TWO-STAGE PROTOTYPICAL NETWORKS REVEAL MOSQUITO FLIGHT PATTERNS

Anonymous authors

000

001

002 003 004

006

008 009

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

029

031

033

037

040

041

042

043

044

045

047

048

051

052

Paper under double-blind review

ABSTRACT

Understanding behavioral movements in mosquitoes is fundamental for monitoring arbovirus transmission. Most existing Artificial Intelligence (AI) methods recognize tiny insects as background and fail to extract correct features from video frames. To address this issue, we propose a two-stage few-shot classification by Movement Density Map (MDM) prototyping. A novel approach that integrates object detection with two-stage prototype training to analyze and identify mosquito behavior from videos. In the first stage, mosquitoes are detected using a fine-tuned YOLO, achieving a maximum mean Average Precision (mAP50) of 97.8% after 100 training sessions. The detected areas with eliminated backgrounds are then aggregated into MDMs. This mechanism enables encoding hundreds of frames into a single spatiotemporal representation that reveals biologically meaningful flight patterns over time. The MDMs are then mapped into a Vision Transformer (ViT) embedding environment, where class-level prototypes are generated for few-shot classification under 1 and 5 exposures using prototypical networks. Results on datasets of dengue and Zika-carrier mosquitoes, as well as non-carrier ones, collected over 13 days and nights show that our approach significantly extracts more accurate features than a common single-stage prototypical network, leading to an overall performance accuracy of 85.86%. These findings reveal that two-stage prototyping is a reliable and scalable solution for analyzing tiny-object biological videos and holds promise for other spatiotemporal recognition tasks where motion aggregation is critical.

1 Introduction

Analyzing complex behavioral patterns in videos has recently become an important research frontier for machine learning based on AI. The challenges of this task become more apparent when the objects are very small, move chaotically, and occupy only a small portion of each frame. Identifying infected mosquitoes is an example of this challenge. Mosquitoes act as an acute function in the transmission of arboviruses, such as dengue and Zika, infecting millions of people worldwide each year (Bhatt et al., 2013; Achee et al., 2015; Kraemer et al., 2015; NODEN et al., 2015). Standard monitoring approaches, including morphological measurements, are unable to accurately capture behavioral changes in mosquitoes that result from viral infections. Biological research proposed that viruses can affect the neural activity and movement patterns of mosquitoes, causing movements in flight dynamics that cannot be observed and measured by standard approaches (Carvalho et al., 2015; Gaburro et al., 2018). This perspective advances the design of computational approaches that can transform raw movement data into meaningful indicators of infection status. Recent advances in computer vision have highlighted the key role of deep learning in automating several entomological tasks (Goodfellow et al., 2016). High-resolution imaging and Convolutional Neural Network (CNN)-based approaches have been applied to egg detection (Javed et al., 2023a), tracking and quantifying mosquito flight directions (Javed et al., 2023b), and species classification in intricate environments. For example, various types of Mask R-CNN have been able to identify objects with very high accuracy even in noisy environments. Also, systems based on convolutional neural networks, such as EggCountAI, have significantly outperformed traditional counting methods achieving high accuracy and scalability. These achievements show that machine vision technology is capable of extracting important and interpretable patterns from complex and noisy data. However, the use of these advances to distinguish between infected and control mosquitoes using behavioral videos remains

