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ABSTRACT

We propose a new neural network design paradigm Reversible Column Network
(RevCol). The main body of RevCol is composed of multiple copies of subnetworks,
named columns respectively, between which multi-level reversible connections are
employed. Such architectural scheme attributes RevCol very different behavior
from conventional networks: during forward propagation, features in RevCol are
learned to be gradually disentangled when passing through each column, whose to-
tal information is maintained rather than compressed or discarded as other network
does. Our experiments suggest that CNN-style RevCol models can achieve very
competitive performances on multiple computer vision tasks such as image classifi-
cation, object detection and semantic segmentation, especially with large parameter
budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-
XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our
largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO
detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge,
it is the best COCO detection and ADE20k segmentation result among pure (static)
CNN models. Moreover, as a general macro architecture fashion, RevCol can also
be introduced into transformers or other neural networks, which is demonstrated
to improve the performances in both computer vision and NLP tasks. We release
code and models at https://github.com/megvii-research/RevCol

1 INTRODUCTION

Information Bottleneck principle (IB) (Tishby et al., 2000; Tishby & Zaslavsky, 2015) rules the deep
learning world. Consider a typical supervised learning network as in Fig. 1 (a): layers close to the
input contain more low-level information, while features close to the output are rich in semantic
meanings. In other words, information unrelated to the target is gradually compressed during the
layer-by-layer propagation. Although such learning paradigm achieves great success in many practical
applications, it might not be the optimal choice in the view of feature learning – down-stream tasks
may suffer from inferior performances if the learned features are over compressed, or the learned
semantic information is irrelevant to the target tasks, especially if a significant domain gap exists
between the source and the target tasks (Zamir et al., 2018). Researchers have devoted great efforts to
make the learned features to be more universally applicable, e.g. via self-supervised pre-training(Oord
et al., 2018; Devlin et al., 2018; He et al., 2022; Xie et al., 2022) or multi-task learning (Ruder, 2017;
Caruana, 1997; Sener & Koltun, 2018).

In this paper, we mainly focus on an alternative approach: building a network to learn disentangled
representations. Unlike IB learning, disentangled feature learning (Desjardins et al., 2012; Bengio
et al., 2013; Hinton, 2021) does not intend to extract the most related information while discard
the less related; instead, it aims to embed the task-relevant concepts or semantic words into a few
decoupled dimensions respectively. Meanwhile the whole feature vector roughly maintains as much
information as the input. It is quite analogous to the mechanism in biological cells (Hinton, 2021;
Lillicrap et al., 2020) – each cell shares an identical copy of the whole genome but has different
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Figure 1: Sketch of the information propagation in: (a) Vanilla single-column network. (b) Our
reversible column network. Yellow color denotes low-level information and blue color denotes
semantic information.

expression intensities. Accordingly in computer vision tasks, learning disentangled features is also
reasonable: for instance, high-level semantic representations are tuned during ImageNet pre-training,
meanwhile the low-level information (e.g. locations of the edges) should also be maintained in other
feature dimensions in case of the demand of down-stream tasks like object detection.

Fig. 1 (b) sketches our main idea: Reversible Column Networks (RevCol), which is greatly inspired
by the big picture of GLOM (Hinton, 2021). Our network is composed of N subnetworks (named
columns) of identical structure (however whose weights are not necessarily the same), each of
which receives a copy of the input and generates a prediction. Hence multi-level embeddings, i.e.
from low-level to highly semantic representations, are stored in each column. Moreover, reversible
transformations are introduced to propagate the multi-level features from i-th column to (i+ 1)-th
column without information loss. During the propagation, since the complexity and nonlinearity
increases, the quality of all feature levels is expected to gradually improve. Hence the last column
(Col N in Fig. 1 (b)) predicts the final disentangled representations of the input.

In RevCol, one of our key contributions is the design of the reversible transformations between
adjacent columns. The concept is borrowed from the family of Reversible Networks (Chang et al.,
2018; Gomez et al., 2017; Jacobsen et al., 2018; Mangalam et al., 2022); however, conventional
reversible structures such as RevNets (Gomez et al., 2017) (Fig. 2 (a)) usually have two drawbacks:
first, feature maps within a reversible block are restricted to have the same shape*; second, the last
two feature maps in RevNets have to contain both low-level and high-level information due to the
reversible nature, which may be difficult to optimize as in conflict with IB principle. In this paper, we
overcome the drawbacks by introducing a novel reversible multi-level fusion module. The details are
discussed in Sec. 2.

We build a series of CNN-based RevCol models under different complexity budgets and evaluate them
in mainstream computer vision tasks, such as ImageNet classification, COCO object detection and
instance segmentation, as well as ADE20K semantic segmentation. Our models achieve comparable
or better results than sophisticated CNNs or vision transformers like ConvNeXt (Liu et al., 2022b)
and Swin (Liu et al., 2021). For example, after ImageNet-22K pre-training, our RevCol-XL model
obtains 88.2% accuracy on ImageNet-1K without using transformers or large convolutional kernels
(Ding et al., 2022b; Liu et al., 2022b; Han et al., 2021). More importantly, we find RevCol can scale
up well to large models and large datasets. Given a larger private pre-training dataset, our biggest
model RevCol-H obtains 90.0% accuracy on ImageNet-1K classification, 63.8% APbox on COCO
detection minival set, and 61.0% mIoU on ADE20K segmentation, respectively. To our knowledge,
it is the best reversible model on those tasks, as well as the best pure CNN model on COCO and
ADE20K which only involves static kernels without dynamic convolutions (Dai et al., 2017; Ma et al.,
2020). In the appendix, we further demonstrate RevCol can work with transformers (Dosovitskiy
et al., 2020; Devlin et al., 2018) and get improved results on both computer vision and NLP tasks.
Finally, similar to RevNets (Gomez et al., 2017), RevCol also shares the bonus of memory saving
from the reversible nature, which is particularly important for large model training.

*In precise, feature maps of odd and even indexes should be equal sized respectively.
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Relation to previous works. Although our initial idea on feature disentangling is derived from
GLOM (Hinton, 2021), in RevCol there are a lot of simplifications and modifications. For example,
GLOM suggests contrastive auxiliary loss to avoid feature collapse. Contrastive training methods
need extra pairs of positive and negative samples, which is complicated and unstable. In RevCol,
reversible transformations between columns provides lossless information propagation by nature.
As for other multi-scale grid-like architectures such as HRNets (Wang et al., 2020), DEQ models
(Bai et al., 2020) and FPNs (Lin et al., 2017; Tan et al., 2020), the design purpose of those models
is to fuse multi-scale features rather than learn disentangled representations; therefore, in general
they still follow the paradigm in Fig. 1 (a) – neither multiple entrances/exits nor reversible structures
are employed. Based on those grid-like network topology, NAS based works (Ding et al., 2021;
Wu et al., 2021; Liu et al., 2019; Ghiasi et al., 2019) search the optimized topology of network
architectures for specific dataset. However, the RevCol architecture is not limit to specific tasks or
datasets. With the reversible nature, our method maintains lossless information propagation and
benefits for not only pre-training but also other down-stream tasks. Very recently, RevBiFPN (Chiley
et al., 2022) comes up with an reversible variant of FPN, which is further employed in an HRNet-like
architecture. Though our RevCol shares the similar idea of multi-scale reversible transformations
with RevBiFPN, our work is done independently, which is derived from a different motivation of
feature disentangling, and has much simpler architectures (e.g. free of reversible upsampling tower)
and higher performances. We compare some of those models in Sec. 3.

