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Abstract

Continual reinforcement learning poses a major challenge due to the tendency
of agents to experience catastrophic forgetting when learning sequential tasks.
In this paper, we introduce a modularity-based approach, called Hierarchical
Orchestra of Policies (HOP), designed to mitigate catastrophic forgetting in lifelong
reinforcement learning. HOP dynamically forms a hierarchy of policies based on
a similarity metric between the current observations and previously encountered
observations in successful tasks. Unlike other state-of-the-art methods, HOP does
not require task labelling, allowing for robust adaptation in environments where
boundaries between tasks are ambiguous. Our experiments, conducted across
multiple tasks in a procedurally generated suite of environments, demonstrate that
HOP significantly outperforms baseline methods in retaining knowledge across
tasks and performs comparably to state-of-the-art transfer methods that require task
labelling. Moreover, HOP achieves this without compromising performance when
tasks remain constant, highlighting its versatility.

1 Introduction

Neural networks are typically trained on data drawn independently and identically from a static
distribution. While this approach works well in many cases, it becomes challenging in environments
that are continuously changing or when new environments are introduced. In dynamic settings, such
as reinforcement learning, robotics, or dialogue systems, models must adapt to new information while
preserving knowledge from previous tasks (Parisi et al., 2019). However, neural networks often suffer
from catastrophic forgetting, where learning new tasks leads to the rapid loss of previously acquired
knowledge. The ability to learn new skills while maintaining existing knowledge is referred to as
continual learning (Ring, 1994).

To address the challenge of catastrophic forgetting, researchers have developed three primary cat-
egories of methods. The first category, regularization-based, works by constraining updates to
network parameters, thereby penalizing deviations from learned weight values that are critical for
previous tasks. Notable examples of this approach include Elastic Weight Consolidation (EWC)
and Synaptic Intelligence (SI) (Kirkpatrick et al., 2017; Zenke et al., 2017). The second category,
replay-based, mitigates forgetting by periodically rehearsing past experiences, either through actual
data or synthetic generations, ensuring that the network continues to perform well on earlier tasks
(Rolnick et al., 2019; Shin et al., 2017). The third category, modularity-based, addresses the issue
by structurally separating the network into modules, with each module dedicated to a specific task,
thereby minimizing interference between tasks, prominent examples of this method are Progressive
Neural Networks (PNN) by (Rusu et al., 2016) and adaptive multi-column stacked sparse denoising
autoencoder (AMC-SSDA) by Agostinelli et al. (2013). Finally there are some methods which use a
combination of these, for example, Schwarz et al. (2018) uses an active network and a knowledge-base
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network similar to the modularity-based methods, however they periodically compresses knowledge
from the active into the knowledge network using EWC regularisation.

Our method, Hierarchical Orchestra of Policies (HOP), is a modularity-based approach and is most
similar to PNN. However, unlike PNN, HOP does not rely on a task identifier during training,
which makes it more suitable for domain-incremental learning (Van de Ven and Tolias, 2019).
Additionally, HOP differs in that it combines network probability outputs directly through hierarchical
weightings, rather than using latent connections between networks. Finally, we demonstrate HOP
at a significantly larger scale — 18 hierarchical policy levels compared to only three in PNN. We
show that HOP performs comparably to PNN, even when PNN is provided with task labels while
HOP is not. Furthermore, HOP mitigates catastrophic forgetting across several Procgen environments
(Cobbe et al., 2020), achieving notable improvements over Proximal Policy Optimization (PPO), a
reinforcement learning algorithm with inherent regularization properties (Schulman et al., 2017).

2 Hierarchical Orchestra of Policies

Hierarchical Orchestra of Policies (HOP) is a modularity-based deep learning framework designed
to mitigate catastrophic forgetting when learning new tasks. In this framework, a task is defined as
a specific Markov Decision Process (MDP), where distinct levels within a procedurally generated
environment, or levels across different environments, are considered separate tasks (Puterman, 2014).
Although HOP is task-agnostic, all tasks are treated as episodic.