055

056

057

058

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

083

084

085

087

091

092

094 095

096

098

099

102 103

105

106

107

largely unknown. From a machine learning perspective, the main obstacle is the scale imbalance and background dominance of the data. Unlike still images, videos have spatiotemporal complexities and require representations that focus on movement patterns rather than reflecting background features. In typical mosquito videos, the insects occupy only a small portion of the image, while fixed elements such as the cage and background lighting conditions make up the majority of the pixels. CNNs typically absorb these unnecessary features, resulting in samples that reflect background variations rather than true, meaningful patterns of biological behavior. As a result, even advanced multi-stage algorithms achieve high accuracy without providing a valid model of mosquito behavior. This bias suggests that novel approaches should directly suppress background features while accurately preserving the spatiotemporal footprint of mosquito movements. Few-shot learning is an efficient and attractive approach when large, labeled datasets are not available. Prototype networks have become a cornerstone in this field by mapping data into a latent space and forming prototypes for each class (Snell et al., 2017). However, the standard architecture of these networks is based on the assumption that distinguishing features can be extracted from single frames or short clips. This assumption is rarely true for small object behavioral data. In fact, diagnostic clues are usually hidden in the long-term aggregation of motion paths across the entire video. This mismatch between the model's induced bias and the actual nature of the task severely limits the applicability of conventional few-shot learning methods to classify mosquito behavior. One promising approach is the use of density maps, a tool that has previously shown its effectiveness in diverse areas such as population counting (Zhang et al., 2016) and video-based density estimation (Hossain et al., 2020). The key idea of this approach is that compressing spatiotemporal activities into a density representation can remove noise while preserving the original motion patterns. Accordingly, we proposed using Movement Density Maps (MDM) as prototypes in the analysis of mosquito behavioral videos. By aggregating detection results over time and transforming them into Gaussian-smoothed heat maps, these maps summarize the overall distribution of insect movement paths and provide a compact yet interpretable descriptor of group-level behavior. Based on this approach, we propose a two-stage prototyping framework for video classification. In the first step, a set of YOLO detectors is used to identify the locations of mosquitoes and remove or mask unnecessary background parts (Diwan et al., 2022; Redmon et al., 2016; Shafiee et al., 2017). Then, the obtained coordinates are converted into density maps and, by averaging over the video, an MDM prototype is created that represents the overall behavioral pattern. In the second step, these prototypes are transferred to the embedding space through an attention-based transformer and then fed into prototyping networks to build prototypes at the class level. This design makes the induced bias of few-shot learning consistent with the biological realities of behavioral changes caused by infection; this means that the main importance lies not in the appearance of a single frame, but in the spatio-temporal pattern of movement as a whole. Our proposed framework has three main advantages over conventional approaches. First, by directly removing background segments, one of the main sources of bias in mosquito video analysis is eliminated. Second, by compressing hundreds of frames into a single MDM, temporal redundancy is reduced while meaningful behavioral trajectories are highlighted. Third, generating biologically interpretable prototypes enables multi-step generalization in situations where labeled data are limited. Importantly, our approach bridges two previously separate research areas: first, investigating the neurotropic effects of arboviruses on mosquito behavior (Carvalho et al., 2015; Gaburro et al., 2018) and second, learning density-based representations in machine vision (Hossain et al., 2020). In summary, the main achievements of this research can be summarized as follows:

- 1. Provide prototypes of MDM as an innovative and efficient representation method for tiny object video classification in biomedical fields.
- 2. Propose a two-stage sampling framework that integrates YOLO-based detection with density map compression and the use of sampling networks.
- Improve the accuracy of multi-stage classification between dengue and Zika virus-infected
 mosquitoes and control (non-infected mosquitoes) and surpass conventional single-stage
 approaches in terms of efficiency and feature correctness.
- 4. Demonstrate the generalizability of the introduced framework to other areas of small object video analysis, beyond the scope of entomology.

Relying on the integration of entomological knowledge and new machine learning technologies, these findings not only advance the level of multi-stage video classification but also provide a new perspective on the role of subtle behavioral changes as computational biomarkers.

2 RELATED WORKS

2.1 FEW-SHOT LEARNING WITH PROTOTYPICAL NETWORKS

Few-shot learning has been widely studied as an effective approach for classification in situations where training data is limited. Prototype networks, first introduced by (Snell et al., 2017), learn a metric space in which each class is represented by the average of its embedded support instances. In this approach, the classification process is performed by measuring the distance of new instances to the prototypes of each class. Their proposed approach achieved advanced results on the Omniglot and miniImageNet datasets, showing that a simple inductive bias can outperform more complex meta-learning models.

Another research, such as Matching Networks (Vinyals et al., 2016), Optimization-Based Metamodel Learning (Ravi & Larochelle, 2017), and Model-Independent Metamodel Learning (MAML) (Finn et al., 2017) have emphasized concepts such as episodic learning, gradient-based adaptation, and metric learning. These approaches are particularly important in the analysis of mosquito behavioral videos, where labeled data is very limited and learning stable representations from a small number of examples plays a key role in improving generalizability.

2.2 Density-Based Representations in Video Analysis

Density map-based representations have been successfully applied to tasks such as population counting and crowd density estimation. Early regression approaches attempted to model the overall count using artificial features (Bhatt et al., 2013; Lempitsky & Zisserman, 2010), but these methods were not robust enough in highly congested conditions.

