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Understanding the learned look-ahead behavior of chess neural networks
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Abstract
We investigate the look-ahead capabilities of
chess-playing neural networks, specifically focus-
ing on the Leela Chess Zero policy network. We
build on the work of Jenner et al. (2024) by analyz-
ing the model’s ability to consider future moves
and alternative sequences beyond the immediate
next move. Our findings reveal that the network’s
look-ahead behavior is highly context-dependent,
varying significantly based on the specific chess
position. We demonstrate that the model can pro-
cess information about board states up to seven
moves ahead, utilizing similar internal mecha-
nisms across different future time steps. Addition-
ally, we provide evidence that the network consid-
ers multiple possible move sequences rather than
focusing on a single line of play. These results
offer new insights into the emergence of sophisti-
cated look-ahead capabilities in neural networks
trained on strategic tasks, contributing to our un-
derstanding of AI reasoning in complex domains.
Our work also showcases the effectiveness of in-
terpretability techniques in uncovering cognitive-
like processes in artificial intelligence systems.

1. Introduction
Recent advances in artificial intelligence have produced
systems capable of superhuman performance in complex
domains like chess and Go (Silver et al., 2018). However,
the mechanisms underlying these systems’ decision-making
processes remain poorly understood. A key question is
whether neural networks trained on such tasks learn to im-
plement sophisticated planning algorithms, or if they rely
primarily on pattern matching and heuristics.

This paper builds on recent work by Jenner et al. (2024) that
found evidence of learned look-ahead behavior in a chess-
playing neural network. We extend their analysis to examine
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longer-term planning capabilities and the consideration of
alternative moves. Specifically, we investigate whether the
network encodes information about future board states and
potential move sequences beyond just the next move.

Understanding the internal reasoning processes of these
models is important for several reasons. First, it provides
insights into the nature of intelligence that emerges from
neural network training, potentially informing our under-
standing of both artificial and biological cognition (McGrath
et al., 2022). Second, it has practical implications for im-
proving AI systems in strategic domains, as a deeper under-
standing of their planning mechanisms could lead to more
efficient and robust architectures (Czech et al., 2024). Fi-
nally, it contributes to the broader field of AI interpretability,
which is essential for building trustworthy and controllable
AI systems (Chattopadhyay et al., 2019).

In this context, understanding the depth and sophistication of
learned look-ahead behavior is particularly relevant. While
Jenner et al. (2024) has demonstrated the existence of look-
ahead behavior in chess models, understanding how this
capability scales to longer sequences is important for sev-
eral reasons. First, it helps us understand the limits of
learned look-ahead behavior - whether models can truly
chain together long sequences of moves or if they rely pri-
marily on short-term patterns. Second, analyzing how the
model processes moves at different time horizons can re-
veal whether it uses similar or different mechanisms for
near-term versus long-term planning. Finally, understand-
ing these capabilities in chess provides insights that may
generalize to other domains where long-term planning is
essential, such as robotics or strategic decision-making.

Recent work in mechanistic interpretability has made sig-
nificant strides in understanding the internal workings of
language models (Geva et al., 2023; Wang et al., 2023) and
game-playing models (Li et al., 2023; Nanda et al., 2023).
However, most of these studies have focused on relatively
simple tasks or isolated components of larger systems. Our
work aims to bridge this gap by analyzing sophisticated
planning behavior in a state-of-the-art chess engine.

Chess provides an ideal testbed for this study due to its
well-defined rules, clear strategic elements, and the avail-
ability of strong neural network-based models (Ruoss et al.,
2024). Unlike language models, where the notion of “cor-
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rect” behavior is often ambiguous, chess allows for precise
evaluation of model performance and decision-making. The
game’s complexity requires long-term planning and consid-
eration of multiple possible futures, making it a rich domain
for studying advanced cognitive processes in AI systems.

Our key contributions are:

• Showing that the model’s look-ahead behavior is highly
dependent on the specific type of chess position, with
different piece capture and checkmate scenarios being
stored differently in the residual stream, and processed
differently by multiple attention heads;

• Extending the analysis of Jenner et al. (2024) of look-
ahead behavior to the 5th and 7th future moves in chess
positions. Specific attention heads seem strongly respon-
sive to longer term future moves, and the model appears
to process some future moves using similar concrete
internal mechanisms;

• Demonstrating that the model considers multiple move
sequences, not just a single line of play. Moreover,
corrupting the board squares relevant to one move se-
quence often leads the model to pick the alternative move
sequence, as expected for look-ahead behavior.

These findings provide new insights into the look-ahead
capabilities that can emerge in neural networks trained on
strategic planning tasks. They also demonstrate how inter-
pretability techniques can uncover sophisticated cognitive
processes in AI systems. Our work contributes to the grow-
ing body of research on AI planning and reasoning (Chen
et al., 2021; Hao et al., 2023; Ivanitskiy et al., 2023; Garriga-
Alonso et al., 2024), offering a detailed look at how these
capabilities manifest in a complex, real-world domain.

To obtain these results, we construct novel approaches to
analyze the model’s look-ahead behavior, extending the tech-
niques used in Jenner et al. (2024). We introduce a puzzle set
notation that disentangles the model’s behavior for different
types of chess positions, and enables a clearer analysis of the
model’s look-ahead behavior for higher move counts. We
use activation patching to measure the causal importance of
different board squares in the model’s decision-making pro-
cess, probing to test the prediction accuracy of the model’s
future moves, and ablation to identify the attention heads
that are responsible for the model’s look-ahead behavior.
By showcasing how these techniques can be used in a com-
plementary manner, we expect their usefulness to extend to
future mechanistic interpretability studies of other models
with potential look-ahead or planning capabilities.

We also adapt the board corruption technique used in Jen-
ner et al. (2024) to work for multiple move sequences, and
apply it to analyze the model’s consideration of alternative

moves. This analysis should be suitable for future studies of
planning behavior in other domains, by making it easier to
produce contrastive pairs for activation patching, thereby en-
abling a more fine-grained analysis of the model’s behavior
for different look-ahead strategies.

2. Setup
This section describes the chess model, dataset, analysis
techniques, and notation used in our analysis. All exper-
iments were run using an RTX 3070Ti, with a combined
runtime of 2 days. For reproducibility, additional details are
available in Appendix H.

2.1. Chess Model

In this study, we analyze the Leela Chess Zero (Leela) policy
network, which is part of a larger MCTS-based chess engine
similar to AlphaZero (Silver et al., 2018). Leela is currently
the strongest neural network-based chess engine (Haworth
and Hernandez, 2021). Its policy network takes a single
board state as input and outputs a probability distribution
over all legal moves.

Leela is a transformer that treats each of the 64 chessboard
squares as one sequence position, analogous to a token in
a language model. This architecture allows us to analyze
activations and attention patterns on specific squares. The
version of Leela we use has 15 layers and 109 million param-
eters. Due to peculiarities of this particular model, explained
in Jenner et al. (2024), we use a finetuned version of the
model, trained and used by Jenner et al. (2024).

