since all bi have the same shape, and weights in GRU are normalized, we can
assume all bi have similar magnitude. Since 1

4τ b
T
i is a upper bound of ∂vi∂θi

, similar assumptions can
be made.

Following this assumption, the relative magnitude of gradients w.r.t θj and θk for layers j, k can
be roughly represented by ∂T (vk)

∂vk
/
∂T (vj)
∂vj

. After training for a while, the ratio might be smaller,
however, it only indicates that early layers are more aggressively pruned. Thus, when applying
FLOPs regularization, it penalizes early layers much heavier compared to latter layers.

One should also note that this is a general problem when using gradient based model compression
methods with the FLOPs regularization. It’s quite hard to circumvent calculating ∂T (vi)

∂vi
as in

TG (Kim et al., 2020) and our paper.

14



Under review as a conference paper at ICLR 2021

(a) ResNet-50 (b) MobileNetV2

(c) ResNet-50 (d) MobileNetV2

Figure 6: (a,b): visualization of pruned architectures for ResNet-50 and MobileNetV2. (c,d): mean
and variance of 20 generated sub-networks for pruning.

(a) Acc, ResNet (b) Acc, MobileNetV2 (c)R Loss, ResNet (d)R Loss, MobileNetV2

Figure 7: (a,b): Performance of sub-networks when using HSN or not using HSN (the setting in
Eq. 11). (c,d): Regularization loss for the same settings.

C DETAILED SETUP OF HYPER-STRUCTURE NETWORK

In Tab. 3, we present the architecture of HSN. The forward calculation is:

bi, hi = GRU(ai, hi−1)

oi = densei(bi)
(10)

where hi and bi are hidden states and outputs of GRU at step i, oi is the final output of HSN. GRU
also requires hidden layer input at time-step 0 h0. In the experiment, the h0 is a all zero tensor. As
mentioned in Tab. 3, the dimension of ai is 64. Since ai is a single input instead of a mini-batch,
we cannot apply batchnorm. To make the training more stable, we use weight norm (Salimans &
Kingma, 2016) on both GRU and dense layers.

Initially, we tried to use a huge dense layer (input size 64, output size C1 + C2 + · · ·+ CL) as HSN.
However, we find that the huge dense layer is hard to optimize and also parameter heavy.

To verify the strength of the proposed HSN, we can instead use a simplified setting to prune neural
networks, which is shown as follows:

ẑi = sigmoid((θ̂i + g)/τ),

v̂i = round(ẑi), and v̂i ∈ {0, 1}Ci ,
(11)

15



Under review as a conference paper at ICLR 2021

Inputs ai, i=1,· · · , L

GRU(64,128), WeightNorm, Relu
densei(128,Ci), WeightNorm, i=1, · · · , L

Outputs oi, i=1, · · · , L

Table 3: The structure of HSN used in our method.

(a) Acc, ResNet (b) Acc, MobileNetV2 (c)R Loss, ResNet (d)R Loss, MobileNetV2

Figure 8: (a,b): Performance of sub-networks when training HSN given forward (c=0) and backward
pruning (c=3). (c,d): Regularization loss of sub-networks when training HSN given forward (c=0)
and backward pruning (c=3). All experiments are done on CIFAR-10.

where the architecture vector is parameterized by θ̂i. Under this setting, the parameter for each
channel does not have relationships. We use this setting to prune ResNet-56 and MobileNetV2 on
CIFAR-10, the results are shown in Fig. 7. From the figure, we can see that the performance and
convergence speed of using HSN is much better. Under high dimensional setting, like MobileNetV2,
the simplified setting shown in Eq. 11 can not learn efficiently, which demonstrate that capturing
inter-channel and inter-layer relationships are crucial for pruning deep neural networks.