In this regard, (Zhang et al., 2016) provided a multi-column convolutional neural network (MCNN) for population counting. This model generates density maps by combining input fields of different sizes, thus overcoming the scaling problem. They validated the method on the ShanghaiTech dataset (330,000 tagged heads) and showed that the density maps not only estimate the total number of individuals but also preserve their spatial distribution. They also managed perspective distortions better by using adaptive geometric kernels and adapted the MCNN to new domains with limited tagged data through transfer learning strategies. Such insights are also valuable for modeling mosquito flight paths, where motion scaling and overlaps pose similar challenges to human crowd images.

Since the introduction of the Multi-Column Convolutional Neural Network (MCNN), more advanced models have been proposed to improve the quality of density maps. For example, (Sam et al., 2017) introduced the Switch-CNN method, which better handles the scalability problem by dynamically routing and automatically selecting between specialized regressors. Also, (Sindagi & Patel, 2017) developed the Contextual Pyramid CNN, which combines local and global cues to produce more accurate and higher-quality density maps.

In addition, several fundamental approaches have paved the way for further developments. (Idrees et al., 2013) introduced multi-source and multi-scale features for counting in very dense crowds, while (Zhang et al., 2015) investigated the transfer of convolutional networks between different scenes for crowd analysis. Also, (Rodriguez et al., 2011) presented a hybrid model of detection and density estimation, and (Lempitsky & Zisserman, 2010) proposed a density regression approach based on dense SIFT features. These studies paved the way for more advanced models, including the Composition Loss framework presented by (Idrees et al., 2018) that simultaneously optimizes counting, density map estimation, and localization in dense crowds.

In addition, significant progress has been made in the video domain. For example, (Hossain et al., 2020) introduced a multiscale optical flow pyramidal network that achieved improved performance on video crowd datasets by combining spatiotemporal information with CNN-based density estimation. They showed that compressing movement cues into density maps increases the robustness of the model against obstruction and noise. Such insight is particularly valuable in the analysis of mosquito behavioral videos, where motion data plays a key role in recognizing behavioral patterns. Taken together, these studies demonstrate that density map-based representations are powerful tools for modeling aggregate movement patterns in the presence of obstruction and noise. This capability makes them directly valuable for analyzing the collective movement of mosquitoes and investigating the density of their flight paths over long timescales.

Figure 1: Two sample frames of recorded videos regarding non-infected mosquitoes in A) daytime and B) nighttime.

2.3 DEEP LEARNING IN ENTOMOLOGICAL VIDEO ANALYSIS

Recently, computer vision has also been applied to mosquito-related challenges. (Javed et al., 2023a) developed EggCountAI, a convolutional neural network-based system for counting Aedes aegypti eggs that achieved accuracy above 98%, even in conditions of overlapping or clustered eggs. This method performed better than traditional tools such as ICount (Gaburro et al., 2018) and MECVision (Kittichai et al., 2024), as well as older approaches based on image separation or wavelet transform (Wan Yussof et al., 2018).

In the area of behavioral studies, (Javed et al., 2023b) used convolutional neural networks to track the flight dynamics of mosquitoes and showed that deep models are able to capture subtle changes in spatiotemporal movements. Additionally, the use of extended versions of Mask R-CNN and spline interpolation methods enabled robust and long-term tracking of Aedes aegypti behavior in crowded environments.

Beyond purely image-based approaches, virological studies in entomology have shown that infection can directly affect mosquito movement. For example, (Gaburro et al., 2018) showed that the Zika virus alters neuronal activity in Aedes aegypti, causing hyperexcitability and abnormal locomotor activity. These findings reveal the interplay between pathogen-induced neural regulation and observable locomotor dynamics.

Collectively, these studies chart a path from static, traditional egg counting to dynamic approaches based on density maps and few-shot learning in mosquito monitoring. Using density-based localization frameworks (Zhang et al., 2016; Idrees et al., 2018), the future video analysis systems in entomology will be able to provide a stable, long-term, and infection-sensitive model of mosquito behavior.

3 Dataset

Data collection was conducted in a cubic cage containing 15 mosquitoes. A sugar-water source was provided inside the cage as nourishment. Recordings were obtained over a period of 1 to 13 days, encompassing both daytime and nighttime conditions. A camera was positioned in front of the cage to continuously capture the behavioural activities of the mosquitoes during these periods. Experiments were performed for non-vector mosquitoes as well as for dengue and Zika vectors. Accordingly, the resulting dataset is organized into six classes: dengue-infected (day/night), Zika-infected (day/night), and non-infected mosquitoes (day/night). Figure 1A illustrates representative frames recorded during daytime, while Figure 1B presents corresponding examples captured at night. As shown in Figure 1, environmental factors, particularly lighting variations between day and night, uneven illumination across the left and right sides of the cage, and the camera's diverse angle, may introduce a wrong embedding space, consequently affecting classification validity.

