
Published in Transactions on Machine Learning Research (08/2024)

PCNN: Probable-Class Nearest-Neighbor Explanations Im-
prove Fine-Grained Image Classification Accuracy for AIs and
Humans

Giang (Dexter) Nguyen nguyengiangbkhn@gmail.com
Computer Science and Software Engineering Department
Auburn University

Valerie Chen vchen2@andrew.cmu.edu
Machine Learning Department
Carnegie Mellon University

Mohammad Reza Taesiri mtaesiri@gmail.com
Electrical & Computer Engineering Department
University of Alberta

Anh Totti Nguyen anh.ng8@gmail.com
Computer Science and Software Engineering Department
Auburn University

Reviewed on OpenReview: https: // openreview. net/ forum? id= OcFjqiJ98b

Abstract

Nearest neighbors (NN) are traditionally used to compute final decisions, e.g., in Support
Vector Machines or k-NN classifiers, and to provide users with explanations for the model’s
decision. In this paper, we show a novel utility of nearest neighbors: To improve predictions
of a frozen, pretrained image classifier C. We leverage an image comparator S that (1)
compares the input image with NN images from the top-K most probable classes given by
C; and (2) uses scores from S to weight the confidence scores of C to refine predictions.
Our method consistently improves fine-grained image classification accuracy on CUB-200,
Cars-196, and Dogs-120. Also, a human study finds that showing users our probable-class
nearest neighbors (PCNN) reduces over-reliance on AI, thus improving their decision accuracy
over prior work which only shows only the most-probable (top-1) class examples.

1 Introduction

k-nearest neighbors are traditionally considered explainable classifiers by design Papernot & McDaniel (2018).
Yet, only recent human studies have found concrete evidence that showing the NNs to humans improves their
decision-making accuracy (Nguyen et al., 2021; Liu et al., 2022; Chen et al., 2023b; Chan et al., 2023; Kenny
et al., 2022; 2023; Chiaburu et al., 2024; Nguyen et al., 2024), even more effectively than feature attribution
in the image domain (Nguyen et al., 2021; Kim et al., 2022). These studies typically presented users with
the input image, a model’s top-1 prediction, and the NNs from the top-1 class. However, examples from the
top-1 class are not always beneficial to users.

One such setting where top-1 neighbors can actually hinder human decision-making accuracy is in fine-grained
image classification. When users are asked to accept or reject the model’s decision—a distinction task,
as shown in Fig. 1(a), examples from the top-1 class easily fooled users into incorrectly accepting wrong
predictions at an excessively high rate (e.g., at a rate of 81.5% on CUB-200; Table A6 in Taesiri et al. (2022)).

1

https://openreview.net/forum?id=OcFjqiJ98b

Published in Transactions on Machine Learning Research (08/2024)

(b) extra probable-class nearest neighbors improve
classification accuracy

classifier

C

Yes
vs.

No

Q: Caspian Tern?

(a) prior work

Caspian Elegant Least

...

Input

64% Caspian Tern
31% Elegant Tern
 2% Least Tern
 1% Forster's Tern

❌
✅

top-2 top-3 classtop-1

Figure 1: Given an input image x and a black-box, pretrained classifier C that predicts the label for x.
Prior work (a) often shows only the nearest neighbors from the top-1 predicted class as explanations for the
decision, which often fools humans into accepting wrong decisions (here, Caspian Tern) due to the similarity
between the input and top-1 class examples. Instead, including extra nearest neighbors (b) from top-2 to
top-K classes improves not only human accuracy on this binary distinction task but also AI’s accuracy on
standard fine-grained image classification tasks (see Fig. 2).

This is because NNs from the top-1 class often looked deceivingly similar to the input (e.g., input vs. Caspian;
Fig. 1).

Instead of focusing on top-1 examples, we propose to sample the NN examples from the top-K predicted
classes to more fully represent the query and better inform users to make decisions. That is, we propose
Probable-Class Nearest Neighbors (PCNN), a novel explanation type consisting of K nearest images,
where each image is taken from a class among the top-K classes, as illustrated in Fig. 1(b). We show that
PCNN not only improves human decisions on the distinction task over showing top-1 class neighbors but can
also be leveraged to improve AI-alone accuracy by re-ranking the predicted labels of a pretrained, frozen
classifier (Fig. 2).

Assumptions As is the case for many real-world applications, we assume that there exists a pretrained,
black-box classifier C, e.g., a foundation model (Bommasani et al., 2021), responsible for a large amount of
information processing in the pipeline. Due to computation and algorithm constraints, C may not be easily
re-trained to achieve better accuracy. Therefore, like Bansal et al. (2021), we assume that C is frozen—humans
or other models would interact with C to make final decisions (Fig. 1).

To leverage PCNN for re-ranking C’s predicted labels, we train an image comparator S, which is a binary
classifier that compares the input image with each PCNN example and outputs a sigmoid value that is used
to weight the original confidence scores of C (Fig. 2). Then, C and S together form a C × S model—like a
Product of Experts Hinton (1999)—that outperforms C alone.

Our experiments on 10 different C classifiers across 3 fine-grained classification tasks for bird, car, and dog
species reveal:1.

• Our PCNN-based model consistently improves upon the original C accuracy on all three domains:
CUB-200, Cars-196, and Dogs-120 (Sec. 4.1).

• Given the same ResNet backbones, our model outperforms similar explainable, prototype-based
classifiers including k-NN, part-based, and correspondence-based classifiers on all three datasets
(Sec. 4.5).

1Code and data are available at https://github.com/anguyen8/nearest-neighbor-XAI

2

https://github.com/anguyen8/nearest-neighbor-XAI

Published in Transactions on Machine Learning Research (08/2024)

• Interestingly, even without further training the comparator S on a new pretrained C—we still obtain
large gains (up to +23.38 points) when combining a well-trained comparator S with an arbitrary C
model (Sec. 4.4).

• A 60-user study finds that PCNN explanations, compared with top-1 class examples, reduce over-
reliance on AI, thus improving user performance on the distinction task by almost 10 points (54.55%
vs. 64.58%) on CUB-200 (Sec. 4.6).

2 Related Work

Example-based explanations on the distinction task The distinction task (Fig. 1) was introduced in
prior studies Nguyen et al. (2021); Kim et al. (2022); Fel et al. (2023); Colin et al. (2022) to test the utility of
an explanation method. Yet, many works Nguyen et al. (2021); Taesiri et al. (2022); Kim et al. (2022); Kenny
et al. (2023); Jeyakumar et al. (2020); Chen et al. (2023b); Nguyen et al. (2024) showed users examples from
only the top-1 class, potentially limiting the utility of nearest neighbors and user accuracy. We find that,
given the same budget of five examples, human distinction accuracy substantially improves if each example
comes from a unique class among the top-5 predicted classes (Sec. 4.6). To our knowledge, our work is the
first to report the benefit of class-wise contrastive examples to users’ decision-making.

Re-ranking for image classification Re-ranking is common in image retrieval Phan & Nguyen (2022);
Zhang et al. (2020); Li et al. (2023). For image classification, re-ranking the nearest neighbors of a k-NN
image classifier can improve its classification accuracy Taesiri et al. (2022). Yet, here, we re-rank the top-K
predicted labels originally given by a classifier C.

Ensembles for image classification Our method for combining two separate models (C and S) adds to
the long literature of model ensembling. Specifically, our method of sampling hard, negative pairs of images
using C’s predicted labels to train the image comparator S is akin to boosting Schapire (2003). That is,
S is trained with the information of which negative pairs are considered “hard” (i.e., very similar images)
according to C—the approach we find more effective than random sampling (Appendix B.4). While boosting
aims to train a set of classifiers for the exact same task, our C is a standard many-way image classifier and S
is a binary classifier that compares two input images.

Our combination of C and S is also inspired by PoE Hinton (1999). Unlike the traditional PoE algorithms,
which train both experts at the same time and for the same task, here C and S are two separate classifiers
with different input and output structures. A key difference from standard PoE and boosting techniques
is that we leverage training-set examples (PCNN) at the test time of S, improving C × S model accuracy
further over the baseline C. Also, our model does not strictly follow the PoE framework’s requirement of
conditional independence between experts because the confidence scores that image compartor S assigns to
most-probable classes can be influenced by the initial ranking from C.

Prototype-based image classifiers Many prototype-based classifiers Chen et al. (2019); Taesiri et al.
(2022) operate at the patch level. Instead, our classifier operates at the image level, similar to k-NN classifiers
Nguyen et al. (2021). While most prior prototype-based classifiers are single models, we combine two models
(C and S) into one. Furthermore, the scores given by S enable an interpretation of how original predictions
are re-ranked (Fig. 2).

3 Methods

3.1 Tasks

Task 1: Single-label, many-way image classification Let C be a frozen, pretrained image classifier that
takes in an image x and outputs a softmax probability distribution over all c possible classes, e.g., c = 200 for
CUB-200 Wah et al. (2011). Let S be an image comparator that takes in two images and outputs a sigmoid
score predicting whether they belong to the same class (Fig. 3). Our goal is to improve the final classification
accuracy without changing C by leveraging a separate image comparator network and PCNN (Fig. 2).

3

Published in Transactions on Machine Learning Research (08/2024)

(b) extra probable-class nearest neighbors improve
classification accuracy

classifier

C

Yes
vs.

No

Q: Caspian Tern?

(a) prior work

Caspian Elegant Least

...

Input

64% Caspian Tern
31% Elegant Tern
 2% Least Tern
 1% Forster's Tern

❌
✅

classifier

C

2. Elegant 3. Least

...Input

64% Caspian Tern ⨉
31% Elegant Tern ⨉
 2% Least Tern ⨉
 1% Forster's Tern ⨉

31% Elegant Tern
21% Caspian Tern
 0% Least Tern
 0% Forster's Tern

0.33
0.99
0.02
0.00

comparator

S

✅
❌

 Probable-Class Nearest Neighbors (PCNN)

4. Foster’s

Re-ranking by weighting confidence
i.e. scores

top-2 top-3 class

1. Caspian

top-1

Figure 2: C × S re-ranking algorithm: From each class among the top-K predicted classes by C, we find
the nearest neighbor nn to the query x and compute a sigmoid similarity score S(x, nn), which weights the
original C(x) probabilities, re-ranking the labels. See Algorithm 2 for the written algorithm.

Task 2: Distinction task for humans Following Nguyen et al. (2021); Taesiri et al. (2022), we provide
each user with the input query, the top-1 prediction given by C, and an explanation (e.g., five PCNN images;
Fig. 8) and ask the user to accept or reject the top-1 predicted label.

3.2 Datasets and pretrained classifiers C

We train and test our method on three standard fine-grained image classification datasets of birds, cars, and
dogs. To study the generalization of our findings, we test a total of 10 classifiers C (4 bird, 3 car, and 3 dog
classifiers) of varying architectures and accuracy.

CUB-200 (CUB-200-2011) Wah et al. (2011) has 200 bird species, with 5,994 images for training and 5,794 for
testing (samples in Fig. 5a). We test four different classifiers: a ResNet-50 pretrained on iNaturalist Van Horn
et al. (2018) and finetuned on CUB-200 (85.83% accuracy) by Taesiri et al. (2022); and three ImageNet-
pretrained ResNets (18, 34, and 50 layers) finetuned on CUB-200 with 60.22%, 62.81%, and 62.98% accuracy,
respectively.

Cars-196 (Stanford Cars) Krause et al. (2013) includes 196 distinct classes, with 8,144 images for training
and 8,041 for testing (samples in Fig. 5b). We use ResNet-18, ResNet-34, and ResNet-50, all pretrained on
ImageNet and then finetuned on Cars-196. Their top-1 accuracy scores are 86.17%, 82.99%, and 89.73%,
respectively.

Dogs-120 (Stanford Dogs) Khosla et al. (2011) has a total 120 of dog breeds, with 12,000 images for training
and 8,580 images for testing (samples in Fig. 5c). We test three models: ResNet-18, ResNet-34, and ResNet-50,
all pretrained on ImageNet and then finetuned on Dogs-120, achieving top-1 accuracy of 78.75%, 82.58%, and
85.82%.

3.3 Re-ranking using both image comparator S and classifier C

PCNN is a set of K nearest-neighbor images to the query where each image is taken from one training-set
class among the top-K predicted classes by C (see Fig. 2). We empirically test K = {1, 2, 3, 5, 10, 15} in
Appendix B.3 and find K = 10 to be optimal.

The distance metric for finding nearest neighbors per class is L2 (using faiss framework) Johnson et al.
(2019) at the average pooling of the last conv features of C.

4

Published in Transactions on Machine Learning Research (08/2024)

x₁

 CLS + xpos
xconv2

xM

x nn

CrossAttention

Patch token
CLS token

s

MLP

xN

xL

sigmoid

xconv1

conv (f) conv (f)

x₂

y₁ y₂

z₁ z₂

MHSAMHSA

Figure 3: Our comparator takes in a
pair of images (x, nn) and outputs a
sigmoid score s = S(x, nn) ∈ [0, 1] in-
dicating whether two images belong
to the same class. L, M , and N are
the depths of the respective blocks.

