
Code Less, Align More: Efficient LLM Fine-tuning for Code Generation
with Data Pruning

Anonymous ACL submission

Abstract
Recent work targeting large language models001
(LLMs) for code generation demonstrated that002
increasing the amount of training data through003
synthetic code generation often leads to ex-004
ceptional performance. In this paper we ex-005
plore data pruning methods aimed at enhancing006
the efficiency of model training specifically for007
code LLMs. We present techniques that inte-008
grate various clustering and pruning metrics to009
selectively reduce training data without com-010
promising the accuracy and functionality of the011
generated code. We observe significant redun-012
dancies in synthetic training data generation,013
where our experiments demonstrate that bench-014
mark performance can be largely preserved by015
training on only 10% of the data. Moreover,016
we observe consistent improvements in bench-017
mark results through moderate pruning of the018
training data. Our experiments show that these019
pruning strategies not only reduce the compu-020
tational resources needed but also enhance the021
overall quality code generation.022

1 Introduction023

The performance of large language models (LLMs)024

is heavily dependent on the size and quality of025

their training datasets, as highlighted by recent026

studies on scaling laws (Achiam et al., 2023;027

Zhang et al., 2024). State-of-the-art code LLMs,028

such as CodeAlpaca (Chaudhary, 2023), Wizard-029

Coder (Luo et al., 2024), and MagicCoder (Wei030

et al., 2023), have achieved remarkable perfor-031

mance by significantly expanding their supervised032

fine-tuning datasets through synthetic code genera-033

tion. Various synthetic code generation approaches034

have been developed, including the Self-Instruct035

technique (Wang et al., 2022), Evol-Instruct (Xu036

et al., 2023a), and OSS-Instruct (Wei et al., 2023).037

However, such scaling approaches not only in-038

crease the training cost but also demands substan-039

tial computational resources, making it expensive040

and less accessible.041

Achieving optimal performance in fine-tuned 042

models for downstream tasks often relies on large, 043

high-quality datasets. Recently, there has been a 044

growing interest in more efficient fine-tuning meth- 045

ods for large language models (LLMs). One recent 046

work introduces the Superficial Alignment Hypoth- 047

esis (Zhou et al., 2023), which suggests that most 048

knowledge in LLMs is acquired during pretraining, 049

and only minimal instruction tuning data is required 050

to align models with human preferences. Promising 051

strategies to reduce computational demands include 052

parameter-efficient fine-tuning (PEFT) methods, 053

which reduce the number of parameters needed for 054

training (Fu et al., 2023; Hu et al., 2021). Another 055

research direction uses active learning to iteratively 056

select data samples during training, thereby en- 057

hancing model learning (Su et al., 2022; Diao et al., 058

2023). These methods primarily aim to improve 059

model accuracy through iterative processes, requir- 060

ing multiple rounds of training and data selection. 061

Data selection and pruning methods have also 062

been well-explored in literature, with evidence 063

suggesting that careful pruning can sometimes 064

even surpass the performance of using the full 065

dataset (Penedo et al., 2024; Wang et al., 2023). 066

Moreover, many of these methods are compu- 067

tationally intensive such as supervised metrics 068

that involves multiple times of model training to 069

keep track of loss and gradients (Xia et al., 2024; 070

Pruthi et al., 2020) or heavy sampling method 071

with Monte Carlo (Schoch et al., 2023), limiting 072

their scalability. Practical pruning methods that 073

aims for large-scale data have been investigated in 074

the contexts of LLM pretraining (Das and Khetan, 075

2023; Penedo et al., 2024) and fine-tuning (Chen 076

et al., 2024; Schoch et al., 2023) datasets, image 077

datasets (Moser et al., 2024; Meding et al., 2021), 078

and vision-text training datasets (Wang et al., 2023), 079

and demonstrate success by applying clustering and 080

by choosing proper indicator functions. 081

Despite these advances, there remains a gap in 082

1

efficient pruning strategies specifically tailored for083

coding datasets. Most large-scale code datasets084

are synthetically generated, resulting in many data085

samples with similar lexical appearances due to086

consistent formatting and style. Large-scale syn-087

thetic datasets commonly used for training code088

LLMs often suffer from significant redundancy and089

noise (Wang et al., 2023). This redundancy arises090

from the impracticality of verifying the functional091

correctness of each program, leading to a substan-092

tial portion of instruction-code pairs being noisy.093

Therefore, enhancing data efficiency through care-094

ful selection and pruning of data samples is crucial095

for improving model performance without relying096

on excessively large datasets.097

In this work, we present a scalable and effective098

data pruning method to enhance code generation in099

large language models. Our approach clusters data100

samples based on problem instructions and their101

code solutions, applying dimensionality reduction102

to reduce computational load. We then select a103

representative subset from each cluster using var-104

ious pruning metrics. Experiments on large-scale105

datasets and evaluations on downstream coding106

tasks show that our method maintains or even im-107

proves model performance while significantly re-108

ducing training data. Our contributions and key109

findings are summarized as follows:110

• We are the first to study data pruning for large-111

scale synthetic code fine-tuning. We create an112

efficient and scalable pruning strategy based113

on unsupervised learning methods.114

• We find large redundancies in synthetic gen-115

erated code datasets, as training on just 10%116

retains most benchmark performance, with117

slight degradation of 3.9% on HumanEval and118

1.5% on MBPP compared with using all data.119

• We observe consistent improvement by moder-120

ately pruning the dataset, leading to improve-121

ments of up to 2.7% on HumanEval and 3.5%122

on MBPP compared with using all data.123

• We perform detailed ablation studies, where124

results demonstrate the clustering algorithm125

to be critical, while pruning metrics to be less126

important.127

2 Related Work128

