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ABSTRACT

Understanding behavioral movements in mosquitoes is fundamental for monitor-
ing arbovirus transmission. Most existing Artificial Intelligence (AI) methods rec-
ognize tiny insects as background and fail to extract correct features from video
frames. To address this issue, we propose a two-stage few-shot classification
by Movement Density Map (MDM) prototyping. A novel approach that inte-
grates object detection with two-stage prototype training to analyze and identify
mosquito behavior from videos. In the first stage, mosquitoes are detected us-
ing a fine-tuned YOLO, achieving a maximum mean Average Precision (mAP50)
of 97.8% after 100 training sessions. The detected areas with eliminated back-
grounds are then aggregated into MDMs. This mechanism enables encoding hun-
dreds of frames into a single spatiotemporal representation that reveals biologi-
cally meaningful flight patterns over time. The MDMs are then mapped into a
Vision Transformer (ViT) embedding environment, where class-level prototypes
are generated for few-shot classification under 1 and 5 exposures using prototypi-
cal networks. Results on datasets of dengue and Zika-carrier mosquitoes, as well
as non-carrier ones, collected over 13 days and nights show that our approach sig-
nificantly extracts more accurate features than a common single-stage prototypical
network, leading to an overall performance accuracy of 85.86%. These findings
reveal that two-stage prototyping is a reliable and scalable solution for analyzing
tiny-object biological videos and holds promise for other spatiotemporal recogni-
tion tasks where motion aggregation is critical.

