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ABSTRACT

The lottery ticket hypothesis (LTH) posits the existence of a sparse network (a.k.a.
winning ticket) that can generalize comparably to its dense counterpart after training
from initialization. However, early works fail to generalize its observation and
method to large-scale settings. While recent methods, such as weight rewinding
or learning rate rewinding (LRR), may have found effective pruning methods, we
note that they still struggle with identifying a winning ticket. In this paper, we
take a step closer to finding a winning ticket by arguing that a signed mask, a
binary mask with parameter sign information, can transfer the capability to achieve
strong generalization after training (i.e., generalization potential) to a randomly
initialized network. We first share our observation on the subnetwork trained by
LRR: if the parameter signs are maintained, the LRR-driven subnetwork retains
its generalization potential even when the parameter magnitudes are randomly
initialized, excluding those of normalization layers. However, this fails when the
magnitudes of normalization layer parameters are initialized together. To tackle
the significant influence of normalization layer parameters, we propose AWS, a
slight variation of LRR to find A Winning Sign. Specifically, we encourage low
error barriers along the linear path connecting the subnetwork trained by AWS
to its counterpart with initialized normalization layer parameters, maintaining the
generalization potential even when all parameters are initialized. Interestingly,
we observe that across various architectures and datasets, a signed mask of the
AWS-driven subnetwork can allow a randomly initialized network to perform
comparably to a dense network, taking a step closer to the goal of LTH.

1 INTRODUCTION

In the field of deep learning, over-parameterization has been viewed as a key to enhancing network
capacity and thus achieving better generalization (Neyshabur et al., 2019; Belkin et al., 2019). It is
well known that after training an over-parameterized dense network, many redundant parameters
arise that can be removed without affecting performance, using network pruning techniques (Liu
et al., 2017; Lin et al., 2020; Li et al., 2020). However, pruning an initialized dense network before
training often leads to a sparse network that is difficult to optimize and fails to match the original
generalization (Li et al., 2017; Evci et al., 2022). Is there a sparse subnetwork (i.e., a winning
lottery ticket) that can achieve generalization comparable to its dense counterpart when trained from
initialization? This challenging research question, posed by Frankle & Carbin (2019) as the lottery
ticket hypothesis (LTH), has garnered significant attention and inspired many follow-up studies.

Iterative magnitude pruning (Frankle & Carbin, 2019) (IMP) is the representative method to identify
a winning ticket through iterating three phases: training, pruning, and rewinding. Many researchers
have sought to understand how IMP finds a winning ticket. Among several insightful findings,
perspectives from the loss landscape have provided valuable insights. Frankle et al. (2020a); Evci
et al. (2022); Paul et al. (2023) found that IMP can find a winning ticket only when the network
obtained after the training phase maintains its basin of attraction after the pruning and rewinding
phases, thereby preserving strong generalization potential (i.e., generalization capability after training)
in subsequent iterations. Since this condition is difficult to satisfy in relatively large-scale settings
when rewinding parameters to initialization, variants of IMP bypass the challenges by either rewinding
to warm-up trained parameters (weight rewinding) (Frankle et al., 2020a) or skipping the rewinding
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Figure 1: Illustration of our motivation and method. ψ and ϕ denote network parameters of
normalization layers and parameters excluding those of normalization layers, respectively. The ‘LMC
region’ refers to a region of solutions that are linearly mode-connected to the LRR or AWS solution.

phase (learning rate rewinding) (Renda et al., 2020). Although they found a subnetwork that performs
comparably to a dense network after training, it is not at initialization, and thus not a winning ticket.

In this paper, we empirically show that an effective signed mask, a sparse mask with parameter sign
information, is key to satisfying the challenging condition for finding a winning ticket. Specifically,
we leverage learning rate rewinding (LRR) for its ability to find effective parameter sign and sparsity
configuration (Gadhikar & Burkholz, 2024). Then, with a slight modification to LRR, we demonstrate
that if parameter signs are preserved, the subnetwork obtained through our LRR variant remains
within its basin of attraction even after randomly initializing its parameter magnitudes. This implies
that the generalization potential of the subnetwork can be transferred to a randomly initialized network
via the signed mask, possibly allowing it to generalize comparably to the dense network after training.

We observe that the original LRR fails to achieve this. As illustrated on the left side of Figure 1, the
LRR subnetwork leaves its basin after randomly initializing parameter magnitudes while maintaining
their signs, as indicated by the red ball and the high error barrier between the yellow and red ball,
similar to the finding by Frankle et al. (2020b). However, we argue that this failure is attributed
to the significant influence of normalization layer parameters when initializing their magnitudes.
Interestingly, we observe that when we exclude the normalization layer parameters from initialization,
maintaining the parameter signs allows the LRR subnetwork to remain in the same basin even after
randomly initializing the other parameter magnitudes. This results in convergence to a solution with
low error barrier along the linear path connecting it to the LRR solution (i.e., linearly mode-connected
to the LRR solution), as indicated by the green ball moving towards the blue ball on the orange line
region. These results indicate that when the signed mask and normalization layer parameters of the
LRR subnetwork are transferred to a randomly initialized network, the resulting network can inherit
the generalization potential of the LRR subnetwork.