In this section, we review the advancements of129

large language models (LLMs) for code generation130

in Section 2.1 and review prior work on instruc- 131

tional finetuning in Section 2.2. Finally, we discuss 132

earlier research on data selection and pruning meth- 133

ods in Section 2.3. 134

2.1 Large Language Models for Code 135

Generation 136

Great advancements have been achieved in improv- 137

ing Large Language Models (LLMs) for code gen- 138

eration. Codealpaca (Chaudhary, 2023) extends 139

the capabilities of the LLaMA model (Touvron 140

et al., 2023a) by incorporating 20,000 instruction- 141

following data points generated through the Self- 142

Instruct technique (Wang et al., 2022), which 143

aligns language models with self-generated instruc- 144

tions. CodeLlama (Roziere et al., 2023) further 145

enhances this methodology by fine-tuning from 146

LLaMA2 (Touvron et al., 2023b), utilizing 14,000 147

instruction-following data points also generated via 148

the Self-Instruct technique. 149

Wizardcoder (Luo et al., 2024) utilizes the Evol- 150

Instruct method (Xu et al., 2023a) to evolve the 151

Codealpaca dataset further. This technique itera- 152

tively evolves instruction-following data in both 153

depth and breadth dimensions. On the other hand, 154

Magicoder (Wei et al., 2023) employs the OSS- 155

Instruct technique to create instruction-following 156

data from unlabeled open-source code snippets, 157

constructing a dataset of 75,000 samples based on 158

the StarCoder dataset (Lozhkov et al., 2024). 159

2.2 Instructional Fine-tuning 160

Fine-tuning language models with instructional 161

datasets has emerged as a powerful technique, of- 162

fering notable improvements in model performance 163

and alignment with human preferences and safety. 164

By exploring a diverse array of instructional tasks, 165

(Wei et al., 2021) demonstrated a significant en- 166

hancement in zero-shot performance on unseen 167

tasks through fine-tuning. Building on this, (Chung 168

et al., 2024) showed that scaling both the number 169

of tasks and the model size can lead to substantial 170

performance gains across different model architec- 171

tures. (Peng et al., 2023) further advanced this field 172

by leveraging large language models (LLMs) to 173

generate high-quality instruction-following data, 174

resulting in improved zero-shot performance on 175

new tasks. 176

A recent study (Zhou et al., 2023) introduces the 177

Superficial Alignment Hypothesis, which posits 178

that the bulk of knowledge in LLMs is acquired 179

during pretraining. It further suggests that min- 180

2

imal fine-tuning data is sufficient to align these181

models with human preferences. The study demon-182

strates a noteworthy enhancement in LLM perfor-183

mance with just 1,000 high-quality instruction data184

points. Subsequently, a plethora of research endeav-185

ors have concentrated on refining dataset quality186

through diverse filtering methodologies for general187

instruction following (Xu et al., 2023b; Chen et al.,188

2024; Liu et al., 2023b).189

2.3 Data Pruning for Efficient Training190

Various pruning methods have been explored for191

selecting more informative samples for model train-192

ing, each tailored to different scenarios. Data193

clustering has been widely used as a highly ef-194

fective technique for data pruning. TLDR (Wang195

et al., 2023) utilized KMeans clustering to group196

similar data points and uniformly sampled from197

each cluster. They employ Image-Text Matching198

(ITM) scores to identify suitable vision-text pairs,199

offering another perspective on sample selection.200

DEFT (Das and Khetan, 2023) utilizes unsuper-201

vised core-set selection for clustering-based data-202

efficient fine-tuning of LLMs. This approach sig-203

nificantly enhances data efficiency in fine-tuning204

for text-editing applications.205

Metrics like Hardness (Sorscher et al., 2022),206

Instruction Following Difficulty (IFD) (Li et al.,207

2023) (Li et al., 2023), and SuperFiltering (Li208

et al., 2024) focus on identifying "hard" samples209

that are either difficult to learn or easy to forget,210

tracking each data sample throughout training. In211

addition to these, sample influence metrics such as212

LESS (Xia et al., 2024) and TracIn (Pruthi et al.,213

2020) monitor model gradients and the impact of214

individual samples, albeit with significant compu-215

tational overhead for large models and datasets.216

Quality metrics from external oracles (Chen et al.,217

2024; Liu et al., 2023b), leverage strong language218

models like ChatGPT for data selection. However,219

utilizing external oracles may not always be feasi-220

ble due to cost constraints.221

3 Methodology222

Our goal is to select high-quality, representative223

data samples so that training on these subsets yields224

performance that is comparable to or better than225

training on the entire dataset. The overview of effi-226

cient data pruning for fine-tuning LLMs with large227

scale datasets is illustrate in Figure 1. First, we228

use an embedding model to project the instruction-229

code pairs into a vector representation. We further 230

reduce the dimension of feature representation to 231

reduce computation complexity of the following 232

steps. We then apply clustering to identify and 233

group up similar data samples. Finally, we applied 234

pruning metrics to further reduce data size. The 235

detail pseudo code is in Algorithm 1. 236

When dealing with coding datasets, two primary 237

selection directions can be considered: syntactical 238

and semantic. Selecting programs that are syntacti- 239

cally different but semantically equivalent, or vice 240

versa, can be inefficient. Our design will focus 241

on identifying syntactical differences. Detecting 242

semantic differences between programs typically 243

requires fuzzing techniques (Chen et al., 2018), 244

which involve creating larger test samples and exe- 245

cuting programs to group them based on behavior. 246

This approach contradicts our objective of reduc- 247

ing computational costs. Therefore, our method 248

emphasizes syntactical analysis to achieve efficient 249

and effective data selection. 250

Algorithm 1 Data Pruning Algorithm

1: Initialize Embbedding, Compression Ratio
2: Initialize selected← []
3: X ← PCA(Embedding)
4: Cluster ← ClusterAlgo(X)
5: for each idx, items in Cluster do
6: score← PruningMetrics(item)
7: remain← Random(items, prob=score)
8: Update Cluster[ids]← remain
9: Append selected← remain