(,)
(,)

(,)

classifier

C

Input

top-1 54% Elegant Tern
top-2 20% Caspian Tern
top-3 12% Least Tern
 …
top-Q 1% Forster’s Tern

…

1

2

Q

(,)3

(,)
(,)

(,)
…

(,)

E
le

ga
nt

E
le

ga
nt

E
le

ga
nt

E
le

ga
nt

E
le

ga
nt

C
as

pi
an

Le
as

t
Fo

rs
te

r’s

pairs+ pairs–

GT: Elegant
Tern

sampling pairs+
pairs–

Q
Q - 1

Figure 4: For each training-set image x, we sample Q nearest images
from the groundtruth class of x to form Q positive pairs {(x, nni

+)}i=1
Q .

To sample Q hard, negative pairs: Per non-groundtruth class among
the top-Q predicted classes from C(x), we take the nearest image to
the input. Here, when the groundtruth label (Elegant Tern) is among the
top-Q labels, there would be only Q − 1 negative pairs.

Re-ranking algorithm Given a well-trained comparator S and the obtained PCNN, we repeat the following
for each class among the top-K classes: Multiply each original confidence score in C(x) by a corresponding
score S(x, nn) where nn is the nearest neighbor from a corresponding predicted class (see Fig. 2).

Based on the newly weighted scores C(x) ×S(x, nn), we re-rank the top-K labels. See Fig. 5 for examples of
how re-ranking corrects originally wrong predictions by C.

3.4 The architecture and training of comparator S

3.4.1 Network architecture

Our image comparator S follows closely the design of the CrossViT (Chen et al., 2021), which takes in a
pair of images (see Fig. 3). The image patch embeddings are initialized with convolutional features from a
pretrained convolutional network (here, we directly use the classifier C for convenience but such coupling is
not mandatory; see Sec. 4.4).

Details f is the subnetwork up to and including the last conv layer of a given classifier C. For example, if we
train a comparator S for ResNet-50, f would be layer4 per PyTorch definition or conv5_x in He et al. (2016).
Using the pretrained feature extractor f , we extract two conv embeddings xconv1 and xconv2 ∈ RD×H×W where
H ×W are spatial dimensions and D is the depth. We then flatten and transpose these embeddings to shape
them into RT×D (e.g., T = H × W = 49 and D = 2048 for ResNet-50). These embeddings are subsequently
prepended with the CLS token xcls ∈ R1×D and added to the learned positional embedding xpos ∈ R(1+T)×D.
After that, the two image embeddings x1 and x2 ∈ R(1+T)×D are fed into the first Transformer block that
consists of N MHSA layers and M CrossAttention layers (Fig. 3). We repeat the Transformer block L times.

MHSA is the multi-headed self-attention operator Vaswani et al. (2017) and Cross Attention refers to
the Cross-Attention token fusion block in CrossViT Chen et al. (2021). These two blocks produce y1, y2,
and z1, z2 ∈ R(1+T)×D, respectively (Fig. 3). Next, we concatenate the two CLS tokens from z1 and z2 as

5

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L204

Published in Transactions on Machine Learning Research (08/2024)

input for a 4-layer MLP. Each layer uses GeLU Hendrycks & Gimpel (2016) and Batch Normalization Ioffe &
Szegedy (2015), except the last layer. The output of the MLP is a sigmoid value s that indicates whether x
and nn belongs to the same class. Full architecture details are in Appendix A.

3.4.2 Training the comparator S

Objectives We aim to train S to separate image pairs taken in the same class from those pairs where images
are from two different classes. As standard in contrastive learning Chen et al. (2020), we first construct a set
of positive pairs and a set of negative pairs from the training set, and then train S using a binary sigmoid
cross-entropy loss. Note that training the comparator also finetunes the pretrained conv layers f , which are
part of the comparator model (Fig. 3).

Augmentation Because the three tested fine-grained classification datasets are of smaller sizes, we apply
TrivialAugment (Müller & Hutter, 2021) to image pairs during training to reduce overfitting. For image
pre-processing, we first resize images so that their smaller dimension is 256, and then take a center crop of
224 × 224 from the resized image.

Optimization For all three datasets, we train comparators S for 100 epochs with a batch size of 256 using
Stochastic Gradient Descent (SGD) optimizer with a 0.9 momentum and the OneCycleLR (Smith & Topin,
2019) learning-rate scheduler.

Some hyperparameters including learning rates vary depending on the datasets. See Appendix A for more
training details including optimization hyperparameters, data augmentation, and training loss.

3.4.3 Sampling positive and negative pairs

For each training-set example x, we construct a set of positive pairs {(x, nn+)} and negative pairs {(x, nn–)}
(Fig. 4). To find nearest images, we use the distance metric described in Sec. 3.3.

positive pairs We take Q nearest images nn+ to the query x from the same class of x (e.g., Elegant Tern in
Fig. 4).

negative pairs One can also take nn– nearest images from the random non-groundtruth classes. However,
in the preliminary experiments, we find that taking nn– from a random class (e.g., among 200 bird classes)
produces “easy” negative pairs (x, nn–), i.e., images are often too visually different, not strongly encouraging
S to learn to focus on subtle differences between fine-grained species as effectively as our “hard” negatives
sampling.

Sampling using classifier C First, we observe that pretrained classifiers C often have a very high top-10
accuracy (e.g., 98.63% on CUB-200; Appendix G) and therefore tend to place species visually similar to
the ground-truth class among the top-Q labels. Therefore, we leverage the predictions C(x) of the classifier
C on x to sample hard negatives. That is, we sample Q nn– nearest images to the query. Yet, each nn– is
from a class among the top-Q predicted labels for x, i.e., from the C(x) (see example pairs in Appendix I.3).
As illustrated in Fig. 4, if the groundtruth class appears in the top-Q labels, we exclude that corresponding
negative pair, arriving at Q − 1 negative pairs. In this case, we will remove one positive pair to make the
data balance. In sum, if the groundtruth class is in the top-Q labels, we will produce Q positive and Q − 1
negative pairs. Otherwise, we would produce Q positive and Q negative pairs.

Empirically, we try Q ∈ {3, 5, 10, 15} and find Q = 10 to yield the best comparator based on its test-set
binary-classification accuracy (see the results of tuning Q in Appendix B.2). See Appendix B for further
experiments supporting our design choices.

4 Results

In this section, we demonstrate that PCNN examples enhance both AI and human accuracy. First, we use
PCNN examples to train an image comparator S, which improves classifier C’s predictions via the re-ranking
algorithm described in Sec. 3.3. Second, when shown PCNN examples, human users increase their accuracy
in distinguishing correct from incorrect predictions by nearly +10 points.

6

Published in Transactions on Machine Learning Research (08/2024)

4.1 C × S re-ranking consistently outperforms classifier C

Here, we aim to test how our re-ranking algorithm (Sec. 3.3) improves upon the original classifiers C.

Experiment For each of the 10 classifiers listed in Sec. 3.2, we train a corresponding comparator S
(following the procedure described in Sec. 3.4) and form a C × S model.

Table 1: On all three ResNet (RN) architectures and three datasets, our C × S consistently improves the
top-1 classification accuracy (%) over the original classifiers C (e.g., by +11.48 on CUB-200) and also a
baseline re-ranking C → S (which uses only S scores in re-ranking). “Pretraining” column specifies the
datasets that C models were pretrained (before fine-tuning on the target dataset).

Classifier architecture ResNet-18 (a) ResNet-34 (b) ResNet-50 (c)
Dataset Pretraining C C → S C × S C C → S C × S C C → S C × S

CUB-200 iNaturalist n/a n/a n/a n/a n/a n/a 85.83 87.72 88.59 (+2.76)
ImageNet 60.22 66.78 71.09 (+10.87) 62.81 71.92 74.59 (+11.78) 62.98 71.63 74.46 (+11.48)

Cars-196 ImageNet 86.17 85.70 88.27 (+2.10) 82.99 83.57 86.02 (+3.03) 89.73 89.90 91.06 (+1.33)
Dogs-120 ImageNet 78.75 75.34 79.58 (+0.83) 82.58 80.82 83.62 (+1.04) 85.82 83.39 86.31 (+0.49)

Results Our C × S models outperform classifiers C consistently across all three architectures (ResNet-18,
ResNet-34, and ResNet-50) and all three datasets (see Tab. 1). The largest gains on CUB-200, Cars-196, and
Dogs-120 are +11.78, +3.03, and +1.04 percentage points (pp), respectively. That is, our method works best
on bird images, followed by cars and dogs.

A trend (see Tab. 1 and Fig. 6) is that when the original classifier C is weaker, our re-ranking often yields a
larger gain. Intuitively, a weaker classifier’s predictions benefit more from revising based on extra evidence
(PCNN) and an external model (comparator S). Yet, on CUB-200, we also improve upon the best model
(iNaturalist-pretrained ResNet-50) by +2.76 (85.83% → 88.59%). Note that while the gains on Dogs-120 are
modest (Tab. 1), dog images are the noisiest among the three tested image types, and therefore the small but
consistent gains on Dogs-120 are encouraging.

See Fig. 5 for examples of how our C × S model corrects originally wrong predictions made by ResNet-50
(from Indigo Bunting → Green Jay on CUB-200, from Aston Martin → Ferrari FF on Cars-196, and from Irish Terrier →
Otterhound). More qualitative examples are in Appendix I.1.

4.2 Hyperparameter tuning and ablation studies

We perform thorough tests over many choices for each hyperparameter and present the main findings below.

At test time, comparing input with multiple nearest neighbors yields slightly better weights
for re-ranking Our proposed re-ranking (Fig. 2) takes n = 1 image per class among the top-K classes to
compute a similarity score indicating how well the input matches a class. However, would one nearest image
be sufficient to represent an entire class?

We find that for each class among the top-K, increasing from n = 1 to 2 or 3 then taking the average similarity
scores over the n image pairs only marginally increase the C × S accuracy (from 88.59% → 88.83% on
CUB-200 and 91.09% → 91.20% on Cars-196; full results in Appendix B.1). However, these marginal gains
require querying S two to three times more, entailing a much slower run time. Therefore, we propose to use
n = 1 nearest neighbor per class.

Sampling image pairs from the top-Q classes where Q = 10 A key to training our comparator (Fig. 4)
is to sample image pairs from the top-Q labels predicted by C. We test training S using different values of
Q = 3, 5, 10, 15 and find that the comparator’s accuracy starts to saturate at Q = 10 (Appendix B.2). Hence,
we use Q = 10 in all experiments.

Hard negatives are more useful than easy, random negatives in training S We find that training
S using negative pairs constructed using the nearest nn– from random classes among the 200 CUB classes
yields a RN50 × S accuracy of 86.55%. In contrast, if we sample negative pairs from the top-Q predicted
classes returned by C, the accuracy substantially increases by +2.04 pp to 88.59% (as reported in Tab. 2).

7

Published in Transactions on Machine Learning Research (08/2024)

In another experiment, we repeat our hard-negative sampling from the top-Q classes but in each class, we
take the 2nd or 3rd image (instead of the 1st) nearest to the query image to be the class-representative
image. Yet, the C × S accuracy decreases from 88.59% to 88.06% and 88.21%, respectively. In sum, both
experiments show that sampling negative pairs using the 1st nearest neighbors from probable classes yields
substantially better comparators than from random classes (Appendix B.4).

Re-ranking using the C × S product is better than using the scores of S alone To understand
the importance of the product of two scores C(x) × S(x, nn) in re-ranking (Fig. 2), we test ablating C(x)
away from this product, using only S(x, nn) scores to re-rank the top-predicted labels. We refer to this
approach as C → S .

We find C → S re-ranking to sometimes even hurt the accuracy compared to the original C (e.g., 78.75%
→ 75.34% on Dogs-120; Tab. 1). Yet, with the same comparator S, using the product of two scores C × S
consistently outperforms not only the original classifier C but also this C → S baseline re-ranking by an
average gain of +3.27, +2.06, and +3.32 pp on CUB-200, Cars-196, and Dogs-120, respectively (Tab. 1).

TrivialAugment improves generalization of S Over all three datasets, when training comparators using
only training-set images (no augmentation), the training-validation loss curves (full results in Appendix B.8)
show that the models overfit.

To combat this issue, besides early stopping, we incorporate TrivialAugment Müller & Hutter (2021) into
the training and find it to help the learning to converge faster and reach better accuracy. Compared to

Query: Green Jay

RN50: 39% | S: 0.02

Top1: Indigo Bunting

RN50: 36% | S: 0.88

Top2: Green Jay

RN50: 10% | S: 0.00

Top3: Blue Jay

RN50: 9% | S: 0.00

Top4: Cape Glossy Starling

RN50: 2% | S: 0.18

Top5: Painted Bunting

RN50 x S: 32%

Top1: Green Jay

RN50 x S: 0%

Top2: Indigo Bunting

RN50 x S: 0%

Top3: Painted Bunting

RN50 x S: 0%

Top4: Cape Glossy Starling

RN50 x S: 0%

Top5: Blue Jay

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

(a) CUB-200 re-ranking: Indigo Bunting → Green Jay.
Query: Jaguar XK XKR 2012

RN50: 72% | S: 0.05

Top1: BMW M6 Convertible 2010

RN50: 23% | S: 0.18

Top2: Jaguar XK XKR 2012

RN50: 2% | S: 0.00

Top3: BMW Z4 Convertible 2012

RN50: 0% | S: 0.00

Top4: BMW 3 Series Wagon 2012

RN50: 0% | S: 0.00

Top5: BMW M3 Coupe 2012

RN50 x S: 4%

Top1: Jaguar XK XKR 2012

RN50 x S: 3%

Top2: BMW M6 Convertible 2010

RN50 x S: 0%

Top3: BMW Z4 Convertible 2012

RN50 x S: 0%

Top4: BMW M3 Coupe 2012

RN50 x S: 0%

Top5: BMW 3 Series Wagon 2012

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

(b) Cars-196 re-ranking: BMW M6 → Jaguar XK.