4 METHODOLOGY

In conventional few-shot learning, a one-stage prototyping approach has been proposed by Snell et al. (Snell et al., 2017), which is an effective technique for few-shot classification. However, in terms of classifying biomedical videos by the movement of tiny objects, neural networks extract features from video frame backgrounds that can create an incorrect embedding space for few-shot classification, particularly when the movement of tiny objects, such as insects, is the most substan-

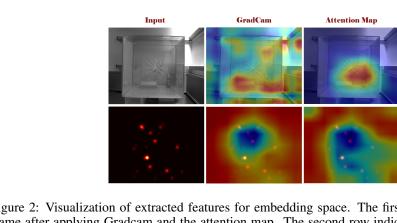


Figure 2: Visualization of extracted features for embedding space. The first row illustrates a raw frame after applying Gradcam and the attention map. The second row indicates a raw frame after making MDM and then applying Gradcam and the attention map.

tial hallmark for video classification. Under these circumstances, the embedding space contains incorrect features, and few-shot classification is therefore unreliable. To support the claim above, we have created an embedding space using both Vision Transformer and ResNet models. Then, we visualize the extracted features of the embedding space using explainable AI techniques, such as attention maps.

To tackle this challenge, we propose a novel few-shot classification pipeline called two-stage prototyping that can reliably extract the correct features from tiny insect videos and can be trained with a limited amount of data. The two-stage prototyping approach consists of two main steps for creating prototypes. In the first stage, insect movements are detected and captured by MDM prototypes. The second step involves producing and classifying prototypes for each class, as previously introduced as prototypical networks with upgraded embedding and loss functions. It should be noted that in this study, prototyping refers to passing tensors through a neural network or mathematical function and calculating their mean to produce the centroid of these tensors. The following is a description of how the two-stage prototyping is developed.

4.1 THE FIRST STAGE OF PROTOTYPING (MDM STRUCTURE):

Conventional embedding methods extract a myriad of features from video frame backgrounds while the classification target is recognizing mosquito behavior. Thus, we need to make sure that no features are extracted from the background to feed the embedding space in this step. To begin with, a few initial frames of a video are cut to annotate and fine-tune the YOLO model. Then, YOLO recognizes mosquitoes and specifies regions occupied by them with equation 1 (Redmon & Farhadi, 2018):

$$b_x = \sigma(t_x) + c_x$$

$$b_y = \sigma(t_y) + c_y$$

$$b_w = p_w e^{t_w}$$

$$b_h = p_h e^{t_h}$$
(1)

Following the detection of tiny objects in the video, all the background is set to zero (Equation equation 2) except for the pixel areas recognized by YOLO. In this way, the model conserves only the locations of mosquitoes in the video frames and eliminates the whole left background. Then, nonzero pixels are converted to adapted Gaussian pixels as calculated by equation 2 (Idrees et al., 2018) since it depicts the presence rate of mosquitoes during the video, which means their movements over time.

$$D(x, y, f(.)) = \sum_{i=1}^{n} \frac{1}{\sqrt{2\pi f(\sigma_i)}} \exp(-\frac{(x - x_i)^2 + (y - y_i)^2}{2f(\sigma_i)^2})$$
(2)

In the next stage, the mean tensor of density maps linked to whole frames of a single video is computed and constructed as a prototype, namely an MDM prototype (equation 3). Since the MDM

Figure 3: MDM creation procedure. The figure shows raw frames after applying object detection and background elimination, and then creating an MDM.

tensor reflects the whole insect movements during a video, it conserves all critical features of a long video, while it is not characterized by a video complexity to input into an embedding space followed by classification using prototypical networks.

$$M_I = \frac{1}{N} \sum_{I=1}^{N} D(x, y, f(.))$$
(3)

Zero-value pixels in an MDM prototype indicate that no insect passed through that region of the frames during the video. Intensities close to zero (not exactly zero) indicate that there were slight movements of insects during the video in those specific locations. The higher the brightness of the pixels in the MDM prototype, the more insects were present in that area of the frames during the video (Figure 3).