10: end for
11: Output: selected

3.1 Dimension Reduction 251

We convert each instruction-code pair into vec- 252

tor representation using a embedding model from 253

raw text to enhance the efficiency of clustering 254

and computation of pruning metrics (Naik, 2024). 255

Recent research indicates that distances based on 256

LLM embeddings effectively capture syntactic dif- 257

ferences. To address the computational complexity, 258

we employ Principle Component Analysis (PCA) 259

(Maćkiewicz and Ratajczak, 1993) to reduce the 260

dimensionality of the vector representations, as rep- 261

resentations extracted from LLMs often exceed a 262

thousand dimensions. Moreover, this approach pre- 263

vents the subsequent utilization of several pruning 264

metrics, which involve kernel methods, from being 265

3

Large Scale
Dataset Clusters Small

dataset

Low
Dimension

Feature

Reduce
dimension PruningClusteringEncode

Embedding

Figure 1: The overview of efficient data pruning for fine-tuning LLMs with large scale datasets. First, We reduce
the encode instruction-following data into embedding and reduce the dimension of feature representation. Second,
we apply clustering to identify and group up similar data samples. Finally, we applied pruning metrics to further
reduce data size.

hindered in high-dimensional spaces by the curse266

of dimensionality.267

3.2 Clustering268

Clustering is a critical step in our methodology to269

group similar instruction-code pairs, which facil-270

itates the selection of diverse and representative271

samples. Before clustering, we normalize the vec-272

tor representations to ensure that each feature con-273

tributes equally to the distance calculations. From274

each cluster, we then sample instruction-code pairs275

to create a subset that is representative of the entire276

dataset. The sampling strategy is further decided277

by different pruning metrics.278

3.2.1 KMeans279

The KMeans algorithm (Kanungo et al., 2002) par-280

titions data into k clusters. By minimizing the281

within-cluster sum-of-squares, KMeans ensures282

that each cluster is as compact as possible. The283

main advantage of KMeans is its scalability and284

efficiency in handling large datasets.285

3.2.2 Agglomerative Clustering286

Agglomerative Clustering (Müllner, 2011) builds287

nested clusters with linkage criteria. This method is288

advantageous since it does not require the number289

of clusters to be specified a priori. This flexibility290

allows for a more nuanced selection of representa-291

tive samples, which is beneficial for maintaining292

the quality of the dataset.293

3.2.3 HDBSCAN294

Hierarchical Density-Based Spatial Clustering of295

Applications with Noise (HDBSCAN) (Rahman296

et al., 2016) performs clustering based on the con-297

cept of core samples, which are samples located in298

high-density areas measured by a distance metric.299

This approach aligns well with our design hypoth-300

esis to find the most syntactically representative301

data samples. Notably, HDBSCAN removes noisy302

samples not clustered into core samples as outliers.303

3.3 Pruning Metrics 304

The criteria of choosing pruning metrics contin- 305

ually aligns with the idea of detecting syntactic 306

difference and find most representative samples. 307

We explain the pruning metrics explored in our 308

experiments in the following sections. 309

3.3.1 Diversity Metric 310

We use a distance-based metric that simply evalu- 311

ates the diversity score of a single instance shown 312

as follow, 313

di = min
x∈K\{xi}

dist(xi,x), (1) 314

where xi is the vector representation, dist is a dis- 315

tance function, K represents selected query set 316

within the dataset cluster, and di is the diversity 317

score of a sample xi. We use the dot product of the 318

embeddings as the distance function as our embed- 319

dings are normalized prior to pruning. 320

3.3.2 Density Metric 321

We applied kernel density estimation (KDE) to 322

measure the density of samples in the feature space. 323

KDE estimates the probability density function of 324

a random variable. The density score for a sample 325

xi is given by, 326

ρ(xi) =
1

nhd

n∑
j=1

K

(
xi − xj

h

)
, (2) 327

where K is the kernel function, h is the bandwidth 328

parameter, d is the dimension of the feature space, 329

and n is the total number of samples. The kernel 330

function K (typically a Gaussian) measures the in- 331

fluence of nearby points on the density estimate. A 332

high density score indicates that a sample is located 333

in a region with many similar instances, suggesting 334

it is less critical for maintaining diversity. 335

4

Model Training Benchmark Improvement Over Base

Tokens HumanEval (+) MBPP (+) HumanEval (+) MBPP (+)

GPT-3.5 Turbo - 72.6 (65.9) 81.7 (69.4) - -
GPT-4 Turbo - 85.4 (81.7) 83.0 (70.7) - -

DeepSeek-Coder-Base - 47.6 (39.6) 70.2 (56.6) - -
DeepSeek-Coder-Instruct 2B 73.8 (70.1) 72.7 (63.4) 26.2 (30.5) 2.5 (6.8)
Magicoder-DS 90M 66.5 (60.4) 75.4 (61.9) 18.9 (20.8) 5.2 (5.3)
MagicoderS-DS 240M 76.8 (70.7) 75.7 (64.4) 29.2 (31.1) 5.5 (7.8)

Ours (full data) 234M 74.3 (70.8) 74.5 (62.3) 26.7 (31.2) 4.3 (5.7)
Ours (90%) 192M 77.0 (71.6) 76.9 (64.0) 29.4 (32.0) 6.7 (7.4)
Ours (50%) 106M 71.0 (64.0) 78.0 (64.0) 23.4 (24.4) 7.8 (7.4)
Ours (10%) 21M 70.4 (65.0) 73.0 (60.2) 22.8 (25.4) 2.8 (3.6)
Ours (1%) 2M 64.6 (58.0) 74.3 (61.9) 17.0 (18.4) 4.1 (5.3)

Table 1: pass@1 (%) results of different LLMs on HumanEval (+) and MBPP (+) with greedy decoding. We directly
use results from prior work (Guo et al., 2024; Wei et al., 2023). All our results are reported using the HDBSCAN
clustering algorithm with the diversity pruning metric (HDBSCAN-diversity). To account for the randomness of
clustering and training, we report the averaged results from three runs evaluated with EvalPlus (Liu et al., 2023a).