1 INTRODUCTION

Analyzing complex behavioral patterns in videos has recently become an important research fron-
tier for machine learning based on Al. The challenges of this task become more apparent when the
objects are very small, move chaotically, and occupy only a small portion of each frame. Identifying
infected mosquitoes is an example of this challenge. Mosquitoes act as an acute function in the
transmission of arboviruses, such as dengue and Zika, infecting millions of people worldwide each
year (Bhatt et al., 2013} |Achee et al.| |2015} Kraemer et al., 2015; NODEN et al.| [2015). Standard
monitoring approaches, including morphological measurements, are unable to accurately capture
behavioral changes in mosquitoes that result from viral infections. Biological research proposed
that viruses can affect the neural activity and movement patterns of mosquitoes, causing movements
in flight dynamics that cannot be observed and measured by standard approaches (Carvalho et al.,
2015} |Gaburro et al., 2018)). This perspective advances the design of computational approaches that
can transform raw movement data into meaningful indicators of infection status. Recent advances
in computer vision have highlighted the key role of deep learning in automating several entomolog-
ical tasks (Goodfellow et al.|[2016). High-resolution imaging and Convolutional Neural Network
(CNN)-based approaches have been applied to egg detection (Javed et al., 2023a), tracking and
quantifying mosquito flight directions (Javed et al.,|2023b)), and species classification in intricate en-
vironments. For example, various types of Mask R-CNN have been able to identify objects with very
high accuracy even in noisy environments. Also, systems based on convolutional neural networks,
such as EggCountAl, have significantly outperformed traditional counting methods achieving high
accuracy and scalability. These achievements show that machine vision technology is capable of ex-
tracting important and interpretable patterns from complex and noisy data. However, the use of these
advances to distinguish between infected and control mosquitoes using behavioral videos remains
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largely unknown. From a machine learning perspective, the main obstacle is the scale imbalance
and background dominance of the data. Unlike still images, videos have spatiotemporal complexi-
ties and require representations that focus on movement patterns rather than reflecting background
features. In typical mosquito videos, the insects occupy only a small portion of the image, while
fixed elements such as the cage and background lighting conditions make up the majority of the pix-
els. CNNs typically absorb these unnecessary features, resulting in samples that reflect background
variations rather than true, meaningful patterns of biological behavior. As a result, even advanced
multi-stage algorithms achieve high accuracy without providing a valid model of mosquito behav-
ior. This bias suggests that novel approaches should directly suppress background features while
accurately preserving the spatiotemporal footprint of mosquito movements. Few-shot learning is an
efficient and attractive approach when large, labeled datasets are not available. Prototype networks
have become a cornerstone in this field by mapping data into a latent space and forming prototypes
for each class (Snell et al.l 2017). However, the standard architecture of these networks is based
on the assumption that distinguishing features can be extracted from single frames or short clips.
This assumption is rarely true for small object behavioral data. In fact, diagnostic clues are usually
hidden in the long-term aggregation of motion paths across the entire video. This mismatch between
the model’s induced bias and the actual nature of the task severely limits the applicability of con-
ventional few-shot learning methods to classify mosquito behavior. One promising approach is the
use of density maps, a tool that has previously shown its effectiveness in diverse areas such as pop-
ulation counting (Zhang et al.,2016)) and video-based density estimation (Hossain et al.,2020). The
key idea of this approach is that compressing spatiotemporal activities into a density representation
can remove noise while preserving the original motion patterns. Accordingly, we proposed using
Movement Density Maps (MDM) as prototypes in the analysis of mosquito behavioral videos. By
aggregating detection results over time and transforming them into Gaussian-smoothed heat maps,
these maps summarize the overall distribution of insect movement paths and provide a compact yet
interpretable descriptor of group-level behavior. Based on this approach, we propose a two-stage
prototyping framework for video classification. In the first step, a set of YOLO detectors is used
to identify the locations of mosquitoes and remove or mask unnecessary background parts (Diwan
et al., 2022 [Redmon et al., 2016} |Shafiee et al., 2017)). Then, the obtained coordinates are converted
into density maps and, by averaging over the video, an MDM prototype is created that represents
the overall behavioral pattern. In the second step, these prototypes are transferred to the embedding
space through an attention-based transformer and then fed into prototyping networks to build proto-
types at the class level. This design makes the induced bias of few-shot learning consistent with the
biological realities of behavioral changes caused by infection; this means that the main importance
lies not in the appearance of a single frame, but in the spatio-temporal pattern of movement as a
whole. Our proposed framework has three main advantages over conventional approaches. First, by
directly removing background segments, one of the main sources of bias in mosquito video analysis
is eliminated. Second, by compressing hundreds of frames into a single MDM, temporal redundancy
is reduced while meaningful behavioral trajectories are highlighted. Third, generating biologically
interpretable prototypes enables multi-step generalization in situations where labeled data are lim-
ited. Importantly, our approach bridges two previously separate research areas: first, investigating
the neurotropic effects of arboviruses on mosquito behavior (Carvalho et al.l 2015} |Gaburro et al.,
2018) and second, learning density-based representations in machine vision (Hossain et al., [2020).
In summary, the main achievements of this research can be summarized as follows:

1. Provide prototypes of MDM as an innovative and efficient representation method for tiny
object video classification in biomedical fields.

2. Propose a two-stage sampling framework that integrates YOLO-based detection with den-
sity map compression and the use of sampling networks.

3. Improve the accuracy of multi-stage classification between dengue and Zika virus-infected
mosquitoes and control (non-infected mosquitoes) and surpass conventional single-stage
approaches in terms of efficiency and feature correctness.

4. Demonstrate the generalizability of the introduced framework to other areas of small object
video analysis, beyond the scope of entomology.

Relying on the integration of entomological knowledge and new machine learning technologies,
these findings not only advance the level of multi-stage video classification but also provide a new
perspective on the role of subtle behavioral changes as computational biomarkers.
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2 RELATED WORKS

2.1 FEW-SHOT LEARNING WITH PROTOTYPICAL NETWORKS

Few-shot learning has been widely studied as an effective approach for classification in situations
where training data is limited. Prototype networks, first introduced by (Snell et al., 2017), learn a
metric space in which each class is represented by the average of its embedded support instances. In
this approach, the classification process is performed by measuring the distance of new instances to
the prototypes of each class. Their proposed approach achieved advanced results on the Omniglot
and minilmageNet datasets, showing that a simple inductive bias can outperform more complex
meta-learning models.