Query: Otterhound

RN50: 36% | S: 0.16

Top1: Irish_Terrier

RN50: 30% | S: 0.01

Top2: Norfolk_Terrier

RN50: 15% | S: 0.85

Top3: Otterhound

RN50: 2% | S: 0.41

Top4: Lakeland_Terrier

RN50: 1% | S: 0.00

Top5: Border_Terrier

RN50 x S: 13%

Top1: Otterhound

RN50 x S: 5%

Top2: Irish_Terrier

RN50 x S: 1%

Top3: Lakeland_Terrier

RN50 x S: 0%

Top4: Norfolk_Terrier

RN50 x S: 0%

Top5: Border_Terrier

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

(c) Dogs-120 re-ranking: Irish Terrier → Otterhound.

Figure 5: C × S model successfully corrects originally wrong predictions made by ResNet-50.

8

Published in Transactions on Machine Learning Research (08/2024)

using no data augmentation, TrivialAugment leads to test-set binary-classification accuracy gains of +1.32 on
CUB-200, +1.52 on Cars-196, and +1.21 on Dogs-120.

4.3 Training comparators on image pairs is key

At the core of our method is the image comparator S. Yet, one might wonder: (1) Is training S necessary?
Would using cosine similarity in a common feature space be sufficient? and (2) How important are the
components (self-attention, cross-attention, MLP) of the comparator?

Both cosine and Earth Mover’s distance in a fine-grained image classifier’s feature space poorly
separate visually similar species. Contrastively training comparators is a key. First, we test
using cosine similarity in the pretrained feature space of a classifier Taesiri et al. (2022) of 85.83% accuracy
on CUB-200. That is, we use the avgpool features of ResNet-50 (i.e., average pooling after the last conv layer)
to be our image embeddings. However, we find that C → S re-ranking using this similarity metric leads to
poor CUB-200 accuracy compared to using our trained comparator (60.20% vs. 87.72%).

We also test re-ranking using patch-wise similarity by following Phan & Nguyen (2022); Zhang et al. (2020)
and using the Earth Mover’s distance (EMD) at the 49-patch embedding space (7 × 7 × 2048) of layer4. Yet,
this patch-wise image similarity also leads to poor accuracy (54.83%). In sum, we find the pretrained conv
features of a state-of-the-art classifier are not sufficiently discriminative to separate probable classes (Fig. 2).

In the next experiment, we find that training even a simple MLP contrastively on the image pairs sampled
following our C-based sampling (Sec. 3.4.3) dramatically improves the re-ranking to 83.76% on CUB-200.

MLP in the comparator S plays the major role and adding Transformer blocks slightly improves
accuracy further We perform an ablation study to understand the importance of the four main components—
finetuned features f , MHSA, cross attention, and MLP—of the proposed comparator architecture (Fig. 3).

First, we find that finetuning f while training the comparator leads to better binary classification accuracy
(94.44% vs. 91.94%; see Appendix B.6). Second, we find that training the 4-layer MLP with the pretrained
features f (i.e., L = 0, no MSHA and no cross attention) leads to a comparator that has a C → S re-ranking
accuracy of 83.76% on CUB-200. Adding MSHA and cross-attention blocks led to the best comparator,
pushing this number by +3.55 to 87.31%. More details are in Appendix B.9.

Sanity checks We perform additional sanity checks to confirm our trained binary classifier works as
expected. Indeed, S outputs Same class 100% of the time when two input images are identical and nearly 0% of
the time given a pair of two random images (that are likely from two different classes) (Appendix F). Another
insight is that the comparator tends to assign higher mean confidence scores when it is correct compared to
when it is wrong (Appendix F.2).

4.4 Well-trained comparator S works well with an arbitrary classifier C in a C × S model

Sec. 4.1 shows that using a given comparator S1 trained on data sampled based on a specific classifier C1,
one can form a C1 × S1 model that outperforms the original C1.

Here, we test if such coupling is necessary: Would the same comparator S1 form a high-performing C × S
with an unseen, black-box classifier C2?

Experiment First, we take an image comparator S1 from Sec. 4.1 that was trained on data sampled based
on a high-performing CUB ResNet-50 classifier by Taesiri et al. (2022) (85.83% accuracy; Tab. 1c). Then,
in the C × S setup (Sec. 3.3), we test using the same S1 to re-rank the predictions of five different CUB
classifiers: three different ResNets (Tab. 1), a ViT/B-16 (82.40%), and an NTS-Net (87.04%) Yang et al.
(2018).

Results Interestingly, S1 works well with many unseen, black-box classifiers in a C × S model, consistently
increasing the accuracy over the classifiers alone. Across unseen classifiers, we witness significant accuracy
boosts (Fig. 6; −−) of around +20 pp for all ResNet models, which were pretrained on ImageNet and finetuned
on CUB-200. With ViT and NTS-Net, the gains are smaller, yet consistent. Detailed quantitative numbers
are reported in Appendix C.

9

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L205
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L204

Published in Transactions on Machine Learning Research (08/2024)

12M 20M 30M 100M 120M 180M
Number of Parameters

60

65

70

75

80

85

CU
B-

20
0

To
p-

1
Ac

cu
ra

cy
 (%

)

IN1K-RN18
IN1K-RN34
IN1K-RN50
IN1K-ViT-B-16
INat-RN50
NTS-Net
Seen
Unseen

Figure 6: When pairing a well-trained comparator S1 with an unseen, black-box classifier (), our C × S
models (⋆) consistently yields a higher accuracy on CUB-200. Along the x-axis, each ⋆ shows the total
number of parameters of S1 and a paired classifier.

4.5 C × S outperforms prototype-based classifiers

Our PCNN-based approach is related to many explainable methods that compares the input to examplar
images Papernot & McDaniel (2018), prototypical patches Chen et al. (2019) or both images and patches
Taesiri et al. (2022). Here, we aim to compare our method with these state-of-the-art models on CUB-200
(Tab. 2), Cars-196 (Tab. 3), and Dogs-120 (Tab. 4).

k-Nearest Neighbors (k-NN) operates by comparing an input image against the entire training set at
the image level. In contrast, our C × S uses only images from K = 10 classes out of all classes (e.g. 200 for
CUB) for re-ranking. Following Taesiri et al. (2022), we use k = 20 and implement a baseline (k-NN + S)
that compares images using cosine similarity in the pretrained ResNet-50’s avgpool features (Tab. 2; 85.46%
accuracy). To understand the importance of our re-ranking, we also test another k-NN baseline that uses our
comparator’s scores instead of cosine similarity.

Consistent results across all three datasets First, we find that using S as the distance function for
k-NN results in competitive accuracy on all three datasets, specifically, 86.88% on CUB-200 (Tab. 2) and
88.90% on Cars-196 (Tab. 3). This k-NN + S result shows that S is a strong generic image comparator.
That is, here, S can be used to compare training-set images that are even outside the distribution of top-Q
classes that it was trained on.

Second, our C × S outperforms both k-NN + cosine and k-NN + S baselines consistently by around +1 to
+3 pp, suggesting that the S-based re-ranking method is effective.

Third, our C × S method outperforms the state-of-the-art explainable re-ranking methods of CHM-Corr
and EMD-Corr Taesiri et al. (2022) by a large margin of around +4 on CUB-200 and Cars-196 (Tabs. 2
and 3) and +0.73 on Dogs-120 (Tab. 4). While both techniques are 2-stage classification, the major technical
difference is that our C × S leverages a high-performing black-box C and further finetune its top-K predicted
labels using PCNNs. In contrast, CHM-Corr and EMD-Corr relies on a slow and often lower-performing
k-NN to first rank the training-set images, and then re-rank the shortlisted images in their 2nd stage.

Fourth, by a large margin, our C × S outperforms all models in the prototypical-part-based family, which
learn representative patch prototypes for each class and compare them to the input image at test time. From
the explainability viewpoint, C × S reveals insights into how labels are re-ranked but not how they are
initially predicted by the black-box C. In contrast, prototype-based family aims to show insights into how
the similarity between input patches and prototypes contributes to initial image-label predictions.

10

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L205

Published in Transactions on Machine Learning Research (08/2024)

Table 2: CUB-200 top-1 test-set accuracy (%). All models are finetuned on CUB-200 from an iNaturalist-
pretrained ResNet-50 backbone. For our method, we report the mean and std over 3 random seeds (see
Sec. B.7). Prototypical part-based classifiers typically use full, uncropped images, and 10 part prototypes per
class. Accuracy † is from Wang et al. (2023b).
E: Using training-set Examples at test time to make predictions.
I: Comparing images at the Image level.
P: Comparing images at the Patch level.
R: Re-ranking initial predictions of a classifier.

Classifier Ex Img Patch R Acc
k-NN + cosine Taesiri et al. (2022) ✓ ✓ - - 85.46
k-NN + S ✓ ✓ - - 86.88
ProtoPNet Chen et al. (2019) - - ✓ - 81.10†

PIPNet Nauta et al. (2023) - - ✓ - 82.00
ProtoTree Nauta et al. (2021) - - ✓ - 82.20
ProtoPool Rymarczyk et al. (2022) - - ✓ - 85.50
Def-ProtoPNet Donnelly et al. (2021) - - ✓ - 86.40
TesNet Wang et al. (2021) - - ✓ - 86.50†

ST-ProtoPNet Wang et al. (2023b) - - ✓ - 86.60
ProtoKNN Ukai et al. (2023) ✓ - ✓ - 87.00
CHM-Corr Taesiri et al. (2022) ✓ ✓ ✓ ✓ 83.27
EMD-Corr Taesiri et al. (2022) ✓ ✓ ✓ ✓ 84.98

C × S (ours) ✓ ✓ - ✓
88.59
± 0.17

Table 3: Cars-196 top-1 test-set accuracy (%). All
models are finetuned on Cars-196 from an ImageNet-
pretrained ResNet-50 backbone. Accuracy† of Pro-
toPNet is from Keswani et al. (2022) & accuracy* of
ProtoPShare Rymarczyk et al. (2021) is from Nauta
et al. (2023).

Classifier Ex Img Patch R Acc
k-NN + cosine ✓ ✓ - - 87.48
k-NN + S ✓ ✓ - - 88.90
ProtoPNet - - ✓ - 85.31†

ProtoPShare - - ✓ - 86.40*

PIPNet - - ✓ - 86.50
ProtoTree - - ✓ - 86.60
ProtoPool - - ✓ - 88.90
ProtoKNN ✓ - ✓ - 90.20
CHM-Corr ✓ ✓ ✓ ✓ 85.03
EMD-Corr ✓ ✓ ✓ ✓ 87.40

C × S (ours) ✓ ✓ - ✓
91.06
± 0.15

Table 4: Dogs-120 top-1 test-set accuracy (%). All
models are finetuned on Dogs-120 from an ImageNet-
pretrained ResNet-50 backbone. Accuracy† is from
Wang et al. (2023b) and MGProto is from Wang et al.
(2023a).

Classifier Ex Img Patch R Acc
k-NN + cosine ✓ ✓ - - 85.56
k-NN + S ✓ ✓ - - 82.33
ProtoPNet - - ✓ - 76.40†

TesNet - - ✓ - 82.40†

Def-ProtoPNet - - ✓ - 82.20†

ST-ProtoPNet - - ✓ - 84.00
MGProto - - ✓ - 85.40
CHM-Corr ✓ ✓ ✓ ✓ 85.59
EMD-Corr ✓ ✓ ✓ ✓ 85.57

C × S (ours) ✓ ✓ - ✓
86.31
± 0.03

4.6 PCNN improves human accuracy in predicting AI misclassifications on bird images

Given the effectiveness of PCNN examples in re-ranking, we are motivated to test them on human users.
Specifically, we compare user’ accuracy in the distinction task Kim et al. (2022) (i.e., telling whether a given
classifier C is correct or not) when presented with top-1 class examples as in prior work Nguyen et al. (2021);
Taesiri et al. (2022) compared to when presented with PCNN (Fig. 8a vs. b).

Experiment We randomly sample 300 correctly classified and 300 misclassified images by the C × S
model from the CUB-200 test set (88.59% accuracy; Tab. 2). From our institution, we recruit 33 lay users for
the test with top-1 class examples and 27 users for the PCNN test. Per test, each participant is given 30

11

Published in Transactions on Machine Learning Research (08/2024)

(b
)

P
C

N
N

(a
)

to
p-

1

Figure 7: In both experiments, humans are asked whether the input image is Caspian Tern given that input,
a model prediction, and either top-1 class examples (top) or PCNN explanations (bottom). When given
only examples from the top-1 class, humans tend to accept the prediction, not knowing there are other very
visually similar birds. Yet, the top-5 classes provide humans with a broader context which leads to better
accuracy (64.58% vs. 54.55%; Sec. 4.6).

images, one at a time, and asked to predict (Yes or No) whether the top-1 predicted label is correct given the
explanations (Fig. 7). To align with prior work, we choose K = 5 when implementing PCNN, i.e. we only
show nearest examples from top-K (where K = 5) classes to keep the explanations readable to users. More
details in Appendix H.