3.3.3 Random336

The simplest baseline is random selection, where337

we randomly sample data from the selected cluster338

or entire training dataset (without clustering) for339

instruction tuning.340

4 Experiments341

In this section, we first present the experimental342

setup in Section 4.1, followed by our primary find-343

ings in Section 4.5. Here, we highlight the perfor-344

mance improvements of our pruning methods com-345

pared to full dataset training across four datasets:346

MBPP(+), and HumanEval(+). We also compare347

the pass@1 scores with baseline methods at vari-348

ous compression ratios.349

4.1 Setup350

We employed DeepSeek-Coder-Base 6.7B (Guo351

et al., 2024) as the base model due to its superior352

performance among open-source models. We used353

PCA (Maćkiewicz and Ratajczak, 1993) algorithm354

in all experiments and reduce the dimension to 10.355

To account for randomness in clustering algorithm356

and training, we repeat each experiment 3 times357

and report the average and standard deviation.358

4.2 Training359

Datasets In our experiment, we adopt two syn-360

thetic code dataset as training data: Magicoder-361

OSS-Instruct-75K 1 (MIT License) and Magicoder- 362

Evol-Instruct-110K 2 (Apache-2.0 License). To- 363

gether we have a combined 185k entries in total as 364

our target large scale dataset. 365

We fine-tune the base model by combining and 366

shuffling the two training dataset. This is different 367

as in the original Magicoder (Wei et al., 2023) im- 368

plementation, where they first fine-tune the base 369

models for 2 epochs on OSS-Instruct data and con- 370

tinue training for 2 more epochs on Evol-Instruct 371

data. We note that despite such difference in our im- 372

plementation details, our full dataset performance 373

closely matches the MagicoderS-DS results. 374

Training Training is conducted with 16 NVIDIA 375

A100-80GB GPUs through the Distributed Data 376

Parallel (DDP) module from PyTorch. We set the 377

learning rate at 5e-5 with 15 warmup steps and a lin- 378

ear learning rate scheduler. We use Adam (Kingma 379

and Ba, 2014) as our optimizer with full param- 380

eter updates and truncate sequence length longer 381

than 4096 tokens. We use a batch size of 512 sam- 382

ples (Wei et al., 2023) when the dataset size ex- 383

ceeds ≥ 10% of the original size, and a batch size 384

of 32 (Zhou et al., 2023) for heavily pruned small- 385

scaled data experiments in Figure 3. We fine-tune 386

for 2 epochs regardless of the dataset size. 387

1https://huggingface.co/datasets/ise-uiuc/
Magicoder-OSS-Instruct-75K

2https://huggingface.co/datasets/ise-uiuc/
Magicoder-Evol-Instruct-110K

5

https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K

10% 20% 30% 40% 50% 60% 70% 80% 90%
Compression Ratio

0.60

0.65

0.70

0.75

0.80
Pa

ss
@

1
MBPP

hdbscan-diversity
nocluster-random

10% 20% 30% 40% 50% 60% 70% 80% 90%
Compression Ratio

0.55

0.60

0.65

0.70

0.75

Pa
ss

@
1

HumanEval
hdbscan-diversity
nocluster-random

Figure 2: Performance comparison of HDBSCAN-diversity and nocluster-random methods across different bench-
marks. Our strategy outperform the baseline across different datasets with a large margin. We also maintain better
or equivalent performance compare to full dataset even at the size of 10% on MBPP. The pass@1 metric is plotted
against varying compression ratios, demonstrating the robustness and effectiveness. HumanEval presents larger
variance across experiments possibly due to less problems entries.