2 METHOD

In this section, we introduce the design details of our Reversible Column Networks (RevCol). Fig. 1 (b)
illustrates the top-level architecture. Notice that for each column in RevCol, for simplicity we directly
reuse existing structures such as ConvNeXt (Liu et al., 2022b), hence in the following subsections, we
mainly focus on how to build the reversible connections between columns. In addition, we introduce
an plug-and-play intermediate supervision on top of each column, which further improves the training
convergence and feature quality.

2.1 MULTI-LEVEL REVERSIBLE UNIT

In our network, reversible transformations plays a key role in feature disentangling without infor-
mation loss, whose insight comes from Reversible Neural Networks (Dinh et al., 2014; Chang et al.,
2018; Gomez et al., 2017; Jacobsen et al., 2018; Mangalam et al., 2022). Among them, we first take
a review of one representative work RevNet (Gomez et al., 2017). As shown in Fig. 2 (a), RevNet
first partitions the input x into two groups, x0 and x1. Then for later blocks, for example, block t, it
takes two anterior blocks’ outputs xt−1 and xt−2 as input and generates the output xt. The mapping
of block t is reversible, i.e. xt−2 can be reconstructed by two posterior blocks xt−1 and xt. Formally,
the forward and inverse computation follow the equations †:

Forward : xt = Ft(xt−1) + γxt−2

Inverse : xt−2 = γ−1[xt − Ft(xt−1)],
(1)

where Ft denotes an arbitrary non-linear operation analogous to those residual functions in standard
ResNets; γ is a simple reversible operation (e.g. channel-wise scaling), whose inverse is denoted by
γ−1. As mentioned in the introduction, the above formulation involves too strong constraint on the
feature dimensions, i.e. xt, xt+2, xt+4, ... have to be equal sized, which is not flexible in architecture
design. That is why RevNets (Gomez et al., 2017) introduce some non-reversible down-sampling
blocks between reversible units, hence the whole network is not fully reversible. More importantly,
we find there is no clear way to directly employ Eq. 1 to bridge the columns in Fig. 1 (b).

To address the issue, we generalize Eq. 1 into the following form:

Forward : xt = Ft(xt−1, xt−2, ..., xt−m+1) + γxt−m

Inverse : xt−m = γ−1[xt − Ft(xt−1, xt−2, ..., xt−m+1)],
(2)

†In Gomez et al. (2017), the proposed reversible equations are formulated as y1 = x1 + F(x2)
and y2 = x2 + G(y1). While in this paper, we reformulate those notations y2, y1, x2, x1,G,F as
xt, xt−1, xt−2, xt−3,Ft,Ft−1, respectively, in order to better illustrate the relation between building block t
and t− 1. It is easy to prove the two formulations are equivalent.
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Figure 2: (a) Reversible unit in RevNet (Gomez et al., 2017). (b) Multi-level reversible unit. All inputs
for level t are highlighted. (c) An overview of the whole reversible column network architecture, with
simplified multi-level reversible unit.

where m is the order of the recursion (m ≥ 2). Clearly, the extension is still reversible. Then we
partition every m feature maps into a group: (x1, x2, . . . , xm), (xm+1, xm+2, . . . , x2m), . . . . Given
the features within any of the group, we can easily compute the features in other groups recursively
according to Eq. 2. Compared with the original form, Eq. 2 has the following two nice properties:

• The constraint on the feature map sizes is greatly relaxed if m is relatively large. Notice
that Eq. 1 does not require feature maps within each group to be equal sized; such constraint
only exist between groups. Therefore, we can use tensors of different shape to represent
features of different semantic levels or different resolutions.

• Eq. 2 can easily cooperate with existing network architectures, even though the latter is not
reversible. For example, we can assign m feature maps in a standard ResNet to represent the
feature maps within a group (xt, xt+1, . . . , xt+m−1), which is still compatible with Eq. 2
since ResNet can be viewed as a part of (Ft,Ft+1, . . . ,Ft+m−1) respectively. Thus the
whole network is still reversible.

Therefore, we can reorganize Eq. 2 into a multi-column fashion, as shown in Fig. 2 (b). Each column is
composed of m feature maps within a group, as well as their mother network. We name it multi-level
reversible unit, which is the basic component of our RevCol as in Fig. 1 (b).

2.2 REVERSIBLE COLUMN ARCHITECTURE

2.2.1 MACRO DESIGN

As discussed in the introduction (see Fig. 1 (b)), our network RevCol is composed of multiple
subnetworks with reversible connections to perform feature disentangling. Fig. 2 (c) elaborates the
architecture design. Following the common practice of recent models (Dosovitskiy et al., 2020; Liu
et al., 2022b), first the input image is split into non-overlapping patches by a patch embedding module.
After that, patches are fed into each subnetwork (column). Columns can be implemented with any
conventional single-column architectures, e.g. ViT (Dosovitskiy et al., 2020) or ConvNeXt (Liu et al.,
2022b). We extract four-level feature maps from each column to propagate information between
columns; for example, if the columns are implemented with widely-used hierarchical networks (Liu
et al., 2021; He et al., 2016; Liu et al., 2022b), we can simply extract multi-resolution features from
the output of each stage. For classification tasks, we only use feature map of the last level (Level 4) in
the last column for rich semantic information. For other down-stream tasks like object detection and
semantic segmentation, we use feature maps of all the four levels in the last column as they contain
both low-level and semantic information.
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To implement the reversible connections between columns, we adopt the multi-level reversible unit
proposed in Eq. 2, but in a simplified fashion: rather than take (m− 1) inputs for each non-linear
operation Ft(·), we use only one low-level feature xt−1 at the current column and one high-level
feature xt−m+1 at the previous column as the input. The simplification does not break the reversible
property. We find more inputs bring minor accuracy gain but consume much more GPU resources.
Thus Eq. 2 is simplified as:

Forward : xt = Ft(xt−1, xt−m+1) + γxt−m

Inverse : xt−m = γ−1[xt − Ft(xt−1, xt−m+1)].
(3)

Compared with conventional architectures, the macro design of our RevCol has the following three
properties or advantages:

Feature disentangling. In RevCol, the lowest level of each column maintains low-level features
as it is close to the input, while the highest level in the last column is highly semantic because
it is directly connected to the supervision. Therefore, information in different levels is gradually
disentangled during the (lossless) propagation between columns – some feature maps are more and
more semantic and some maintain to be low-level. Detailed analyses are presented in Appendix
G. The property brings many potential advantages, for instance, more flexible to downstream tasks
which rely on both high-level and low-level features. We argue that reversible connection plays a key
role in the disentangling mechanism – some previous works like HRNet (Wang et al., 2020) involve
multi-level feature fusion but without reversible connection, which may suffer from information loss
and lead to inferior performances in our experiments (see Section D.2).

Memory saving. The training of conventional networks takes a lot of memory footprint to store
the activations during forward propagation as the demand of gradient computation. While in our
RevCol, since the connections between columns are explicitly reversible, during the back-propagation
we can reconstruct the required activations on the fly from the last column to the first, which means
we only need to maintain activations from one column in memory during training. In Section D.4, we
demonstrate RevCol costs roughly O(1) additional memory with the increase of column numbers.