HOP relies on reinforcement learning algorithms that output stochastic policies, represented as
π(a | s) (Sutton, 2018). In our work, PPO serves as the base algorithm for HOP. The framework
introduces three key mechanisms to form and use a collection of policies:

1. Checkpoints to freeze and store policies at a certain stage of training.
2. Orchestration of policy activation based on state similarity.
3. Hierarchical weightings to balance the influence of previous and new policies.

These mechanisms enable the agent to recover and maintain performance across diverse tasks without
significant interference, thereby promoting continual learning in complex environments.

Checkpoints. The agent initially learns a policy using a base algorithm. After Tcheckpoint time-
steps, HOP initializes a checkpoint, where the current learning policy π is frozen and evaluated in
the currently available tasks. During checkpoint evaluation, if the episodic return R surpasses a
predefined threshold Rthreshold, all states encountered during that task episode are stored in a set
of trusted states Sm which is linked with the policy checkpoint πm, where m is the count of the
checkpoint.

The Orchestra. When the agent resumes learning, it dynamically activates checkpoint policies πm

determined by the similarity between the current state st and any sm ∈ Sm. If the current state st is
similar to any state in Sm, then the corresponding frozen policy πm is activated (Im = 1). Similarity
is determined by a threshold value ω, which, in all of our experiments, has been defined as any
sm ∈ Sm with a cosine similarity greater than 0.98 with st.

Rather than selecting actions directly from the distribution of a single frozen policy (at ∼ πm(st)),
which could lead to conflicts when multiple policy checkpoints are activated, HOP combines the
distributions from activated policy checkpoints (Imπm) and the current learning policy πn into
a joined action policy, denoted as πna

(see equation 1). Here, n represents the current count of
all policies, and the subscript a denotes the combined policy from which the action is sampled.
This approach allows the agent to leverage past knowledge while adapting to new tasks, promoting
continual learning.

To avoid significant and undesired output shifts caused by small changes in the state, frozen policies
predict actions based on the most similar state, sm ∈ Sm, to the current state st (Szegedy, 2013).
This state is referred to as s∗m, and actions are chosen as πm(a | s∗m) rather than directly from st.
This dynamic activation of multiple policies is called the orchestra of policies, a term borrowed from
Jonckheere et al. (2023) but applied differently in this work.

Hierarchical Weightings. As the agent learns, it is expected to achieve higher task-specific rewards,
which suggests that newer policies for the same tasks are likely to outperform older policy checkpoints
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for the same task. Thus, simply averaging all policies, as represented by πna = 1
n

∑n
m=0 πm, is

impractical. Moreover, because the agent does not know the identities of tasks, multiple policy
checkpoints may activate; therefore, simply sampling actions from newer policy checkpoints is
not possible. To address this, HOP introduces a hierarchical discount factor, denoted as W , to
determine the contributions of policy checkpoints. Each joined action policy at time of checkpoint is
a combination of previous policy checkpoints, creating a hierarchical structure, as shown in Figure 2
and Equation 1. This hierarchical structure assigns a higher weight to more recent activated policies.
For some examples of how this concept functions, please refer to Appendix A.4.

Policy Updates: The update process for the learning policy (πn) follows the same procedure as
that used by the base algorithm. Specifically, all necessary attributes associated with the policy are
sampled from πn, except for the action, which is instead sampled from the current joined action
policy (πna

). We also allow gradients to propagate to the policy checkpoints πm, but only for the
states where they are activated. For more detail and pseudo code refer to Appendix A.1.

The HOP action policy is expressed as,

πna
(st) = πn(st) +

n−1∑
m=1

Wmπma
(s∗m), (1)

Wm =
Im

1 +
∑M

k=m Ik
, (2)

Im =

®
1 if s∗m·st

∥s∗m∥∥st∥ > ω.

0 otherwise.
(3)

Here, s∗m is the most similar state from all s ∈ Sm, and πma represents the logits of the m-th joined
action policy checkpoint. M is the total number of checkpoints conducted. n is the current count of
all policies. Im is the activation related to each policy πm. And ω is the similarity threshold of the
current state with previous states in Sm.