4.3 Evaluation388

Datasets HumanEval (Chen et al., 2021) and389

MBPP (Austin et al., 2021) are two of the most390

widely used benchmarks for code generation. The391

two datasets contains 164 and 1401 problems re-392

spectively. Each task in these benchmarks in-393

cludes a task description (e.g., docstring) as the394

prompt, where LLMs generate corresponding code395

whose correctness is checked by a handful of test396

cases. Because tests in these benchmarks can397

be insufficient, for more rigorous evaluation, we398

use HumanEval+ and MBPP+, both powered by399

EvalPlus (Liu et al., 2023a) to obtain 80× and 35×400

more tests, respectively.401

Metric Following prior work (Chen et al., 2021;402

Liu et al., 2023a), for each experiment we use the403

unbiased pass@k estimator shown as follow and404

mainly focus on comparing pass@1 metric:405

pass@k := EProblems

[
1−

(
n−c
k

)(
n
k

)]
. (3)406

Inference We employ the EvalPlus (Liu et al.,407

2023a) inference script with sanitation postprocess-408

ing. We adopted the vLLM (Kwon et al., 2023)409

framework and use greedy decoding for every code410

generation. The inference engine is setup with bf16411

dtype, tensor parallel size of 2 and a maximum412

length of 4096.413

4.4 Implementation Details414

In our experiment, the PCA reduction is fitted on415

the benchmark dataset and then apply the projec-416

tion to the instruction data. We used the Ope-417

nAI text-embedding-ada-002 embedding model418

to encode data. All the clustering and kernel 419

density estimation parameters are as default in 420

sklearn (Pedregosa et al., 2011). For algorithms 421

that requires choosing an optimal number of clus- 422

ters (such as KMeans) is crucial, we utilize the 423

Elbow method (Roy, 1953) to find the point where 424

adding more clusters does not significantly improve 425

the variance explained. For pruning metrics, we 426

applied the Scott’s Rule (Scott, 2010), a normal- 427

reference rule for deciding the Gaussian kernel 428

bandwidth, for kernel density estimation and ran- 429

dom select 10% of the dataset as query set (K) for 430

diversity metric. 431

4.5 Main Results 432

Table 1 presents the pass@1 results of different 433

leading code LLMs on the HumanEval and MBPP 434

benchmarks, computed with greedy decoding. All 435

our results are reported using the HDBSCAN clus- 436

tering algorithm with the diversity pruning metric 437

(HDBSCAN-diversity). To account for the ran- 438

domness of clustering and training, we report the 439

averaged results from three runs. Notably, slight 440

pruning of the training data could yield a perfor- 441

mance improvement of up to 2.7% on HumanEval 442

and 3.5% on MBPP compared to training with the 443

full dataset. We further show that benchmark accu- 444

racy can be largely retained with 10% of the dataset, 445

with slight degradation of 3.9% on HumanEval and 446

1.5% on MBPP compared with using the full train- 447

ing data. Even with just 1% of the data (∼ 700 448

samples), our method maintains competitive per- 449

formance and achieves large improvements over 450

the base model, underscoring the efficiency of our 451

pruning strategy. 452

6

10.0% 6.2% 4.8% 3.4% 2.1% 0.9% 0.0%
Compression Ratio

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Pa
ss

@
1 Full dataset training

No training

MBPP
hdbscan-diversity

10.0% 6.2% 4.8% 3.4% 2.1% 0.9% 0.0%
Compression Ratio

0.50

0.55

0.60

0.65

0.70

0.75

Pa
ss

@
1

Full dataset training

No training

HumanEval
hdbscan-diversity

Figure 3: Comparison of performance under extreme data pruning conditions on the MBPP and HumanEval
benchmarks. The pass@1 score on MBPP shows that even with just 1% of the data, our method achieves nearly
equivalent performance to the full dataset, with a 4.1% improvement over the base model. On the HumanEval
benchmark, while the performance with 1% of the data degrades compared to the full dataset training, it still
achieves an 17.0% improvement over the base model.

Figure 2 illustrates the detail of our pruning453

methods across four datasets: MBPP, MBPP+,454

HumanEval, and HumanEval+. Each subplot455

compares the pass@1 scores of the HDBSCAN-456

diversity method with the nocluster-random base-457

line at various compression ratios. HDBSCAN-458

diversity method consistently outperforms the459

nocluster-random baseline. The performance typ-460

ically improves with slight compression, peaking461

around 10-20%, and then gradually declines. This462

trend highlights the robustness of the HDBSCAN-463

diversity method, maintaining higher pass@1464

scores than full dataset even at 90% compression.465

We further examine how our data pruning466

method performs when pushed to the extreme, aim-467

ing to achieve the smallest possible dataset size468

on the MBPP benchmark. The results are pre-469

sented in Figure 3. Remarkably, we found that470

even with just 1% of the data, our method achieves471

a 4.1% improvement over the base model, which472

is nearly equivalent to training on the full dataset.473

This demonstrates the robustness of our pruning474

method, highlighting its ability to maintain high475

performance with minimal data, thus significantly476

reducing the computational resources required.477

Overall, these results demonstrate the effective-478

ness of data pruning strategy in preserving critical479

data features and maintaining model performance480

under significant data reduction, making it a supe-481

rior choice for coding dataset pruning.482

5 Ablation Studies483

Our research includes four ablation studies de-484

signed to evaluate the impact of (1) clustering algo-485

rithms (2) pruning metrics (3) dimension reduction486

(4) input for vector representation on the effective-487

10% 20% 30% 40% 50% 60% 70% 80% 90%
Compression Ratio

0.60

0.65

0.70

0.75
Pa

ss
@

1

MBPP

agglomerativeclustering
hdbscan
kmeans
nocluster

Figure 4: pass@1 on the MBPP benchmark compar-
ing across different clustering algorithms and varied
compression ratios of the training dataset. HDBSCAN
demonstrate strong robustness in maintaining higher
pass@1 scores compared to full dataset at the compres-
sion ratio of 90%.

ness of data pruning. In the studies, we will mainly 488

focus on the MBPP benchmark since it provides 489

more stable and consistent results. 490

5.1 Compare Clustering Algorithm 491

In Figure 4, we present the results of applying 492

different clustering algorithms without additional 493

pruning metrics. The algorithms evaluated include 494

Agglomerative Clustering, HDBSCAN, KMeans, 495

and a baseline with no clustering (nocluster). 496

The results demonstrate that clustering algo- 497

rithms generally improve performance compared to 498

the nocluster baseline, particularly at higher com- 499

pression ratios. HDBSCAN consistently maintains 500

higher pass@1 scores, showcasing its robustness in 501

preserving critical data features. KMeans and Ag- 502

glomerative Clustering also perform well, though 503

with higher variability. These findings highlight the 504

importance of clustering algorithms in enhancing 505

data efficiency for coding datasets. 506

7

10% 20% 30% 40% 50% 60% 70% 80% 90%
Compression Ratio

0.75

0.76

0.77

0.78

0.79

Pa
ss

@
1

MBPP
hdbscan-density
hdbscan-diversity
hdbscan-random

Figure 5: Comparison of different pruning metrics using
HDBSCAN clustering algorithms. Diversity metric has
marginal advantage but its benefit may be limited and
dependent on the clustering algorithm.

5.2 Compare Pruning Metrics507

We examine the impact of different pruning met-508

rics on model performance. Using HDBSCAN509

clustering algorithm, we assess how these metrics510

influence performance as the data size decreases,511

as illustrated in Figure 5. The results indicate that512

the effectiveness of pruning metrics varies across513

different compression ratio. While Diversity met-514

rics show slight improvements over other metrics,515

the margin of improvement is not substantial and516

only works between 10-40% compression ratio.517

This suggests that while more sophisticated prun-518

ing metrics can offer some benefits, their impact519

may be limited and also dependent on the cluster-520

ing algorithm used.521

5.3 Effect of PCA522

In Table 2, we evaluate the impact of applying523

Principal Component Analysis (PCA) on the per-524

formance of the KMeans clustering algorithm and525

Density metric at the compression ratio of 50%.526

The findings indicate that applying PCA generally527

degrades performance in terms of pass@1 scores528

for less than 0.6% on MBPP, and moderate nega-529

tive impact of 4.3% on HumanEval. We hypoth-530

esize that the observed impact might be due to531

the imbalance between the MBPP and HumanEval532

datasets used for PCA training. Since the Hu-533

manEval dataset is significantly smaller than the534

MBPP dataset, it results in suboptimal extraction535

of principal components for HumanEval-like data.536

Nonetheless, reducing the dimension from 1536537

to 10 leads to ∼12x speed up for KMeans. HDB-538

SCAN clustering without PCA does not complete539

within 4 hours, thus we do not report its numbers.540

No PCA PCA

Dimension 1536 10
Runtime 1307 sec 183 sec
MBPP (+) 74.4 (63.3) 73.8 (62.4)
HumanEval (+) 71.8 (65.0) 67.5 (62.5)

Table 2: Comparison of pass@1 scores, dimension, and
data pruning runtime (excludes embedding and training)
at 50% compression ratio for KMeans clustering with
and without PCA (averaged over 3 runs).