2.2. Dataset

We use Lichess’ 4 million puzzle database as a starting point.
Each puzzle in our dataset has a starting state with a single
winning move for the player whose turn it is, along with
an annotated principal variation (the optimal sequence of
moves for both players from the starting state).

In our analysis, we refer to moves in the principal variation
as follows: The 1st move is the initial move made by the
player in the starting position. The 2nd move is the op-
ponent’s response to the 1st move. The 3rd move is the
player’s follow-up move after the opponent’s response. We
extend this notation to refer to subsequent moves (e.g., 5th
move, 7th move) when analyzing longer sequences.

The puzzles were curated into three datasets: a 22k puzzle
dataset used in Jenner et al. (2024), solvable for the Leela
model but difficult for weaker models to solve, and used
for the 3 and 5-move analysis; a 2.2k dataset of 7-move
puzzles; and 609 puzzles for the alternative move analysis.
Additional details on the dataset generation can be found in
Appendix H.
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Figure 1: Examples of 3-move puzzles in puzzle set 112
(left) and 123 (right). “1st”, “2nd”, and “3rd” mark the
move order, with the green (resp. red) arrow indicating the
optimal move of the player (resp. opponent). The board
squares the piece moves to are marked in blue. They are
listed sequentially starting from 1. The resulting number
sequence labels the associated puzzle set, with 1st move 7→
square 1, 2nd 7→ sq. 1, 3rd 7→ sq. 2 resulting in the set 112,
for example. For these two examples, the optimal move
sequence (i.e. principal variation) results in a checkmate,
which may be marked with the prefix M, so they additionally
belong to the subsets M112 and M123, respectively.

2.3. Analysis Techniques

We employ three main techniques to analyze the internal
representations of the model:

Activation Patching. This technique, also known as
causal tracing (Meng et al., 2023), allows us to measure
the causal importance of specific model components. For
a given board state and model component (such as a par-
ticular square in a particular layer), we replace the clean
activations of that component with those from a different
“corrupted” board state. If this intervention significantly
changes the model’s output, it suggests that the patched
component contained necessary information about the clean
state that differed in the corrupted state. In our chess setup,
we employ the approach of Jenner et al. (2024), where the
corrupted board state is a minimally modified version of the
original board state, where the optimal next move is differ-
ent but still non-trivial (see Appendix H for more details).
Patching then consists of replacing the clean activations
(from a particular layer or attention head) associated with
a particular board square by their corrupted counterparts,
generated using the corrupted board as input to the model.

Probing. We use linear probes to decode information from
the model’s internal representations. A probe is a small clas-
sifier trained to predict certain information (e.g., the position
of a piece or a future move) from the model’s hidden states.

High probe accuracy suggests that the probed information
is explicitly encoded in the model’s representations. In our
setup, we use probes to test the prediction accuracy for the
puzzles’ future moves, based on the model’s internal states
when given the current board state as input (see Figure 3).

Ablation. We employ zero ablation, particularly when an-
alyzing attention heads. In this technique, we selectively
set certain weights or activations to zero, effectively remov-
ing their contribution to the model’s output. By comparing
the model’s performance before and after ablation, we can
assess the importance of specific components (such as indi-
vidual attention heads or attention patterns) to the model’s
decision-making process. This method is useful for identi-
fying key mechanisms involved in look-ahead behavior. In
our setup, we apply zero ablation to individual weights in
specific attention heads, in order to determine which board
squares certain attention heads are mainly attending to.

These techniques allow us to investigate how the model rep-
resents and processes information about current and future
board states, providing complementary insights into its look-
ahead capabilities. While activation patching reveals what
information is causally necessary for the model’s decisions,
probing can identify information that is encoded but not
necessarily used for the final move choice. For example,
our probing results show that the model encodes informa-
tion about opponent moves, even when patching does not
provide conclusive causal evidence. Similarly, while patch-
ing provides a broad causal view applied across the entire
model, ablation provides a fine-grained view of which board
squares the model’s attention heads are attending to, giving
us a better qualitative understanding of the model’s behavior.

2.4. Puzzle set notation

In (Jenner et al., 2024), it was observed that the Leela model
internally treats cases where the player’s moved piece is im-
mediately captured by the opponent differently from cases
where the opponent piece moves to an unrelated square (see
Figure 1). When considering more complex future move se-
quences, the increasing number of different scenarios treated
distinctly by the model makes its analysis challenging. To
combat this problem, and disentangle the model’s behavior
for different cases, we introduce a new labelling approach
for each chess puzzle that we analyze.

We start by separating the data into different puzzle sets
depending on the similarity between the board squares in-
volved. In particular, for each player and opponent move,
we label the move based on the square the piece moves to.
For the analysis, we do not consider the squares the pieces
start in, as we verify that this additional complexity does not
play a significant role in the model’s internal behavior (see
Appendix A), as previously observed in Jenner et al. (2024).
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Figure 2: Log odds reduction of the correct move as a result of activation patching, for 5-move puzzle sets of the form
112XY, where Y > 2 (i.e. the fifth move square is distinct from the first and third move squares). “Corrupted” indicates
the patched square from the corrupted board. The label i indicates the move square for the i-th move, with solid (resp.
dashed) lines indicating the destination square for the player (resp. opponent) piece. “Other” indicates the contributions of
the remaining squares. Dashed lines indicate opponent moves. Confidence intervals of 50% and 90% are displayed using
darker and lighter hues, respectively, indicating the distribution of the log odds reduction accross the puzzles considered.

Since there are far more combinations when considering a
larger number of moves, we use the notation s1s2 · · · sn to
refer to a sequence of squares, where si = sj iff the i-th and
j-th move squares are the same. Since we are considering
up to 7 moves, all si are one single digit. We start with
s1 = 1 and raise the digit used whenever a new square is
different from the ones in previous moves. As shorthand, we
may use uppercase letters to represent arbitrary digits. Start-
ing alphabet letters (like A, B, and C) are used to represent
distinct digits, while ending alphabet letters (like X, Y, and
Z) are used to represent any digit combination. For instance,
while the notation 111XY = {11111, 11112, 11122, 11123}
would represent any puzzle set starting with 111, the nota-
tion 111AB = {11112, 11123} represents the 2 puzzle sets
starting with 111 where the final two squares are distinct.
The set {11111, 11122} could be represented by both ap-
proaches, using either 111AA or 111XX. Additionally, we
occasionally may prefix the sequence with the letter M (resp.
N), to denote the subset of puzzles where the optimal move
sequence results (resp. does not result) in a checkmate.

Using this notation, we would represent the 3-move scenar-
ios considered in Jenner et al. (2024) as 112 (resp. 123) for

the puzzle sets where the 1st and 2nd move squares were
the same (resp. different), and the 1st and 3rd move squares
were distinct. See Figure 1 for examples of the notation.