Figure 1: The flow of information as a HOP agent acts in a task.

Figure 1 depicts the flow of information within the HOP framework, illustrating how the agent
evaluates observations, selects relevant policies, and takes actions to adapt continually across tasks.
The agent begins by assessing the current state st against a similarity threshold for each checkpoint
policy πm ∈ π, where π denotes all previously stored policies. For each policy, it identifies the
most similar reference state s∗m ∈ Sm and calculates an activation Im based on this similarity. If the
similarity metric—calculated as the cosine similarity between st and s∗m—exceeds the predefined
threshold ω, the corresponding policy πm is activated (Im = 1), otherwise, it remains inactive
(Im = 0). The activated policies then contribute to the current joint action policy πna

, which
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combines outputs from the activated checkpoint policies Imπm and the current learning policy πn,
weighted hierarchically according to their relative recency and activations, as shown in Equation 1.

The agent samples actions from πna
rather than directly from the learning policy πn, enabling

it to leverage past knowledge while adapting to new tasks. The chosen action interacts with the
environment, producing a new state and a corresponding reward. These states, actions, rewards, and
activations are stored in the replay buffer to support continual learning and mitigate forgetting by
allowing the agent to revisit past experiences. During training, the replay buffer’s stored activations
also guide the gradient computations, allowing only the activated policies to contribute to the policy
update. This targeted update process refines gradient flow selectively based on activation, promoting
modularity and stability in learning across diverse task environments.

Figure 2: Hierarchical formation of the fourth level of a HOP action policy.

3 Results

We evaluated the performance of HOP using the Procgen suite of environments (Cobbe et al., 2020).
The experimental setup consisted of three phases of training. In the first phase, the agent trains for
three million time-steps on multiple levels of a selected Procgen environment to develop its ability to
learn and generalize. In the second phase, the environment was switched to a different one, and the
agent continued training for another three million time-steps, assessing its adaptability and ability
to transfer learning. Finally, in the third phase, the agent returned to the original environment for
an additional three million time-steps to evaluate retention of skills and re-adaptation. Throughout
training, the agent’s objective is to optimize the reward functions defined by the Procgen environments,
which typically involve maximizing cumulative rewards for task-specific objectives such as reaching
goals, collecting items, or avoiding obstacles. This is a simplified experimental set-up to that
conducted by Schwarz et al. (2018) in their examination of P&C.

We conducted experiments with three different environment combinations: StarPilot and Climber,
Ninja and StarPilot, and Ninja and CoinRun, repeating each with four random seeds. During training,
periodic evaluation episodes were performed to measure performance, and checkpoints were saved
every 500,000 time-steps.

HOP was compared with standard PPO and a modified version of Progressive Neural Networks
(PNN) for use with PPO – see appendix A.3 for full details of the modifications. We allowed PNN to
have task identifiers but not HOP. Results presented in Figure 3 indicate that HOP outperformed PPO
in both the rate of performance recovery and the final averaged evaluation return after training. We
found that HOP had comparable performance to PNN in all but the very beginning of the third phase
of learning. Table 1 summarizes the total steps after the second phase of learning required for each
method to recover to the performance level achieved at the end of the initial phase of training, and the
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final averaged evaluation return. For a complete description of the experiments and environments
please see appendix A.2.

PNN

Figure 3: Training performance of HOP, PNN and PPO on three experiments where environments are
periodically changed. The red dashed lines indicate the points when the environment are switched.
The green dashed lines show when HOP returns to the highest average evaluation reward achieved in
the first environment before the change. The black dashed lines represents this point for PPO. Shaded
areas are the standard error. All experiments are conducted with the Procgen easy setting.