To take a step closer to finding a winning ticket, we eliminate the need for trained normalization
parameters by tackling the adverse influence of initializing normalization layer parameters. To this
end, we propose AWS, a slight variation of LRR to find A Winning Sign, that prevents high error
barriers along the linear path connecting the subnetwork trained by AWS to its counterpart with
initialized normalization parameters. Specifically, at every network forward pass, AWS randomly
and linearly interpolates the current normalization layer parameters with the initialized ones and
uses the interpolated ones for training. As illustrated in the right side of Figure 1, we argue that the
AWS subnetwork remains within its basin even after randomly initializing all parameter magnitudes
while preserving their signs, as indicated by the low error barrier between the yellow and red ball.
This leads the resulting network to converge to a solution that is linearly mode-connected to the
AWS solution, whose performance is likely comparable to that of the dense network, indicated by
the gray dotted line. Experimental results across various architectures and datasets demonstrate
that transferring the signed mask of the AWS subnetwork allows a randomly initialized network to
generalize comparably to the AWS solution after training, bringing us closer to the goal of LTH.
We summarize the contributions of our work as follows:

• We observe that a randomly initialized network can inherit the generalization potential of
the LRR subnetwork through its signed mask and the normalization layer parameters.

• We propose AWS that eliminates the need for trained normalization parameters by prevent-
ing high error barriers between the AWS subnetwork and its counterpart with initialized
normalization parameters.

• In contrast to existing methods that are limited to finding a winning ticket with predeter-
mined initialization, we show that the signed mask acquired from AWS allows a randomly
initialized network to generalize comparably to a dense network after training.
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2 RELATED WORKS

Lottery Ticket Hypothesis (LTH). Frankle & Carbin (2019) propose LTH which states that within a
dense network, there exists a sparse subnetwork that, when trained from initialization, can achieve
performance comparable to the dense counterpart. To find such a winning lottery ticket, the authors
proposed iterative magnitude pruning (IMP) and demonstrated that IMP successfully finds a winning
ticket in a relatively small-scale setting. Follow-up works have delved into a broad range of topics
related to LTH, such as theoretical support for the existence of the winning ticket (Malach et al.,
2020; Orseau et al., 2020; Burkholz, 2022; da Cunha et al., 2022), efficient alternatives to IMP (You
et al., 2020), searching for a winning ticket without weight training (Chen et al., 2022; Sreenivasan
et al., 2022; Koster et al., 2022), and empirical analyses on winning ticket (Zhou et al., 2019; Frankle
et al., 2020a; Ma et al., 2021; Sakamoto & Sato, 2022; Evci et al., 2022; Paul et al., 2023).

Insights into a Winning Ticket. One of the most important topics is investigating what makes
a sparse network win the lottery. Frankle et al. (2020a) introduced the notion of mode connectiv-
ity (Freeman & Bruna, 2017; Nguyen, 2019; Draxler et al., 2018; Garipov et al., 2018; Lubana et al.,
2023) into LTH to investigate the conditions under which IMP finds a winning ticket. They consider a
network stable to SGD noise if, under different SGD randomness, it converges to a region of solutions
that exhibit low error barriers along the linear path connecting them. Based on this definition, they
demonstrated that IMP succeeds only when the rewound network is stable to SGD noise. Evci
et al. (2022) found that a winning ticket can be found only when it resides in the same basin as the
pruning solution used to obtain the pruning mask. Paul et al. (2023) demonstrated that a pruning mask
obtained in an IMP iteration guides the subsequent pruning solution to be linearly mode-connected
to the previous IMP solution, leading the consecutive pruning solutions to be piece-wise linearly
mode-connected. In summary, these findings suggest that IMP can identify a winning ticket only
when the network obtained from the training phase remains within its basin of attraction after the
pruning and rewinding phases, thereby preserving the generalization of the original dense network
during all iterations. Variants of IMP, such as weight rewinding (Frankle et al., 2020a) and learning
rate rewinding (Renda et al., 2020), bypass this challenging condition by finding an effective sparse
network with trained parameters rather than initialized ones, failing to find a winning ticket.

Significance of Parameter Signs in LTH. Recently, several works reported the importance of
parameter signs from the perspective of representation capacity Wang et al. (2023a;b). Zhou et al.
(2019) are the first to discover the role of parameter signs in the context of LTH. They empirically
showed that in the parameter rewinding stage of IMP, rewinding parameter signs has a greater impact
on the performance than the magnitudes. By contrast, Frankle et al. (2020b) showed that transferring
the signed mask obtained by IMP to the original initialization performs worse than transferring them
along with the respective magnitudes. Gadhikar & Burkholz (2024) demonstrated that IMP can fail
to find a winning ticket because it loses crucial sign information during parameter rewinding and
struggles to learn an effective sign configuration again due to reduced network capacity. They claimed
that learning rate rewinding (Renda et al., 2020) (LRR), on the other hand, identifies more performant
sparse networks by finding and maintaining the effective sign configuration during training.

We observe that the ineffectiveness of transferring parameter signs to an initialized network, as noted
in Frankle et al. (2020b), is due to the adverse effect of initializing the normalization layer parameters.
To address this issue, we propose a slight variant of LRR and demonstrate that the challenging
conditions for finding a winning ticket suggested by Frankle et al. (2020a); Evci et al. (2022); Paul
et al. (2023) can be satisfied using the effective signed mask acquired by our LRR variant.

3 METHOD

3.1 NOTATIONS AND BACKGROUND

Lottery Ticket Hypothesis. Let θ ∈ Rd denote the parameters of a neural network. We use θ
to also represent the neural network parameterized by θ. Consider a binary mask m ∈ {0, 1}d,
having the same shape as θ. Note that the mask values for parameters not targeted for pruning,
such as biases, are fixed to be 1. Then, the mask m defines a sparse subnetwork of the original
dense network as θ ⊙m. The lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019) posits the
existence of a mask with non-trivial sparsity (i.e.