New scaling factor for big models. In RevCol architecture, column number serves as a new
dimension in addition to depth (number of blocks), and width (channels of each block) in vanilla
single-column CNNs or ViTs. Increasing column numbers has similar income as increasing both
width and depth in certain range.

2.2.2 MICRO DESIGN

We employ ConvNeXt blocks (Liu et al., 2022b) to implement each column in our network by default;
other architectures, such as transformers, are also applicable (see Appendix B for details). We make
a few modifications to make ConvNeXt compatible with our macro architecture:

Fusion module. As shown in Fig. 3, in each level of original ConvNeXt, the inputs are first down-
sampled in a patch-merging block. Then the outputs are passed through a bunch of residual blocks.
In RevCol, we introduce a fusion module to fuse the feature maps from the current and previous
columns (refer to Fig. 2 (c), green and blue connections). We modify the original patch-merging
block in ConvNeXt by putting the LayerNorm after the patch-merging convolution rather than before.
Channel numbers are doubled in patch-merging convolution. We also introduce an up-sampling block,
which is composed of a linear channel mapping layer, a LayerNorm normalization and a feature map
interpolation layer. We halve the channel numbers in linear channel mapping layer. The outputs of
the two blocks are summed up and then passed to the residual blocks followed by.

Kernel size. In RevCol we revise the 7× 7 convolutions in original ConvNeXt (Liu et al., 2022b) to
3×3 by default, mainly to speed up the training. Increasing kernel size further obtains more accuracy,
but not very much, partly because the our multi-column design enlarges the effective receptive field.
Please refer to Section D.5 for more details.

5



Published as a conference paper at ICLR 2023

Reversible operation γ. We adopt a learnable reversible channel-wise scaling as reversible op-
eration γ to keep the network stable. Each time the features are summed up in forward of Eq. 3,
the magnitude grows larger, which makes the training process unstable. Using a learnable scaling
can suppress the magnitude of features. During training, we truncate the absolute value of γ so that
it will never be smaller than 1e−3, because the numerical error could become large in the reverse
computation when γ is too small.

2.3 INTERMEDIATE SUPERVISION

Though multi-level reversible unit is able to maintain information during column iteration, the
down-sample block still can discard information inside column. Features at the end of the front
columns is too close to the final output, for reversible connections simply do scaling and summation.
Such information loss leads to inferior performance. Similar problem also happens when using
deeply-supervised method (Lee et al., 2015; Szegedy et al., 2015).

To mitigate the problem of information collapse, we propose an intermediate supervision method
which adds additional supervision into front columns. For features in front columns, we hope to
keep the mutual information between features and the input image as much as possible, so that the
network discard less information within columns. Consider RevCol gradually disentangle semantic
and low-level information, extracting and leveraging the task-relevant information can further boost
the performance. Therefore, we need to maximize the lower bound of mutual information between
features and the prediction.

Inspired by Wang et al. (2021), we add two auxiliary heads to last level features (Level 4). One is
a decoder (He et al., 2022) which reconstructs the input image, the other is a linear classifier. The
linear classifier can be trained in a regular classification fashion with the cross-entropy (CE) loss. The
parameters of decoder are optimized by minimizing the binary cross-entropy (BCE) reconstruction
loss. Compared with commonly used L1 and L2 loss, interpreting the distribution of reconstructed
logits and input image as bit probabilities (Bernoullis) outputs smoother value, which makes it more
compatible with CE Loss.

For intermediate supervision at one column, the compound loss is the weighted summation of the
above two loss. Note that supervision heads may not be added to all columns. For all the variants
of RevCol, we set the number of compound loss to 4 empirically (eg. for a 8 column RevCol, the
supervision heads are added to column 2, 4, and 6, and 8).

The total loss L in is the summation of all compound loss:

L =

n∑
i=1

(αiLBCE + βiLCE) (4)

n denotes the total number of compound loss. LBCE and LCE denotes BCE loss and CE loss
correspondingly. αi and βi are changed linearly with the compound loss number. When the
compound loss is added in earlier columns, we use larger value αi and smaller value βi to keep
I(h, x). In later columns, value αi decreases and βi increases, which helps boost the performance.

3 EXPERIMENTS

We construct different RevCol variants, RevCol-T/S/B/L, to be of similar complexities to Swin
transformers and ConvNeXts. We also build a larger RevCol-XL and RevCol-H to test the scaling up
capability. These variants adopt different channel dimension C, blocks in each column B and column
numbers COL. The configuration hyper-parameters of these model variants are:

• RevCol-T: C = (64, 128, 256, 512), B = (2, 2, 4, 2), COL = 4

• RevCol-S: C = (64, 128, 256, 512), B = (2, 2, 4, 2), COL = 8

• RevCol-B: C = (72, 144, 288, 576), B = (1, 1, 3, 2), COL = 16

• RevCol-L: C = (128, 256, 512, 1024), B = (1, 2, 6, 2), COL = 8

• RevCol-XL: C = (224, 448, 896, 1792), B = (1, 2, 6, 2), COL = 8

• RevCol-H: C = (360, 720, 1440, 2880), B = (1, 2, 6, 2), COL = 8
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Table 1: ImageNet classification results. We compare our models with state-of-the-art ◦Vision Transformers
and •CNNs that have comparable FLOPs and parameters. ↑ denotes models fine-tuning using image size larger
than 2242. We report the top-1 accuracy on the validation set of ImageNet as well as the number of parameters
and FLOPs. Our models are highlighted in gray.

Model
Image ParamsFLOPs Top-1
Size (M) (G) Acc.

ImageNet-1K trained models

◦Swin-T (Liu et al.) 2242 28 4.5 81.3
◦DeiT-S (Touvron et al. 2242 22 4.6 79.8
◦Rev-ViT-S (Mangalam et al.)2242 22 4.6 79.9
•RevBiFPN-S3 (Chiley et al.)2882 20 3.3 81.1
•EfficientNet-B4 (Tan & Le) 3802 19 4.2 82.9
•ConvNeXt-T (Liu et al.) 2242 29 4.5 82.1
•RevCol-T 2242 30 4.5 82.2

◦Swin-S (Liu et al.) 2242 50 8.7 83.0
◦MViTv1-B (Fan et al.) 2242 37 7.8 83.0
◦T2T-ViT-19 (Yuan et al.) 2242 39 8.4 81.4
•RevBiFPN-S4 (Chiley et al.)3202 49 10.6 83.0
•EfficientNet-B5 Tan & Le) 4562 30 9.9 83.6
•ConvNeXt-S (Liu et al.) 2242 50 8.7 83.1
•RevCol-S 2242 60 9.0 83.5

◦Swin-B (Liu et al.) 2242 89 15.4 83.5
◦DeiT-B (Touvron et al.) 2242 86 17.5 81.8
◦Rev-ViT-B(Mangalam et al.)2242 87 17.6 81.8
•RepLKNet-31B (Ding et al.)2242 79 15.3 83.5
•RevBiFPN-S5 (Chiley et al.)3522 82 21.8 83.7
•EfficientNet-B6 (Tan & Le) 5282 43 19.0 84.0
•ConvNeXt-B (Liu et al.) 2242 88 15.4 83.8
•RevCol-B 2242 138 16.6 84.1

Model
Image ParamsFLOPs Top-1
Size (M) (G) Acc.