Steps-to-return (106) Final Rewards
PPO HOP PPO HOP PNN

StarPilot - Climber 2.68 1.04 -61.2% 12.14 18.15 49.5% 15.98 31.6%

Ninja - StarPilot 3+ 1.70 -43+% 6.79 8.73 28.6% 7.97 17.37%

Ninja - Coinrun 1.37 0.72 -47.7% 8.33 8.37 0.48% 7.83 -6.00%

Table 1: A comparison of PPO, HOP, and PNN. Steps-to-return represents the number of steps (in
millions) to re-acquire the same average evaluation reward at the end of the first period of learning
in that environment, PNN is not included in these comparisons as it uses a separate actor and critic
network per task. Final rewards display the final average evaluation rewards at the end of all training.
The percentages show the difference compared to the baseline PPO method.

4 Summary and Discussion

We present a novel modularity-based approach, the Hierarchical Orchestra of Policies, to address
catastrophic forgetting in continual life-long reinforcement learning. In our empirical evaluation,
HOP outperforms PPO in continual learning scenarios, achieving a faster recovery of performance
and final performance. Both HOP and PNN demonstrate substantial transfer between environments
with similar dynamics and state spaces such as Ninja and CoinRun. In these scenarios HOP can
activate relevant frozen policies learned from Ninja while acting in CoinRun, similar to PNN’s
adapter networks connecting separate columns. However, unlike PNN, HOP does not require task
labels, making it more versatile for real-world applications where task boundaries are not clearly
defined.

However, the effectiveness of HOP depends on the careful tuning of some hyper-parameters, particu-
larly the similarity threshold, w, and reward threshold Rthreshold, which must be set appropriately
for all expected tasks. See Appendix A.2

Future work could expand HOP’s evaluation by testing transitions between highly diverse tasks and
environments where task boundaries are ambiguous, a setting in which PNN and similar methods
are less effective. Additionally, HOP could be adapted to continuous environments with fluid task
transitions, further highlighting its robustness in real-world scenarios. To address performance drops
immediately following task distribution changes, a learnable parameter could be introduced which
could dynamically adjust the influence of previous checkpoints, enabling immediate adaptation while
maintaining learning.

Acknowledgements. This work was supported by the UKRI Centre for Doctoral Training in
Accountable, Responsible and Transparent AI (ART-AI) [EP/S023437/1] and the University of Bath.
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A Appendix

A.1 HOP Algorithm details

The logic provided in algorithm 1, is suitable for use with PPO (or any other actor critic style base
function. It is expected that HOP would work with any method with a stochastic policy, however this
has yet to be tested. Table 2 details all of the extra parameters that HOP requires.

Algorithm 1 Hierarchical Orchestra of Policies (HOP) with PPO
Initialize: Current hierarchy depth n = 1, Policy πn == πna

, similarity threshold w, and reward
threshold P , total steps D, step = 0, checkpoint interval C, state st, done = 0, value function Vθ,
batch size T , buffers B, and other PPO parameters ϕ.

1: Training:
2: while step < D do
3: while step < T do
4: for each frozen policy πm do Activation logic

5: if cosine similarity smmax-sim ·st
∥smmax-sim∥∥st∥ > w then

6: Activate policy πm, set Am = 1
7: else
8: Deactivate policy πm, set Am = 0
9: end if

10: end for
11: Sample action at ∼ πna(st) as per equation 1
12: st, reward, done = environment.step
13: B ← st, reward, done, at
14: if done then
15: reset environment
16: end if
17: end while
18: Update πn and Vθ from B using PPO algorithm Allow gradients to propagate to activated policies in those states only.

19: if step == C then Checkpoint logic
20: Freeze policy πn as πm

21: Evaluate πma on all currently available tasks
Evaluation can be from the most recent experiences or from running new evaluations. We use new evaluations in our experiments

22: for each evaluation episode do
23: if episodic return R > P then
24: Append all states in evaluation to Sm

25: end if
26: end for
27: end if
28: end while

Symbol Name Default Notes
P Reward threshold 7.5 Can be generalized if rewards are normalized
w Similarity threshold 0.98 Cosine similarity
C Checkpoint interval 500,000 Time-steps. In our experiments forms 18 policies

Table 2: All additional parameters for the HOP algorithm.