∑
i mi ≪ d) that allows θinit ⊙m, where θinit

represents initialized parameters, to perform comparably to the dense network after training. Such
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a sparse network at initialization is referred to as a winning ticket. Iterative magnitude pruning
(IMP) (Frankle & Carbin, 2019) was suggested as a way to find the winning ticket through iterative
training → pruning → rewinding procedures. Let A(θ, u) represent an SGD learning
algorithm with an initialized learning rate scheduler that updates θ until convergence using SGD
randomness u ∼ U (e.g. randomness from a data loader or data augmentations). We omit u from
A(θ, u) if unnecessary. At training phase of the t-th iteration, IMP trains the masked initial
parameters, obtaining θIMP

t ⊙mIMP
t−1 = A(θIMP

0 ⊙mIMP
t−1), wheremIMP

t−1 denotes the mask obtained
from the (t − 1)-th iteration. At pruning phase, IMP produces the t-th mask by removing a
portion of the non-zero weights in θIMP

t ⊙mIMP
t−1 (commonly 20%) with the smallest magnitudes:

mIMP
t = prune(θIMP

t ⊙mIMP
t−1). At rewinding phase, θIMP

t is rewound to the initial parameters,
θIMP
0 , and the entire process is repeated until t = T . Finally, IMP produces θIMP

0 ⊙mIMP
T , referred

to as the IMP subnetwork, and after training the IMP subnetwork, IMP obtains A(θIMP
0 ⊙mIMP

T ),
referred to as the IMP solution.

Variants of IMP. Several variants of IMP have been proposed to address the failure of IMP in
generalizing to more challenging settings, especially focusing on the rewinding phase. Based
on the analysis of stability to SGD noise, Frankle et al. (2020a) proposed weight rewinding (WR)
that rewinds θIMP

t to the warm-up trained parameters rather than to θIMP
0 . Learning rate rewinding

(LRR) Renda et al. (2020) is another variant of IMP that skips parameter rewinding and instead
rewinds only the learning rate schedule. At the training phase of the t-th iteration, LRR trains
θLRR
t−1 ⊙mLRR

t−1 , obtaining θLRR
t ⊙mLRR

t−1 = A(θLRR
t−1 ⊙mLRR

t−1), where mLRR
t−1 represents the mask

obtained from the (t − 1)-th iteration. After obtaining mLRR
t = prune(θLRR

t ⊙mLRR
t−1) at the

pruning phase, LRR skips the rewinding phase and continues the subsequent iterations until
t = T . Finally, LRR produces θLRR

T ⊙mLRR
T , referred to as the LRR subnetwork, and after training

the LRR subnetwork, LRR obtains A(θLRR
T ⊙mLRR

T ), referred to as the LRR solution.

Linear Mode Connectivity and Stability to SGD noise. Linear mode connectivity and stability to
SGD noise have been adopted as useful tools for analyzing winning tickets (Frankle et al., 2020a;
Evci et al., 2022; Paul et al., 2023). Let E(θ) denote the test error of θ. We define the error barrier
between two parameters, θ and θ′, when interpolating them by a factor of α as the difference between
the error of the interpolated network and the mean error:

Eα(θ,θ′) = E(αθ + (1− α)θ′)− (E(θ) + E(θ′))/2. (1)

Then, we define E(θ,θ′) = supα Eα(θ,θ′). If E(θ,θ′) is smaller than a sufficiently small value ϵ,
we consider θ and θ′ to be linearly mode-connected (LMC). ϵ is often determined empirically such
as the standard deviation of errors of a dense network across different training seeds (Paul et al.,
2023). Based on the definition of LMC, we define the stability to SGD noise as the condition where
a pair of networks are LMC when trained from the same initial parameters but with different SGD
randomness (Frankle et al., 2020a). Formally, θ is considered stable to SGD noise if A(θ, u) and
A(θ, u′) are LMC with u, u′ ∼ U .

As demonstrated by previous works (Frankle et al., 2020a; Evci et al., 2022; Paul et al., 2023),
IMP can identify a winning ticket only when at the t-th iteration, θIMP

0 ⊙mIMP
t−1 still resides in the

basin of attraction of the (t− 1)-th solution, θIMP
t−1 ⊙mIMP

t−2, even after updatingmIMP
t−2 tomIMP

t−1 and
rewinding θIMP

t−1 to θIMP
0 . Paul et al. (2023) claim that if this condition is satisfied at every iteration, the

consecutive solutions after the training phase are piece-wise LMC, allowing the final IMP solution to
generalize comparably to the dense network. To examine this condition, previous works investigate
whether a rewound network is stable to SGD noise and converges to a solution with linear mode
connectivity to the network before the rewinding and pruning phases. WR and LRR satisfy the
challenging condition by rewinding to warm-up trained parameters or skipping the rewinding
phase. In contrast, we aim to transfer the strong generalization potential to a randomly initialized
network through an effective signed mask, progressing toward the goal of LTH.