Another research, such as Matching Networks (Vinyals et al.l 2016), Optimization-Based Meta-
model Learning (Ravi & Larochelle,2017)), and Model-Independent Metamodel Learning (MAML)
(Finn et al., 2017) have emphasized concepts such as episodic learning, gradient-based adaptation,
and metric learning. These approaches are particularly important in the analysis of mosquito be-
havioral videos, where labeled data is very limited and learning stable representations from a small
number of examples plays a key role in improving generalizability.

2.2 DENSITY-BASED REPRESENTATIONS IN VIDEO ANALYSIS

Density map-based representations have been successfully applied to tasks such as population count-
ing and crowd density estimation. Early regression approaches attempted to model the overall count
using artificial features (Bhatt et al., 2013 Lempitsky & Zisserman, [2010)), but these methods were
not robust enough in highly congested conditions.

In this regard, (Zhang et al.,[2016) provided a multi-column convolutional neural network (MCNN)
for population counting. This model generates density maps by combining input fields of different
sizes, thus overcoming the scaling problem. They validated the method on the ShanghaiTech dataset
(330,000 tagged heads) and showed that the density maps not only estimate the total number of indi-
viduals but also preserve their spatial distribution. They also managed perspective distortions better
by using adaptive geometric kernels and adapted the MCNN to new domains with limited tagged
data through transfer learning strategies. Such insights are also valuable for modeling mosquito
flight paths, where motion scaling and overlaps pose similar challenges to human crowd images.
Since the introduction of the Multi-Column Convolutional Neural Network (MCNN), more ad-
vanced models have been proposed to improve the quality of density maps. For example, (Sam
et al., 2017) introduced the Switch-CNN method, which better handles the scalability problem by
dynamically routing and automatically selecting between specialized regressors. Also, (Sindagi &
Patel,2017) developed the Contextual Pyramid CNN, which combines local and global cues to pro-
duce more accurate and higher-quality density maps.

In addition, several fundamental approaches have paved the way for further developments. (Idrees
et al.l 2013)) introduced multi-source and multi-scale features for counting in very dense crowds,
while (Zhang et all [2015) investigated the transfer of convolutional networks between different
scenes for crowd analysis. Also, (Rodriguez et al. 2011) presented a hybrid model of detection
and density estimation, and (Lempitsky & Zisserman, |2010) proposed a density regression approach
based on dense SIFT features. These studies paved the way for more advanced models, including
the Composition Loss framework presented by (Idrees et al., [2018)) that simultaneously optimizes
counting, density map estimation, and localization in dense crowds.

In addition, significant progress has been made in the video domain. For example, (Hossain et al.,
2020) introduced a multiscale optical flow pyramidal network that achieved improved performance
on video crowd datasets by combining spatiotemporal information with CNN-based density esti-
mation. They showed that compressing movement cues into density maps increases the robustness
of the model against obstruction and noise. Such insight is particularly valuable in the analysis of
mosquito behavioral videos, where motion data plays a key role in recognizing behavioral patterns.
Taken together, these studies demonstrate that density map-based representations are powerful tools
for modeling aggregate movement patterns in the presence of obstruction and noise. This capability
makes them directly valuable for analyzing the collective movement of mosquitoes and investigating
the density of their flight paths over long timescales.
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Figure 1: Two sample frames of recorded videos regarding non-infected mosquitoes in A) daytime
and B) nighttime.

2.3 DEEP LEARNING IN ENTOMOLOGICAL VIDEO ANALYSIS

Recently, computer vision has also been applied to mosquito-related challenges. (Javed et al.|[20234)
developed EggCountAl, a convolutional neural network-based system for counting Aedes aegypti
eggs that achieved accuracy above 98%, even in conditions of overlapping or clustered eggs. This
method performed better than traditional tools such as ICount (Gaburro et al,[2018)) and MECVision
Kittichai et al.,[2024)), as well as older approaches based on image separation or wavelet transform
'Wan Yussof et al., 2018).