Results We find that PCNN offers contrastive evidence for users to distinguish closely similar species,
leading to better accuracy. That is, showing only examples from the top-1 class leads users to overly trust
model predictions, rejecting only 22.28% of the cases where the AI misclassifies. In contrast, PCNN users
correctly reject 49.31% of AI’s misclassifications (Fig. 8b). Because users are given more contrastive evidence
to make decisions, they tend to doubt AI decisions more often, resulting in lower accuracy when the AI is
actually correct (79.78% vs. 90.99%; Fig. 8a).

Yet, on average, compared to showing only examples from the top-1 class in prior works Nguyen et al. (2021);
Taesiri et al. (2022); Nguyen et al. (2024), PCNN improves user accuracy by a large margin of nearly +10
pp (54.55% → 64.58%). Our finding aligns with the literature that showing explanations helps users reduce
over-reliance on machine predictions Buçinca et al. (2021); Schemmer et al. (2023); Chen et al. (2023a). We
present extensive details of the human study in Tab. 17.

5 Limitations

While our re-ranking method shows a novel and exciting use of nearest neighbors, it comes with a major
time-complexity limitation. That is, the re-ranking inherently adds extra inference time since we also need to
query the comparator S K times in addition to only calling the original classifier C. Empirically, when C is
a ResNet-50 and K = 10, our C × S model is ∼7.3× slower (64.55 seconds vs. 8.81 seconds for 1,000 queries).
Our method runs also slower than k-NN and prototypical part-based classifiers Chen et al. (2019) but faster
than CHM-Corr and EMD-Corr re-rankers Taesiri et al. (2022). For a detailed runtime comparison between
other existing explainable classifiers and our method, along with our proposals to reduce runtime without
sacrifying the classification accuracy, refer to Appendix E.

12

Published in Transactions on Machine Learning Research (08/2024)

top-1 PCNN
0

20

40

60

80

100

Pe
r-u

se
r M

ea
n

Ac
cu

ra
cy

 (%
)

90.99 79.78

AI is Correct

top-1 PCNN

22.28 49.31

AI is Wrong

Type of NN

Figure 8: Users often accept when top-1 class neighbors are presented, leading to high accuracy when the AI
is correct (a) and extremely poor accuracy when AI is wrong (b). PCNN ameliorates this limitation of the
top-1 examples.

6 Discussion and Conclusion

In this work, we propose PCNN, a novel explanation consisting of K images taken from the top-K predicted
classes to more fully represent the query. We first show that PCNN can be leveraged to improve the accuracy
of a fine-grained image classification system without having to re-train the black-box classifier C, which is
increasingly a common scenario in this foundation model era. Second, we show that such a well-trained
comparator S could be used with any arbitrary classifier C. Our method also achieves state-of-the-art
classification accuracy compared to existing prototype-based classifiers on CUB-200, Cars-196, and Dogs-120.
Lastly, we find that showing PCNN also helps humans improve their decision-making accuracy compared to
showing only top-1 class examples, which is a common practice in the literature.

An important aspect to consider is that while PCNN provides a comprehensive explanation by presenting
multiple probable-class examples, it is crucial to ensure this does not reduce user confidence to a degree
that negatively affects decision-making, especially in time-critical high-stakes scenarios. Balancing detailed
information with user confidence is highly important for effective human-AI collaboration.

Acknowledgement

We thank Son Nguyen and Hung Dao from KAIST, South Korea and Peijie Chen, Thang Pham, and Pooyan
Rahmanzadehgervi from Auburn University for feedback on early results. AN was supported by the NSF
Grant No. 1850117 & 2145767, and donations from NaphCare Foundation & Adobe Research. GN was
supported by Auburn University Presidential Graduate Research Fellowship.

References
Gagan Bansal, Tongshuang Wu, Joyce Zhou, Raymond Fok, Besmira Nushi, Ece Kamar, Marco Tulio Ribeiro,

and Daniel Weld. Does the whole exceed its parts? the effect of ai explanations on complementary team
performance. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp.
1–16, 2021.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z Gajos. To trust or to think: cognitive forcing functions
can reduce overreliance on ai in ai-assisted decision-making. Proceedings of the ACM on Human-computer
Interaction, 5(CSCW1):1–21, 2021.

13

Published in Transactions on Machine Learning Research (08/2024)

Alex J Chan, Alihan Huyuk, and Mihaela van der Schaar. Optimising human-ai collaboration by learning
convincing explanations. arXiv preprint arXiv:2311.07426, 2023.

Chacha Chen, Shi Feng, Amit Sharma, and Chenhao Tan. Machine explanations and human understanding.
In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency, pp. 1–1, 2023a.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks like
that: deep learning for interpretable image recognition. Advances in neural information processing systems,
32, 2019.

Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale vision
transformer for image classification. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 357–366, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR,
2020.

Valerie Chen, Q Vera Liao, Jennifer Wortman Vaughan, and Gagan Bansal. Understanding the role of human
intuition on reliance in human-ai decision-making with explanations. arXiv preprint arXiv:2301.07255,
2023b.

Teodor Chiaburu, Frank Haußer, and Felix Bießmann. Copronn: Concept-based prototypical nearest neighbors
for explaining vision models. arXiv preprint arXiv:2404.14830, 2024.

Julien Colin, Thomas Fel, Rémi Cadène, and Thomas Serre. What i cannot predict, i do not understand:
A human-centered evaluation framework for explainability methods. Advances in Neural Information
Processing Systems, 35:2832–2845, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. Deformable protopnet: An interpretable image
classifier using deformable prototypes. arXiv preprint arXiv:2111.15000, 2021.

Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi Cadène,
and Thomas Serre. Craft: Concept recursive activation factorization for explainability. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2711–2721, 2023.

Raymond Fok and Daniel S Weld. In search of verifiability: Explanations rarely enable complementary
performance in ai-advised decision making. arXiv preprint arXiv:2305.07722, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Geoffrey E. Hinton. Products of experts. 1999. URL https://api.semanticscholar.org/CorpusID:
15059668.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456, 2015.

Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani Srivastava. How can i
explain this to you? an empirical study of deep neural network explanation methods. Advances in Neural
Information Processing Systems, 33:4211–4222, 2020.

14

https://api.semanticscholar.org/CorpusID:15059668
https://api.semanticscholar.org/CorpusID:15059668

Published in Transactions on Machine Learning Research (08/2024)

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE Transactions
on Big Data, 7(3):535–547, 2019.

Eoin M Kenny, Mycal Tucker, and Julie Shah. Towards interpretable deep reinforcement learning with
human-friendly prototypes. In The Eleventh International Conference on Learning Representations, 2022.

Eoin M Kenny, Eoin Delaney, and Mark T Keane. Advancing post-hoc case-based explanation with feature
highlighting. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
pp. 427–435, 2023.

Monish Keswani, Sriranjani Ramakrishnan, Nishant Reddy, and Vineeth N Balasubramanian. Proto2proto:
Can you recognize the car, the way i do? In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10233–10243, 2022.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-grained
image categorization: Stanford dogs. In Proc. CVPR workshop on fine-grained visual categorization
(FGVC), volume 2. Citeseer, 2011.

Sunnie SY Kim, Nicole Meister, Vikram V Ramaswamy, Ruth Fong, and Olga Russakovsky. Hive: evaluating
the human interpretability of visual explanations. In Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XII, pp. 280–298. Springer, 2022.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops, pp.
554–561, 2013.

Canjia Li, Andrew Yates, Sean MacAvaney, Ben He, and Yingfei Sun. Parade: Passage representation
aggregation fordocument reranking. ACM Transactions on Information Systems, 42(2):1–26, 2023.

Han Liu, Yizhou Tian, Chacha Chen, Shi Feng, Yuxin Chen, and Chenhao Tan. Learning human-compatible
representations for case-based decision support. In The Eleventh International Conference on Learning
Representations, 2022.

Samuel G Müller and Frank Hutter. Trivialaugment: Tuning-free yet state-of-the-art data augmentation. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 774–782, 2021.

Meike Nauta, Ron van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 14933–14943, 2021.

Meike Nauta, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. Pip-net: Patch-based intuitive
prototypes for interpretable image classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2744–2753, 2023.

Giang Nguyen, Daeyoung Kim, and Anh Nguyen. The effectiveness of feature attribution methods and its
correlation with automatic evaluation scores. Advances in Neural Information Processing Systems, 34:
26422–26436, 2021.

Giang Nguyen, Mohammad Reza Taesiri, Sunnie SY Kim, and Anh Nguyen. Allowing humans to interactively
guide machines where to look does not always improve human-ai team’s classification accuracy. arXiv
preprint arXiv:2404.05238, 2024.

Son Nguyen, Mikel Lainsa, Hung Dao, Daeyoung Kim, and Giang Nguyen. Instance segmentation under
occlusions via location-aware copy-paste data augmentation. arXiv preprint arXiv:2310.17949, 2023.

Nicolas Papernot and Patrick McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and
robust deep learning. arXiv preprint arXiv:1803.04765, 2018.

15

Published in Transactions on Machine Learning Research (08/2024)

Hai Phan and Anh Nguyen. Deepface-emd: Re-ranking using patch-wise earth mover’s distance improves
out-of-distribution face identification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20259–20269, 2022.

Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Prototypical parts
sharing for similarity discovery in interpretable image classification. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1420–1430, 2021.

Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and Bartosz
Zieliński. Interpretable image classification with differentiable prototypes assignment. In European
Conference on Computer Vision, pp. 351–368. Springer, 2022.

Robert E Schapire. The boosting approach to machine learning: An overview. Nonlinear estimation and
classification, pp. 149–171, 2003.

Max Schemmer, Niklas Kuehl, Carina Benz, Andrea Bartos, and Gerhard Satzger. Appropriate reliance
on ai advice: Conceptualization and the effect of explanations. In Proceedings of the 28th International
Conference on Intelligent User Interfaces, pp. 410–422, 2023.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large
learning rates. In Artificial intelligence and machine learning for multi-domain operations applications,
volume 11006, pp. 369–386. SPIE, 2019.

Mohammad Reza Taesiri, Giang Nguyen, and Anh Nguyen. Visual correspondence-based explanations
improve ai robustness and human-ai team accuracy. Advances in Neural Information Processing Systems,
35:34287–34301, 2022.

Yuki Ukai, Tsubasa Hirakawa, Takayoshi Yamashita, and Hironobu Fujiyoshi. This looks like it rather than
that: Protoknn for similarity-based classifiers. In The Eleventh International Conference on Learning
Representations, 2023.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro
Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 8769–8778, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. California Institute of Technology, 2011.

Chong Wang, Yuanhong Chen, Fengbei Liu, Davis James McCarthy, Helen Frazer, and Gustavo Carneiro.
Mixture of gaussian-distributed prototypes with generative modelling for interpretable image classification.
arXiv preprint arXiv:2312.00092, 2023a.

Chong Wang, Yuyuan Liu, Yuanhong Chen, Fengbei Liu, Yu Tian, Davis McCarthy, Helen Frazer, and
Gustavo Carneiro. Learning support and trivial prototypes for interpretable image classification. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2062–2072, 2023b.

Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing. Interpretable image recognition by constructing
transparent embedding space. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 895–904, 2021.

Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, and Liwei Wang. Learning to navigate for
fine-grained classification. In Proceedings of the European conference on computer vision (ECCV), pp.
420–435, 2018.

Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. Deepemd: Few-shot image classification with
differentiable earth mover’s distance and structured classifiers. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 12203–12213, 2020.

16

Published in Transactions on Machine Learning Research (08/2024)

A Additional details of training, evaluation, and architecture

Unless otherwise stated, the same seed value of 42 was set to ensure reproducibility across Python, Numpy,
and PyTorch operations. We employ the faiss (Johnson et al., 2019) library to index and retrieve nearest
neighbors, utilizing the L2 distance through the IndexFlatL2 function.

A.1 Training

Our experiments were conducted using two NVIDIA A100-SXM4-40GB GPUs, leveraging PyTorch version
1.13.0+cu117.

CUB-200 From the training set of 5,994 images of CUB-200, we follow the sampling procedure in Fig. 4
and collect a total of 113,886 pairs (where the positive pairs and negative pairs take ≈ 50%).

Cars-196 We repeat the same procedure but collect 154,736 pairs with the same positive/negative ratio
from 8,144 images.

Dogs-120 We collect 228,000 pairs with the same positive/negative ratio from 12,000 dog samples.