Puzzles with more than 3 moves are also included in Jen-
ner et al. (2024), but its analysis bundles the higher move
squares (fifth, seventh, etc.) into the third move square re-
sults, which makes it difficult to see if the model is able to
concretely look ahead past the third move. In our analysis,
we disentangle the results for each puzzle length.

3. Results
In this section, we verify that the Leela chess model looks
ahead into the fifth and seventh moves when solving chess
puzzles, and later shown evidence that the model is able to
consider multiple future branches when choosing the best
move to play.

The starting move squares do not play a significant direct
role. While the starting move squares (i.e. the squares the
pieces start in before they are moved) are generally critical
for assessing the right next moves for each player, the results
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Figure 3: Probing the model’s residual stream for the puz-
zle set 1123456. The probe’s accuracy decreases as we
look into more distant future move squares, with the 7th
move square’s accuracy being considerably low, but still
non-negligible when compared with the probe’s accuracy
for a random model. The observed accuracy increases as we
traverse the model’s layers, as the residual stream contains
the move information in a way that is progressively easier
to decode. The sharp dropoff at the last layer likely stems
from the model’s lack of use of future move information by
the policy and value heads, instead relying more strongly
on the next move information (see Appendix C).

obtained in our analysis are consistent with the conclusion
in Jenner et al. (2024) that the starting move squares do
not seem to play a significant direct role in the look-ahead
behavior of the model. Instead, the model seems to process
the board state by directly encoding the moves of interest in
the associated squares the pieces move to. Consequently, the
model responds strongly to corruptions on the destination
squares of moves, while showing negligible effects for the
starting squares (see results in Appendix A). Therefore, we
only focus our analysis on the squares the pieces move to
during each move, and ignore the squares the pieces start in.

The model considers up to the seventh future move when
choosing the best next move. We show probing results
for the puzzle set 1123456 in Figure 3, and additional results
in Appendix C. The probe’s accuracy decreases as the move
square becomes increasingly more distant from the present,
with the 7th move square’s accuracy being considerably
low, but still non-negligible. Activation patching also show
higher future move squares playing an important role in the
model’s performance (see Figure 2 and Appendix B).

The model behavior is highly dependent on the puzzle
set. The results of patching the model’s residual stream

for some 3 and 5-move sets are presented in Figure 2, with
additional results shown in Appendix B. Only sets with
more than 50 puzzles are considered. We note that patching
the fifth move square has a non-negligible effect on the log
odds of the correct move for most 5-move puzzle sets. The
effect is most salient for the set 11223, while not being very
significant for set 11233.

The results of patching the attention heads for 3-move puz-
zle sets can be seen in Figure 4, with higher move sets in
Appendix E. We note marked differences between the sets,
with the L12H12 attention head (i.e. head 12 in layer 12) be-
ing the most important for the set 112, but playing a weaker
role in the remaining sets. Moreover, the set 111 seems
to respond more strongly to attention heads L11H10 and
L11H13, which do not seem to play a significant role in
the other sets. Sets 122 and 123 do not respond strongly
to patching any of the attention heads. Additionally, in
Figure 5, we observe that the behavior of some attention
heads varies notably depending on whether or not the board
position will soon result in a checkmate, indicating that the
model behavior is also dependent on the near-term pos-
sibility of checkmate. Additional results can be found in
Appendix E.

Overall, we note that the importance of the future move
squares is highly dependent on the puzzle set, suggesting
that the Leela model does not treat the sets similarly. Further
corroborating results can be found in Appendix B.

In no puzzle set does a distinct second or fourth move play
a significant direct role. Nonetheless, probing results (see
Appendix C) suggest that the model does contain informa-
tion about the second and fourth move squares, but possibly
in an indirect way that is not straightforwardly captured by
patching techniques.

The model processes 3rd, 5th, and 7th moves similarly.
In Figure 2, we note that the saliency of the fifth move
square varies significantly between the sets, with the set
11233 barely displaying an effect, followed by 11234, and
with the set 11223 displaying a strong effect. Based on
Figure 2 and Appendices B and E, we hypothesize that the
model may be using similar mechanisms to consider the 3rd,
5th, and 7th moves. We particular, we note that patching
shows weak, moderate, and strong effects for move C for
puzzle sets of the form (· · · )ACC, (· · · )ABC, and (· · · )AAC,
respectively (where ellipsis stands for arbitrary preceding
moves). The corresponding puzzle sets shown in Figure 2
for these three cases are puzzle sets 11233, 11234, and
11223, respectively. The 7th move appears to be near the
model’s look-ahead limit.

We note from Figure 4 (and Figures 24 to 26 in Appendix E)
that some heads matter a lot for the fifth and seventh move
analysis.
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Figure 4: Attention head patching for puzzles with 3 moves. Darker tones indicate higher log odds reduction of the correct
move. The letters K, B, and R represent the king, bishop, and rook attention heads, respectively, identified in Jenner et al.
(2024). Darker colors mark a higher log odds reduction due to patching, with the highest being 0.73, for L12H12 (head 12
in layer 12) in set 112.
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Figure 5: Ablation results of the L12H12 head for checkmate (M112, left) and non-checkmate (N112, right) puzzle set
112. We note that head L12H12 not only appears to mainly move information “backward in time”, i.e. from the third to the
first move square, but it appears to be especially critical in scenarios that explicitly result in a checkmate (in this case, in 3
moves).

L12H12 is also important for 5th and 7th moves. In Jen-
ner et al. (2024), it was shown that attention head L12H12
moves information “backward in time” from the third to the
first move square, for some 3-move puzzles.

In Figure 5, we show that L12H12 is also important for the
5th and 7th moves. The results are shown in Figures 16
to 18 in Appendix D. We note that, for puzzles with five
moves, L12H12 may be responsible not only for moving
information backward in time from the third to the first
move square, but also from the fifth move square.

We hypothesize that the attention head moves information
backward in time from square C to A (or the 1st move
square) when the puzzle set has the form (· · · )AAC(· · · ),
and to a lesser extent when it has the form (· · · )ABC(· · · ),

while not responding to the form (· · · )ACC(· · · ). When the
set matches the pattern at multiple turns, the later turn of-
ten takes precedence (for instance, we would expect 11223,
which matches both AAC(· · · ) and (· · · )AAC, to mainly
move information from the 5th, and not from the 3rd move
square). Its behavior mimics that seen from the general
activation patching results, discussed in more depth in Ap-
pendix B. Overall, the specific patterns that L12H12 re-
sponds to appear to be time-insensitive - that is, the patterns
AAC, ABC, and ACC may apply to moves 1-2-3, moves
3-4-5, or moves 5-6-7. This suggests the model has learned
some general pattern-matching mechanisms across time
rather than timing-specific heuristics.