A.2 Experiment details

Our experiments are conducted in the Procgen suite of environments introduced by Cobbe et al.
(2020). Specifically, we use Ninja, StarPilot, Climber, and CoinRun as our environments. These can
be viewed at https://github.com/openai/procgen, and we also provide a table with a snapshot of each
environment in Figure 4. In Procgen, there are options that can reduce the complexity of the environ-
ments. We activate the following options: use_backgrounds=False, restrict_themes=True,
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distribution_mode=easy, and use_sequential_levels=True. However, we do not activate
use_monochrome_assets, as we found that it lacked proper indications for agent direction. In
all of our experiments, the agent’s goal was to maximize the cumulative reward provided by the
environment. The state is represented as an 84x84 pixel image, and the agent has 15 possible actions.

We run the same experiment with different combinations of environments. The experiment is
conducted in three phases, each evenly distributed over the total number of time steps (X):

1. The agent trains in environment 1 with T1 tasks in distribution.
2. Learning is switched to environment 2 with T2 tasks.
3. Learning is switched back to environment 1 for the same T1 tasks.

In our experiments, X = 9, 000, 000, and T1 = T2 = 30. PNN is given a task identifier for each
environment, enabling it to use the correct networks and adapters. HOP, on the other hand, does
not require these and is not given them. Every 163,840 time steps, the agent is evaluated in the
current distribution of tasks, which in this case consists of 30 Procgen levels in the current training
environment of that phase, the reward in this evaluation phase is the cumulative reward - 0.01*total
steps taken in the environment, which gives a better indication of efficiency. The results we report
are based on these evaluated tasks. Conducting evaluation episodes at fixed intervals provides the
clearest and most accurate representation of agent performance.

The three experiments shown in Figure 3 are conducted using the combinations of environments
listed in Table 3. In the first experiment, the environments are completely different, with distinct
dynamics and little to no shared understanding between them. For the second experiment, we believed
there would be some overlap; while StarPilot scrolls from right to left, Climber scrolls vertically
from bottom to top. The final experiment features considerable shared dynamics, as both Ninja and
CoinRun are platforming games. We hypothesized that this setup would demonstrate the transfer
and recovery of performance across different levels of difficulty. However, we observed that only the
Ninja and CoinRun experiment exhibited meaningful transfer for both PNN and HOP.

We use PPO as a baseline algorithm and as the foundation for both HOP and PNN. Our PPO
implementation is based on the version by Huang et al. (2022). The only modification we made was
separating the actor and critic networks, which we found easier to work with and which outperformed
the shared convolutional layer approach. Figure 5 illustrates our implementation. We kept the PPO-
specific hyperparameters fixed for its use with HOP, PNN, and the base PPO. These hyperparameters
were optimized for the base PPO, and while a small benefit might have been observed for HOP
and PNN if a hyperparameter sweep had been conducted, both performed as expected, so we did
not pursue this. The PPO-specific hyperparameters are shown in Table 4, and all other relevant
parameters are shown in Table 5.

Experiment Number Phase 1 Phase 2 Phase 3
1 Ninja StarPilot Ninja
2 StarPilot Climber StarPilot
3 Ninja CoinRun Ninja

Table 3: Experiment Phases for Different Environments

Figure 4: From left to right, Climber, CoinRun, StarPilot and, Ninja. In our experiments the
backgrounds are all black (use_backgrounds=False).
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PPO Hyperparameters Description Value
gamma Discount factor for future rewards 0.999
vf_coef Weight of value function loss 0.5
ent_coef Weight of entropy bonus 0.01
norm_adv Normalize advantages during optimization true
num_steps Number of steps per environment per update 256
clip_coef Clipping factor for policy loss 0.2
gae_lambda Generalized Advantage Estimation parameter 0.95
batch_size Total number of samples per batch 16384
clip_vloss Clip value function loss false
target_kl Target KL divergence 0.05
update_epochs Number of optimization epochs per update 3
minibatch_size Size of mini-batches used in optimization 2048
max_grad_norm Maximum gradient norm for clipping 0.5
anneal_lr Whether to anneal learning rate over time false
num_envs Number of parallel environments 64
num_minibatches Number of mini-batches per optimization step 8