4.2 THE SECOND STAGE OF PROTOTYPING (UPGRADED PROTOTYPICAL NETWORKS):

As the second stage of prototype construction, firstly, MDM prototypes are encoded into an embedding space. The conventional few-shot learning approach proposed applying a common convolutional-based architecture to create an embedding space. In contrast, our methodology recommends utilizing transformer-based embedding known as ViT (Dosovitskiy et al., 2020). After generating an embedded space from MDMs using a pre-trained ViT (f_{ϕ}), prototype tensors for each class are created by calculating the mean of embedded tensors, as can be observed in Equation

$$C_k = \frac{1}{|S_K|} \sum_{(X_I, Y_I) \in S_K} f_{\phi}(M_I)$$
 (4)

By having a distance function and a loss function, the prototypical network can be trained over episodes. In the first introduction of prototypical networks, the softmax loss function was recommended over model training; however, we discovered that the categorical cross-entropy loss function leads to more promising outcomes. Therefore, our prototypical network employs a categorical cross-entropy loss function.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

In this paper, we used 5 separate folds to evaluate the proposed methodology. In each fold, we selected two classes out of 6 biomedical classes as the test set, two classes as the evaluation, and two classes for training. The folds were selected in such a way that all classes of the dataset were represented in different folds as test, evaluation, and training data. The evaluation criteria are accuracy and Confidence Interval (CI), and due to having such a balanced dataset, we ignored calculating precision, recall and F1-score. All evaluation criteria were selected according to the study of Snell et al (Snell et al., 2017). In this experiment, we used 1000 episodes for training and 600 episodes for testing. Due to the limitations of the specific mosquito flight video dataset and the number of classes, we were only able to use the 2-way mode for few-shot classification. Moreover, we examined the dataset in 1-shot and 5-shot modes.

3	24
3	25
3	26

Table 1: Different YOLO versions performance based on mAP50.

- F
mAP50 (%)
96.9
96.7
96.5
97.8

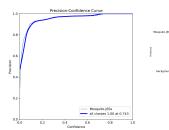


Figure 4: Precision-confidence figure and confusion matrix of YOLO

5.2 OBJECT DETECTION STAGE

In this work, the first object detection section is the first step in inputting effective features into the proposed model. In this stage, Sayeedi et al. (Sayeedi et al., 2024) used the YOLO model to detect objects in biomedical environments linked to mosquitoes. Therefore, in the object detection stage, we implemented various versions of YOLO and newer versions of YOLO. Our results demonstrated that YOLO 11M is able to detect mosquitoes with a 97.8% mAP50, effectively differentiating them from the background. Figure 4 indicates the images related to the accuracy graph of YOLO 11 and its confusion matrix. Also, other versions of YOLO implemented in this study are listed in Table 1.

5.3 EMBEDDING AND BASELINES

To ensure the superiority of the proposed method, we also compared this model with simple classifiers. The purpose of the implementation was to ensure that after the MDM creation and embedding space, the features obtained cannot be classified with a simple model and require a more complex model. Therefore, a linear baseline and a nearest neighbor classifier were implemented in the final classification stages. Additionally, the baseline method of Snell et al. uses Euclid distance and the Softmax loss function to train the model. In this study, we employed the categorical cross-entropy loss function and demonstrated that utilizing this loss function effectively enhances the learning capabilities of the proposed method. The results are presented in Figure 5.

In the baseline paper, a CNN was used to build the embedding space. Thus, we first used state-of-the-art pre-trained models, namely EfficientNet V2 (Tan & Le, 2021) and ResNet 101 V2 (He et al., 2016), and the ViT pre-trained model was also utilized. Then it was discovered that this model can extract more effective features from MDMs. Therefore, in the proposed method, the ViT model was used to construct an embedding space. Details can be seen in Table 2.

5.4 PROPOSED TWO-STAGE PROTOTYPICAL PERFORMANCE

Table 3 illustrates the model's performance across five folds. In the proposed two-stage prototypical network, training was executed in 1000 episodes, since training became consistent before 1000 episodes. Therefore, we hired checkpoints for validation loss check, to save the best model during the 1000 episodes. Additionally, we selected 600 episodes for testing according to baseline papers. The model was trained in 2-way classification with a query set of 5 and 1, 5 support sets. Due to the biological dataset limitation, we are unable to execute the model in 3-way, 5-way, etc.