3.2 MOTIVATION

Gadhikar & Burkholz (2024) demonstrated that learning rate rewinding (LRR) successfully main-
tains the performance of dense networks by learning and maintaining an effective parameter sign
configuration while pruning unimportant parameters, which iterative magnitude pruning (IMP) and
weight rewinding (WR) fail. Several other works (Zhou et al., 2019; Frankle et al., 2020b; Chen et al.,
2022; Sreenivasan et al., 2022; Koster et al., 2022; Wang et al., 2023b;a) also found the importance

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Test accuracy

(b) Stability to SGD-noise

(c) Linear mode connectivity with A([ϕLRR
T ,ψLRR

T ]⊙mLRR
T , u)

Figure 2: Motivational experiments on CIFAR-100. We investigate the effect of parameter
initialization in the LRR subnetwork while preserving their signs with respect to (a) test accuracy,
(b) SGD-noise stability, and (c) linear mode connectivity with the LRR subnetwork. In (b) and
(c), we use a pruned network with a remaining parameter ratio of approximately 0.06. We show the
mean (each point) and standard deviation (shaded area) across 3 trials.

of parameter signs in the context of the lottery ticket hypothesis or representation learning. In this
work, motivated by these studies, we hypothesize that the parameter sign information obtained
through LRR can transfer the generalization potential of the LRR subnetwork to a randomly
initialized network. Let sign0(·) denote a function that outputs the sign of each input element if
it is non-zero, and 0 otherwise. Then, sLRR

T = sign0(θ
LRR
T ⊙mLRR

T ) represents the signed mask of
the LRR subnetwork. More specifically, our hypothesis states that applying sLRR

T to a randomly
initialized network, θinit, will enable the resulting network to match the performance of the LRR
solution after training: A(abs(θinit)⊙ sLRR

T ) ≈ A(θLRR
T ⊙mLRR

T ) where abs(·) and θinit denote the
modulus function and a randomly initialized network, respectively.

A similar idea was studied by Frankle et al. (2020b). They showed that replacing the signs of initialized
parameters with those of the IMP subnetwork does not improve performance compared to using
magnitude information in conjunction. We point out that this failure is attributed to ignoring the impact
of parameters that may rely more on magnitudes than their signs. In the case of weight parameters,
such as the weights in a convolutional layer, the sign configuration has a critical role in determining
the functional mechanism of the layer as discussed in Wang et al. (2023b;a); Gadhikar & Burkholz
(2024). By contrast, for parameters in a normalization layer, such as the batch normalization (Ioffe &
Szegedy, 2015) or layer normalization (Ba et al., 2016), the magnitude may be much more important
than the sign since the weight parameter, initialized to 1, is nearly always positive after training, and
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Algorithm 1 AWS: a slight modification to LRR to find a winning sign. The modification is highlighted in red.

Require: Initialize ϕ0, ψ0, andm0 ← (1, . . . , 1) ∈ Rd

1: for t = 1 to T do
2: while not converge do
3: (ψt−1,ψinit)α = α ·ψt−1 + (1− α) ·ψinit where α ∼ U(0, 1) ▷ Interpolating ψt−1 and ψinit
4: Forward pass using [ϕt−1, (ψt−1,ψinit)α]⊙mt−1 ▷ Forward pass with the interpolated parameters
5: Update ϕt−1 and ψt−1 via gradient descent
6: end while
7: ϕt ← ϕt−1 and ψt ← ψt−1

8: mt ← prune([ϕt,ψt]⊙mt−1) ▷ Update the sparse mask
9: Rewind learning rate scheduler

10: end for
11: return sign0([ϕT ,ψT ]⊙mT ) ▷ Obtain the signed mask

the bias parameter loses the replaced signs since it is initialized to 0. We also observe that transferring
the signs of parameters of normalization layers is not beneficial as analyzed in Appendix A.

Letϕ andψ denote the parameters excluding those of normalization layers and those of normalization
layers, respectively. Then, we represent a randomly initialized network and the LRR subnetwork
as θinit = [ϕinit,ψinit] and θLRR

T = [ϕLRR
T ,ψLRR

T ], respectively. To test our conjecture, we com-
pare two cases: in the LRR subnetwork, randomly initializing the magnitudes of both ϕLRR

T and
ψLRR

T versus only ϕLRR
T while maintaining the signed mask (i.e. A(abs([ϕinit,ψinit]) ⊙ sLRR

T ) vs.
A(abs([ϕinit,ψ

LRR
T ])⊙ sLRR

T )). Figure 2 shows the results on CIFAR-100 with various architectures.
For details on the experiments, please refer to Section 4.1. Figure 2a shows that similar to the results
in Frankle et al. (2020b), preserving the signed mask while initializing the magnitudes of all parame-
ters randomly (indicated by the orange plots) results in performance similar to the case where sign
information is not used (indicated by the purple plots), lagging far behind the performance of the LRR
solution (indicated by the blue plots). This result indicates that sign information is not beneficial when
the magnitudes of all parameters are randomly initialized. On the other hand, interestingly, when
the parameters of normalization layers are kept intact (indicated by the red plots), the performance
is comparable to the LRR solution after training, indicating that using the sign information of the
LRR subnetwork is beneficial when excluding the influence of initializing the normalization layer
parameters. To examine whether the resulting networks reside in the basin of attraction of the LRR
subnetwork, we analyze their stability to SGD noise and linear mode connectivity with the LRR
subnetwork. Figure 2b demonstrates that while randomly initializing the magnitudes of all parameters
significantly ruins the stability of the LRR subnetwork (indicated by the orange plots), it is effectively
preserved when ignoring the adverse influence of initializing the normalization layer parameters
(indicated by the green plots). As shown in Figure 2c, we also observe that the preserved stability,
in turn, leads the resulting network, abs([ϕinit,ψ

LRR
T ])⊙ sLRR

T , to converge to a solution with a low
error barrier along the linear path connecting it to the LRR solution (indicated by the green plots),
possibly suggesting linear mode connectivity between the two. This contrasts with the high error
barrier observed when initializing all parameter magnitudes (indicated by the orange plots).