Table 4: PPO Hyperparameters

Other Parameters Description Value
cuda Use CUDA for computation true
easy Procgen easy parameter 1
proc_start Starting level in Procgen 1
reward_limit Checkpoint minimum reward limit (P ) 7.5
report_epoch Number of steps between evaluation reports 163840
learning_rate Learning rate for optimizer 0.0005
max_ep_length Maximum number of steps per episode 1000
use_monochrome Whether to use monochrome assets in environment 0
eval_batch_size Number of episodes for evaluation 30
max_eval_ep_len Maximum length of episodes during evaluation 1000
proc_num_levels Number of levels in the Procgen environment 30
total_timesteps Total number of timesteps for training 9000000
eval_specific_envs Number of environments used for evaluation 30
torch_deterministic Enable deterministic operations in PyTorch true
min_similarity_score Minimum cosine similarity for activation w 0.98
checkpoint_interval Minimum cosine similarity for activation C 500,000

Table 5: Other Experiment Parameters

A.3 PNN with PPO Algorithm Details

Progressive Neural Networks (PNN) were introduced by Rusu et al. (2016). In their paper, they
describe how separate policy networks (referred to as columns) and links between columns (adapters)
are used to improve continuous learning. However, they report their results using the Asynchronous
Advantage Actor-Critic (A3C) algorithm Mnih (2016). We could not find any evidence indicating
whether they initialized separate columns and adapters for the value (critic) network as well as the
policy (actor) network. Additionally, we could not locate any official implementation online, nor any
implementation using actor-critic methods.

Intuitively, we expect that if PNN works for the policy, it should also work for the value function.
Therefore, we implemented separate columns for both the critic and actor networks, along with
adapters for each new task. We encountered another issue: PPO is generally expected to outperform
A3C in ProcGen environments. Thus, comparing HOP-PPO or base PPO with PNN-A3C would
be unfair to PNN. To address this, we modified the PNN implementation to use a PPO update that
propagates through separate columns and adapters.

Since the inputs for ProcGen environments are image-based, we use a single ReLU-activated convo-
lutional layer as each adapter network. The input to the adapter network is the final convolutional
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output from the Critic or Actor of each column. The adapter outputs of the previous column are
added to the original output and passed to the fully connected layers. All adapters are included in the
gradient graphs to promote transfer, but the actor and critic columns are not included unless they are
the active column.

[Upon publication, we will release our code for PNN-PPO].

A.4 Hierarchical Weighting Examples

Hierarchical weightings. This hierarchical structure implies that as the agent continues learning,
the contributions of older policies diminish if more recent checkpoints are activated. Conversely, if
more recent policies do not activate, the older policies will have a stronger influence. For example,
consider the policy at the fourth checkpoint (π4) as depicted in Figure 2. If activations As3, As2, and
As1 occur, the policy output for the current state st is given by:

π4a(st) =
9

24
π1max(s1max-sim) +

1

2
π2max(s2max-sim) +

1

2
π3max(s3max-sim) + π4(st)

In contrast, if only As1 activates, the output becomes:

π4a(st) =
1

2
π1max(s1max-sim) + π4(st)

Here, the contribution of π1 diminishes as more recent policies are activated. However, if only As1 is
activated, π1 provides a significant contribution, which remains substantial regardless of how many
other checkpoint policies exist but are inactive.
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Actor Input (State)

Conv2D (32, 3x3, stride=2)

Conv2D (64, 3x3, stride=2)

Conv2D (64, 3x3, stride=2)

Fully Connected (hidden_dim)

Fully Connected (num_actions)

Actor Output (Action)

Critic Input (State)

Conv2D (32, 3x3, stride=2)

Conv2D (64, 3x3, stride=2)

Conv2D (64, 3x3, stride=2)

Fully Connected (hidden_dim)

Fully Connected (1)

Critic Output (Q-value)

ProcGen Actor ProcGen Critic

Figure 5: Separate Actor and Critic Networks for the ProcGen Architecture
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