Overall, the accuracy stayed high, with only moderate differences from one fold to another. Even though a few folds were slightly weaker, the general trend is clear: the model is able to pick up consistent patterns and hold its performance across different splits of the data. The relatively tight

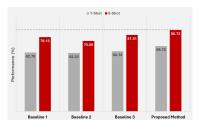


Figure 5: Baselines performances. Baseline 1: Prototypical network with linear classifier and cross-entropy. Baseline 2: Prototypical network with nearest neighbors and cross-entropy. Baseline 3: Prototypical network with Euclid distance and Softmax. Proposed Method: Prototypical network with Euclid distance and cross-entropy.

Table 2: Performance of different pre-trained models for embedding space.

Embedding	Accura	cy (%)	Trainin	g Time
	1-Shot	5-Shot	1-Shot (h:m:s)	5-Shot (h:m:s)
ResNet	58.58	68.50	1:18:29	1:19:15
Efficient Net	58.72	71.47	1:00:11	0:59:20
ViT	69.72	86.73	0:37:55	0:38:42

confidence intervals also give us confidence that these results are not just a fluke of a single run but reflect a stable underlying behavior of the model.

5.5 ABLATION STUDIES

First, MDMs were normalized and standardized. In both pre-processing procedures, the model encountered a severe performance decrement of 58.12% in best. Regarding data augmentation, we increased the number of MDMs before the embedding stage using image processing techniques, including left, right, up, and down shifts, as well as brightness changes. Therefore, we increased the MDM numbers by 5 times, and it was revealed that the data augmentation technique degraded performance. Then, we froze all the initial layers of the ViT model and allowed the model to be trained with only the last two layers. In this case, the model also experienced a severe performance of 50%. As a result, we set all the layers to trainable mode.

In terms of extra dense layers, we added layers with 128 and 256 units to the end of the pre-trained ViT model which was then trained on new data. In this experiment, adding additional layers to the backbone embedding also decreased performance. Consequently, no extra dense layer was added to the backbone. Furthermore, different optimizer functions were applied. According to the outcomes, it was determined that the Adam optimizer provides the best promising results. All details of ablation studies can be found in Tables 4 and 5.

5.6 GENERALIZATION AND ROBUSTNESS

To check how generalizable our proposed method is, we tested it on another dataset. Due to the specific case study, there was no video of mosquitoes flying, so we used MosqutoFusion dataset (Sayeedi et al., 2024), which contains images of mosquitoes. We concatenated every 5 images as a short video to get utilizable in our proposed method. This dataset contains three classes including mosquitoes, swarms, and breeding sites. We used mosquito and swarm classes which are linked to our case study. Then, validation and test sets were integrated together to test the proposed method. The results show that although these short videos do not represent the flying behavior of mosquitoes because of the nature of MosquitoFusion dataset, our model is still able to classify videos by generating MDMs and two-stage prototypical networks. Furthermore, since we aim to test the performance of the proposed model in noisy conditions, some normal noise with 0.1 noise factor was added to videos of our proposed dataset. The results illustrate that the model has acceptable robustness to disturbances. Consequently, our findings indicate that the model not only has the ability to generalize to further datasets but also has acceptable robustness in noisy situations. A summary of the results can be seen in Table 6.

Ablation

Table 3: Performance of the proposed two-stage prototypical network using MDM prototypes.

Fold	Accuracy (%) \pm CI		
	1-Shot	5-Shot	
1	69.72 ± 1.53	86.73 ± 0.79	
2	53.40 ± 1.39	66.12 ± 1.14	
3	57.00 ± 1.15	83.47 ± 0.99	
4	70.00 ± 1.33	90.73 ± 0.72	
5	97.13 ± 0.46	98.23 ± 0.33	
Overall	69.85	85.86	

Table 4: Performance of two-stage prototypical network after applying different hyperparameters.

Accuracy (%) \pm CI

	1-Shot	5-Shot
Normalization	58.12 ± 01.13	51.43 ± 01.18
Data Augmentation	60.72 ± 01.53	69.68 ± 01.20
Frozen Backbone	50.0 ± 0.05	50.10 ± 0.13
Extra Dense 128	52.00 ± 01.18	49.45 ± 01.08
Extra Dense 256	49.93 ± 01.21	48.02 ± 01.09
Ours	69.72 ± 01.53	86.73 ± 0.79

Table 5: Performance of the two-stage prototypical network with different optimizers.

Optimizer	Accuracy (%) ± CI		
	1-Shot	5-Shot	
RMSprop	64.20 ± 01.39	82.28 ± 0.94	
SGD	67.97 ± 01.34	74.47 ± 01.15	
Adam	69.72 ± 01.53	86.73 ± 0.79	

Table 6: Performance of the two-stage prototypical network on other datasets.