We also note that L12H12 strongly responds to moves that
may result in checkmate, as previously seen in Figure 5. We
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alternative branch squares). The log odds reduction for the next move for branch A (left) and branch B (right) are shown.
Negative log odds reduction for branch A (resp. B) implies that patching the square improves the model’s odds of choosing
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Shaded regions mark the standard deviation for the mean of the log odds reduction accross the puzzles considered.

further investigate this behavior in various checkmate sce-
narios, including puzzles with multiple checkmate options,
as detailed in Appendices D and G. The model generally
appears to have checkmate-specific mechanisms, which are
not triggered for non-checkmate scenarios.

Other heads also play a crucial role for complex puzzles.
We perform the same detailed analysis for the L12H17,
L13H3, L11H13, and L11H10 heads, which showed the
highest log odds reduction after L12H12 (see Figure 4 and
Appendix E). The results and discussion are shown in Ap-
pendix D. Our analysis reveals distinct roles for these atten-
tion heads.

Head L12H17 appears to move information “backward in
time” for puzzle sets of the form AABCD, where C is dif-
ferent from D, and D is preferably equal to A. Notably, in
sets of the form AABCA, the model relies more heavily on
L12H17 than on L12H12. This head also only seems to
play a major role in longer scenarios, as the performance
downgrade from patching is not significant for 3-move puz-
zles. Interestingly, unlike L12H12 (see Figures 5 and 22),
head L12H17 appears to respond more strongly to puzzle
sets that do not result in checkmate (see Figure 23). It may
possibly complement head L12H12 in moving information
backward in time.

Attention head L13H3 seems to move information “back-
ward in time” for puzzle sets of the form AABCD, where
either C=D or B=C. However, its role is less pronounced
compared to L12H12 and L12H17. The roles of L11H10
and L11H13 are less clear based on the ablation results
alone. While some puzzle sets show responses to these
heads in the attention patching analysis, the ablation results
suggest their contributions may be more subtle or indirect.

Interestingly, our analysis of checkmate vs. non-checkmate
scenarios reveals that L12H12 plays a more significant role
in moving information backward in time in checkmate sce-
narios, while L12H17 is more active in non-checkmate sce-
narios. This differentiation suggests that the model may
process checkmate and non-checkmate positions using dis-
tinct mechanisms, highlighting the context-dependent nature
of its information processing strategies. The emergence of
these specialized components through training, without ex-
plicit programming, demonstrates how neural networks can
develop sophisticated information processing strategies for
planning tasks. This provides valuable insights into how
models might learn to handle complex sequential decision-
making in other domains.

The model considers alternative move sequences. We
investigate to what extent the model considers alternative
moves, focusing on situations where there are two relatively
equally good moves to play, which we label as the main
move branch A and the alternative move branch B. To sim-
plify the analysis, for this section, we restrict our attention to
3-move puzzles where the Leela model assigns a probability
around 1/2 of choosing each of the two move branches. We
consider puzzles with two branching sets of moves, each
with distinct first and third move squares (for a total of 4
distinct squares). For activation patching, we consider cor-
rupted boards which are compatible with both branches A
and B. See Figure 29 for examples and Appendix F for
details.

We show some results in Figure 6, with full results in Ap-
pendix F. Patching the alternative first move square (1B)
consistently has a strong positive effect on increasing the
model’s odds of choosing the main first move (1A), and
vice-versa, demonstrating the model’s ability to weigh im-
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mediate alternatives. Patching the alternative third move
square (3B) often improves the model’s odds of choosing
the main first move, and vice-versa, suggesting the model
considers longer-term consequences of alternative moves.
We note that the log odds reduction range is smaller than for
the one branch case, in large part because the model’s odds
are spread between different branches.

Furthermore, our analysis of the L12H12 attention head in
the context of alternative moves and checkmate scenarios
(detailed in Appendices F and G) indicates that L12H12
strongly privileges moving information from the third to
the first move square in the principal variation, even for
puzzles where Leela does not choose this as the best move,
as long as the puzzle set matches the pattern (· · · )AAC men-
tioned above. In case of two branches with this pattern, head
L12H12 appears to move information “backward in time”
independently for each branch, without cross-attention be-
havior (see Figure 31). In scenarios where multiple check-
mates are possible, L12H12 shows less clear attention pat-
terns that span across different move branches, suggesting a
sophisticated evaluation of multiple winning lines.

4. Related Work
Recent work in mechanistic interpretability has employed
techniques like activation patching (Vig et al., 2020; Meng
et al., 2023), probing (Hewitt and Liang, 2019; Gurnee et al.,
2023), and ablation (McGrath et al., 2023) to understand
model behavior. These approaches have been applied to
game-playing models, including Othello (Li et al., 2023;
Nanda et al., 2023) and chess (Karvonen, 2024), revealing
how models represent and manipulate game states. Our
work extends these techniques to understand look-ahead
planning in chess, providing insights into how chess-playing
transformers process information about future states.

Following AlphaZero’s success (Silver et al., 2018), re-
search has explored both the capabilities of chess networks
(Czech et al., 2024; Ruoss et al., 2024) and their planning
abilities (Jenner et al., 2024). This connects to broader work
on planning in neural models (Men et al., 2024; Yao et al.,
2024; Hao et al., 2023), where some studies have found
evidence of multi-step planning (Chen et al., 2021), while
others highlight potential limitations. Our controlled chess
environment offers insights that may generalize to other
domains requiring sophisticated planning capabilities.

5. Conclusion
In this study, we have explored the look-ahead behavior of
the Leela chess model when solving chess puzzles, with a
particular focus on understanding how the model processes
and utilizes information about future moves.

First, we demonstrate that the model can process informa-
tion about board states up to seven moves ahead, though this
capability becomes progressively weaker for more distant
moves. The model’s look-ahead behavior is highly context-
dependent, varying significantly based on the specific puzzle
set and whether the sequence leads to checkmate.

Second, we find evidence that the model processes some fu-
ture moves using similar concrete internal mechanisms, par-
ticularly through specialized attention heads like L12H12.
These mechanisms appear to be pattern-sensitive rather than
timing-specific, suggesting the model has learned some gen-
eral strategies for processing look-ahead information rather
than just heuristic rules.

Third, our analysis reveals that the model considers multi-
ple move sequences simultaneously, with different attention
heads specializing in processing different types of posi-
tions. For instance, L12H12 shows stronger responses in
checkmate scenarios, while L12H17 is more active in non-
checkmate positions. This specialization suggests the model
has learned to handle different tactical situations using dis-
tinct mechanisms.

Our methodological approach, combining activation patch-
ing, probing, and ablation techniques, provides complemen-
tary insights into the model’s behavior. While patching
reveals causally necessary information, probing shows that
the model encodes additional information (such as opponent
moves) that may be used more subtly. This multi-faceted
analysis approach could prove valuable for future studies of
planning behavior in other domains.

These findings have broader implications for our under-
standing of how neural networks can develop sophisticated
planning capabilities through training. The emergence of
specialized components and general pattern-matching mech-
anisms, without explicit programming, suggests potential
approaches for developing AI systems capable of strategic
planning in other domains.