ImageNet-22K pre-trained models (ImageNet-1K fine-tuned)

◦Swin-B (Liu et al. 2242 88 15.4 85.2
◦Swin-B↑ (Liu et al. 3842 88 47.0 86.4
◦ViT-B↑ (Dosovitskiy et al.) 3842 86 55.4 84.0
•RepLKNet-31B (Ding et al.) 2242 79 15.3 85.2
•RepLKNet-31B↑ (Ding et al.)3842 79 45.1 86.0
•ConvNeXt-B (Liu et al.) 2242 89 15.4 85.8
•ConvNeXt-B↑ (Liu et al.) 3842 89 45.1 86.8
•RevCol-B 2242 138 16.6 85.6
•RevCol-B↑ 3842 138 48.9 86.7

◦Swin-L (Liu et al.) 2242 197 34.5 86.3
◦Swin-L↑ (Liu et al.) 3842 197 103.9 87.3
◦ViT-L↑ (Dosovitskiy et al.) 3842 307 190.7 85.2
•RepLKNet-31L (Ding et al.) 3842 172 96.0 86.6
•ConvNeXt-L (Liu et al.) 2242 198 34.4 86.6
•ConvNeXt-L↑ (Liu et al.) 3842 198 101.0 87.5
•RevCol-L 2242 273 39.0 86.6
•RevCol-L↑ 3842 273 116.0 87.6

•ConvNeXt-XL↑ (Liu et al.) 3842 350 179.0 87.8
•RevCol-XL↑ 3842 834 350.0 88.2

Extra data pre-trained models (ImageNet-1K fine-tuned)

•RevCol-XL↑ 3842 834 350.0 89.4
•RevCol-H↑ 6402 2158 2537 90.0

We conduct image classification on ImageNet dataset (Deng et al., 2009; Ridnik et al., 2021). We
also test our models on the downstream object detection task and semantic segmentation task on
commonly used MS-COCO (Lin et al., 2014) and ADE20k (Zhou et al., 2017b) dataset. Training
and fine-tuning settings please refer to Appendix F. Furthermore, we show the performance of
RevCol with transformer on vision and language tasks (shown in Appendix B).

3.1 IMAGE CLASSIFICATION

On ImageNet (1.28M images) (Deng et al., 2009) dataset, we train RevCol for 300 epochs with
intermediate supervision. Hyperparameters, augmentation and regularization strategies follows Liu
et al. (2022b) We also pre-train our models on the larger ImageNet-22K dataset (Ridnik et al., 2021),
which contains 14.2 million images.

In Tab. 1, we compare our RevCol variants with commonly used recent Transformers and CNNs
on ImageNet-1k validation set. Our models outperforms a large number of vanilla single-column
CNNs and Transformers with similar complexities. For example, RevCol-S achieve 83.5% Top-1
accuracy, outperform ConvNeXt-S by 0.4 points. When pre-trained with larger ImageNet-22K dataset,
RevCol-XL achieves 88.2% Top-1 accuracy. As RevCol maintains some task-irrelevant low-level
information in classification pre-training, relaxing the constraint of params and FLOPs and enlarging
dataset size can further boost our models’ performance. To further test the scaling up effectiveness
of large dataset, we build a 168-million-image semi-labeled dataset (see Appendix E). With extra
data pre-training and ImageNet-1k fine-tuning, our RevCol-H achieves 90.0% top-1 accuracy. Our
results further demonstrate with RevCol, CNN models can also share the dividends of large model
and massive data pre-training.

3.2 OBJECT DETECTION

We evaluate our proposed RevCol on object detection task. Experiments are conducted on the
MS-COCO dataset using the Cascade Mask R-CNN (Cai & Vasconcelos, 2019) framework. We
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Table 2: Object detection results on MS-COCO dataset with different backbones. We report box AP and
mask AP with single scale testing on COCO minival set. FLOPs are measured under input sizes of (1280, 800).

Backbone APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 Params FLOPs

ImageNet-1K pre-trained
◦Swin-T (Liu et al.) 50.5 69.3 54.9 43.7 66.6 47.1 86M 745G
•ConvNeXt-T (Liu et al.) 50.4 69.1 54.8 43.7 66.5 47.3 86M 741G
•RevCol-T 50.6 68.9 54.9 43.8 66.7 47.4 88M 741G
◦Swin-S (Liu et al.) 51.8 70.4 56.3 44.7 67.9 48.5 107M 838G
•ConvNeXt-S (Liu et al.) 51.9 70.8 56.5 45.0 68.4 49.1 108M 827G
•RevCol-S 52.6 71.1 56.8 45.5 68.8 49.0 118M 833G
◦Swin-B (Liu et al.) 51.9 70.9 56.5 45.0 68.4 48.7 145M 982G
•ConvNeXt-B (Liu et al.) 52.7 71.3 57.2 45.6 68.9 49.5 146M 964G
•RepLKNet-B (Ding et al.) 52.2 - - 45.2 - - 137M 965G
•RevCol-B 53.0 71.4 57.3 45.9 69.1 50.1 196M 988G

ImageNet-22K pre-trained
◦Swin-B (Liu et al.) 53.0 71.8 57.5 45.8 69.4 49.7 145M 982G
•ConvNeXt-B (Liu et al.) 54.0 73.1 58.8 46.9 70.6 51.3 146M 964G
•RepLKNet-B (Ding et al.) 53.0 - - 46.3 - - 137M 965G
•RevCol-B 55.0 73.5 59.7 47.5 71.1 51.8 196M 988G
◦Swin-L (Liu et al.) 53.9 72.4 58.8 46.7 70.1 50.8 253M 1382G
•ConvNeXt-L (Liu et al.) 54.8 73.8 59.8 47.6 71.3 51.7 255M 1354G
•RepLKNet-L (Ding et al.) 53.9 - - 46.5 - - 229M 1321G
•RevCol-L 55.9 74.1 60.7 48.4 71.8 52.8 330M 1453G

Extra data pre-trained
•RevCol-H (HTC++) 61.1 78.8 67.0 53.0 76.3 58.7 2.41G 4417G
•RevCol-H (Objects365+DINO) 63.8 81.8 70.2 - - - 2.18G 4012G

also finetune our largest model RevCol-H with HTC++ (Chen et al., 2019) and DINO (Zhang et al.,
2022a) Framework.

In Tab. 2, we compare the APbox and APmask with Swin/ConvNeXt in variant sizes on COCO valida-
tion set. We find RevCol models surpass other counterparts with similar computation complexities.
Information retained in pre-training helps RevCol models acheieve better results in down-stream
tasks. When the model size grows larger, this advantage becomes more remarkable. After finetuning
under Objects365(Shao et al., 2019) dataset and DINO (Zhang et al., 2022a) framework, our largest
model RevCol-H achieves 63.8% APbox on COCO detection minival set.

3.3 SEMANTIC SEGMENTATION

We also evaluate RevCol backbones on the ADE20K semantic segmentation task with UperNet (Xiao
et al., 2018) framework. We do not use intermediate-supervision in down-stream fine-tune pro-
cess. To further explore our model’s capacity and reach the leading performance, we utilize recent
segmentation framework Mask2Former (Cheng et al., 2022), and adopt the same training settings.