Dataset	Accuracy (%) \pm CI	
	1-Shot	5-Shot
MosquitoFusion Dataset	57.90 ± 01.32	60.87 ± 01.29
Noisy Dataset	67.87 ± 01.41	76.17 ± 01.01
Original Dataset	69.72 ± 01.53	86.73 ± 0.79

6 CONCLUSION

In this study, we aim to address a straightforward yet often overlooked issue. Conventional AI methods create a wrong embedding space when the behaviour of tiny objects in biomedical videos is the goal of a classification. Our proposed methodology demonstrated that two-stage prototyping for prototypical networks can effectively address this challenge. By turning mosquito movements into MDMs, we created prototypes that are not only compact and biologically sensible but also make a valid embedding space for few-shot classification. The two-stage prototyping we introduced proved to be an effective way of aligning machine learning models with the actual biology of infection-driven behaviour. Across our experiments, this design led to clear improvements in classification accuracy and produced more stable results compared to standard approaches. In summary, our contribution offers both methodological novelty and practical potential, and we hope it will inspire further exploration at the intersection of biomedical research and advanced machine learning techniques.

REFERENCES

Nicole L. Achee, Fred Gould, T. Alex Perkins, Robert C. Reiner, Amy C. Morrison, Scott A. Ritchie, Duane J. Gubler, Remy Teyssou, and Thomas W. Scott. A critical assessment of vector control

- for dengue prevention. *PLOS Neglected Tropical Diseases*, 9(5):e0003655, May 2015. ISSN 1935-2735. doi: 10.1371/journal.pntd.0003655.
 - Samir Bhatt, Peter W. Gething, Oliver J. Brady, Jane P. Messina, Andrew W. Farlow, Catherine L. Moyes, John M. Drake, John S. Brownstein, Anne G. Hoen, Osman Sankoh, Monica F. Myers, Dylan B. George, Thomas Jaenisch, G. R. William Wint, Cameron P. Simmons, Thomas W. Scott, Jeremy J. Farrar, and Simon I. Hay. The global distribution and burden of dengue. *Nature*, 496 (7446):504–507, 2013. ISSN 1476-4687. doi: 10.1038/nature12060.
 - Danilo O. Carvalho, Andrew R. McKemey, Luiza Garziera, Renaud Lacroix, Christl A. Donnelly, Luke Alphey, Aldo Malavasi, and Margareth L. Capurro. Suppression of a field population of aedes aegypti in brazil by sustained release of transgenic male mosquitoes. *PLOS Neglected Tropical Diseases*, 9(7):e0003864, July 2015. ISSN 1935-2735. doi: 10.1371/journal.pntd.0003864.
 - Tausif Diwan, G. Anirudh, and Jitendra V. Tembhurne. Object detection using yolo: challenges, architectural successors, datasets and applications. *Multimedia Tools and Applications*, 82(6): 9243–9275, August 2022. ISSN 1573-7721. doi: 10.1007/s11042-022-13644-y.
 - Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
 - Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1126–1135. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/finn17a.html.
 - Julie Gaburro, Asim Bhatti, Jenni Harper, Isabelle Jeanne, Megan Dearnley, Diane Green, Saeid Nahavandi, Prasad N. Paradkar, and Jean-Bernard Duchemin. Neurotropism and behavioral changes associated with zika infection in the vector aedes aegypti. *Emerging Microbes & amp; Infections*, 7(1):1–11, April 2018. ISSN 2222-1751. doi: 10.1038/s41426-018-0069-2.
 - Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1. MIT press Cambridge, 2016.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. *Identity Mappings in Deep Residual Networks*, pp. 630–645. Springer International Publishing, 2016. ISBN 9783319464930. doi: 10.1007/978-3-319-46493-0_38.
 - Mohammad Asiful Hossain, Kevin Cannons, Daesik Jang, Fabio Cuzzolin, and Zhan Xu. Videobased crowd counting using a multi-scale optical flow pyramid network. In *Proceedings of the Asian Conference on Computer Vision (ACCV)*, November 2020.
 - Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak Shah. Multi-source multi-scale counting in extremely dense crowd images. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2013.
 - Haroon Idrees, Muhmmad Tayyab, Kishan Athrey, Dong Zhang, Somaya Al-Maadeed, Nasir Rajpoot, and Mubarak Shah. Composition loss for counting, density map estimation and localization in dense crowds. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018.
 - Nouman Javed, Adam J. López-Denman, Prasad N. Paradkar, and Asim Bhatti. Eggcountai: a convolutional neural network-based software for counting of aedes aegypti mosquito eggs. *Parasites & amp; Vectors*, 16(1), October 2023a. ISSN 1756-3305. doi: 10.1186/s13071-023-05956-1.
 - Nouman Javed, Prasad N. Paradkar, and Asim Bhatti. Flight behaviour monitoring and quantification of aedes aegypti using convolution neural network. *PLOS ONE*, 18(7):e0284819, July 2023b. ISSN 1932-6203. doi: 10.1371/journal.pone.0284819.