The left side of Figure 1 summarizes the observations from our motivational experiments:

• In the LRR subnetwork, randomly initializing the magnitude of all parameters while pre-
serving their signs causes the resulting network to lose SGD noise stability of the LRR
subnetwork, potentially leading to a suboptimal solution, as indicated by the red ball.

• On the other hand, when the normalization layer parameters are kept intact, the resulting
network, abs([ϕinit,ψ

LRR
T ])⊙sLRR

T , exhibits significant stability to SGD noise and converges
to a solution with a low error barrier along the linear path connecting it to the LRR solution,
resulting in A(abs([ϕinit,ψ

LRR
T ])⊙ sLRR

T ) ≈ A([ϕLRR
T ,ψLRR

T ]⊙mLRR
T ), as indicated by the

green ball.

Our observations demonstrate that when the parameter signs are preserved, the LRR subnetwork stays
within its basin of attraction even after randomly initializing the other parameters, excluding those of
normalization layers. In other words, a randomly initialized network can inherit the generalization
potential of the LRR subnetwork through the signed mask and normalization layer parameters of the
LRR subnetwork.
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3.3 AWS: FINDING A WINNING SIGN

Our observations provide valuable insights into the role of the signed mask in transferring strong
generalization potential to a randomly initialized network. However, the need for the trained normal-
ization parameters still limits LRR in achieving the goal of LTH. In this subsection, we introduce a
method that addresses the adverse impact of initializing the normalization layer parameters to further
progress toward the goal of LTH. Our goal is to maintain the basin of attraction in which the LRR
subnetwork resides when the normalization layer parameters are initialized. Two networks residing
in the same basin may indicate that no high error barrier exists along the linear path connecting
them (Evci et al., 2022). Thus, we propose a simple variation of LRR to find a winning sign, referred
to as AWS, that prevents any high error barriers along the linear path connecting the LRR subnetwork
and its counterpart with initialized normalization parameters. Specifically, AWS randomly and
linearly interpolates the parameters of normalization layers with their initialization and uses the
interpolated parameters instead of the original parameters. Formally, at every network forward pass
during the t-th iteration, AWS obtains

(ψAWS
t ,ψinit)α = α ·ψAWS

t + (1− α) ·ψinit, (2)
where ψAWS

t denotes the parameters of normalization layers during the t-th iteration of AWS and
α ∼ U(0, 1). Then, AWS uses (ψAWS

t ,ψinit)α instead of ψAWS
t for network forwarding. We present

the pseudo-code of AWS in Algorithm 1, omitting the superscript ‘AWS’ for simplicity. After
all iterations, we transfer the resulting signed mask, sAWS

T , to a random initialization, obtaining
abs([ϕinit,ψinit])⊙ sAWS

T , and train it using normal training set-up until convergence.

The right side of Figure 1 shows the conceptual illustration of AWS. In contrast to LRR, AWS can
allow a randomly initialized network (indicated by the red ball) to lie in the basin of attraction of the
AWS subnetwork through the learned signed mask, sAWS

T , possibly leading it to converge to a solution
that is linearly mode-connected to the AWS solution (indicated by the blue ball). Thus, we argue that
sAWS
T can transfer the generalization potential of the AWS subnetwork to a randomly initialized

network, possibly resulting in performance comparable to a dense network after training.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets and models. Following the previous works (Ma et al., 2021; Gadhikar & Burkholz, 2024),
we conduct experiments on CIFAR-100 (Krizhevsky & Hinton, 2009), Tiny-ImageNet (Le & Yang,
2015), and ImageNet (Russakovsky et al., 2015). For both CIFAR-100 and Tiny-ImageNet, we adopt
ResNet-50 (He et al., 2016), MobileNetV2 (Sandler et al., 2018), ShuffleNet (Zhang et al., 2018),
and EfficientNet (Tan & Le, 2019) to validate our method across various architectures. For ImageNet
experiments, we use ResNet50, MobileNetV2, and MLP-Mixer (Tolstikhin et al., 2021). We adopt
MLP-Mixer, which includes layer normalization, to demonstrate the generalization of our method to
different types of normalization layers rather than the batch normalization layer.

Implementation. We implement all experiments using PyTorch (Paszke et al., 2019). In both learning
rate rewinding (LRR) and the proposed AWS method, we observe that many training epochs and
learning rate scheduling are unnecessary during the training phase, as the network converges
quickly due to the absence of parameter rewinding, and learning rate scheduling has little impact on
the performance. Thus, during the training phase for both LRR and AWS, we train a network for
10 epochs for CIFAR-100 and Tiny-ImageNet experiments, and 5 epochs for ImageNet experiments
without learning rate scheduling. To ensure a network can converge at the early iterations, we
conduct warm-up training before the first iteration. Warm-up training epochs are set to 10 for both
the CIFAR-100 and Tiny-ImageNet experiments and 5 for the ImageNet experiments. After the
T -th iteration, we conduct a final training for 100 epochs for the CIFAR-100 and Tiny-ImageNet
experiments and 300 epochs for the ImageNet experiments.