Future work could explore how these look-ahead capabil-
ities generalize to other chess positions not present in the
training data, or to modified versions of chess with slightly
different rules. Additionally, investigating whether similar
mechanisms emerge in neural networks trained on other
strategic games or real-world planning tasks could provide
valuable insights into the generality of these findings.

Impact Statement
Understanding how models develop look-ahead capabilities
and handle complex decision trees could inform the devel-
opment of AI systems for other strategic tasks, and may
help improve our understanding of how these capabilities
may generalize, or fail to do so, in novel scenarios.
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A. Starting squares
To investigate whether the starting squares play a significant
role in the model’s behavior, we conducted a detailed anal-
ysis of the residual effects of patching these squares. We
modified our puzzle set notation to account for the starting
squares, where for a set s1s2 · · · sn, the odd indices repre-
sent the squares the piece in play starts in, and the even
indices represent the squares the piece moves to.

Our analysis focused on 3-move puzzles (n=6) to maintain
consistency with previous studies and simplify the interpre-
tation of results. Figure 7 presents the residual effects for
the puzzle set 112, split into subsets based on the similarity
between the starting squares.

The results demonstrate that the log odds reduction observed
is not significantly different for any of the subsets when
compared with the baseline results for puzzle set 112. This
consistency across different starting square configurations
suggests that the starting squares do not play a critical di-
rect role in the model’s decision-making process for these
puzzles.

Based on these findings, we concluded that it was unnec-
essary to disentangle the effect of different starting square
configurations when performing activation patching, prob-
ing, or ablation in subsequent analyses. This simplification
allows us to focus on the more influential aspects of the
model’s behavior, particularly the squares to which pieces
move during the course of play.
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Figure 7: Residual effects of the starting squares for the puzzle set 112. The baseline analysis is replicated in the top left
plot, while 3 different subsets of the original set are shown in the other plots. Using our puzzle set notation, we have
the decoupling 112 → {123245, 123241, 123243} (the underlined digits denote the main move squares, with the other
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B. Residual stream patching for 5-move and
7-move puzzles

In this section, we show the activation patching results for
the remaining puzzle sets with 3, 5 and 7 moves. In Figure 8,
the 112 and 123 set plots reproduce the results from Jenner
et al. (2024), with the slight change that we do not include
puzzles of higher move count. For example, the set 11234
is not counted as part of 112, as was the case in Jenner et al.
(2024). Nonetheless, the puzzles with more moves have a
lower count in the puzzle dataset, so the results are not too
different from those previously observed.

In most patching plots in Figures 2 and 8 and Appendix B,
there is a marked uptick in log odds reduction coming from
the remaining squares for the last layer. A closer inspection
reveals that this usually corresponds to the model’s chosen
first move square for the corrupted puzzle version used for
patching.

The hypothesis presented in Section 3 is that the model’s
behavior is highly dependent on the puzzle set. We reiterate
the hypothesis are, as follows:
Hypothesis 1. The effect of patching a move square is quan-
titatively different between certain puzzle sets. In increas-
ing order of effect size, we note puzzle sets of the form
(· · · )ACC(· · · ), (· · · )ABC(· · · ), and (· · · )AAC(· · · ).

In general, we exclude from the hypothesis puzzle sets
where the odd move squares are not distinct.

As mentioned in Section 3, we hypothesize that the model
may be using similar mechanisms as in the third move anal-
ysis. For the 3-move puzzle sets, we note a patching effect
size, in increasing order, for 122, 123, and 112 (111 is ex-
cluded, as the first and third move squares are the same). In
fact, we note the following orderings in patching effect size:

• Move 3: 122 < 123 < 112. Hypothesis holds. See
Figure 8.

• Move 5: (· · · )ACC < (· · · )ABC < (· · · )AAC (in partic-
ular, (11)122 < (11)123 < (11)112, (12)344 < (12)345
< (12)334). Hypothesis holds. See Figures 9 and 11.

• Move 7: (1123)344 < (1123)345 ≃ (1123)334,
(1123)455 < (1123)456 ≃ (1123)445. Hypothesis
holds somewhat, conditional on the puzzle sets having
the same prefix. See Figure 13.

Hypothesis 1 seems to hold somewhat for earlier moves
when the puzzle set suffix is the same. We have:

• Move 3: 123(44) < 112(33), 123(45) < 112(34),
123(33) < 112(22), 123(4567) < 112(3456). The hy-
pothesis does not strongly hold for the case 122(23) ≃
123(34) ≃ 112(23).

• Move 5: (11)123(45) < (11)112(34), (11)233(34) <
(11)234(45), (11)233(44) < (11)234(55), (11)233(45)
≃ (11)234(56).

Additional activation patching results are shown in Fig-
ures 10 and 12. Some of the theoretically possible puzzle
sets are not shown because they are unlikely configurations.
The puzzles shown have a sample size of at least 50 puzzles.

We showcase puzzle set 1123456 in Figure 14. We note that
the model’s log odds reduction as a result of patching the
seventh move is non-negligible but relatively small, indicat-
ing that it is likely at the limit of the model’s ability to look
ahead. Moreover, the probing results in Figure 3 suggest
that the model does contain information about the seventh
move square, but the probe’s performance is only slightly
better than for the random chess model. Additional 7-move
puzzle sets can be seen in Figure 13.
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Figure 9: Log odds reduction as a result of residual stream patching, for puzzle sets of the form 111XY. The 3-move puzzle
set 111 is shown on the top left, for comparison. As in Figure 2, we note that the impact of patching the fifth move square
varies considerably from puzzle to puzzle, but is consistent with the hypothesis presented.

0 2 4 6 8 10 12 14

Layer

2

4

6

8

L
og

o
d

d
s

re
d

u
ct

io
n Set 122

Corrupted

Other

Move 1

Move 2

Move 3

0 2 4 6 8 10 12 14

Layer

Set 12223

Corrupted

Other

Move 1

Move 2

Move 3

Move 4

Move 5
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puzzle.
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Figure 12: Residual effects for the remaining puzzle sets of the form 112XY, not shown in Figure 2. The 3-move puzzle set
112 is shown on the top left, for comparison. In these puzzle sets, it is not possible to distinguish the effect of patching the
fifth move square directly, as it equals either the first or the third move square. Nonetheless, we note that puzzle sets 11231
and 11221 respond differently to patching the third move square. For sets where the 1st and 5th move square are the same,
the effect of patching that square is more pronounced.
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Figure 13: Residual effects for the puzzle sets with 7 moves. The effect of patching the seventh move square is small but not
negligible for most of the puzzle sets, but its importance varies considerably.
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Figure 14: Log odds reduction of the correct move as a result of residual stream patching, for puzzles with 7 moves.
“Corrupted” indicates the patched square from the corrupted board. The label i indicates the move square for the i-th move.
“Other” indicates the contributions of the remaining squares. The 50% and 90% confidence intervals are displayed using
darker and lighter colors, respectively.
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C. Probing results
Our probing analysis provides additional insights into the
model’s ability to encode and utilize information about fu-
ture moves. We conducted probing experiments on vari-
ous puzzle sets to complement our activation patching re-
sults and gain a more comprehensive understanding of the
model’s internal representations.