In training an image comparator S, given B image pairs as training samples, and a true binary label yi

(positive or negative) for each i-th sample pair, we train S to minimize the standard binary cross-entropy loss:

L = − 1
B

B

∑
i=1

yi log (sigmoid(oi)) + (1 − yi) log (1 − sigmoid(oi)) (1)

To select the best training checkpoint for our image comparator S during training, we use the F1 score, which
balances precision and recall, as our key metric. This process involves evaluating the model at each of the 100
training epochs. The F1 score helps us identify the checkpoint where the model best distinguishes between
similar (positive) and dissimilar (negative) image pairs, ensuring a balance between accurately identifying
true positives and minimizing false positives. This method aids in choosing a model that is not only accurate
but also generalizes well, avoiding overfitting.

For CUB-200, we train S for 100 epochs with a batch size of 256 and a max learning rate of 0.01 for
OneCycleLR Smith & Topin (2019) scheduler. The model architecture for this dataset is defined by
M = N = 4 and L = 2. For Cars-196 and Dogs-120, we use the same batch size and number of epochs, but
adjust the max learning rate to 0.1 and 0.01 for OneCycleLR scheduler, respectively. In both datasets, we
use M = N = 3 and L = 3. Unless specified differently, both the self- and cross-attention Transformer blocks
have 8 heads, and for the sampling process, Q = 10.

For the pretrained convolutional layers f , we always use the last conv layer in ResNet architectures. f is the
layer4 per PyTorch definition or conv5_x in He et al. (2016). The conv features given by f are xconv1 and
xconv2 ∈ R2048×7×7) for ResNet-50 and R512×7×7) for both ResNet-34 and ResNet-18.

The MLPs consist of 4 layers, with each utilizing Gaussian Error Linear Units (GeLU) Hendrycks & Gimpel
(2016) and Batch Normalization Ioffe & Szegedy (2015), except for the last two layers. See the definition of
MLPs below:

MLP architecture
s e l f . net = nn . Sequent i a l (

nn . Linear (input_dim , 512) ,
nn . BatchNorm1d (512) ,
nn .GELU() ,
nn . Linear (512 , hidden_dim) ,
nn . BatchNorm1d (hidden_dim) ,
nn .GELU() ,
nn . Linear (hidden_dim , 2) ,
nn . Linear (2 , 1))

17

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L183

Published in Transactions on Machine Learning Research (08/2024)

In our neural network configuration, the variable hidden_dim is empirically set to 32. The variable input_dim,
however, varies depending on the specific ResNet architecture employed. Specifically, for ResNet-50, input_dim
is set to 4098, whereas for both ResNet-34 and ResNet-18, input_dim is set to 1026.

A.2 Evaluation

To evaluate the performance of the comparator S on the same task as during training, we employ the sampling
procedure outlined in Fig. 4 on the test dataset.

For example, within the test set of CUB-200, which consists of 5,794 samples, we generate 110,086 pairs.
Although we have already excluded the first nearest neighbor from the ground-truth class to avoid x and nn
being similar, we still identify 740 pairs among these that consist of identical images, and then we remove
them, resulting in a total of 109,346 pairs. This set includes 49,750 positive pairs and 59,596 negative pairs.
In an effort to balance the distribution between positive and negative pairs, we eliminate an additional 9,846
negative pairs. This adjustment ensures that we are left with 99,500 pairs, achieving an exact 50/50 split
between positive and negative pairs.

Following the same procedure on 8041 Cars-196 test samples, we start with 152,779 pairs and remove 6,945
negative pairs, resulting in a balanced total of 145,834 pairs, with an exact 50/50 split between positives and
negatives.

For Dogs-120, starting with 8,580 samples, we apply the same procedure to generate 163,020 pairs. To
achieve balance, we eliminate 13,414 negative pairs. This results in a total of 149,606 pairs, ensuring a 50/50
split between positive and negative pairs.

The output score produced by the comparator S is then subjected to a threshold of 0.5 to classify each pair
as either positive or negative.

A.3 Architecture

Referring to Fig. 3, the written description of the architecture of the image comparator S are:

xconv1 = f (x) ; xconv2 = f (xnn)
xconv1 = flatten (xconv1)T ; xconv2 = flatten (xconv2)T

x1 = [xcls∥xconv1] + xpos; x2 = [xcls∥xconv2] + xpos

y1 = x1 +MHSA(x1); y2 = x2 +MHSA(x2)
z1, z2 =CrossAttn (y1, y2)
o =MLPs (concat (z1[0, ∶], z2[0, ∶]))
s = sigmoid (o)

(2)

B Hyperparameter tuning and ablation studies

In the following experiments, unless otherwise stated, we use iNaturalist-pretrained ResNet-50 Taesiri et al.
(2022) for CUB-200 and ImageNet-pretrained ResNet-50 for Cars-196 and Dogs-120. Also, we evaluate design
choices using binary classification accuracy (%) for the comparator S and top-1 classification accuracy for the
re-ranking algorithm.

B.1 At test time, comparing input with multiple nearest neighbors achieves better weights for
re-ranking

Considered datasets: CUB-200 and Cars-196. Considered tasks: 200/196-way image classification.

In our re-ranking algorithm (Fig. 2), we only use one nearest neighbor (1 nn) to compare with the input
image x to compute the similarity score for a given class. In this section, we aim to study whether presenting

18

Published in Transactions on Machine Learning Research (08/2024)

more nearest-neighbor (NN) samples to the comparator provides better class-wise re-ranking weights for the
algorithm.

For each class, we perform the comparison between x and nn 2 or 3 times (i.e., pairing the input image
x with each of the 2 or 3 nearest neighbors from each class) and then take the average of these scores to
determine the final weights. We then examine whether increasing the number of comparisons (by using more
nearest neighbors) enhances the accuracy of the re-ranking process.

Table 5: Top-1 classification accuracy (%) using diffrent numbers of nearest neighbors. Using more nearest
neighbors to compare with the input image slightly improves C × S .

Number of nearest neighbors CUB-200 Top-1 Acc (%) Cars-196 Top-1 Acc (%)
1 88.59 91.06
2 88.75 91.20
3 88.83 90.09

In Tab. 5, we find that increasing the number of nearest neighbors for comparison slightly improves the top-1
classification accuracy on both CUB-200 and Cars-196. With 2 nearest neighbors, the accuracy on the test
set increases from 88.59% → 88.75% for CUB-200 and 91.06% → 91.20% for Cars-196. When using 3 nearest
neighbors, the accuracy increases to 88.83% for CUB-200 and 90.09% for Cars-196. However, it is noteworthy
to consider the associated computational cost, as it increases linearly with the number of nearest neighbors.
As such, a careful balance between performance and computational efficiency should be struck.

B.2 Using Q = 10 in sampling yields the optimal balance between the accuracy of S and the training
cost

Considered datasets: CUB-200. Considered tasks: Binary classification.

Q is the crucial hyperparameter for training S (see Sec. 3.4.3). To assess their effects beyond the default
setting of Q = 10, we also train S with configurations of Q = 3, 5, and 15. This value represents the coverage
of the sampling process over the nearest neighbor space.

Table 6: Binary classification accuracy (%) of S trained with different values of Q for CUB-200. This value
has a considerable influence on the final performance of S. Using fewer than 10 significantly diminishes
performance, while increasing to 15 offers only a marginal improvement at the expense of higher training costs.
The training time complexity increases linearly with the value of Q, following the formula 2Q − 1 (Fig. 4).

Q Train Binary Acc (%) Test Binary Acc (%)
3 97.17 87.49
5 97.60 92.94
10 98.69 94.44
15 99.30 94.62

However, large values of Q could introduce noise during training. This is because NNs from the tails of
the top-1 class (the last images in the middle row of Fig. 30a) and predicted classes (the last images in the
bottom row of Fig. 30a) significantly diverge from the head samples used in comparison with the query image
during test time.

From Tab. 6, we notice that these values significantly influence the performance of S. Interestingly, there
appears to be a trend: as these values increase (indicating more training data), the test accuracy also goes up
(seemingly saturated after 10). However, similar to Sec. B.1, there is a balance to be considered between test
accuracy and the computational cost.

B.3 Using K = 10 in re-ranking yields the optimal classification accuracy

Considered datasets: CUB-200 and Dogs-120. Considered tasks: 200/120-way image classification.

19

Published in Transactions on Machine Learning Research (08/2024)

Given the optimal value of Q being 10 for training image comparators S demonstrated in Appendix B.2, we
tested various K values for the re-ranking algorithm described in Sec. 3.3. Empirically, we found that K = 10
delivers the best classification accuracy on both CUB-200 and Dogs-120 datasets. Hence, we use K = 10
throughout our main experiments in the main text.

Table 7: Performance and runtime comparison for different values of K on CUB-200 and Dogs-120 datasets.

K CUB-200 Top-1 Acc (%) Runtime (s) Dogs-120 Top-1 Acc (%) Runtime (s)
1 85.83 8.81 85.82 8.81
2 87.95 (+2.12) 27.72 86.06 (+0.24) 50.35
3 88.28 (+2.45) 32.32 86.03 (+0.21) 54.96
5 88.28 (+2.45) 41.53 85.91 (+0.09) 64.16
10 88.42 (+2.59) 64.55 86.27 (+0.45) 87.18
15 88.00 (+2.17) 87.57 85.86 (+0.04) 110.20

B.4 Using C’s predicted labels to sample hard negative pairs is more beneficial than using random
negative pairs

Considered datasets: CUB-200. Considered tasks: Binary classification & 200-way image classification.

We run two experiments. First, we replace our proposed negative samples (from top-2 to top-Q class; see
Fig. 2a) by random samples.

In our data sampling algorithm (Fig. 4), the positive and negative classes are determined by a classifier C
and it is intriguing to study whether we can avoid the reliance on C to choose the classes for nearest neighbor
retrievals. Therefore, we modify the data sampling algorithm in Sec. 3.4 so that for a training image x, the
NNs for positives are from the ground-truth class and the NNs for negatives are randomly
picked from the remaining class. We train an image comparator for CUB-200 with the same settings
used for the one in Tab. 2.

In this setup, negative pairs become much easier to classify due to their stark visual dissimilarity, leading
S to predominantly learn from positive pairs. Indeed, S demonstrates limited ability to identify the
misclassifications made by the ResNet-50. When this image comparator S is utilized in the re-ranking
algorithm (Fig. 2) for 200-way image classification, there is a notable decline in the top-1 accuracy from
88.59% → 86.55%. This result confirms the novelty of our sampling process and proves that hard negatives
(close-species pairs in Sec. 3.4) are the key factor to help S achieve competitive performance. Please note
that in this experiment, the input sample is still compared with its first nearest neighbors in test.

Second, we use the 2nd or 3rd closest nearest neighbors (NNs) in each class instead of using the 1st to train
S. We find that using the 2nd and 3rd NNs in the sampling process (both in training and test) is suboptimal,
decreasing the top-1 accuracy from 88.59% → 88.06% and 88.21%, respectively.

20

Published in Transactions on Machine Learning Research (08/2024)

B.5 Simple and parametric similarity functions are insufficient to distinguish fine-grained species

Considered datasets: CUB-200. Considered tasks: 200-way image classification.

To understand the significance of image comparator S for re-ranking, we consider three alternatives in Tab. 8:
(a) cosine similarity – non-parametric, image-level, (b) Earth Mover’s Distance (EMD): non-parametric,
patch-level, and (c) 4-layer MLP (Appendix A): parametric. We use avgpool features for cosine and layer4’s
conv features for EMD and the 4-layer MLP. All these three functions fully manage the re-ranking, akin to
the role of S in C → S.

(a) We replace S with cosine similarity function, which chooses the class that yields the highest similarity
to the input, among top-Q categories ranked by ResNet-50, as the final prediction. However, we find this
degrades the top-1 accuracy from 87.72% → 60.20%. (b) We use EMD function from Zhang et al. (2020) to
also pick the closest class to the input but observe a drop from 87.72% → 54.83%. (c) We remove Transformer
layers in Fig. 3 and train a comparator network (with f being frozen) following the same settings used for S
in Sec. 3. Yet, this simple comparator leads to a reduced accuracy of 83.76%.

Table 8: Top-1 classification accuracy on CUB-200 when we use 2nd or 3rd NN samples for negative pairs
instead of the 1st NNs as depicted in Fig. 4. For our re-ranking algorithm, 1st is optimal. We also experiment
with different similarity functions for re-ranking and find that comparator S is the best.

NN-th RN50 × S C → S re-ranking on CUB-200 (%)
Our trained S cosine EMD 4-layer MLP

1st 88.59 87.72 60.20 54.83 83.76
2nd 88.06 87.34 58.84 57.05 84.33
3rd 88.21 87.43 57.47 57.14 83.93

Below we show examples where cosine cannot assign distinctively high similarity scores for groundtruth
classes among other top-probable classes, thus being unable to re-rank RN50 predictions effectively.

21

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py#L204

Published in Transactions on Machine Learning Research (08/2024)

Query: American Crow

RN50: 88% | S: 0.00

Top1: Shiny Cowbird

RN50: 5% | S: 0.00

Top2: Fish Crow

RN50: 2% | S: 0.98

Top3: American Crow

RN50: 1% | S: 0.00

Top4: Brewer Blackbird

RN50: 1% | S: 0.00

Top5: Common Raven

RN50: 88% | Cos: 0.86

Top1: Shiny Cowbird

RN50: 5% | Cos: 0.81

Top2: Fish Crow

RN50: 2% | Cos: 0.81

Top3: American Crow

RN50: 1% | Cos: 0.84

Top4: Brewer Blackbird

RN50: 1% | Cos: 0.83

Top5: Common Raven

Reranking using comparator S scores

Reranking using cosine similarity scores

Figure 9: A pretrained RN50 model predicts the Query image’s class (ground-truth label: American Crow) and
produces an initial ranking, but the top-1 predicted class (Shiny Cowbird: 88%) does not match the ground-truth.
Re-ranking using scores from the comparator S alone correctly identifies the top-1 class as American Crow,
whereas cosine similarity scores fail to do so.