In Tab. 3, we report validation mIoU with single-scale and multi-scale flip testing. RevCol models can
achieve competitive performance across different model capacities, further validating the effectiveness
of our architecture design. It’s worth noting that when use Mask2Former detector and extra pre-
training data, RevCol-H achieves an mIoU of 61.0%, which shows feasible scalability towards
large-scale vision applications.

4 RELATED WORKS

4.1 DISENTANGLE REPRESENTATION LEARNING AND PART-WHOLE HIERARCHY

A disentangled representation is generally described as one which separates the factors of variation,
explicitly representing the important attributes of the data (Desjardins et al., 2012; Bengio et al.,
2013). Desjardins et al. (2012); Kulkarni et al. (2015); Higgins et al. (2017); Chen et al. (2016);
Karras et al. (2019) seek to learn disentangled representations through generative models. Locatello
et al. (2019) points out that unsupervised learning of disentangled representations is fundamentally
impossible without inductive biases both on the considered learning approaches and the datasets. The
recent proposal of GLOM (Hinton, 2021) gives an idea of representing a part-whole hierarchy by a
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Table 3: Semantic segmentation result on ADE20k dataset with different backbones. we report mIoU results
with single/multi-scale testing. FLOPs are measured under input sizes of (2048, 512), (2560, 640) for IN-1K and
IN-22K pre-trained models respectively.

Backbone crop size mIoUss mIoUms Params FLOPs

ImageNet-1K pre-trained
◦Swin-T (Liu et al.) 5122 44.5 45.8 60M 945G
•ConvNeXt-T (Liu et al.) 5122 46.0 46.7 60M 939G
•RevCol-T 5122 47.4 47.6 60M 937G
◦Swin-S (Liu et al.) 5122 47.6 49.5 81M 1038G
•ConvNeXt-S (Liu et al.) 5122 48.7 49.6 82M 1027G
•RevCol-S 5122 47.9 49.0 90M 1031G
◦Swin-B (Liu et al.) 5122 48.1 49.7 121M 1188G
•RepLKNet-B (Ding et al.) 5122 49.9 50.6 112M 1170G
•ConvNeXt-B (Liu et al.) 5122 49.1 49.9 122M 1170G
•RevCol-B 5122 49.0 50.1 122M 1169G

ImageNet-22K pre-trained
◦Swin-B (Liu et al.) 6402 50.3 51.7 121M 1841G
•RepLKNet-B (Ding et al.) 6402 51.5 52.3 112M 1829G
•ConvNeXt-B (Liu et al.) 6402 52.6 53.1 122M 1828G
•RevCol-B 6402 52.7 53.3 122M 1827G
◦Swin-L (Liu et al.) 6402 52.1 53.5 234M 2468G
•RepLKNet-L (Ding et al.) 6402 52.4 52.7 207M 2404G
•ConvNeXt-L (Liu et al.) 6402 53.2 53.7 235M 2458G
•RevCol-L 6402 53.4 53.7 306M 2610G

Extra data pre-trained
•RevCol-H 6402 57.8 58.0 2421M -
•RevCol-H + Mask2Former 6402 60.4 61.0 2439M -

weight-sharing columns. The GLOM architecture provides an interpretable part-whole hierarchies
for deep neural network (Garau et al., 2022). In RevCol, we adopt the design of using columns,
but not modeling the process of formulating islands. On the contrary, our column iteration process
maintains both low-level and high-level information and gradually disentangle them. Rather than
using self-supervised methods, RevCol can be trained with supervision end-to-end.

4.2 REVERSIBLE NETWORKS

Gomez et al. (2017) firstly propose RevNet that allow back propagation without saving intermediate
activations. The reversible design remarkably saves the training cost, since it keep O(1) GPU memory
consumption as model depth scaling up. Jacobsen et al. (2018) propose a fully reversible network that
can reverse back to the input without any information loss. Chang et al. (2018) develop a theoretical
framework on stability and reversibility of deep neural network and derive reversible networks that
can go arbitrarily deep. Mangalam et al. (2022) expand the reversible network scope from CNNs
to Transformers. RevBiFPN (Chiley et al., 2022), a concurrent work of ours, add the reversible
connections to BiFPN (Tan et al., 2020) network. Our RevCol maintains the information without loss
inside each column rather than the whole BiFPN network in RevBiFPN.

5 CONCLUSION

In this paper, we propose RevCol, a reversible column based foundation model design paradigm.
During the lossless propagation through columns, features in RevCol are learned to be gradually
disentangled and the total information is still maintained rather than compressed. Our experiments
suggests that RevCol can achieve competitive performance in multiple computer vision tasks. We
hope RevCol could contribute to better performance in various tasks in both vision and language
domains.
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A MICRO DESIGN DETAILS
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Figure 3: (a) Levels in ConvNeXt. Level l contains a patch merging down-sample block and nl

residual blocks. (b) Levels in RevCol. Level l is composed of a fusion module, nl residual blocks
and a reversible operation. Note that Level l takes features maps xt−1, xt−m+1 and xt−m as input.
Feature maps xt−1 and xt−m+1 are fed into the fusion module and feature maps xt−m are fed into
the reversible operation. (c) Design of the fusion module.

In this section, we provide the architecture design details for RevCol. As depicted in Fig. 2 and
Section 2.2, our RevCol contains multiple columns with reversible connections. Fig. 3 (a) shows the
architecture of ConvNeXt. Note that we replace the 7× 7 depth-wise convolution in ConvNeXt with
3× 3, as described in Sec. 2.2.2. In Fig. 3 (b), we show in detail how to extend to our RevCol on the
basis of ConvNeXt. First, we replace the down-sample block with a fusion block to fuse low-level
representations in current column and high-level ones from the previous column, and Fig. 3 (c) shows
the details of fusion block which contains up-sample and down-sample operations to handle different
resolutions. Second, for each level, same-level representations from the previous column are added
to current level’s output and are ready to propagate as a whole. Thanks to the two modifications,
feature maps from different hierarchies aggregate together to form the intermediate representation.
In Fig. 3 (c), we use a Linear-LayerNorm followed by a nearest interpolation to up-sample low
resolution features. A 2× 2 kernel Conv2d with stride 2 down-samples the high resolution features,
followed by a LayerNorm to balance the contributions of the two inputs.

B GENERALIZATION TO TRANSFORMERS

B.1 VISION TRANSFORMER MODELS

RevCol contains multiple light-weight sub-networks with reversible connections. In this paper, we
adopt the ConvNext micro design by default except for multi-columns fusion and smaller convolution
kernel as described in Sec. 2.2.2. However, the micro design of our RevCol is not limited to
convolutional networks, but is also compatible with isotropic designing, such as the vanilla vision
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transformer (ViT) (Dosovitskiy et al., 2020). In this section, we show the micro design of RevCol can
generalized to vanilla ViT, namely RevCol-ViT, with promising experimental results.

net-ViT maintains the feature resolution in the reversible columns. Thus the patch merging blocks
and up-sample blocks in the fusion modules are replaced with a simple linear projection with a post
LayerNorm. We use the vanilla ViT building block instead of the ConvNext building block variant.
The post LayerNorms and normalized dot-product attention are used in ViT blocks to stabilize training
convergence, similar to Liu et al. (2022a). With the properties of isotropy, we evenly arrange the
building blocks in each column. The configuration details of RevCol-ViT are:

• RevCol-ViT-S: C = (224, 224, 224, 224), B = (2, 2, 2, 2), HEAD = 4, COL = 4

• RevCol-ViT-B: C = (384, 384, 384, 384), B = (3, 3, 3, 3), HEAD = 6, COL = 4

Table 4: ImageNet-1K classification results. We compare our RevCol-ViT with state-of-the-art
isotropic ◦Vision Transformers and •CNNs that have comparable FLOPs and parameters.