5.4 Embeddings for Instruction or Code 541

In Table 3, we investigate the influence of various 542

inputs on the embedding model. Specifically, we 543

examine the effects of using only the instruction, 544

only the code solution, or both as inputs for generat- 545

ing embeddings. Our findings indicate that combin- 546

ing both instructions and code as embedding inputs 547

yields better performance compared to using either 548

one alone. There are no significant differences in 549

the results when using only instructions or only 550

code. This suggests that even though instructions 551

and code samples often correspond closely, it is 552

crucial to maintain diversity and select informative 553

samples from both during data pruning. 554

Feature Type MBPP (+) HumanEval (+)

Both 76.3 (62.5) 73.1 (69.6)
Instruction 74.0 (63.7) 69.1 (63.6)
Code 74.1 (62.7) 69.2 (63.3)

Table 3: pass@1 scores for different embedding inputs
with 50% compression ratio using KMeans clustering.
Using both instruction and code brings slight benefits.

6 Conclusion 555

This study presents an efficient data pruning strat- 556

egy designed to improve the efficiency of fine- 557

tuning large language models on coding datasets. 558

Our results demonstrate that advanced clustering 559

and pruning techniques can significantly improve 560

data efficiency in LLMs, reducing computational 561

costs while maintaining performance. Future work 562

could focus on enhancing data quality by generat- 563

ing more informative data from clusters with low 564

pruning metrics. We hope our findings provide 565

valuable insights for developing more effective and 566

scalable strategies in training code-focused LLMs, 567

further enhancing synthetic data generation and the 568

efficiency of human annotations. 569

8

Limitations570

One of the key limitations of our study is the in-571

herent randomness from the clustering algorithms572

and training framework. Due to computational con-573

straints, we only performed three runs and averaged574

the results for each of our experiments. While this575

approach provides a general indication of perfor-576

mance, it may not fully capture the variability and577

could lead to less accurate conclusions. More ex-578

tensive experimentation with a larger number of579

runs would be necessary to achieve a higher degree580

of confidence in the results.581

Throughout our experiments, we closely follow582

the hyperparameters described in (Wei et al., 2023),583

using a batch size of 512 samples and training for584

2 epochs. However, such a high batch size results585

in only a few gradient updates when training on586

smaller datasets. Therefore, we switch to a lower587

batch size of 32, as recommended in (Zhou et al.,588

2023), when our pruned dataset is less than 10%589

of the original size. We acknowledge that differ-590

ent hyperparameter settings could affect training591

outcomes and defer the determination of optimal592

hyperparameter settings for various training data593

sizes as future work.594

Potential Risks595

This study focus exclusively on English prompts596

for Python code generation, thus prompts in other597

languages might not produce accurate or functional598

code. Additionally, the lack of safety alignment599

means there is a risk of generating malicious code600

or harmful language, which could lead to security601

vulnerabilities or unintended consequences. Code602

generation using LLMs carries inherent risks, such603

as producing incorrect or suboptimal code, failing604

to adhere to best practices, or introducing security605

flaws. Furthermore, LLMs may inadvertently prop-606

agate biases present in their training data, leading607

to biased outcomes in the generated code.608

Use of AI Assistants609

ChatGPT was utilized to refine paper writing and610

generate code templates for drawing figures. The611

authors took careful attention to ensure that AI-612

generated contents are accurate and align with the613

authors intentions.614

References 615

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 616
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 617
Diogo Almeida, Janko Altenschmidt, Sam Altman, 618
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 619
arXiv preprint arXiv:2303.08774. 620

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 621
Bosma, Henryk Michalewski, David Dohan, Ellen 622
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 623
Program synthesis with large language models. arXiv 624
preprint arXiv:2108.07732. 625

Sahil Chaudhary. 2023. Code alpaca: An instruction- 626
following llama model for code generation. https: 627
//github.com/sahil280114/codealpaca. 628

Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jian- 629
chao Guo, and Wenqian Liu. 2018. A systematic 630
review of fuzzing techniques. Computers & Security, 631
75:118–137. 632

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa 633
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini- 634
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. 635
2024. Alpagasus: Training a better alpaca with fewer 636
data. Preprint, arXiv:2307.08701. 637

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 638
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 639
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 640
Greg Brockman, et al. 2021. Evaluating large 641
language models trained on code. arXiv preprint 642
arXiv:2107.03374. 643

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 644
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 645
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 646
2024. Scaling instruction-finetuned language models. 647
Journal of Machine Learning Research, 25(70):1–53. 648

Devleena Das and Vivek Khetan. 2023. Deft: Data 649
efficient fine-tuning for large language models via 650
unsupervised core-set selection. arXiv preprint 651
arXiv:2310.16776. 652

Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong 653
Zhang. 2023. Active prompting with chain-of- 654
thought for large language models. arXiv preprint 655
arXiv:2302.12246. 656

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai 657
Lam, Lidong Bing, and Nigel Collier. 2023. On the 658
effectiveness of parameter-efficient fine-tuning. In 659
Proceedings of the AAAI Conference on Artificial 660
Intelligence, volume 37, pages 12799–12807. 661

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 662
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 663
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 664
feng Liang. 2024. Deepseek-coder: When the large 665
language model meets programming – the rise of 666
code intelligence. Preprint, arXiv:2401.14196. 667

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2307.08701
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan668
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,669
and Weizhu Chen. 2021. Lora: Low-rank adap-670
tation of large language models. arXiv preprint671
arXiv:2106.09685.672