D FORWARD AND BACKWARD PRUNING

Here, we refer forward pruning as start pruning from a random sub-network, and refer backward
pruning as start pruning from the original large model. Many model compression methods use
backward pruning. We also provide a simple way to extend our method to backward pruning. When
we binarize the output of HSN, we can add a constant c:

zi = sigmoid((oi + (g + c))/τ),

vi = round(zi), and vi ∈ {0, 1}Ci ,
(12)

where g ∼ Gumbel(0, 1), and the Gumbel(0, 1) distribution can be sampled using inverse transform
sampling by drawing u ∼ U(0, 1) and computing g = − log(− log(u)). When the constant c is big
enough, it will make vi become an all one vector, thus the sub-network produced by HSN will start
from the original large CNN. If we set c to 0, then it will start from a random sub-network. In Fig. 8,
we show the results of forward and backward pruning. It can be seen that they can achieve similar
sub-network performance, but the changes in regularization loss various dramatically.

E DERIVATIVE OF HYPER-GRADIENT WITH ADAM OPTIMIZER

The update rule of ADAM for θi is shown in Alg. 2, and it is:

u(θt−1
i , αti) = θt−1

i − ηm̂t/(
√
n̂t + ε), (13)
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Algorithm 2: ADAM optimizer for θi
Input: η, β1, β2 ∈ [0, 1): learning rate and decay rate for ADAM.
Initialize m0, n0, t = 0
Update rule at step t:
mt = β1mt−1 + (1− β1)(αti

∂L
∂θt−1
i

+ λ ∂R
∂θt−1
i

)

nt = β2nt−1 + (1− β2)(αti
∂L

∂θt−1
i

+ λ ∂R
∂θt−1
i

)2

m̂t = mt/(1− βt1)
n̂t = nt/(1− βt2)
θti = u(θt−1

i , αti) = θt−1
i − ηm̂t/(

√
n̂t + ε)

Then the derivation of ∂u(θt−1
i ,αti)

∂αi
is:

∂u(θt−1
i , αti)

∂αi
= −η

∂
(
m̂t/(

√
n̂t + ε)

)
∂αi

= −η
−∂
√
n̂t+ε
∂αi

m̂t + ∂m̂t
∂αi

(
√
n̂t + ε)

(
√
n̂t + ε)2

= −η(
∂m̂t
∂αi√
n̂t + ε

−
∂n̂t
∂αi

m̂t

2
√
n̂t(
√
n̂t + ε)2

)

= −η
{ (1− β1) ∂L

∂θt−1
i

(1− βt1)(
√
n̂t + ε)

−
(1− β2)(αti(

∂L
∂θt−1
i

)2 + λ ∂L
∂θt−1
i

∂R
∂θt−1
i

)m̂t

√
n̂t(
√
n̂t + ε)2(1− βt2)

}
,

where ∂m̂t
∂αi

=
(1−β1) ∂L

∂θ
t−1
i

1−βt1
and ∂n̂t

∂αi
=

2(1−β2)
(
αti(

∂L
∂θ
t−1
i

)2+λ ∂L
∂θ
t−1
i

∂R
∂θ
t−1
i

)
1−βt2

. Recall that when updating

αt−1
i to αti, we have to compute:

αti = αt−1
i − β ∂J(u(θt−2

i , αt−1
i ))

∂αi
= αt−1

i − β(
∂J
∂θt−1
i

)T
∂u(θt−2

i , αt−1
i )

∂αi
. (14)

We need αti when updating θt−1
i to θti . Thus at each update step, it requires an extra copy of θt−2

i and

parameters of ADAM to compute ∂u(θt−2
i ,αt−1

i )

∂αi
. The cost of the extra storage is trivial.

F CHOICE OF p GIVEN DIFFERENT DATASETS AND ARCHITECTURES.

Dataset CIFAR-10 ImageNet
Architecture ResNet-56 MobileNetV2 ResNet-34 ResNet-50 ResNet-101 MobileNetV2

p 0.50 0.60 0.55 0.38 0.42 0.64

Table 4: Choice of p for different models. p is the remained FLOPs divided by the total FLOPs

In Tab. 4, we list the choices of p for different models and datasets used in our experiments.
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