In the area of behavioral studies, (Javed et al.| 2023b)) used convolutional neural networks to track
the flight dynamics of mosquitoes and showed that deep models are able to capture subtle changes in
spatiotemporal movements. Additionally, the use of extended versions of Mask R-CNN and spline
interpolation methods enabled robust and long-term tracking of Aedes aegypti behavior in crowded
environments.

Beyond purely image-based approaches, virological studies in entomology have shown that infec-
tion can directly affect mosquito movement. For example, (Gaburro et al, 2018)) showed that the
Zika virus alters neuronal activity in Aedes aegypti, causing hyperexcitability and abnormal loco-
motor activity. These findings reveal the interplay between pathogen-induced neural regulation and
observable locomotor dynamics.

Collectively, these studies chart a path from static, traditional egg counting to dynamic approaches
based on density maps and few-shot learning in mosquito monitoring. Using density-based local-
ization frameworks (Zhang et al, 2016} [Idrees et al, 2018)), the future video analysis systems in
entomology will be able to provide a stable, long-term, and infection-sensitive model of mosquito
behavior.

3 DATASET

Data collection was conducted in a cubic cage containing 15 mosquitoes. A sugar-water source was
provided inside the cage as nourishment. Recordings were obtained over a period of 1 to 13 days,
encompassing both daytime and nighttime conditions. A camera was positioned in front of the cage
to continuously capture the behavioural activities of the mosquitoes during these periods. Experi-
ments were performed for non-vector mosquitoes as well as for dengue and Zika vectors. Accord-
ingly, the resulting dataset is organized into six classes: dengue-infected (day/night), Zika-infected
(day/night), and non-infected mosquitoes (day/night). Figure 1A illustrates representative frames
recorded during daytime, while Figure 1B presents corresponding examples captured at night. As
shown in Figure 1, environmental factors, particularly lighting variations between day and night,
uneven illumination across the left and right sides of the cage, and the camera’s diverse angle, may
introduce a wrong embedding space, consequently affecting classification validity.

4 METHODOLOGY

In conventional few-shot learning, a one-stage prototyping approach has been proposed by Snell
et al. 2017), which is an effective technique for few-shot classification. However, in
terms of classifying biomedical videos by the movement of tiny objects, neural networks extract
features from video frame backgrounds that can create an incorrect embedding space for few-shot
classification, particularly when the movement of tiny objects, such as insects, is the most substan-
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Input GradCam Attention Map

Figure 2: Visualization of extracted features for embedding space. The first row illustrates a raw
frame after applying Gradcam and the attention map. The second row indicates a raw frame after
making MDM and then applying Gradcam and the attention map.

tial hallmark for video classification. Under these circumstances, the embedding space contains
incorrect features, and few-shot classification is therefore unreliable. To support the claim above,
we have created an embedding space using both Vision Transformer and ResNet models. Then, we
visualize the extracted features of the embedding space using explainable Al techniques, such as
attention maps.

To tackle this challenge, we propose a novel few-shot classification pipeline called two-stage proto-
typing that can reliably extract the correct features from tiny insect videos and can be trained with a
limited amount of data. The two-stage prototyping approach consists of two main steps for creating
prototypes. In the first stage, insect movements are detected and captured by MDM prototypes. The
second step involves producing and classifying prototypes for each class, as previously introduced
as prototypical networks with upgraded embedding and loss functions. It should be noted that in
this study, prototyping refers to passing tensors through a neural network or mathematical function
and calculating their mean to produce the centroid of these tensors. The following is a description
of how the two-stage prototyping is developed.