Figure 3 presents the probing results for the puzzle set
1123456. The probe’s accuracy shows a clear decreasing
trend as the move square becomes increasingly distant from
the present state. This decline in accuracy is particularly
pronounced for the 7th move square, suggesting that while
the model does encode some information about very dis-
tant future moves, this information becomes increasingly
uncertain or difficult to extract.

Figure 15 shows the probing results for the puzzle set 12345,
offering insights into how the model encodes information
about both player and opponent moves. Several key obser-
vations can be made:

• The probe can find both player and opponent move
squares with high accuracy, generally peaking at layer
13. This suggests that the model encodes information
about opponent moves, even though activation patch-
ing does not show a strong direct response for these
squares.

• The probe’s accuracy decreases as the predicted move
becomes more distant from the present state, consistent
with our observations from activation patching.

• Interestingly, the 4th move (an opponent move) seems
more difficult to predict than the player’s 5th move.
This could indicate that the model’s representation of
opponent moves is less direct or more uncertain than
its representation of the player’s own future moves.

• The probe’s accuracy for the random chess model is
notably higher for the first and second move squares,
possibly reflecting some inherent biases or common
patterns in chess openings.

These probing results complement our activation patching
findings by revealing that the model does encode informa-
tion about future moves, including opponent moves, even
when this information does not have a strong direct effect on
the model’s output. This suggests that the model’s internal
representations are rich and multifaceted, capturing various
aspects of potential future game states.

The discrepancy between probing and activation patching
results, particularly for opponent moves, highlights the com-
plexity of the model’s decision-making process. It suggests
that while information about opponent moves is present in
the model’s representations, it may be utilized in more sub-
tle or indirect ways than information about the player’s own
moves.

These findings underscore the importance of using multiple
analysis techniques to gain a comprehensive understand-
ing of the model’s internal workings and decision-making
processes.
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Figure 15: Probing the model for the puzzle set 12345.
While activation patching does not seem to lead to a strong
response for opponent move squares, the probe can find both
the player and opponent move squares with high accuracy,
generally peaking at layer 13. These results suggest that the
model is encoding information about the opponent’s moves
in a less direct way than the player’s moves. We observe the
probe’s accuracy decreases as the model becomes increas-
ingly more distant from the present. A notable exception
is move 4, which seems to be harder to predict than the
player’s fifth move. The probe’s accuracy for the random
chess model is notably higher for the first and second move
squares.
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D. Ablation results
This section presents a detailed analysis of the ablation
results for various attention heads, with a particular focus
on L12H12, which appears to play a crucial role in the
model’s look-ahead behavior.

The L12H12 head behavior (Figures 16 to 18) is consistent
with the following observations:

• The head moves information from the 3rd to the 1st
move square for set 112, and for all puzzle sets 112XY
and 112VWXY, and to a lesser extent for the sets
123XY. The weakest case is the set 11223, as expected,
since the 5th move behavior takes precedence.

• The head moves information from the 5th directly to
the 1st move square for the puzzle set 11223 and 11112
(pattern (· · · )AAC), and to a lesser extent for the set
11234 (pattern (· · · )ABC). For 7-move puzzles, the
effect is strongest for sets 11112XY, and to a lesser
extent for 11234XY.

• The head moves information from the 5th to the 3rd
move square for the puzzle sets 11223 and 12223 (pat-
tern (· · · )AAC).

• The head moves information from the 7th to the 1st
move square for the puzzle sets 1123334, 1111234,
and 1123456 (patterns (· · · )AAC and (· · · )ABC).

• The head does not directly move information from the
3rd move square for puzzle sets 122 or 122XY. It also
does not move information from the 5th move square
for puzzle sets (· · · )ACC (such as 11222, 12344).

Nonetheless, the hypothesis is not compatible with the set
12334, since we would expect to observe behavior in be-
tween sets 12223 and 11223, and to mainly move informa-
tion from the 5th to the 3rd or 1st move square, instead of
from the 3rd to the 1st move square. We would also ex-
pect some effect from the 3rd to 1st move square for 12344.
For 7-move puzzles, we observe no 3rd to 1st effect for
123VWXY sets.

Overall, head L12H12 appears to satisfy the hypothesis
presented in Section 3, and noted for the residual stream
patching analysis, where we observed that the model tends
to move information from future move squares to earlier
move squares. Specifically, this head seems to prioritize
moving information from the 3rd to the 1st move square for
patterns like AAB and ABC, from the 5th to the 1st or 3rd
move square for patterns like AAC, and from the 7th to the
1st move square for patterns like AAC and ABC.

For other attention heads:

• L12H17 (Figure 19) appears to move information
"backward in time" for puzzle sets of the form AABCD,
where C is different from D, and D is preferably equal
to A. In sets of the form AABCA, the model relies
more heavily on L12H17 than on L12H12.

• L13H3 (Figure 20) seems to move information "back-
ward in time" for puzzle sets of the form AABCD,
where either C=D or B=C.

• The roles of L11H10 and L11H13 (Figure 21) are less
clear based on the ablation results alone.

Our detailed analysis of these attention heads reveals several
important insights into how the model processes future move
information. First, we find that certain heads specialize in
moving information from future move squares to the first
move square, responding to specific patterns that are round-
insensitive - that is, the same pattern may apply to moves
1-2-3, moves 3-4-5, or moves 5-6-7. This suggests the
model has learned general pattern-matching mechanisms
rather than position-specific rules.

Different attention heads appear to specialize in different
types of common patterns. For instance, L12H12 is particu-
larly active in checkmate scenarios, while L12H17 shows
stronger responses in non-checkmate positions. This spe-
cialization indicates that the model has learned to process
different types of tactical situations using distinct mecha-
nisms.