Model Image Size Params FLOPs Top-1 Acc.

◦DeiT-S (Touvron et al., 2020) 2242 22M 4.6G 79.8
•ConvNext-S (iso.) (Liu et al., 2022b) 2242 22M 4.3G 79.7
◦RevCol-ViT-S 2242 16M 4.6G 80.6
◦ViT-B (Dosovitskiy et al., 2020) 3842 86M 55.4G 77.9
◦DeiT-B (Touvron et al., 2020) 2242 86M 17.6G 81.7
◦Rev-ViT-B (Mangalam et al., 2022) 2242 87M 17.6G 81.8
◦Rev-MViT-B (Mangalam et al., 2022) 2242 39M 8.7G 82.5
•ConvNext-B (iso.) (Liu et al., 2022b) 2242 87M 16.9G 82.0
◦RevCol-ViT-B 2242 67M 18.8G 82.7

We use the same training setting with the anisotropic RevCol as described in Sec. 3.1, except that
the intermediate supervision is discarded for simplicity and the stochastic depth rate is set as 0.2 for
RevCol-B. We scale down the value of last linear projection layers in each FFN accroding to the
network depth in initialization, same as BEiT (Bao et al., 2021). In Tab. 4, we compare the RevCol-
ViT with vanilla ViT and other concurrent isotropic designs. Our RevCol-ViT surpasses vanilla vision
transformer (77.9% for ViT and 81.7% for DeiT) and convolutional network ConvNeXt (82.0%) that
have comparable model parameters and computational overhead on ImageNet-1k classification w.r.t.
the top-1 accuracy.

B.2 LANGUAGE MODELS

Considering the great success of applying transformer to computer vision, i.e., ViT (Dosovitskiy
et al., 2020), we also made some exploration to generalize RevCol to natural language processing
(NLP). Based on the design in Appendix B.1, we can easily apply the isotropic RevCol to language
models with minor modification. To be specific, we replace the stem module in our RevCol with word
embedding and positional encoding in transformer. Then, the RevCol can be plugged into the original
transformer as an encoder. The output of the last column in RevCol will be used as the memory keys
and values for the attention layers in decoder, just exactly the same as the original transformer.

We select the translation task to evaluate the potential of the RevCol in NLP. We run experiments on
the WMT’16 English-German (En-De) dataset with 4.5M sentences and larger WMT’14 English-
French dataset with 36M sentences. Each sentence is encoded by joint source and target byte pair
encoding following Sennrich et al. (2016). The details of model architecture and the BLEU score are
shown in Tab. 5.

All the dataset preparation and the training configurations follows Ott et al. (2018) and the open
source project fairseq. The models were trained for 300K steps with batch-size of 28,672 tokens
on En-De and 200K steps with batch-size of 86,016 on En-Fr. We discard the intermediate supervision
for simplicity. As shown in Tab. 5, our RevCol outperforms vanilla transformer with comparable
parameters on En-De (28.67 vs. 28.43) and En-Fr (43.40 vs. 43.07), which demonstrates the RevCol’s
applicability to NLP.
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Table 5: BLEU score on newstest2014 for WMT English-German (En-De) and English-French
(En-Fr) translation task. † indicates we re-run the experiments with fairseq.

Model Encoder Decoder Params Task BLEU
arch dmodel dff head arch dmodel dff head

Transformer†big N = 6 1024 4096 16 N = 6 1024 4096 16
209M En-De 28.43

(Vaswani et al., 2017) 221M En-Fr 43.07

RevCol-Transformer B = (1,1,1,1) 768 3072 12 N = 6 768 3072 12 200M En-De 28.67
COL = 4 209M En-Fr 43.40

B.3 ROBUSTNESS OF THE NUMBER OF COLUMNS

In the ablation analysis of the paper, we show that when fix the total FLOPs and add more columns
of RevCol, the performance first increases and then get saturated. When the number of columns
is extreme large, such as 20, the performance drop because of the representation ability of single
column is limited. When the number of columns is usual, such as 41̃2, the performances are similar,
which verifies the setting robustness of the number of columns.

1 2 4 881.0

81.5

82.0

82.5

83.0

32 x 1 column 

16 x 2 columns 8 x 4 columns

4 x 8 columns

Figure 4: ImageNet top-1 accuracy of different variants of RevCol-ViT-B. Each variant has the same
total number of residual blocks and channel dimension.

To further analyze the robustness of the number of columns, in this section, we build some RevCol-
ViT-B variants (see Appendix B for more details). Each variant has the same number of residual
blocks with the same channel dimension, but different number of columns. In other worlds, these
variants have the same channel dimension and different depth of each columns and different number
of columns. We use 32 residual blocks totally and maintain the FLOPs about 18G. Fig. 4 show
the performance on ImageNet-1K of different variants. The number of columns are 1, 2, 4, and 8,
accordingly the depth of each column are 32, 16, 8, and 4. The performance of single column variant
is lower (similar to DeiT-B (Touvron et al., 2020)) because of the single column ViT can not maintain
the information as multi reversible columns. The performance is decreasing when the number of
columns became larger, because of the depth of each columns is not enough. This phenomenon
indicates us that given a target FLOPs, the setting of the number of columns is robust unless the depth
of each columns or channel dimension is too small.

C SYSTEM-LEVEL COMPARISON WITH SOTA FOUNDATION MODELS

Foundation models (Kolesnikov et al., 2020; Radford et al., 2021; Yuan et al., 2021b) are general-
purpose backbones pre-trained on massive and divergent data source. They can adapt to various
down-stream tasks with limited domain-specific data. We show comparison among various public
state-of-the-art (SOTA) foundation models including Vision Transformers and Vision-Language
models, namely, SwinV2 (Liu et al., 2022a), BEiT3 (Wang et al., 2022), and Florence (Yuan et al.,
2021b). As shown in Tab. 6, though our RevCol-H is purely convolutional and pre-trained on single
modality dataset, the results on different tasks demonstrate remarkable generalization ability of
RevCol with large scale parameters.
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Table 6: System-level comparison of state-of-the-art visual foundation models with large-scale pretraining.
We include ◦Vision Transformers, •CNNs, and • hybrid architectures pretrained either unsupervised or super-
vised on image-only and vision-language datasets. COCO scores marked with † means intermediate fine-tuned
on extra data like Object365 (Shao et al., 2019).