4.1 THE FIRST STAGE OF PROTOTYPING (MDM STRUCTURE):

Conventional embedding methods extract a myriad of features from video frame backgrounds while
the classification target is recognizing mosquito behavior. Thus, we need to make sure that no
features are extracted from the background to feed the embedding space in this step. To begin with,
a few initial frames of a video are cut to annotate and fine-tune the YOLO model. Then, YOLO
recognizes mosquitoes and specifies regions occupied by them with equation[I] (Redmon & Farhadil

2018):
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Following the detection of tiny objects in the video, all the background is set to zero (Equation
equation[Z) except for the pixel areas recognized by YOLO. In this way, the model conserves only the
locations of mosquitoes in the video frames and eliminates the whole left background. Then, non-
zero pixels are converted to adapted Gaussian pixels as calculated by equation [2] (Idrees et al., 2018)
since it depicts the presence rate of mosquitoes during the video, which means their movements over
time.
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In the next stage, the mean tensor of density maps linked to whole frames of a single video is
computed and constructed as a prototype, namely an MDM prototype (equation[3). Since the MDM

D(x,y, f(.) = Z )
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Figure 3: MDM creation procedure. The figure shows raw frames after applying object detection
and background elimination, and then creating an MDM.

tensor reflects the whole insect movements during a video, it conserves all critical features of a long
video, while it is not characterized by a video complexity to input into an embedding space followed
by classification using prototypical networks.

1 N
M= ;D(x,y,f(.)) 3)

Zero-value pixels in an MDM prototype indicate that no insect passed through that region of the
frames during the video. Intensities close to zero (not exactly zero) indicate that there were slight
movements of insects during the video in those specific locations. The higher the brightness of the
pixels in the MDM prototype, the more insects were present in that area of the frames during the
video (Figure [3).

4.2 THE SECOND STAGE OF PROTOTYPING (UPGRADED PROTOTYPICAL NETWORKS):

As the second stage of prototype construction, firstlyy, MDM prototypes are encoded into an
embedding space. The conventional few-shot learning approach proposed applying a common
convolutional-based architecture to create an embedding space. In contrast, our methodology rec-
ommends utilizing transformer-based embedding known as ViT (Dosovitskiy et al.,[2020).

After generating an embedded space from MDM:s using a pre-trained ViT (f,), prototype tensors for
each class are created by calculating the mean of embedded tensors, as can be observed in Equation
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By having a distance function and a loss function, the prototypical network can be trained over
episodes. In the first introduction of prototypical networks, the softmax loss function was recom-
mended over model training; however, we discovered that the categorical cross-entropy loss func-
tion leads to more promising outcomes. Therefore, our prototypical network employs a categorical
cross-entropy loss function.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

In this paper, we used 5 separate folds to evaluate the proposed methodology. In each fold, we se-
lected two classes out of 6 biomedical classes as the test set, two classes as the evaluation, and two
classes for training. The folds were selected in such a way that all classes of the dataset were rep-
resented in different folds as test, evaluation, and training data. The evaluation criteria are accuracy
and Confidence Interval (CI), and due to having such a balanced dataset, we ignored calculating
precision, recall and F1-score. All evaluation criteria were selected according to the study of Snell
et al (Snell et al.L 2017). In this experiment, we used 1000 episodes for training and 600 episodes for
testing. Due to the limitations of the specific mosquito flight video dataset and the number of classes,
we were only able to use the 2-way mode for few-shot classification. Moreover, we examined the
dataset in 1-shot and 5-shot modes.
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Table 1: Different YOLO versions performance based on mAP50.
Yolo Version mAP50 (%)

YOLO 8N 96.9
YOLO 8M 96.7
YOLO 1IN 96.5

YOLO 11M 97.8

Precision-Confidence Curve

Figure 4: Precision-confidence figure and confusion matrix of YOLO

5.2 OBIJECT DETECTION STAGE

In this work, the first object detection section is the first step in inputting effective features into the
proposed model. In this stage, Sayeedi et al. (Sayeedi et al.,[2024) used the YOLO model to detect
objects in biomedical environments linked to mosquitoes. Therefore, in the object detection stage,
we implemented various versions of YOLO and newer versions of YOLO. Our results demonstrated
that YOLO 11M is able to detect mosquitoes with a 97.8% mAPS50, effectively differentiating them
from the background. Figure [4]indicates the images related to the accuracy graph of YOLO 11 and
its confusion matrix. Also, other versions of YOLO implemented in this study are listed in Table