Query: Kentucky Warbler

RN50: 88% | S: 0.01

Top1: Hooded Warbler

RN50: 7% | S: 0.74

Top2: Kentucky Warbler

RN50: 1% | S: 0.03

Top3: Wilson Warbler

RN50: 0% | S: 0.00

Top4: Canada Warbler

RN50: 0% | S: 0.00

Top5: Common Yellowthroat

RN50: 88% | Cos: 0.85

Top1: Hooded Warbler

RN50: 7% | Cos: 0.81

Top2: Kentucky Warbler

RN50: 1% | Cos: 0.82

Top3: Wilson Warbler

RN50: 0% | Cos: 0.79

Top4: Canada Warbler

RN50: 0% | Cos: 0.77

Top5: Common Yellowthroat

Reranking using comparator S scores

Reranking using cosine similarity scores

Figure 10: A pretrained RN50 model predicts the Query image’s class (ground-truth label: Kentucky Warbler)
and produces an initial ranking, but the top-1 predicted class (Hooded Warbler: 88%) does not match the
ground-truth. Re-ranking using scores from the comparator S alone correctly identifies the top-1 class as
Kentucky Warbler, whereas cosine similarity scores fail to do so.

22

Published in Transactions on Machine Learning Research (08/2024)

B.6 Finetuning pretrained conv features is important in training S

Considered datasets: CUB-200. Considered tasks: Binary classification.

In the training process of S, one crucial consideration is whether to optimize the pretrained conv layers for
the new task. If these layers are already generating effective encodings for the binary classification task, then
we should focus on optimizing the remaining layers. To evaluate the effects of retraining the convolutional
(conv) layers, we train an image comparator S for CUB-200, ensuring that the conv layers remained frozen
while all other settings were maintained as they were specified in Sec. A.

We find that freezing the conv layers significantly slows down the learning process of S. Specifically, the
model could not converge after 100 epochs (training accuracy of 94.18%) and the test accuracy of 91.94%
(lower than 94.44% when making conv layers trainable in Tab. 5).

B.7 The performance of S and re-ranking algorithm is statistically consistent

Considered datasets: CUB-200, Cars-196, and Dogs-120. Considered tasks: Binary classification &
200/196/120-way image classification.

To ensure the statistical significance of S’s performance, we train it multiple times on CUB-200 and Cars-196
using various random seeds and present the results in Tab. 9.

Table 9: Binary classification accuracy of S (%) and top-1 classification accuracy (%) of Product of Experts
C × S over 3 random seeds. The performance of S and our re-raking algorithm C × S is statistically
consistent.

Train Binary Acc (%) Test Binary Acc (%) C × S Top-1 Acc (%)
CUB-200 Cars-196 Dogs-120 CUB-200 Cars-196 Dogs-120 CUB-200 Cars-196 Dogs-120

1 98.69 99.01 98.83 94.37 94.97 92.01 88.42 90.86 86.27
2 98.66 98.99 98.79 94.53 95.07 92.09 88.82 91.23 86.33
3 98.61 99.02 98.81 94.44 95.04 92.96 88.52 91.08 86.32

98.65±0.04 99.00±0.02 98.81±0.02 94.44±0.06 95.02±0.04 92.05±0.03 88.59±0.17 91.06±0.15 86.31±0.02

We see that S consistently achieves similar test accuracies for both binary and single-label classification tasks
across different runs. Further, we note that S misclassifies pairs on CUB-200 and Cars-196. We later find in
Sec. I.2 that these errors are primarily due to inter-class and intra-class variations, as well as issues with
dataset annotations.

B.8 Removing data augmentation degrades the performance of S

Considered datasets: CUB-200, Cars-196, and Dogs-120. Considered tasks: Binary classification.

We wish to study the impact of data augmentation on the performance of S by repeating our previous
experiments for CUB-200 and Cars-196 datasets without applying TrivialAugment (Müller & Hutter, 2021).
In Tab. 10, we observe that the model not only converges more quickly in training without augmentation
but also attains higher accuracies over the training set.

Table 10: Binary classification accuracy (%) of S on CUB-200 and Cars-196 with and without Trivial
Augmentation Müller & Hutter (2021) in training. Data augmentation from Trivial Augmentation plays an
important role in the performance of S.

Phase CUB-200 Cars-196 Dogs-120
with without with without with without

Train Binary Acc (%) 98.65 99.81 99.00 99.79 98.81 99.82
Test Binary Acc(%) 94.44 93.12 95.02 93.50 92.05 90.84

23

Published in Transactions on Machine Learning Research (08/2024)

Nonetheless, the omission of data augmentation has a significantly negative effect during test time (i.e.,
hurting model robustness). S achieves 94.44% with data augmentation, while the omission results in a lower
accuracy of 93.12% for CUB-200. Similarly on Cars-196 and Dogs-120, we observe drops in test accuracy
without using the data augmentation technique, from 95.02% → 93.50% and 92.05% → 90.84%. These findings
underscore the importance of data augmentation in the training of the image comparator, as it helps combat
overfitting. This finding comes as no surprise, as the effectiveness of data augmentation in in-the-wild datasets
has been well-proven in literature Nguyen et al. (2023).

B.9 The importance of the finetuned feature f , self-attention, cross-attention, and MLP in comparator
S

Considered datasets: CUB-200. Considered tasks: 200-way image classification.

To study the effects of different image comparators S on re-ranking, we unfolds a systematic exploration of
architectural configurations, revealing that our proposed architecture in Fig. 3 is optimal. We attempt to
re-rank the top-Q CUB-200 categories given by an iNaturalist-pretrained ResNet-50.

We begin with a simple baseline, where the comparator S in C → S is substituted by a cosine similarity
function. However, this approach only yields an accuracy of 60.20%.

Next, while keeping the pretrained conv layers f still frozen, we train a comparator S consisting of the
frozen f followed by a 4-layer MLP defined in Sec. A.1 to distinguish positive and negative pairs – the task
described in Sec. 3.4.2. Using C → S for re-ranking, we see an increase from 60.20% → 83.76%. Despite this
improvement, the achieved accuracy does not surpass that of the standalone pretrained classifier C, which
has an accuracy of 85.83%.

We then proceed to fine-tune the pretrained convolutional layers f in tandem with the 4-layer MLP. This
fine-tuning process enables f to better adapt its learned representations for the image comparison task. As a
result, we observe an enhancement in accuracy from 83.76% → 87.31%, marking an improvement over the
pretrained ResNet-50 by +1.48 pp.

Finally, we integrate transformer layers into our model as depicted in Fig. 3, and we train S using training
settings that are consistent with those previously described. This helps S further refine its performance,
elevating the accuracy from 87.31% → 87.72.

C Well-trained comparator S works well with an arbitrary classifier C

Considered datasets: CUB-200. Considered tasks: 200-way image classification.

We have shown that using a comparator S trained with a classifier C improves the classifier’s performance.
Here we wish to investigate whether a well-trained compartor S can be used with other arbitrary black-box,
pretrained image classifiers to improve them through our re-ranking algorithms. We refer to these classifiers
as “unseen models” to distinguish them from the classifier C that S has worked with during training.

Table 11: Top-1 classification accuracy (%) of classifiers seen and unseen during the training of S. When
coupling black-box, unseen classifiers with S, we see significant and consistent accuracy boosts on CUB-200.

Seen Unseen
Model iNat-RN50 IN1K-RN18 IN1K-RN34 IN1K-RN50 ViT-B-16 NTS-Net

C 85.83 60.22 62.81 62.98 82.40 87.04
C → S 87.73 84.38 84.74 84.52 87.66 87.94
C × S 88.42 83.60 83.83 83.62 88.45 87.14

In Tab. 11, we denote C as the pretrained classifiers, while C → S and C × S represent our proposed
re-ranking algorithms, detailed further in Section D. The notation IN1K refers to models pretrained on the
ImageNet-1K dataset Deng et al. (2009). Using an image comparator S, well-trained with the iNaturalist-
pretrained ResNet-50 (iNat-RN50), we observe significant improvements in the accuracy of classifiers not

24

Published in Transactions on Machine Learning Research (08/2024)

seen during training. Specifically, improvements are up to 23.28 pp for C × S and 24.16 pp for C → S when
applied to IN1K-RN18.

25

Published in Transactions on Machine Learning Research (08/2024)

D Re-ranking algorithms for single-label image classification

D.1 Baseline classifiers

ResNet: In Sec. 3.3, we introduced re-ranking algorithms that reorder the top-predicted classes of a
pretrained classifier, denoted as C. Given a pretrained ResNet, we wish to investigate whether our classifier
can improve over the classifier C working alone.

k-Nearest Neighbors (kNN): kNN classifiers operate by comparing an input image against the whole
training dataset at the image level (image-to-image comparison). Our classifier considers only a small,
selective subset of the training samples for this comparison.

D.2 Baseline: Re-ranking using similarity scores of S alone

In Algorithm 1 (see illustration in Fig. 11), we directly leverage the similarity scores of S to rank Q class
labels. Specifically, upon receiving an image x, C assigns all k possible classes with softmax scores. The set
of top-ranked classes T and their respective scores is then selected for re-ranking. For each class, S compares
x with the representative image (i.e., nearest neighbor) of that class and generates a similarity score (from
0.0 – 1.0), indicating the likelihood that the two images belong to the same category. The algorithm then
reorders T based on the scores generated by S and gives the new top-1 predicted label ŷ.

Algorithm 1 Hard re-ranking using the ranking of the similarity scores returned by S alone
Inputs: Image x, Pretrained classifier C, Image comparator S, Number of top classes to consider Q.
Output: New ranking of classes T′ and top-1 label ŷ.

1: // Get initial predictions and scores from C
2: P, scores←C(x)
3: // Select top-Q classes and scores
4: T, scorestop ← SelectTopQ(P, scores, Q)
5: // List to store re-ranked classes with their final scores
6: R ← empty list
7: for i = 1 to Q do
8: // Obtain nearest-neighbor explanation for the class
9: NN_image← RetrieveNearestNeighbor(x, T[i])

10: // Compute similarity score of S on the class
11: si ← S(x, NN_image)
12: // Update the final score for the class
13: sfinal ← si
14: // Store the class and its respective final score
15: R.append(T[i], sfinal)
16: end for
17: // Re-rank the classes based on final scores
18: T′ ← Sort R by final scores in descending order
19: // Get the new top-1 predicted class for C
20: ŷ ← First element of T′
21:
22: return T′ and ŷ

D.3 Soft re-ranking using product between scores of C and S

In Algorithm 2, we combine the scores from the pretrained classifier C and the comparator network S.
For each image x, after C assigns initial scores to the top Q classes, these scores are then recalculated by
multiplying with the confidence scores generated by S. This algorithm represents a more nuanced approach,
leveraging the strengths of both C and S to improve the classification accuracy.

26

Published in Transactions on Machine Learning Research (08/2024)

40% indigo bunting
36% green jay
11% blue jay
10% cape starling
 2% painted bunting

Classifier
C

Comparator
S

0.99 green jay
0.95 blue jay

indigo bunting
green jay

blue jay cape starling
painted bunting

green jay

0.70 indigo bunting
0.06 cape starling
0.01 painted bunting

Figure 11: Hard re-ranking. Re-ranking top-predicted classes of a pretrained classifier C using the ranking
of the similarity scores returned by S (C→ S). No Product of Experts.

Algorithm 2 Soft Re-ranking using Product of Experts (C × S)
Inputs: Image x, Pretrained classifier C, Image comparator S, Number of top classes to consider Q.
Output: New ranking of classes T′ and top-1 label ŷ.

1: // Get initial predictions and scores from C
2: P, scores←C(x)
3: // Select top-Q classes and scores
4: T, scorestop ← SelectTopQ(P, scores, Q)
5: // List to store re-ranked classes with their final scores
6: R ← empty list
7: // Loop over top-Q classes in T and their scores
8: for i = 1 to Q do
9: // Obtain nearest-neighbor explanation for the class

10: NN_image← RetrieveNearestNeighbor(x, T[i])
11: // Compute similarity score of S on the class
12: si ← S(x, NN_image)
13: // Compute final score as the product of initial class score and similarity score of S
14: sfinal ← scorestop[i] × si
15: // Store the class and its respective final score
16: R.append(T[i], sfinal)
17: end for
18: // Re-rank the classes based on final scores
19: T′ ← Sort R by final scores in descending order
20: // Get the new top-1 predicted class for C
21: ŷ ← First element of T′
22:
23: return T′ and ŷ

We visually illustrate the algorithm in the Fig. 2.