Optimization. For the CIFAR-100 and Tiny-ImageNet experiments, we use the SGD optimizer with
a momentum of 0.9, a weight decay of 0.0005, and an initial learning rate of 0.1, which is decayed by
a factor of 0.1 at the 50th and 75th epochs during 100 epochs. For ImageNet experiments, we use
Adam optimizer with β1 = 0.9, β2 = 0.999, a weight decay of 0.0001 and an initial learning rate of
0.001, which is decayed from 0.001 to 0.00001 using cosine annealing. We use a batch size of 128
for the CIFAR-100 and Tiny-ImageNet experiments and 512 for the ImageNet experiments.
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(a) Test accuracy

(b) Stability to SGD noise

(c) Linear mode connectivity

Figure 3: Main results on CIFAR-100 and Tiny-ImageNet. (a): Test accuracy of the LRR solution
(blue), the AWS solution (green), a randomly initialized network trained with the LRR-driven signed
mask (orange), and a randomly initialized network trained with the AWS-driven signed mask (red).
(b) and (c): Analysis of stability to SGD noise and linear mode connectivity, respectively. A randomly
initialized network trained with the AWS-driven signed mask exhibits relatively high stability to
SGD noise and significant linear mode connectivity with the AWS solution (green), contrasting to
the case of LRR (orange). In (b) and (c), we use a pruned network with a remaining parameter ratio
of approximately 0.07 for CIFAR-100 and 0.1 for Tiny-ImageNet experiments. We show the mean
(each point) and standard deviation (shaded area) across 3 trials.
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4.2 RESULTS ON CIFAR-100 AND TINY-IMAGENET

Test Performance. In Figure 3a, we report the test performance on CIFAR-100 and Tiny-ImageNet.
We compare the performance of six networks after training: 1) initialized dense network, A(θinit), 2)
LRR subnetwork, A(θLRR

T ⊙mLRR
T ), 3) AWS subnetwork, A(θAWS

T ⊙mAWS
T ), 4) randomly initialized

network masked with a signed mask of a LRR subnetwork, A(abs(θinit) ⊙ sLRR
T ), 5) randomly

initialized network with a signed mask of a AWS subnetwork, A(abs(θinit)⊙ sAWS
T ), and 6) randomly

initialized network masked with a mask of a LRR subnetwork, A(θinit ⊙mLRR
T ). Note that A(·)

indicates a normal training algorithm without interpolating normalization layer parameters. First,
we note that in most cases, the AWS solution (indicated by the green plots) achieves performance
comparable to or better than the LRR solution (indicated by the blue plots). This addresses the
potential concern that randomly interpolating normalization parameters in our method could adversely
affect the performance of the AWS solution. Then, we transfer the signed mask from LRR (sLRR

T )
and AWS (sAWS

T ) to a randomly initialized network θinit. In the case of LRR, the performance of a
random initialized network masked with sLRR

T after training (indicated by the orange plots) is similar
to the case when the sign information is not used (indicated by the purple plots), lagging far behind
the performance of LRR solution. On the other hand, we observe that in most cases, the performance
of a randomly initialized network masked with sAWS

T (indicated by the red plots) is comparable to
that of AWS solution, which is similar to that of LRR solution. Finally, We observe that the signed
mask obtained through AWS allows a randomly initialized network to perform comparably to a dense
network after training at non-trivial sparsity as long as the AWS solution performs comparably to the
dense network (indicated by the dotted line).

Stability to SGD-Noise and Linear Mode Connectivity. We further compare the effectiveness
of sAWS

T and sLRR
T by investigating whether they can allow a randomly initialized network to reside

within the basin of attraction of the AWS or LRR subnetworks. To this end, we first examine the
SGD noise stability of A(abs(θinit) ⊙ sAWS

T ) and A(abs(θinit) ⊙ sLRR
T ). The results in Figure 3b

demonstrate that A(abs(θinit)⊙ sLRR
T ), shown by the orange plots, exhibits significantly high error

barriers when trained with different SGD randomness. On the other hand, A(abs(θinit) ⊙ sAWS
T ),

represented by the green plots, exhibits comparable or slightly higher error barriers when trained
with different SGD randomness, compared to the reference stability of A(θLRR

T ⊙ sLRR
T ) shown by

the blue plots. Moreover, we examine the linear mode connectivity between A(abs(θinit)⊙ sAWS
T ) or

A(abs(θinit)⊙ sLRR
T ) and the AWS or LRR solution to confirm whether they are in the same basin.

The results in Figure 3c demonstrates that transferring sLRR
T to a randomly initialized network causes

the network to converge to a solution with significantly high error barriers between the LRR solution,
as indicated by the orange plots. By contrast, a random initialized network masked with sAWS

T exhibits
relatively low error barriers between the AWS solution, as indicated by the green plots, compared to
the reference (blue plots).