5.3 EMBEDDING AND BASELINES

To ensure the superiority of the proposed method, we also compared this model with simple classi-
fiers. The purpose of the implementation was to ensure that after the MDM creation and embedding
space, the features obtained cannot be classified with a simple model and require a more complex
model. Therefore, a linear baseline and a nearest neighbor classifier were implemented in the final
classification stages. Additionally, the baseline method of Snell et al. uses Euclid distance and the
Softmax loss function to train the model. In this study, we employed the categorical cross-entropy
loss function and demonstrated that utilizing this loss function effectively enhances the learning ca-
pabilities of the proposed method. The results are presented in Figure 5]

In the baseline paper, a CNN was used to build the embedding space. Thus, we first used state-of-
the-art pre-trained models, namely EfficientNet V2 (Tan & Le,|2021)) and ResNet 101 V2 (He et al.,
2016)), and the ViT pre-trained model was also utilized. Then it was discovered that this model can
extract more effective features from MDMs. Therefore, in the proposed method, the ViT model was
used to construct an embedding space. Details can be seen in Table 2]

5.4 PROPOSED TWO-STAGE PROTOTYPICAL PERFORMANCE

Table 3 illustrates the model’s performance across five folds. In the proposed two-stage prototypical
network, training was executed in 1000 episodes, since training became consistent before 1000
episodes. Therefore, we hired checkpoints for validation loss check, to save the best model during
the 1000 episodes. Additionally, we selected 600 episodes for testing according to baseline papers.
The model was trained in 2-way classification with a query set of 5 and 1, 5 support sets. Due to the
biological dataset limitation, we are unable to execute the model in 3-way, 5-way, etc.

Overall, the accuracy stayed high, with only moderate differences from one fold to another. Even
though a few folds were slightly weaker, the general trend is clear: the model is able to pick up
consistent patterns and hold its performance across different splits of the data. The relatively tight
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Figure 5: Baselines performances. Baseline 1: Prototypical network with linear classifier and cross-
entropy. Baseline 2: Prototypical network with nearest neighbors and cross-entropy. Baseline 3:
Prototypical network with Euclid distance and Softmax. Proposed Method: Prototypical network
with Euclid distance and cross-entropy.

Table 2: Performance of different pre-trained models for embedding space.

Embedding Accuracy (%) Training Time

1-Shot  5-Shot  1-Shot (h:m:s) 5-Shot (h:m:s)
ResNet 58.58  68.50 1:18:29 1:19:15
Efficient Net 58.72  71.47 1:00:11 0:59:20
ViT 69.72  86.73 0:37:55 0:38:42

confidence intervals also give us confidence that these results are not just a fluke of a single run but
reflect a stable underlying behavior of the model.

5.5 ABLATION STUDIES

First, MDMs were normalized and standardized. In both pre-processing procedures, the model
encountered a severe performance decrement of 58.12% in best. Regarding data augmentation, we
increased the number of MDMs before the embedding stage using image processing techniques,
including left, right, up, and down shifts, as well as brightness changes. Therefore, we increased
the MDM numbers by 5 times, and it was revealed that the data augmentation technique degraded
performance. Then, we froze all the initial layers of the ViT model and allowed the model to be
trained with only the last two layers. In this case, the model also experienced a severe performance
of 50%. As a result, we set all the layers to trainable mode.