Tapas Kanungo, David M Mount, Nathan S Netanyahu,673
Christine D Piatko, Ruth Silverman, and Angela Y674
Wu. 2002. An efficient k-means clustering algorithm:675
Analysis and implementation. IEEE transactions on676
pattern analysis and machine intelligence, 24(7):881–677
892.678

Diederik P Kingma and Jimmy Ba. 2014. Adam: A679
method for stochastic optimization. arXiv preprint680
arXiv:1412.6980.681

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying682
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.683
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-684
cient memory management for large language model685
serving with pagedattention. In Proceedings of the686
ACM SIGOPS 29th Symposium on Operating Systems687
Principles.688

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu689
Zhao, Jianzong Wang, Ning Cheng, and Tianyi690
Zhou. 2024. Superfiltering: Weak-to-strong data691
filtering for fast instruction-tuning. arXiv preprint692
arXiv:2402.00530.693

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang694
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and695
Jing Xiao. 2023. From quantity to quality: Boosting696
llm performance with self-guided data selection for697
instruction tuning. arXiv preprint arXiv:2308.12032.698

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-699
ming Zhang. 2023a. Is your code generated by chat-700
GPT really correct? rigorous evaluation of large lan-701
guage models for code generation. In Thirty-seventh702
Conference on Neural Information Processing Sys-703
tems.704

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and705
Junxian He. 2023b. What makes good data for706
alignment? a comprehensive study of automatic707
data selection in instruction tuning. arXiv preprint708
arXiv:2312.15685.709

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-710
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,711
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,712
et al. 2024. Starcoder 2 and the stack v2: The next713
generation. arXiv preprint arXiv:2402.19173.714

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-715
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,716
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:717
Empowering code large language models with evol-718
instruct. In The Twelfth International Conference on719
Learning Representations.720

Andrzej Maćkiewicz and Waldemar Ratajczak. 1993.721
Principal components analysis (pca). Computers &722
Geosciences, 19(3):303–342.723

Kristof Meding, Luca M Schulze Buschoff, Robert 724
Geirhos, and Felix A Wichmann. 2021. Trivial or 725
impossible–dichotomous data difficulty masks model 726
differences (on imagenet and beyond). arXiv preprint 727
arXiv:2110.05922. 728

Brian B Moser, Federico Raue, and Andreas Dengel. 729
2024. A study in dataset pruning for image super- 730
resolution. arXiv preprint arXiv:2403.17083. 731

Daniel Müllner. 2011. Modern hierarchical, ag- 732
glomerative clustering algorithms. arXiv preprint 733
arXiv:1109.2378. 734

Atharva Naik. 2024. On the limitations of em- 735
bedding based methods for measuring functional 736
correctness for code generation. arXiv preprint 737
arXiv:2405.01580. 738

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 739
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 740
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 741
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 742
esnay. 2011. Scikit-learn: Machine learning in 743
Python. Journal of Machine Learning Research, 744
12:2825–2830. 745

Guilherme Penedo, Hynek Kydlíček, Leandro von 746
Werra, and Thomas Wolf. 2024. Fineweb. 747

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal- 748
ley, and Jianfeng Gao. 2023. Instruction tuning with 749
gpt-4. arXiv preprint arXiv:2304.03277. 750

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund 751
Sundararajan. 2020. Estimating training data influ- 752
ence by tracing gradient descent. Advances in Neural 753
Information Processing Systems, 33:19920–19930. 754

Md Farhadur Rahman, Weimo Liu, Saad Bin Suhaim, 755
Saravanan Thirumuruganathan, Nan Zhang, and Gau- 756
tam Das. 2016. Hdbscan: Density based cluster- 757
ing over location based services. arXiv preprint 758
arXiv:1602.03730. 759

Samarendra Nath Roy. 1953. On a heuristic method of 760
test construction and its use in multivariate analysis. 761
The Annals of Mathematical Statistics, 24(2):220– 762
238. 763

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 764
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 765
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 766
Code llama: Open foundation models for code. arXiv 767
preprint arXiv:2308.12950. 768

Stephanie Schoch, Ritwick Mishra, and Yangfeng Ji. 769
2023. Data selection for fine-tuning large language 770
models using transferred shapley values. arXiv 771
preprint arXiv:2306.10165. 772

David W Scott. 2010. Scott’s rule. Wiley Interdisci- 773
plinary Reviews: Computational Statistics, 2(4):497– 774
502. 775

10

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://doi.org/10.57967/hf/2092

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya776
Ganguli, and Ari Morcos. 2022. Beyond neural scal-777
ing laws: beating power law scaling via data pruning.778
Advances in Neural Information Processing Systems,779
35:19523–19536.780

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,781
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,782
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-783
tive annotation makes language models better few-784
shot learners. arXiv preprint arXiv:2209.01975.785

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier786
Martinet, Marie-Anne Lachaux, Timothée Lacroix,787
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal788
Azhar, et al. 2023a. Llama: Open and effi-789
cient foundation language models. arXiv preprint790
arXiv:2302.13971.791

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-792
bert, Amjad Almahairi, Yasmine Babaei, Nikolay793
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti794
Bhosale, et al. 2023b. Llama 2: Open founda-795
tion and fine-tuned chat models. arXiv preprint796
arXiv:2307.09288.797

Alex Jinpeng Wang, Kevin Qinghong Lin, David Jun-798
hao Zhang, Stan Weixian Lei, and Mike Zheng Shou.799
2023. Too large; data reduction for vision-language800
pre-training. In Proceedings of the IEEE/CVF In-801
ternational Conference on Computer Vision, pages802
3147–3157.803

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-804
isa Liu, Noah A Smith, Daniel Khashabi, and Han-805
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-806
guage models with self-generated instructions. arXiv807
preprint arXiv:2212.10560.808

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin809
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-810
drew M Dai, and Quoc V Le. 2021. Finetuned lan-811
guage models are zero-shot learners. arXiv preprint812
arXiv:2109.01652.813

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and814
Lingming Zhang. 2023. Magicoder: Source code is815
all you need. arXiv preprint arXiv:2312.02120.816