Discussion. Our motivational experiments in Figure 2 show that the signed mask of the LRR sub-
network alone cannot transfer the generalization potential of the LRR subnetwork to a randomly
initialized network; it is also necessary to transfer the normalization layer parameters of the LRR
subnetwork. For the goal of LTH, we propose AWS that eliminates the need for the trained normal-
ization parameters. The test performance in Figure 3a and the analysis of the SGD noise stability and
linear mode connectivity in Figure 3b and Figure 3c show that a randomly initialized network masked
with the signed mask of the AWS subnetwork lies in the basin of attraction of the AWS subnetwork.
This demonstrates that sAWS

T alone can transfer the generalization potential of the AWS subnetwork
without the trained normalization layer parameters, brining us closer to the goal of LTH.
4.3 GENERALIZATION TO IMAGENET AND LAYER NORMALIZATION

To validate the effectiveness of AWS on a more challenging task, we evaluate AWS on Ima-
geNet dataset. The results in Table 1 show that across various model and sparsity (i.e. 1- ‘Re-
maining Params’), a randomly initialized network masked with the AWS-driven signed mask
(i.e. A(abs(θinit) ⊙ sAWS

T )) achieves performance comparable to both the AWS solution (i.e.
A(θAWS

T ⊙mAWS
T )) and the dense network after training, whereas masking with the LRR-driven

signed mask (A(abs(θinit) ⊙ sLRR
T )) fails to reach both the performance of the LRR solution (i.e.

A(θLRR
T ⊙mLRR

T )) and the dense network. Notably, we observe a similar trend in the results on
MLP-Mixer, which uses only layer normalization for normalization. These results show that the
signed mask of the AWS subnetwork can transfer the generalization potential of the AWS subnetwork

9
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Table 1: Experimental results on ImageNet. θinit indicates randomly initialized parameters and
‘Remaining Params.’ refers to the remaining parameter ratio. We present more results in Table 2.

Model Method Use AWS subnetwork Trained from θinit Top-1 Acc. (%) Remaining Params.

ResNet50

Dense Network - - 75.87 ± 0.32 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 76.12 ± 0.22

0.27A(θAWS
T ⊙mAWS

T ) ✔ ✗ 75.94 ± 0.33
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 75.45 ± 0.31
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 75.89 ± 0.21
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 74.77 ± 0.29

0.14A(θAWS
T ⊙mAWS

T ) ✔ ✗ 74.81 ± 0.27
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 72.65 ± 0.23
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 74.01 ± 0.32

MobileNetV2

Dense Network - - 69.13 ± 0.41 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 69.32 ± 0.40

0.41A(θAWS
T ⊙mAWS

T ) ✔ ✗ 69.02 ± 0.20
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 67.98 ± 0.17
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 68.87 ± 0.39
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 68.42 ± 0.27

0.21A(θAWS
T ⊙mAWS

T ) ✔ ✗ 67.66 ± 0.27
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 65.23 ± 0.28
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 67.79 ± 0.22

MLP-Mixer

Dense Network - - 58.21 ± 0.31 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 59.26 ± 0.32

0.21A(θAWS
T ⊙mAWS

T ) ✔ ✗ 60.41 ± 0.22
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 56.80 ± 0.14
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 60.21 ± 0.26
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 58.12 ± 0.27

0.11A(θAWS
T ⊙mAWS

T ) ✔ ✗ 59.37 ± 0.22
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 55.97 ± 0.26
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 59.10 ± 0.40

to a randomly initialized network on a more challenging dataset and even with layer normalization,
further demonstrating the effectiveness of AWS.

4.4 COMPARISON TO RELATED WORK
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Figure 4: Comparison to GM
on CIFAR-100 with ResNet-
32. The results of GM are ap-
proximated from (Sreenivasan
et al., 2022).

There are existing works that also aim to search for an effective
signed mask (Koster et al., 2022; Sreenivasan et al., 2022). Among
them, we compare our AWS to GM Sreenivasan et al. (2022), as
GM is evaluated on a more diverse and large-scale architecture than
that in Koster et al. (2022). Figure 4 demonstrates that while GM
performance falls short of that of the dense network across all levels
of sparsity, a randomly initialized network masked with sAWS

T can
perform comparably to both the AWS subnetwork and the dense
network until a sparsity of about 0.9. We also highlight that our
work provides valuable insights into the role of parameter signs and
the influence of normalization layers concerning finding a winning
ticket. Moreover, it is noteworthy that the signed mask obtained by
AWS can be applied to any random initialization. In contrast, GM
trains a signed mask tailored for a specific initialization, which likely
limits its applicability to other initialization.

5 CONCLUSION

Finding a winning ticket is still an open problem in the field of lottery ticket hypothesis (LTH). In this
work, we show that an effective signed mask, a sparse mask with sign information, is all we need to
win the lottery. We observe that utilizing the signed mask and retaining normalization parameters of
the subnetwork trained by learning rate rewinding (LRR) can transfer the generalization capability of
the LRR subnetwork to a randomly initialized network. However, it is not truly a winning ticket when
retaining a portion of trained parameters. To eliminate the reliance on the trained normalization layer
parameters, we propose AWS, a slight variation of LRR, that encourages linear mode connectivity
between the AWS subnetwork and its counterpart with initialized normalization parameters, allowing
the AWS subnetwork to remain within its basin of attraction even after initializing all parameters. In
contrast to the existing methods limited to finding a winning ticket with a predetermined initialization,
we demonstrate that the signed mask of the AWS subnetwork can allow a randomly initialized
network to reside within the basin of the AWS subnetwork, possibly leading the resulting network to
generalize as well as the dense network. For future work, we will investigate the effectiveness of the
signed mask acquired through AWS in the transfer learning scenario.
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A IMPORTANCE OF PARAMETER SIGNS IN NORMALIZATION LAYERS.