In terms of extra dense layers, we added layers with 128 and 256 units to the end of the pre-trained
ViT model which was then trained on new data. In this experiment, adding additional layers to the
backbone embedding also decreased performance. Consequently, no extra dense layer was added to
the backbone. Furthermore, different optimizer functions were applied. According to the outcomes,
it was determined that the Adam optimizer provides the best promising results. All details of ablation
studies can be found in Tables[]and

5.6 GENERALIZATION AND ROBUSTNESS

To check how generalizable our proposed method is, we tested it on another dataset. Due to the
specific case study, there was no video of mosquitoes flying, so we used MosqutoFusion dataset
(Sayeedi et al.| |2024)), which contains images of mosquitoes. We concatenated every 5 images as a
short video to get utilizable in our proposed method. This dataset contains three classes including
mosquitoes, swarms, and breeding sites. We used mosquito and swarm classes which are linked to
our case study. Then, validation and test sets were integrated together to test the proposed method.
The results show that although these short videos do not represent the flying behavior of mosquitoes
because of the nature of MosquitoFusion dataset, our model is still able to classify videos by generat-
ing MDMs and two-stage prototypical networks. Furthermore, since we aim to test the performance
of the proposed model in noisy conditions, some normal noise with 0.1 noise factor was added to
videos of our proposed dataset. The results illustrate that the model has acceptable robustness to dis-
turbances. Consequently, our findings indicate that the model not only has the ability to generalize
to further datasets but also has acceptable robustness in noisy situations. A summary of the results
can be seen in Table
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Table 3: Performance of the proposed two-stage prototypical network using MDM prototypes.

Fold Accuracy (%) £ CI

1-Shot 5-Shot

1 69.72 +£1.53 86.73+0.79

2 53.40+1.39 66.12+1.14

3 57.00£1.15 83.47+0.99

4 70.00 £ 1.33  90.73 £0.72

5 97.13+£0.46 98.23 +0.33
Overall 69.85 85.86

Table 4: Performance of two-stage prototypical network after applying different hyperparameters.

Ablation Accuracy (%) £ CI
1-Shot 5-Shot

Normalization 58.12+01.13 5143 +£01.18
Data Augmentation 60.72 £ 01.53  69.68 £ 01.20
Frozen Backbone 50.0 £ 0.05 50.10+0.13
Extra Dense 128 52.00 £ 01.18 49.45 +£01.08
Extra Dense 256 4993 +01.21 48.02+01.09
Ours 69.72 £ 01.53  86.73 = 0.79

Table 5: Performance of the two-stage prototypical network with different optimizers.

Optimizer Accuracy (%) + CI
1-Shot 5-Shot
RMSprop 64.20+01.39  82.28 £0.94
SGD 67.97£01.34 7447 +01.15
Adam 69.72 £ 01.53  86.73 £ 0.79

Table 6: Performance of the two-stage prototypical network on other datasets.

Dataset Accuracy (%) £+ CI
1-Shot 5-Shot
MosquitoFusion Dataset  57.90 £01.32  60.87 £ 01.29
Noisy Dataset 67.87+01.41 76.17+01.01
Original Dataset 69.72 £ 01.53  86.73 +£0.79

6 CONCLUSION

In this study, we aim to address a straightforward yet often overlooked issue. Conventional Al
methods create a wrong embedding space when the behaviour of tiny objects in biomedical videos
is the goal of a classification. Our proposed methodology demonstrated that two-stage prototyping
for prototypical networks can effectively address this challenge. By turning mosquito movements
into MDMs, we created prototypes that are not only compact and biologically sensible but also
make a valid embedding space for few-shot classification. The two-stage prototyping we intro-
duced proved to be an effective way of aligning machine learning models with the actual biology of
infection-driven behaviour. Across our experiments, this design led to clear improvements in classi-
fication accuracy and produced more stable results compared to standard approaches. In summary,
our contribution offers both methodological novelty and practical potential, and we hope it will in-
spire further exploration at the intersection of biomedical research and advanced machine learning
techniques.
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A APPENDIX

Animal ethics and consent to participate declarations are not applicable for this research as it did
not involve humans or animals. The source code of the research is available via the link below:
https://github.com/csaiprojects-hub/Two-Stage-Prototypical-Networks-by-Movement-Density-
Maps
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