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,817
Sanjeev Arora, and Danqi Chen. 2024. Less: Se-818
lecting influential data for targeted instruction tuning.819
arXiv preprint arXiv:2402.04333.820

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,821
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin822
Jiang. 2023a. Wizardlm: Empowering large lan-823
guage models to follow complex instructions. arXiv824
preprint arXiv:2304.12244.825

Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan826
Qi, Maoquan Wang, Bin Gu, and Neel Sundaresan.827
2023b. Rethinking the instruction quality: Lift is828
what you need. Preprint, arXiv:2312.11508.829

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan 830
Firat. 2024. When scaling meets llm finetuning: The 831
effect of data, model and finetuning method. arXiv 832
preprint arXiv:2402.17193. 833

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao 834
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, 835
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, 836
Luke Zettlemoyer, and Omer Levy. 2023. Lima: Less 837
is more for alignment. Preprint, arXiv:2305.11206. 838

A Code Samples from Data Pruning 839

We show examples from our data pruning. The 840

selected data samples adheres closely to the down- 841

stream coding tasks, from English problem descrip- 842

tion to code generation. We also provide an exam- 843

ple of removed data from our pruning strategy. 844

Input
You are given a Python function that takes in a list of
integers and a target integer. The function is intended
to find two distinct elements in the list that sum up to
the target integer. However, the function is incomplete
and needs to be filled in with the appropriate code to
achieve this functionality.
Complete the Python function ‘find_two_sum‘ to find
and return the indices of two distinct elements in
the input list that sum up to the target integer. If no
such pair exists, return an empty list. The function
signature is:
def find_two_sum(nums: List[int], target: int)

-> List[int]:↪→

For example, given the input ‘nums = [2, 7, 11, 15]’
and ‘target = 9’, the function should return ‘[0, 1]‘
since ‘nums[0] + nums[1] = 2 + 7 = 9’.

Output

from typing import List

def find_two_sum(nums: List[int], target: int)
-> List[int]:↪→
num_indices = {}
for i, num in enumerate(nums):

complement = target - num
if complement in num_indices:

return [num_indices[complement], i]
num_indices[num] = i

return []

Figure 6: Example of a selected data sample.

11

https://arxiv.org/abs/2312.11508
https://arxiv.org/abs/2312.11508
https://arxiv.org/abs/2312.11508
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206
https://arxiv.org/abs/2305.11206

Input
You are given a list of integers representing the daily stock prices of a company. You need to write a function
to calculate the maximum profit that can be obtained by buying and selling the stock at most once. If it is not
possible to make any profit, return 0.
Write a function ‘maxProfit’ that takes in a list of integers ‘prices‘ as input and returns the maximum profit that can
be obtained.
Function signature:

def maxProfit(prices: List[int]) -> int:

Example:

Input: prices = [7, 1, 5, 3, 6, 4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6 - 1 = 5.

Input: prices = [7, 6, 4, 3, 1]
Output: 0
Explanation: In this case, no transaction is done, i.e., max profit = 0.

Assumptions:
- The input list ‘prices’ will have at least one element.
- The stock prices are given in chronological order.

Output

from typing import List

def maxProfit(prices: List[int]) -> int:
if not prices:

return 0

min_price = prices[0]
max_profit = 0

for price in prices:
if price < min_price:

min_price = price
else:

max_profit = max(max_profit, price - min_price)

return max_profit

The ‘maxProfit’ function iterates through the list of prices, keeping track of the minimum price encountered so far
and the maximum profit that can be obtained. It updates these values as it iterates through the list and returns the
maximum profit at the end.

Figure 7: Another example of a selected data sample.

12

Input
Background:
You are a Product Manager, named Alice, your goal is Efficiently create a successful product, and the

constraint is .↪→
Question:

Context
Original Requirements
[BOSS: Write a podcast search engine which search for all index podcast. Each podcast belongs to a

channel and each podcast contain title, description, published, audio link, transcript text]↪→

Search Information
Search Results
Search Summary

mermaid quadrantChart code syntax example. DONT USE QUOTO IN CODE DUE TO INVALID SYNTAX. Replace
the <Campain X> with REAL COMPETITOR NAME↪→

quadrantChart
title Reach and engagement of campaigns
x-axis Low Reach --> High Reach
y-axis Low Engagement --> High Engagement

...

Output

Original Requirements
We are tasked with creating a podcast search engine that indexes all podcasts. Each podcast is

associated with a channel and contains a title, description, publication date, audio link, and
transcript text.

↪→
↪→

Product Goals
```python
[

"Create a user-friendly podcast search engine that indexes all podcasts",
"Ensure each podcast contains necessary information: title, description, publication date, audio

link, and transcript text",↪→
"Develop a system that efficiently updates and maintains the podcast index"

]
```

User Stories
```python
[

"As a user, I want to search for podcasts by title or description so that I can find the content
I'm interested in",↪→

"As a user, I want to see all the necessary information about a podcast (title, description,
publication date, audio link, transcript text) so that I can decide whether to listen to it",↪→

"As a user, I want the search engine to suggest podcasts based on my search history so that I can
discover new content",↪→

"As a user, I want the podcast search engine to be updated regularly so that I can access the
latest podcasts",↪→

"As a user, I want to filter search results by publication date, channel, or transcript text so
that I can narrow down my search"↪→

]
```

Competitive Analysis
...

Figure 8: Example of a removed data sample (outlier).

13

	Introduction
	Related Work
	Large Language Models for Code Generation
	Instructional Fine-tuning
	Data Pruning for Efficient Training

	Methodology
	Dimension Reduction
	Clustering
	KMeans
	Agglomerative Clustering
	HDBSCAN

	Pruning Metrics
	Diversity Metric
	Density Metric
	Random

	Experiments
	Setup
	Training
	Evaluation
	Implementation Details
	Main Results

	Ablation Studies
	Compare Clustering Algorithm
	Compare Pruning Metrics
	Effect of PCA
	Embeddings for Instruction or Code

	Conclusion
	Code Samples from Data Pruning