Model Params
Dataset ImageNet COCO test-dev ADE20K

Images Annotation 1k Detector APbox APmask Segmenter mIoU +ms

◦SwinV2-G 3.0 G 70 M labeled 90.2 HTC++ 63.1† 54.4† UperNet 59.3 59.9
◦BEiT3 1.0 G 35 M labeled & image-text 89.6 ViTDet 63.7† 54.8† Mask2Former 62.0 62.8
•Florence 0.9 G 900 M image-text 90.1 DyHead 62.4 - - - -
•RevCol-H 2.1 G 168 M semi-labeled 90.0 DINO 63.6† - Mask2Former 60.4 61.0

D MORE ANALYSIS EXPERIMENTS

D.1 PERFORMANCE GAIN OF REVERSIBLE COLUMNS ARCHITECTURE

In this section, we evaluate the performance gain of using reversible columns. In the first experiment,
we fix a single column’s structure and FLOPs then simply add more columns to scale large and test
the performance. At the same time, we plot the vanilla single-column models with similar model
sizes. As depicted in Fig. 5, compared to single-column models, using multi-column reversible
architecture always gets better performance under same FLOPs constraint. Besides, within a certain
range, scaling up RevCol in terms of increasing column numbers can have similar gains compared to
scaling up with both block numbers(depth) and channel numbers(width) in single-column models. In
the second experiment, we limit the model size to about 4.5G FLOPs and test model variants with
different column numbers. In other words, we gradually add more columns and scale down the single
column size at the same time. Results are shown in Tab. 7, we notice that adopt column number at
the range of 4 to 12 can maintain the model’s performance, then further more column models suffer
from performance degradation. We believe the reason is the width and depth in a single column are
too low to keep representation ability.
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Figure 5: ImageNet-1K performance of maintaining a
constant FLOPs of a single column and adding more
columns.

Table 7: ImageNet 1K performances of various
number of columns in RevCols under the similar
computational budget.

# column Params FLOPs
FLOPs
per col.

Top-1
Acc.

1 28M 4.4G 4.40G 81.9
4 30M 4.5G 1.12G 82.2
8 34M 4.7G 0.59G 82.3

12 33M 4.4G 0.35G 82.2
20 35M 4.2G 0.21G 81.0

D.2 REVERSIBLE NETWORKS VS. NON-REVERSIBLE NETWORKS

In this section, we ablate different design patterns of reversible connections. First, we build a non-
reversible multi-column network using the fusion module of HRNet. Second, we build another single
column reversible ConvNeXt using the design of RevNet as shown in Fig. 2(a). We compare the two
designs with our RevCols. The evaluation result is shown in Tab. 8. The non-reversible multi-column
network suffers from information loss during propagation, which could result in lower accuracy. The
reversible single-column network maintains information during propagation, but lack the superiority
of multi-level fusion. This experiment further indicates the effectiveness of combining the reversible
design with multi-column networks.
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Table 8: Performance comparison on
ImageNet-1K of different design patterns.
Row-1 represents HRNet style network w/o
reversible connections. Row-2 represents
RevNet style network w/o multi-column fu-
sions. Row-3 are our proposed RevCols.

rev. conn. multi-col. Params FLOPs Acc.

✓ 35M 4.9G 78.8
✓ 34M 4.5G 81.6
✓ ✓ 30M 4.5G 82.2

Table 9: Performance comparison between models with and
without intermediate supervision. Results are reported on
ImageNet-1K and COCO dataset. We use 1× training schedule
on COCO detection task.

Model inter. sup. Top-1 Acc. APbox APmask

RevCol-T ✗ 81.4 48.3 41.8
RevCol-T ✓ 82.2 (+0.8) 48.8 (+0.6) 42.2 (+0.4)
RevCol-S ✗ 83.0 50.7 43.8
RevCol-S ✓ 83.5 (+0.5) 51.1 (+0.4) 43.8 (+0.0)
RevCol-B ✗ 83.2 51.2 44.2
RevCol-B ✓ 84.1 (+0.9) 51.6 (+0.4) 44.2 (+0.0)

D.3 PERFORMANCE GAIN OF USING INTERMEDIATE SUPERVISION

In this section, we evaluate the performance of RevCol-T/S/B with and without intermediate super-
vision on ImageNet-1K. We also evaluate the object detection task performance using 1× training
schedule on MS-COCO dataset. Other settings remain the same. From the validation results in
Tab. 9, models trained with intermediate supervision achieves 0.5% to 0.9% better top-1 accuracy.
Besides, intermediate supervision also benefits down-stream tasks, which further demonstrates its
effectiveness.
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Table 10: Performance of models with larger ker-
nel convolution.

Kernel
Size FLOPs

Top-1
Acc

APbox

1×
APmask

1×

3 4.5G 82.2 48.8 42.2

5 4.5G 82.5 49.5 42.6

7 4.6G 82.5 49.3 42.4

11 4.6G 82.5 49.9 42.7

D.4 GPU MEMORY CONSUMPTION VS MODEL SIZE

Fig. 6 plots the GPU memory consumption with the scaling of model size. We fix the computation
complexity of a single column to 1G FLOPs and increase column number. Meanwhile, we measure
the memory consumption in training process which includes the forward and backward propagation.
Our experiments are conducted on Nvidia Tesla V100 GPU under batch-size 64, FP16 precision
and PyTorch implementation. With the increment of column number, we can see RevCol keeps an
O(1) GPU memory consumption, while non-reversible architecture’s memory consumption increase
linearly with column number. Note that our RevCol does not keep strictly the same GPU memory
consumption as column number increase, as reversible networks need to back-up the operation weights
in need for calculating gradients and the re-construction of feature maps in backward propagation.

D.5 ABLATION OF KERNEL SIZE IN CONVOLUTIONS

In original ConvNeXt, large kernel convolution achieves in better performance. We conduct experi-
ments in RevCol-T. As shown in Tab. 10, for 4 column models, using 5× 5 convolution increase the
ImageNet-1k Top-1 accuracy by 0.3% and the COCO APbox by 0.7 for RevCol-T model. Further
increasing kernel size obtains more accuracy in down-stream tasks, but not too much. We consider
the RevCol design already enlarges the effective receptive field and this limit the accuracy gain of
using large kernel convolution. On the other hand, 3× 3 convolution enjoys the merits of efficiency
and stability in (pre)training. Therefore, we adopt kernel 3 in all RevCol models.
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E SEMI-LABELED PRIVATELY COLLECTED DATASET FOR LARGE MODELS

E.1 DATA COLLECTION AND PSEUDO LABEL SYSTEM

The dataset consists of around 168 million(M) images, 50M of which labeled and the remaining 118M
unlabeled. The majority of labeled images come from public datasets, e.g. ImageNet, Places365 (Zhou
et al., 2017a), and Bamboo (Zhang et al., 2022b). The others are web-crawled images annotated
by in-door employees. Unlabeled images come from weakly-annotated image-text datasets like
YFCC-100M (Thomee et al., 2016). We do not use text annotations.

In order to utilize images of different label domains and the massive unlabeled images, we employ a
multi-target label system similar to Ding et al. (2022a) and Ghiasi et al. (2021). We adopt a semi-
supervised learning strategy with ViTs, thus generating pseudo labels with continuously increased
quality. We only store soft predictions with confidence higher than 1% to save storage. The final
version of pseudo label we use are generated by a multi-head ViT-Huge teacher, which has an 89.0%
ImageNet-1k accuracy.

E.2 IMAGE DEDUPLICATION

Since the dataset contains large amount of unverified web-crawled images, there are probably
validation or test images sneaking into our training dataset. Works like Mahajan et al. (2018) and
Yalniz et al. (2019) all regard image deduplication an important procedure for fair experiments.