In Section 3.2, we observe that preserving the signs of parameters in the LRR subnetwork while
initializing their magnitudes, excluding those in normalization layers, causes the resulting network to
stay within the basin of attraction of the LRR subnetwork, but it fails when the normalization layer
parameters are initialized together. We claim that this occurs since the parameters in normalization
layers rely more on the magnitude of parameters rather than their signs. The scaling factor in a
normalization layer is nearly always positive, thus its sign information may be useless. In the case
of the bias factor, it loses its sign information after initialized to 0, but it does not mean its sign
information is not beneficial. To further validate our claim, we also compare the case where the
bias factor in normalization layers is initialized to a constant, thus their sign information does not
disappear after initialization. In Figure 5, we observe that maintaining the signs of bias factors
(indicated by the purple plots) is not beneficial compared to the original initialization case (indicated
by the orange plots), demonstrating our claim.

Figure 5: Effect of transferring the sign of normalization layer parameters. ψ∗
init denotes the

initialized normalization layer parameters whose scaling and bias factors are set to 1 and 0.1. We
conduct the experiments on CIFAR-100.

B IS AWS ALWAYS BETTER THAN LRR?

In the main manuscript, we show that after training, the performance of a randomly initialized network
masked with sLRR

T (i.e., A(abs(θinit)⊙ sLRR
T )) lags far behind that of the LRR solution. However, we

found that for several network architectures, the performance of A(abs(θinit)⊙ sLRR
T ) is similar to

that of the LRR solution. In Figure 6a, we present the test performance on VGG11-bn (Simonyan
& Zisserman, 2015). We observe that A(abs(θinit)⊙ sLRR

T ) (indicated by the orange plots) achieves
performance similar to that of the LRR solution (indicated by the blue plots). Thus, the performance
difference between A(abs(θinit) ⊙ sLRR

T ) and A(abs(θinit) ⊙ sAWS
T ) (indicated by the red plots) is

trivial. We also investigate the SGD noise stability of A(abs(θinit)⊙ sLRR
T ) and A(abs(θinit)⊙ sAWS

T )
and their linear mode connectivity to the corresponding LRR or AWS solution in Figure 6b and
Figure 6c, respectively. We observe that the signed masks from both LRR and AWS enable a
randomly initialized network to remain stable to SGD noise and converge to a solution with linear
mode connectivity to the corresponding LRR or AWS solution. Thus, in some cases, LRR, without
any modification, can yield an effective sign configuration that allows a randomly initialized network
to win the lottery. However, we argue that AWS is more effective and generalizable to a wider range
of more complex architectures as demonstrated in Figure 3.
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Figure 6: Results on CIFAR-100 with VGG11-bn.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 2: Experimental results on ImageNet. θinit indicates randomly initialized parameters and
‘Remaining Params.’ refers to the remaining parameter ratio.

Model Method Use AWS subnetwork Trained from θinit Top-1 Acc. (%) Remaining Params.

ResNet50

Dense Network - - 75.87 ± 0.32 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 76.12 ± 0.22

0.27A(θAWS
T ⊙mAWS

T ) ✔ ✗ 75.94 ± 0.33
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 75.45 ± 0.31
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 75.89 ± 0.21
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 75.62 ± 0.18

0.21A(θAWS
T ⊙mAWS

T ) ✔ ✗ 75.51 ± 0.13
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 74.89 ± 0.27
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 75.27 ± 0.26
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 75.21 ± 0.32

0.17A(θAWS
T ⊙mAWS

T ) ✔ ✗ 75.22 ± 0.39
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 73.99 ± 0.21
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 74.88 ± 0.28
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 74.77 ± 0.29

0.14A(θAWS
T ⊙mAWS

T ) ✔ ✗ 74.81 ± 0.27
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 72.65 ± 0.23
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 74.01 ± 0.32

MobileNetV2

Dense Network - - 69.13 ± 0.41 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 69.32 ± 0.40

0.41A(θAWS
T ⊙mAWS

T ) ✔ ✗ 69.02 ± 0.20
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 67.98 ± 0.17
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 68.87 ± 0.39
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 69.01 ± 0.12

0.33A(θAWS
T ⊙mAWS

T ) ✔ ✗ 68.89 ± 0.23
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 67.34 ± 0.20
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 68.57 ± 0.33
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 68.88 ± 0.22

0.27A(θAWS
T ⊙mAWS

T ) ✔ ✗ 68.09 ± 0.23
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 66.22 ± 0.22
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 68.17 ± 0.13
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 68.42 ± 0.27

0.21A(θAWS
T ⊙mAWS

T ) ✔ ✗ 67.66 ± 0.27
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 65.23 ± 0.28
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 67.79 ± 0.22

MLP-Mixer

Dense Network - - 58.21 ± 0.31 1
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 59.26 ± 0.32

0.21A(θAWS
T ⊙mAWS

T ) ✔ ✗ 60.41 ± 0.22
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 56.80 ± 0.14
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 60.21 ± 0.26
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 58.97 ± 0.26

0.17A(θAWS
T ⊙mAWS

T ) ✔ ✗ 60.24 ± 0.23
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 56.78 ± 0.21
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 60.02 ± 0.19
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 58.34 ± 0.42

0.14A(θAWS
T ⊙mAWS

T ) ✔ ✗ 59.58 ± 0.38
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 56.11 ± 0.21
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 59.57 ± 0.29
A(θLRR

T ⊙mLRR
T ) ✗ ✗ 58.12 ± 0.27

0.11A(θAWS
T ⊙mAWS

T ) ✔ ✗ 59.37 ± 0.22
A(abs(θinit)⊙ sLRR

T ) ✗ ✔ 55.97 ± 0.26
A(abs(θinit)⊙ sAWS

T ) ✔ ✔ 59.10 ± 0.40
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