These findings have broader implications beyond this spe-
cific chess model. They demonstrate how a neural network
can learn to develop specialized components for processing
look-ahead information through training, without explicit
programming of such capabilities. The emergence of these
general pattern-matching mechanisms suggests the model
may be able to handle novel positions not seen during train-
ing. Additionally, this analysis provides a case study of how
detailed attention head analysis can reveal the development
of sophisticated information processing strategies in trained
models, insights that may extend to models in other strategic
planning domains.
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Figure 16: Ablation results of the L12H12 head for the 112 and 123 move analysis.
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Figure 17: Ablation results of the L12H12 head for sets with 5 moves. This head’s role varies significantly between the sets.
For the sets 11223 and 11234, the head plays a significant role in moving information from the fifth to the first move square.
For the sets 11223 and 12223, it also moves information from the fifth to the third move square. For the sets 11222, 11233,
and 12334, it mostly plays the known role of moving information from the third to the first move square. For the set 12344,
it seems to be doing something else entirely.
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Figure 18: Ablation results for some puzzle sets with 7 moves, for head L12H12. The results are quite varied. For puzzle
sets 1123334, 1111234, and 1123456, the head has a small but non-negligible role in moving information from the seventh
to the first move square. For the most of the remaining puzzles, it mainly seems to move information from the fifth and third
move squares to the first move square. For puzzle sets 1112345 and 1234567, the head appears to move information from
and to unknown squares.
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Figure 19: Ablation results for head L12H17, for the puzzle sets with 5 moves that seem to respond more strongly to the
head being patched (see Figure 24). In all cases, the head plays a significant and almost exclusive role in moving information
from the third to the first move square.
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Figure 20: Ablation results for head L13H3, for the puzzle sets with 5 moves that seem to respond more strongly to the head
being patched (see Figure 24). When compared to heads L12H12 and L12H17, the head L13H3 plays a less significant role
in moving information from the third to the first move square.
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Figure 21: Ablation results for heads L11H10 and L11H13, for the puzzle sets with 5 moves that seem to respond more
strongly to the heads being patched (see Figure 24). Surprisingly, the heads L11H10 and L11H13 seem to play a very minor
role in moving information from and to squares of interest.
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Figure 22: Ablation results for L12H12, for the puzzle sets with 5 moves that seem to respond more strongly to the heads
being patched (see Figure 24). When decomposing by checkmate vs non-checkmate scenarios, we can observe that L12H12
plays a more significant role in moving information backward in time in the checkmate scenarios.
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Figure 23: Ablation results for L12H17, for the puzzle sets with 5 moves that seem to respond more strongly to the heads
being patched (see Figure 24). When decomposing by checkmate vs non-checkmate scenarios, we can observe that L12H17
plays a more significant role in moving information backward in time in the non-checkmate scenarios.
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E. Attention head patching
This section presents a comprehensive analysis of attention
head patching results for various puzzle sets, providing
insights into how different attention heads contribute to the
model’s decision-making process.

For 5-move puzzles (Figures Figure 24 and Figure 25), we
observe distinct patterns:

• Strong response to L12H12 and L13H3: Some puz-
zle sets (e.g., 11223, 11233, 11234) show a strong
response to patching these heads, suggesting their cru-
cial role in processing these positions.

• Mixed responses: Puzzle set 11234 also responds
strongly to L12H17, indicating a more complex in-
teraction of attention heads for this set.

• Strong response to L12H17: Some sets (e.g., 11222,
12223) respond strongly to L12H17 patching but hardly
to L12H12, suggesting different mechanisms at play
for these positions.

• Weak or inconsistent responses: Some puzzle sets (e.g.,
12233, 12234) do not show strong responses to any
particular attention head, which may indicate more dis-
tributed processing or the involvement of other model
components.

• Response to L11H10 and L11H13: Some sets (e.g.,
11111, 11112) show responses to these heads, but ab-
lation results suggest their role may be more subtle or
indirect.

For 7-move puzzles (Figure 26), the patterns become more
complex, potentially reflecting the increased difficulty in
processing longer move sequences.

The analysis of checkmate vs. non-checkmate scenarios
(Figures Figure 27 and Figure 28) reveals significant differ-
ences in attention head responses between these two types of

positions. This suggests that the model may employ distinct
processing strategies for checkmate and non-checkmate po-
sitions, potentially reflecting the different strategic consider-
ations involved in each case.

These results highlight the context-dependent nature of the
model’s attention mechanisms and the complex interplay be-
tween different attention heads in processing chess positions.
They also underscore the importance of considering factors
like move sequence length and the presence of checkmate
possibilities when analyzing the model’s behavior.

E.1. Checkmate and non-checkmate scenarios
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Figure 24: Attention head patching for some puzzle sets with 5 moves. In the top row, the model responds strongly to
patching L12H12, and to a lesser extent L13H3 (see Figures 17 and 20). In the middle row, the response is more mixed,
with puzzle set 11234 also responding to L12H17. In the bottom row, the model responds strongly to patching L12H17, and
hardly responds to L12H12 (see Figures 19 and 20).
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Figure 25: Attention head patching for the remaining puzzle sets with 5 moves. In the top row, some attention heads appear
to strongly affect the model’s behavior, but these do not appear to play a significant in other sets. The puzzle sets in the
middle row do not seem to respond strongly to any particular attention head. In the bottow row, the model appears to respond
somewhat to patching of heads L11H10 and L11H13. However, judging by the ablation results in Figure 21, these heads do
not seem to play a significant role in the model’s behavior.
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Figure 26: Attention head patching for some puzzle sets with 7 moves.
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Figure 27: Attention head patching for puzzle sets with 3 moves, for both checkmate and non-checkmate scenarios. We can
observe that patching the attention heads leads to notably different outcomes in each scenario.
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Figure 28: Attention head patching for some puzzle sets with 5 moves, for both checkmate and non-checkmate scenarios.
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F. Alternative move setup and additional
results

This section details our approach to analyzing how the
model considers alternative moves, focusing on puzzles
with two distinct branches of play.

In order to study the alternative move analysis, we have to
find puzzles that satisfy a significant number of constraints:

• The puzzle’s principal variation (PV) must have
length 3. This is in order to simplify the analysis, and
remove higher future move squares from consideration.

• The puzzle’s PV must not be a checkmate. In prac-
tice, we observe that not only does the model treat
different puzzle sets differently, but it also seems to
have a different behavior when a checkmate in 2 is a
likely option, even if not the most likely.

• The puzzle must have two distinct branches:

– The model must be ambivalent between two
first moves. Each move should have a probability
of around 1/2. In practice, we impose a lower
bound of p = 0.3 for the two moves.

– Given a first move, the model must be confident
in the second move. In practice, we impose a
lower bound of p = 0.7 for the second move.

– Given the first two moves, the model must be
confident in the third move. In practice, we
impose a lower bound of p = 0.7 for the third
move.

– One of the branches must correspond to the PV.
Otherwise, the model cannot be said to be close
to solving the puzzle, and it would be unclear to
what extent the model’s attention is due to the
alternative move setup.

The latter two conditions are mainly to ensure that the
model’s attention is not too spread out over relatively
unlikely future moves. Essentially, we are interested
in puzzles like the bottom example in Figure 29 (but
without the checkmate scenario).

• The two first and third move squares must all be dis-
tinct. Otherwise, it would be impossible to distinguish
the effects of the 4 squares in the analysis.

• The puzzles should still be hard for the weaker
model to solve. The hardness threshold is maintained
at 0.05, as in Jenner et al. (2024).

• The weaker model should be confident in the second
move. The forcing threshold is maintained at 0.7, as
in Jenner et al. (2024).

• The corrupted puzzle versions should be viable for
both branches. Previously, we found the corrupted
puzzles using only constraints with the PV moves.
Here, we also require that the corrupted puzzles are
viable for both branches. Otherwise, the corrupted
puzzle may treat the branches differently, and lead to
unclear results.