We first iterate over the entire dataset to filter out suspicious duplicates together with the corresponding
test images based on their pseudo label distance. This brings more than 10,000 images with high
suspicion. We look at these image pairs and finally find about 1,200 exact-duplicates and near-
duplicates. Fig. 7 shows some examples of the near-duplicates, which are difficult to detect. Never
the less, training a model without removing these duplicates gives less than 0.1% accuracy gain on
ImageNet-1k in our experiments. We attribute this to the absence of true labels from these duplicates.

Figure 7: Top: Near duplicates found in unlabeled images. Bottom: ImageNet-1k validation images.

F MORE TRAINING DETAILS

This section gives more training details on ImageNet classification, COCO detection, and ADE20K
segmentation.

F.1 INTERMEDIATE SUPERVISION SETTINGS

We add intermediate supervision in ImageNet-1k training, ImageNet-22k and extra data pre-training.
We used a 3-block decoder with gradually up-sampled feature maps in ImageNet-1k training. The
block setting remains the same as Sec. 2.2 We use a single layer decoder in ImageNet-22k and
extra data pre-training. For all the variants of RevCol, we set the number of compound loss n to 3
empirically (eg. for a 8 column RevCol, the intermediate supervision is added to column 2, 4, and 6,
and the original classification CE loss is also added to column 8). αi is set to 3, 2, 1, 0 and βi is set to
0.18, 0.35, 0.53, 1.
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F.2 HYPERPARAMETERS USED FOR TRAINING AND PRE-TRAINING

This section introduces the training details for main experiments, the supervised training on ImageNet
and extra data. We show this setting in Tab. 11. All experiments in ablation studies are superivised
trained on ImageNet-1K except additional descriptions and also follow settings described in this
section.

Table 11: Hyperparameters for training and pre-training RevCol.

Hyperparameters
ImageNet-1K ImageNet-22K 168M Extra Data

T/S/B B/L/XL XL/H

Input resolution 2242 2242

Training epochs 300 90 10
Warmup epochs 20 5 0.15
Batch size 4096 5120
Peak learning rate 4e-3 5e-4 6.25e-4
Learning rate schedule cosine cosine
Layer-wise learning rate decay ✗ ✗
AdamW momentum (0.9, 0.999) (0.9, 0.999)
Weight decay 0.05 0.1 0.05
Gradient clipping ✗ 1.0 (element-wise)
Drop path 0.1/0.3/0.4 0.3 0.2
EMA 0.9999 ✗ ✗

Label smoothing ε 0.1 0.1
Data augment RandAug (9, 0.5) RandAug (9, 0.5)
Mixup 0.8 ✗
CutMix 1.0 ✗
Random erase 0.25 ✗

F.3 HYPERPARAMETERS USED FOR FINE-TUNING

This section gives the hyperparameters used for fine-tuning on ImageNet-1K and downstrea COCO
object detection and instance segmentation, ADE20K semantic segmentation tasks, as shown in Tab.
12, Tab. 13 and Tab. 14.

Table 12: Hyperparameters for fine-tuning RevCol on ImageNet-1K classification.

Hyperparameters
ImageNet-1K

B/L/XL/H

Input resolution 3842/3842/3842/6402

Fine-tuning epochs 30
Warmup epochs 0
Batch size 512
Peak learning rate 5e-5
Layer-wise learning rate decay 0.9/0.8/0.8/0.8
AdamW momentum (0.9, 0.999)
Weight decay 1e-8
Learning rate schedule cosine
Head init scale 0.001
Drop path 0.2/0.3/0.4/0.5
EMA ✗/✗/✗/0.9999
Gradient clipping 10.0 (norm)

Label smoothing ε 0.1
Data augment RandAug (9, 0.5)
Mixup ✗
CutMix ✗
Random erase 0.25
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Table 13: Hyperparameters for fine-tuning RevCol on object detection with Cascade Mask R-CNN
detector.

Hyperparameters
IN-1K Pre-trained IN-22K Pre-trained

RevCol-T/S/B RevCol-B/L

Fine-tuning epochs 36
Batch size 16
Peak learning rate 2e-4 1e-4
Warmup steps 1500
Layer-wise learning rate decay 0.85/0.8/0.8 0.9/0.8

AdamW momentum (0.9, 0.999)
Weight decay 0.05
Drop path 0.3/0.4/0.4 0.5/0.6

Table 14: Hyperparameters for fine-tuning RevCol on ADE20K semantic segmentation with UperNet
segmentation framework.

Hyperparameters
IN-1K Pre-trained IN-22K Pre-trained

RevCol-T/S/B RevCol-B/L

Input resolution 5122 6402

Fine-tuning steps 80k
Batch size 16
Peak learning rate 4e-5
Warmup steps 1500
Layer-wise learning rate decay 1.0 0.9

AdamW momentum (0.9, 0.999)
Weight decay 0.01
Drop path 0.3

F.3.1 CONVOLUTION KERNEL PADDING TRICK IN DOWN-STREAM TASKS

According the results shown in Section D.5, larger kernel convolution perform better especially in
down-stream tasks. To save the pre-training cost meanwhile achieve better performance, we pad the
small 3× 3 convolution kernel in pre-trained model weights to larger size then fine-tune in detection
and segmentation tasks. Inspired by Net2net (Chen et al., 2015) method, we pad the pre-trained
3× 3 kernel in convolution layer with Gaussian initialized values. To protect the pre-trained kernel
from being disturbed by the new padded values, we initialize the padded values with 0 mean and
extremely small standard deviations (1e-7). We use this trick only with our largest model RevCol-H.
We pad the 3× 3 kernel in pre-trained model to 7× 7 kernel size in COCO detection task and 13× 13
in ADE20k sementatic segmentation task, then fine-tune on corresponding dataset to get the final
result. In general, the kernel padding trick leads to 0.5∼0.8 APbox improvement and 0.7∼1.0 mIoU
improvement for RevCol-H model.

G VISUALIZATIONS OF FEATURE DISENTANGLEMENT

In this section, we show our RevCol can disentangle features with stacked columns, which is different
from the conventional sequential networks. We use RevCol-S pre-trained on ImageNet-1K for
analysis. First, we visualize the class activation maps (CAMs) for outputs of each last layer of a level.
We adopt LayerCAM (Jiang et al., 2021) technology to generate the CAMs with the predicted classes.
Fig. 8 show the heatmaps of activation. With the levels and columns going deeper, the features focus
on the regions with more semantics. The outputs of RevCol-S are the different levels of last column.
These features with high level semantics focus on different parts of the image and the whole part of
the object, achieving disentanglement of features for task-relevant and task-irrelevant.
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Figure 8: Visualizations of class activation maps using LayerCAM (Jiang et al., 2021) for different
levels and columns.
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Figure 9: CKA similarities (Kornblith et al., 2019) of features and images/labels for different levels
and columns.

To quantify the disentanglement, we use Centered Kernel Alignment (CKA) similarity metric (Ko-
rnblith et al., 2019) to measure the similarity between representations in RevCol-S. We calculate
the CKA similarities between intermediate features in different levels and columns and images or
labels of each category in the ImageNet val set. Then we plot the similarities of the category with
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the highest label similarity in Fig. 9. As shown in the figure, the similarities between images and
intermediate features are not clearly distinguished at different levels in Column 2-5, while the features
with higher levels have lower similarity to the images in Column 6-8. The similarities between labels
and intermediate features are also more distinct in higher columns.
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