27

Published in Transactions on Machine Learning Research (08/2024)

E Computational costs of image classifiers

Although our proposed classifier yields significant improvements in top-1 classification accuracy on tested
datasets, it also introduces additional computational overhead beyond that of the pretrained classifier C. To
quantify the computational expense of our product-based classifier in Tab. 1, we run each model (listed in
Tab. 12) 5 times, processing 1,000 queries on a single NVIDIA V100 GPU.

Referring to Algorithm 2, the total runtime of our classifier can be represented as:

T = TRN50 + TkNN + TS. (3)

Here, TRN50 denotes the time taken by the classifier C (i.e., ResNet-50), TkNN represents the time required
for nearest-neighbor retrieval, and TS is the time taken by the image comparator S to compare the query
image with all top-Q classes.

In Tab. 12, we find that our classifier is marginally slower than RN50, kNN, ProtoPNet, and Deformable-
ProtoPNet. However, it surpasses these models in terms of top-1 accuracy. Additionally, we note that our
classifier is significantly faster compared to correspondence-based classifiers such as EMD-Corr and CHM-Corr,
and it also demonstrates higher accuracy.

Table 12: Average runtime (s) of classifiers. Our re-ranking algorithm runs slower compared to C, kNN, and
Proto-part classifiers, yet significantly faster than visual-corr classifiers.

Model Runtime (s)
RN50 8.81 ± 0.14
kNN 9.70 ± 0.32

EMD-Corr 1927.69 ± 17.48
CHM-Corr 6920.76 ± 67.58
ProtoPNet 9.78 ± 0.20

Deformable-ProtoPNet 9.98 ± 0.26
S 46.04 ± 0.04

RN50 ×S 64.55 ± 0.35

E.1 Improving runtime of C × S with reduced number of queries to image comparator S

To mitigate the additional computational overhead introduced by image comparator S, we aim to reduce
the number of queries to S by ignoring less probable labels. In Algorithm 2, for each input image, we set
the queries to K = 10, always examining the top-10 most probable classes. This is sub-optimal for model
efficiency. Specifically, there are always classes receiving less than 1% probability by ResNet-50, which
are unlikely to be the top-1 after re-ranking(see Fig. 2). Reducing the number of K can significantly save
computation with possibly minimal impact on accuracy.

To answer this, we conduct an experiment on CUB-200 where, instead of re-ranking the entire top-10, we
only re-rank the classes that have a probability of 1% or higher assigned by the base classifier C. We call this
method thresholding.

We found that:

• C × S model performance on CUB-200 dropped very marginally by only 0.08% (from 88.59% to
88.51%).

• The number of queries to image comparator S was reduced by approximately 4x (from 10 to about
2.5 queries per image).

This results in a 2.5x speedup in the overall runtime of the C × S model (from 64.55 seconds to 28.95
seconds), as shown in the Tab. 13.

28

Published in Transactions on Machine Learning Research (08/2024)

Table 13: Comparison of model performance and runtime with and without thresholding for re-ranking.

Model Runtime (s) Top-1 Acc (%)
RN50 xS 64.55 ± 0.35 88.59

RN50 xS (with threshold) 28.95 ± 0.11 88.51

E.2 Improving runtime of C × S with reduced training set during inference

The need for the entire training dataset at test time for nearest neighbor retrieval is a limitation of our
work. In this section, we aim to study the impact of reducing the size of the training data on inference-time
performance. In particular, we shrink the training set from 100% to 50% and 33% of the original size and
record the effect on the accuracy and runtime. The samples being removed are randomly selected from the
training set.

Table 14: The top-1 accuracy and runtime of C × S on CUB-200 and Dogs-120 for different sizes of training
data during inference.

Dataset % Data Samples per Class Top-1 Acc (%) Runtime (s)
CUB-200 100 30 88.43 64.55
CUB-200 50 15 88.26 59.70
CUB-200 33 10 88.19 58.08
Dogs-120 100 100 86.27 87.18
Dogs-120 50 50 86.32 71.02
Dogs-120 33 33 86.42 65.52

We found in Tab. 14 that reducing the size of the training data has little-to-no impact on the inference-time
performance. When keeping the same accuracy, we can reduce the runtime by 10% on CUB-200 and 24.9%
on Dogs-120 by reducing the training set to 33% of the original size. It is an interesting research question to
determine the smallest training set size that still maintains the same accuracy. However, as this question is
orthogonal to the main focus of our work, we opt to leave it for future work.

F Sanity checks for image comparator S

F.1 Controlling nearest-neighbor explanations

Considered datasets: CUB-200, Cars-196, and Dogs-120. Considered tasks: Binary image classification.

In this section, we investigate the logical consistency of S. Specifically, we evaluate the model’s ability to
correctly distinguish images that are the same and different. This is achieved by comparing S’s responses
when the NN is the input query itself (expected output: 1 or Yes) and when the NN is a randomly sampled
image (expected output: 0 or No). When sampling the random NN, we study two scenarios: one where NNs
are assigned random values and another where they are random real images. These random real images are
sampled by shuffling the NNs in image pairs inside a batch size of 64 pairs. For image comparators S, we use
iNaturalist-pretrained ResNet-50 for CUB-200 and ImageNet-pretrained ResNet-50 for both Cars-196 and
Dogs-120.

As seen in Tab. 15, when the NN provided is the input image, S correctly recognizes the two images as being
from the same class, yielding a Yes ratio of 100%. On the other hand, when a random-valued NN is used,
the comparator network correctly identifies that the images are not from the same class, yielding low Yes
ratios, namely 3.51%, 2.01%, and 1.86% for CUB-200, Cars-196, and Dogs-120 , respectively. The ratios
represented by Yes for random-real images are also low for both datasets, as expected. This verifies the
logical consistency of S.

29

Published in Transactions on Machine Learning Research (08/2024)

Table 15: Logical tests for the image comparator S by controlling nearest-neighbor explanations. These tests
involve measuring the ratio (%) at which S perceives x and its nearest neighbor nn as belonging to the same
class. S performs as expected in these sanity checks. Images with random values, being out-of-distribution
samples for S, sometimes lead to incorrect outputs.

Explanation CUB-200 (%) Cars-196 (%) Dogs-120 (%)
Query 100 100 100
Random values 3.51 2.01 7.93
Random real images 0.71 0.79 1.86

F.2 Comparator S tends to be more confidence when it is correct than when it is wrong

Considered datasets: CUB-200. Considered tasks: Binary image classification.

In analyzing the performance of image comparator S on CUB-200, we observe intriguing insights into its
similarity scores. In particular, we are interested in 4 types of classifications made by S in the binary (Accep-
t/Reject) task: Correctly Accepting, Incorrectly Accepting, Correctly Rejecting, and Incorrectly Rejecting
the top-1 predicted label of an iNaturalist-pretrained ResNet-50 classifier. The average confidence scores for
these cases are as follows: “CorrectlyAccept” at 99.08%, “IncorrectlyAccept” at 91.85%, “CorrectlyReject” at
93.50%, and “IncorrectlyReject” at 87.09%.

These numbers reveal a nuanced understanding of the image-comparator network’s inner-workings. More
specifically, S demonstrates higher scores in its correct decisions (either Accept or Reject) compared to the
incorrect ones. This characteristic makes S compatible for re-weighting initial predictions of a classifier C
using S scores. When the comparator accepts a label, it is more likely to be groundtruth, and conversely for
rejections, thus allowing effective up-weighting for correct labels and down-weighting for incorrect labels.

This observation inspires us to update confidence scores initially given by pretrained classifier C using product
of model scores. Formally, for any given class A, the pretrained classifier C assigns a confidence score, denoted
as sCA

, and the comparator network S assigns score sSA
. The final score sA for the class is updated to:

sA = sCA
× sSA

(4)

We incorporate this product of scores in Algorithm 2.

30

Published in Transactions on Machine Learning Research (08/2024)

G Maximum possible accuracy with re-ranking algorithms

In this section, we present the maximum achievable accuracy of classifiers C in Tab. 2, 3, and 4 to explore
the potential of re-ranking algorithms like the one illustrated in Fig.2. Surprisingly, by merely considering
the top-1 and top-2 probable classes, we consistently observe accuracy enhancements ranging from 6 → 9
pp in Tab. 16. As we extend our consideration to higher-ranked categories, the gains in accuracy plateau,
ultimately approaching near-perfect accuracy at the top 10.

Table 16: Maximum achievable classification accuracy (%) with RN50 classifiers in Tab. 2, 3, and 4.
Re-ranking algorithms can achieve up to approx. 99% when considering the top-10 predicted labels with
highest scores. The results indicate significant potential for improving classification accuracy via re-ranking
top-predicted classes like Fig. 2.

Top-Q CUB-200 Cars-196 Dogs-120
1 85.86 89.73 85.84
2 93.10 96.18 94.59
3 95.53 97.77 97.10
4 96.84 98.48 98.09
5 97.48 98.79 98.74
6 97.84 98.99 99.04
7 98.10 99.12 99.22
8 98.34 99.19 99.30
9 98.50 99.29 99.36
10 98.64 99.38 99.49

31

Published in Transactions on Machine Learning Research (08/2024)

H Evaluating probable-class nearest-neighbor explanations on humans

We investigate whether PCNN explanations, learned by the image comparator S, offer more assistance to
humans than traditional top-1 nearest neighbors Nguyen et al. (2021); Taesiri et al. (2022) in the binary
decision-making task. For simplicity, we refer to these as the top-1 and top-Q experiments.

Query samples For each of the top-1 and top-Q experiments, we select 300 correctly classified and 300
misclassified query samples determined by CUB-200 RN50 × S, amounting to a total of 600 images. From
this pool, a human user is presented with a randomly chosen subset of 30 images.

Visual explanations In the top-Q experiment, we retrieve one nearest-neighbor prototype from each of
the multiple top-ranked classes as determined by C × S and then present these to human participants (see
Fig. 14). By contrast, in the top-1 experiment, human users are only shown the nearest neighbors from the
single top-1 predicted class (see Fig. 13). In both experiments, participants are presented with the input
image alongside 5 nearest neighbors. Their task remains the same: to accept or reject the top-1 predicted
label from C × S , utilizing the explanations provided. To minimize potential biases, we do not display the
confidence scores for the classes.

Participants There are 35 voluntary participants in the top-1 experiment and 25 in the top-Q experiment,
respectively. Although we do not implement formal quality control measures, such as filtering out malicious
users, we encourage participants to perform responsibly. Moreover, we consider only the data from participants
who complete all 30 test trials.

Study interface Prior to the experiments, participants are briefed on the task with instructions as detailed
in Fig. 12. Each user is tasked with 30 binary questions for an experiment. You can also try out yourself the
human experiment interface at this link.

Instructions
Sam is a robot trained to recognize the most salient bird in a photo. In this study,
you will team up with Sam. You will see his decisions and explanations per image and
decide whether you agree (Yes) or disagree (No) with Sam’s predicted label.

1. Please perform this study on a computer (not a phone) and do not get help from
the Internet or other people.

2. Please make your best of efforts in using the explanation to judge Sam predicted
label. You can compare the Input image vs. the prototype images of relevant
birds (5 birds in the explanation).

!

 I’m 100% confident this is

Painted Bunting

Explanation

Input

Figure 12: The experiment instructions shown to voluntary participants.

32

https://huggingface.co/spaces/xairesearch2023-advnet/HumanStudy

Published in Transactions on Machine Learning Research (08/2024)

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

me-u2h1saiu 1 30 top1

YES NO

Sam guessed the Input image is Painted Bunting with 10% con�dence.

Is this bird a Painted Bunting?

Username Labeled Images Total Images Type of NNs

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

me-u2h1saiu 9 30 top1

YES NO

Sam guessed the Input image is Tropical Kingbird with 100% con�dence.

Is this bird a Tropical Kingbird?

Username Labeled Images Total Images Type of NNs

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

me-u2h1saiu 14 30 top1

YES NO

Sam guessed the Input image is Myrtle Warbler with 90% con�dence.

Is this bird a Myrtle Warbler?

Username Labeled Images Total Images Type of NNs

Figure 13: Example test trials given to human users for the top-1 experiment. Nearest neighbors are retrieved
from the top-1 predicted class of a CUB-200 ResNet-50 classifier.

33

Published in Transactions on Machine Learning Research (08/2024)

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

username-2e3k8iz3 10 30 topQ

YES NO

Sam guessed the Input image is Brewer Blackbird with 17% con�dence.

Is this bird a Brewer Blackbird?

Username Labeled Images Total Images Type of NNs

Spaces xairesearch2023-advnet /HumanStudy 0 Runninglike

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

username-73z66pn2 2 30 topQ

YES NO

Sam guessed the Input image is Indigo Bunting with 100% con�dence.

Is this bird a Indigo Bunting?

Username Labeled Images Total Images Type of NNs

Use via API · Built with Gradio

Advising Networks

Accept/Reject AI predicted label using Explanations

username-73z66pn2 12 30 topQ

YES NO

Sam guessed the Input image is Purple Finch with 99% con�dence.

Is this bird a Purple Finch?

Username Labeled Images Total Images Type of NNs

Figure 14: Example test trials given to human users for the top-Q experiment. Nearest neighbors are retrieved
from the multiple top-ranked classes of a CUB-200 ResNet-50 classifier.