These constraints are highlighted in Figure 29. Regrettably,
starting with the whole Lichess’ puzzle dataset, these con-
straints reduce the original 4062423 puzzles to around 600
puzzles. In practice, we observe that about half to two
thirds of the puzzles have differences between the proba-
bilities assigned to the two branches’ first moves that are
non-negligible, and that may explain some of the limited
log odds reductions observed in Figures 30 and 31.

These results, while based on a limited sample size due
to our strict criteria, provide evidence that the model does
consider alternative moves in its decision-making process.
The varying effects across different puzzle sets suggest that
this consideration is context-dependent.
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Figure 29: Instead of considering an arbitrary puzzle (top), where the number of branching moves can become very large,
we focus on puzzles with two distinct branches. The boards correspond to the starting state of the two puzzles, after the
zeroth move (top of game tree) is played. The green nodes mark the principal variation. Note that, for the bottom example,
the Leela model does not choose the best move, but instead chooses an alternative move.
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Figure 30: Patching results of the alternative move analysis. The log odds reduction for the next move for branch A (left) and
branch B (right) are shown. Negative log odds reduction for branch A (resp. B) implies that patching the square improves
the model’s odds of choosing the main (resp. alternative) move branch. In this setup, the puzzle set label’s first half denotes
the most likely branch, and the second half denotes the second most likely branch. The number of examples is highly
constrained, due to all the constraints imposed (see Appendix F for details). The model seems to consider alternative moves
as one might expect. The effect of patching the alternative move squares (1B, 3B) seems especially pronounced for the
puzzle sets for which L12H12 responds strongly. The bottom row is also reproduced in Figure 6.
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Figure 31: Ablation results for the alternative move analysis. The log odds reductions are shown for the next move when
comparing against the branch A (top) and branch B (bottom) clean log odds. Negative log odds reduction for branch A (resp.
B) implies that patching the square improves the model’s odds of choosing the main (resp. alternative) move branch. We
note that the head L12H12 appears to continue to focus on moving information from the third to the first move square, even
when considering alternative moves. There does not seem to be significant cross-attention between the two branches, with
both branches being processed independently.
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G. L12H12 and checkmate
While studying the L12H12 head in the alternative move
analysis, we noted that the head seems to strongly privilege
moving information from the third to the first move square
in the principal variation, even for puzzles where the Leela
chess model does not choose the principal variation as the
best move. The main result can be seen in Figure 5, but here
we specifically analyze this attention head in the alternative
move setup.

G.1. Different first moves

Upon further inspection, we noted that L12H12 seems to
further prioritize scenarios involving checkmate. As a result,
in the situation where the principal variation resulted in
checkmate, but this was not the model’s top move, L12H12
still mainly attended to the principal variation squares.

To further investigate this phenomenon, we looked at puz-
zles of the set 112 where both the first and second top moves
resulted in checkmate in 2. Unfortunately, none of Lichess’
4 million puzzles seem to contain such puzzles. As a result,
we produced a series of handcrafted puzzles, and studied
the attention of the L12H12 head to each of the squares
in both branches. Since this scenario is not present in the
Lichess dataset, it is possible that this scenario is extremely
unlikely, and that the Leela model has not encountered such
scenarios during training. In fact, even for relatively simple
handcrafted puzzles, the model does not always choose the
checkmate in 2.

See Figures 32 and 33 for results. Interestingly, L12H12
not only shows the attention pattern g8→f7 and c8→d7
(corresponding to 3rd→1st, as expected), but there is also
cross-attention between the 3rd move square and the 1st
move square of different branches.

G.2. Different third moves

We may also look at scenarios where puzzles (of the set
112) have two different possible third moves for a check-
mate in 2, while having the same first and second moves.
In the dataset interesting_puzzles_all.pkl, we
find 10 puzzles of this type. The puzzle with the highest
attribution values is shown in Figure 34.
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Figure 32: Simple puzzle where Leela fails to pick any of the checkmates in 2 moves. Nonetheless, the future move squares
of those two game branches are still the main squares that L12H12 attends to, although weakly.
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Figure 33: Modification of the puzzle in Figure 32 where the rook moves are discouraged, leading Leela to prefer the
checkmate in 2 options. L12H12 attends to the relevant squares much more strongly in this case. Note the scale difference
in the attribution plot when compared to Figure 32.
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Figure 34: Puzzle of the set 112 where there are 2 third move options for a checkmate in 2. Both options reinforce the
choice of the first move square. Nonetheless, the contribution of L12H12 is relatively limited.
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H. Implementation details
Our implementation is heavily based on the imple-
mentation described in Jenner et al. (2024), and pre-
viously made available at https://github.com/
HumanCompatibleAI/leela-interp. For the ac-
tivation patching, probing, and zero ablation results, mod-
ifications were made to account for the case of more than
3 moves. For the purposes of reproducing the results, the
code may be found in [link omitted for review].

Analysis Techniques. Our analysis builds on techniques
from Jenner et al. (2024), which we detail here for com-
pleteness. For activation patching, we first run the model
on the original position to get the “clean” activations. We
then create a corrupted position by replacing specific moves
in the game history and run the model on this corrupted
position. Next, we copy activations from specific attention
heads in the corrupted run into the corresponding locations
in the clean run. Let mc be the correct move, sp be the

patched model state, and sc be the clean model state. The
log odds change ∆L of the target move is then defined as:

∆L = log odds(mc | sp)− log odds(mc | sc) (1)

where log odds(mc | s) represents the logarithm of the
odds that the model assigns to the correct move mc given
state s. A negative ∆L indicates that patching reduces the
model’s preference for the correct move, while a positive
∆L indicates that patching increases it.

For linear probing, we extract activations from each atten-
tion head when running the model on chess positions. We
then train a bilinear probe to predict the board square asso-
ciated with the move of interest. The probe accuracy serves
as a measure of what information is encoded by the model.
The trained probe’s accuracy is also compared against a
random baseline.

Puzzle generation. Besides the dataset used by Jenner
et al. (2024), we create two additional datasets. The 7-
move dataset is created by starting from the 4 million puzzle
dataset by filtering for puzzles with exactly 7 moves, and
where the 7th move square is distinct from the other odd
move squares. Additionally, as for the first dataset, we filter
for puzzles that are solvable by the Leela model but not
a weaker model. The generation of the alternative move
dataset is described in Appendix F.

Generating corrupted puzzles. For the bulk of the puz-
zles, we rely on the implementation from Jenner et al. (2024).
For the alternative move dataset, we ensure that the cor-
rupted puzzles are viable for both branches, by applying the
constraints described in Appendix D of Jenner et al. (2024)
to both branches.

Data Filtering. To ensure reliable results, we apply sev-
eral filtering criteria to the positions. For the alternative
move analysis, we require the probability of each of the
two first moves to be at least 0.3, and the probability of the
second and third moves to be at least 0.7. Additionally, as
in Jenner et al. (2024), we maintain the hardness threshold
of 0.05 and forcing threshold of 0.7.
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