Veerayuth Kittichai, Morakot Kaewthamasorn, Tanawat Chaiphongpachara, Sedthapong Laojun, Tawee Saiwichai, Kaung Myat Naing, Teerawat Tongloy, Siridech Boonsang, and Santhad Chuwongin. Enhance fashion classification of mosquito vector species via self-supervised vision transformer. *Scientific Reports*, 14(1), December 2024. ISSN 2045-2322. doi: 10.1038/s41598-024-83358-8.

- Moritz UG Kraemer, Marianne E Sinka, Kirsten A Duda, Adrian QN Mylne, Freya M Shearer, Christopher M Barker, Chester G Moore, Roberta G Carvalho, Giovanini E Coelho, Wim Van Bortel, Guy Hendrickx, Francis Schaffner, Iqbal RF Elyazar, Hwa-Jen Teng, Oliver J Brady, Jane P Messina, David M Pigott, Thomas W Scott, David L Smith, GR William Wint, Nick Golding, and Simon I Hay. The global distribution of the arbovirus vectors aedes aegypti and ae. albopictus. *eLife*, 4, June 2015. ISSN 2050-084X. doi: 10.7554/elife.08347.
- Victor Lempitsky and Andrew Zisserman. Learning to count objects in images. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/fe73f687e5bc5280214e0486b273a5f9-Paper.pdf.
- BRUCE H. NODEN, PAUL A. O'NEAL, JOSEPH E. FADER, and STEVEN A. JULIANO. Impact of inter- and intra-specific competition among larvae on larval, adult, and life-table traits of aedes aegypti and aedes albopictus females. *Ecological Entomology*, 41(2):192–200, December 2015. ISSN 1365-2311. doi: 10.1111/een.12290.
- Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In *International conference on learning representations*, 2017.
- Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.
- Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.
- Mikel Rodriguez, Ivan Laptev, Josef Sivic, and Jean-Yves Audibert. Density-aware person detection and tracking in crowds. In *2011 International Conference on Computer Vision*, pp. 2423–2430, 2011. doi: 10.1109/ICCV.2011.6126526.
- Deepak Babu Sam, Shiv Surya, and R. Venkatesh Babu. Switching convolutional neural network for crowd counting. In *2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4031–4039, 2017. doi: 10.1109/CVPR.2017.429.
- Md. Faiyaz Abdullah Sayeedi, Fahim Hafiz, and Md Ashiqur Rahman. Mosquitofusion: A multiclass dataset for real-time detection of mosquitoes, swarms, and breeding sites using deep learning, 2024.
- Mohammad Javad Shafiee, Brendan Chywl, Francis Li, and Alexander Wong. Fast yolo: A fast you only look once system for real-time embedded object detection in video, 2017.
- Vishwanath A. Sindagi and Vishal M. Patel. Generating high-quality crowd density maps using contextual pyramid cnns. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf.
- Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 10096–10106. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/tan21a.html.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, koray kavukcuoglu, and Daan Wierstra. Matching networks for one shot learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf.

Wan Nural Jawahir Hj Wan Yussof, Mustafa Man, Muhammad Suzuri Hitam, Abdul Aziz K. Abdul Hamid, Ezmamarul Afreen Awalludin, and Wan Aezwani Wan Abu Bakar. Wavelet-based autocounting tool of aedes eggs. In *Proceedings of the 2018 International Conference on Sensors, Signal and Image Processing*, SSIP '18, pp. 56–59, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450366205. doi: 10.1145/3290589.3290594. URL https://doi.org/10.1145/3290589.3290594.

Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene crowd counting via deep convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2015.

Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd counting via multi-column convolutional neural network. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016.

A APPENDIX

 Animal ethics and consent to participate declarations are not applicable for this research as it did not involve humans or animals. The source code of the research is available via the link below: https://github.com/csaiprojects-hub/Two-Stage-Prototypical-Networks-by-Movement-Density-Maps