34

Published in Transactions on Machine Learning Research (08/2024)

Main findings In Tab. 17, we find that showing human participants with probable-class nearest-neighbor
explanations enhances their accuracy by around +10 pp, boosting it from 54.55% (± 9.54) to 64.58% (± 8.06),
in the task of distinguishing correct from incorrect classifications made by the classifier C × S . Additionally,
we observe that participants with top-1 explanations tend to accept predictions at a very high rate of up to
85.15%, inline with prior studies indicating that visual explanations can increase human trust, yet may also
result in higher false positive rates Nguyen et al. (2021); Fok & Weld (2023).

In contrast, those with top-Q explanations accept predictions at a lower 64.81%. This trend in acceptance
rates correlates with the performance patterns in Fig. 8, where top-1 participants exhibit high accuracy with
correct AI decisions and lower accuracy with incorrect ones.

Table 17: Human accuracy (%) upon AI correctness on test samples for top-1 and PCNN and data statistics.

Explanation AI Correctness µ (%) σ (%) Numb. of Samples
top-1 AI is Wrong 22.28 15.02 525
top-1 AI is Correct 90.99 7.73 465

Overall — 54.55 9.54 990
PCNN AI is Wrong 49.31 17.27 404
PCNN AI is Correct 79.78 14.46 406
Overall — 64.58 8.06 810

35

Published in Transactions on Machine Learning Research (08/2024)

I Visualizations

I.1 Visualization of top-1 corrections via re-ranking in single-label image classification

We present cases where C × S corrects the top-1 predictions made by pretrained classifiers C on CUB-200
(Figs. 15 – 18), Cars-196 (Figs. 19 –22), Dogs-120 (Figs. 23 –26).

Query: Least Tern

RN50: 61% | S: 0.40

Top1: Forsters Tern

RN50: 37% | S: 0.95

Top2: Least Tern

RN50: 0% | S: 0.00

Top3: Common Tern

RN50: 0% | S: 0.01

Top4: Elegant Tern

RN50: 0% | S: 0.00

Top5: Horned Puffin

RN50 x S: 35%

Top1: Least Tern

RN50 x S: 24%

Top2: Forsters Tern

RN50 x S: 0%

Top3: Elegant Tern

RN50 x S: 0%

Top4: Common Tern

RN50 x S: 0%

Top5: Horned Puffin

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 15: A pretrained model C makes predictions on the Query image (ground-truth label: Least Tern) and
produces initial ranking (top row) but the top-1 predicted class (Forsters Tern) does not match the ground-truth
label. Our classifier C × S compares the query image with the representative of each class (the first NN
example in each class) and uses Product of Experts C × S to re-rank those classes. The refined class ranking
is presented in the bottom row where the Least Tern class has been recognized as top-1.

Query: Purple Finch

RN50: 85% | S: 0.00

Top1: Anna Hummingbird

RN50: 12% | S: 1.00

Top2: Purple Finch

RN50: 1% | S: 0.00

Top3: Song Sparrow

RN50: 0% | S: 0.00

Top4: Winter Wren

RN50: 0% | S: 0.00

Top5: Spotted Catbird

RN50 x S: 12%

Top1: Purple Finch

RN50 x S: 0%

Top2: Anna Hummingbird

RN50 x S: 0%

Top3: Song Sparrow

RN50 x S: 0%

Top4: Spotted Catbird

RN50 x S: 0%

Top5: Winter Wren

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 16: A pretrained model C makes predictions on the Query image (ground-truth label: Purple Finch)
and produces initial ranking (top row) but the top-1 predicted class (Anna Hummingbird) does not match the
ground-truth label. The refined class ranking is presented in the bottom row where the Purple Finch class has
been recognized as top-1.

36

Published in Transactions on Machine Learning Research (08/2024)

Query: Lazuli Bunting

RN50: 57% | S: 0.00

Top1: Indigo Bunting

RN50: 24% | S: 0.36

Top2: Blue Grosbeak

RN50: 16% | S: 0.98

Top3: Lazuli Bunting

RN50: 1% | S: 0.00

Top4: Florida Jay

RN50: 0% | S: 0.00

Top5: Tennessee Warbler

RN50 x S: 16%

Top1: Lazuli Bunting

RN50 x S: 8%

Top2: Blue Grosbeak

RN50 x S: 0%

Top3: Indigo Bunting

RN50 x S: 0%

Top4: Florida Jay

RN50 x S: 0%

Top5: Tennessee Warbler

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 17: A pretrained model C makes predictions on the Query image (ground-truth label: Lazuli Bunting)
and produces initial ranking (top row) but the top-1 predicted class (Indigo Bunting) does not match the
ground-truth label. The refined class ranking is presented in the bottom row where the Lazuli Bunting class has
been recognized as top-1.

Query: Pine Warbler

RN50: 49% | S: 0.00

Top1: Yellow throated Vireo

RN50: 48% | S: 1.00

Top2: Pine Warbler

RN50: 0% | S: 0.00

Top3: Blue winged Warbler

RN50: 0% | S: 0.00

Top4: Orchard Oriole

RN50: 0% | S: 0.00

Top5: Hooded Warbler

RN50 x S: 48%

Top1: Pine Warbler

RN50 x S: 0%

Top2: Yellow throated Vireo

RN50 x S: 0%

Top3: Orchard Oriole

RN50 x S: 0%

Top4: Blue winged Warbler

RN50 x S: 0%

Top5: Hooded Warbler

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 18: A pretrained model C makes predictions on the Query image (ground-truth label: Pine Warbler)
and produces initial ranking (top row) but the top-1 predicted class (Yellow throated Vireo) does not match the
ground-truth label. The refined class ranking is presented in the bottom row where the Pine Warbler class has
been recognized as top-1.

37

Published in Transactions on Machine Learning Research (08/2024)

Query: Suzuki Aerio Sedan 2007

RN50: 20% | S: 0.00

Top1: Suzuki SX4 Sedan 2012

RN50: 16% | S: 1.00

Top2: Suzuki Aerio Sedan 2007

RN50: 6% | S: 0.00

Top3: Hyundai Veracruz SUV 2012

RN50: 6% | S: 0.00

Top4: Nissan Leaf Hatchback 2012

RN50: 3% | S: 0.00

Top5: Nissan NV Passenger Van 2012

RN50 x S: 16%

Top1: Suzuki Aerio Sedan 2007

RN50 x S: 0%

Top2: Suzuki SX4 Sedan 2012

RN50 x S: 0%

Top3: Nissan Leaf Hatchback 2012

RN50 x S: 0%

Top4: Hyundai Veracruz SUV 2012

RN50 x S: 0%

Top5: Nissan NV Passenger Van 2012

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 19: A pretrained model C makes predictions on the Query image (ground-truth label: Suzuki Aerio Sedan
2007) and produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth
label. Our classifier C × S compares the query image with the representative of each class (the first NN
example in each class) to re-rank those classes based on confidence scores. The refined class ranking is
presented in the bottom row where the Suzuki Aerio Sedan 2007 class has been recognized as top-1.

Query: Nissan Leaf Hatchback 2012

RN50: 44% | S: 0.01

Top1: Nissan Juke Hatchback 2012

RN50: 29% | S: 0.00

Top2: Jaguar XK XKR 2012

RN50: 12% | S: 1.00

Top3: Nissan Leaf Hatchback 2012

RN50: 5% | S: 0.00

Top4: Porsche Panamera Sedan 2012

RN50: 1% | S: 0.00

Top5: Spyker C8 Convertible 2009

RN50 x S: 12%

Top1: Nissan Leaf Hatchback 2012

RN50 x S: 0%

Top2: Nissan Juke Hatchback 2012

RN50 x S: 0%

Top3: Jaguar XK XKR 2012

RN50 x S: 0%

Top4: Porsche Panamera Sedan 2012

RN50 x S: 0%

Top5: Spyker C8 Convertible 2009

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 20: A pretrained model C makes predictions on the Query image (ground-truth label: Nissan Leaf
Hatchback 2012) and produces initial ranking (top row) but the top-1 predicted class does not match the
ground-truth label. The refined class ranking is presented in the bottom row where the Nissan Leaf Hatchback
2012 class has been recognized as top-1.

38

Published in Transactions on Machine Learning Research (08/2024)

Query: Volvo XC90 SUV 2007

RN50: 82% | S: 0.00

Top1: BMW X5 SUV 2007

RN50: 7% | S: 1.00

Top2: Volvo XC90 SUV 2007

RN50: 3% | S: 0.00

Top3: Bentley Arnage Sedan 2009

RN50: 2% | S: 0.00

Top4: BMW X3 SUV 2012

RN50: 1% | S: 0.00

Top5: Jeep Grand Cherokee SUV 2012

RN50 x S: 7%

Top1: Volvo XC90 SUV 2007

RN50 x S: 0%

Top2: BMW X5 SUV 2007

RN50 x S: 0%

Top3: BMW X3 SUV 2012

RN50 x S: 0%

Top4: Bentley Arnage Sedan 2009

RN50 x S: 0%

Top5: Jeep Grand Cherokee SUV 2012

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 21: A pretrained model C makes predictions on the Query image (ground-truth label: Volvo XC90 SUV
2007) and produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth
label. The refined class ranking is presented in the bottom row where the Volvo XC90 SUV 2007 class has been
recognized as top-1.

Query: Ferrari FF Coupe 2012

RN50: 89% | S: 0.00

Top1: Aston Martin V8 Vantage Coupe 2012

RN50: 5% | S: 0.99

Top2: Ferrari FF Coupe 2012

RN50: 3% | S: 0.00

Top3: Jaguar XK XKR 2012

RN50: 1% | S: 0.00

Top4: Aston Martin Virage Coupe 2012

RN50: 0% | S: 0.00

Top5: BMW M3 Coupe 2012

RN50 x S: 5%

Top1: Ferrari FF Coupe 2012

RN50 x S: 0%

Top2: Aston Martin V8 Vantage Coupe 2012

RN50 x S: 0%

Top3: Jaguar XK XKR 2012

RN50 x S: 0%

Top4: BMW M3 Coupe 2012

RN50 x S: 0%

Top5: Aston Martin Virage Coupe 2012

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 22: A pretrained model C makes predictions on the Query image (ground-truth label: Ferrari FF Coupe
2012) and produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth
label. The refined class ranking is presented in the bottom row where the Ferrari FF Coupe 2012 class has been
recognized as top-1.

39

Published in Transactions on Machine Learning Research (08/2024)

Query: Border_Collie

RN50: 63% | S: 0.00

Top1: Groenendael

RN50: 20% | S: 0.05

Top2: Flat Coated_Retriever

RN50: 4% | S: 0.00

Top3: Newfoundland

RN50: 3% | S: 0.82

Top4: Border_Collie

RN50: 1% | S: 0.00

Top5: Collie

RN50 x S: 2%

Top1: Border_Collie

RN50 x S: 1%

Top2: Flat Coated_Retriever

RN50 x S: 0%

Top3: Groenendael

RN50 x S: 0%

Top4: Newfoundland

RN50 x S: 0%

Top5: Collie

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 23: A pretrained model C makes predictions on the Query image (ground-truth label: Border Collie)
and produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth label.
Our classifier C × S compares the query image with the representative of each class (the first NN example
in each class) to re-rank those classes based on confidence scores. The refined class ranking is presented in
the bottom row where the Border Collie class has been recognized as top-1.

Query: Toy_Terrier

RN50: 46% | S: 0.09

Top1: Italian_Greyhound

RN50: 17% | S: 0.78

Top2: Toy_Terrier

RN50: 9% | S: 0.03

Top3: Walker_Hound

RN50: 5% | S: 0.01

Top4: Basenji

RN50: 3% | S: 0.25

Top5: Mexican_Hairless

RN50 x S: 13%

Top1: Toy_Terrier

RN50 x S: 4%

Top2: Italian_Greyhound

RN50 x S: 0%

Top3: Mexican_Hairless

RN50 x S: 0%

Top4: Walker_Hound

RN50 x S: 0%

Top5: Basenji

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 24: A pretrained model C makes predictions on the Query image (ground-truth label: Toy Terrier) and
produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth label. The
refined class ranking is presented in the bottom row where the Toy Terrier class has been recognized as top-1.

40

Published in Transactions on Machine Learning Research (08/2024)

Query: Otterhound

RN50: 36% | S: 0.16

Top1: Irish_Terrier

RN50: 30% | S: 0.01

Top2: Norfolk_Terrier

RN50: 15% | S: 0.85

Top3: Otterhound

RN50: 2% | S: 0.41

Top4: Lakeland_Terrier

RN50: 1% | S: 0.00

Top5: Border_Terrier

RN50 x S: 13%

Top1: Otterhound

RN50 x S: 5%

Top2: Irish_Terrier

RN50 x S: 1%

Top3: Lakeland_Terrier

RN50 x S: 0%

Top4: Norfolk_Terrier

RN50 x S: 0%

Top5: Border_Terrier

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 25: A pretrained model C makes predictions on the Query image (ground-truth label: Otterhound) and
produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth label. The
refined class ranking is presented in the bottom row where the Otterhound class has been recognized as top-1.

Query: Sealyham_Terrier

RN50: 60% | S: 0.00

Top1: Shih Tzu

RN50: 5% | S: 0.17

Top2: Dandie_Dinmont

RN50: 4% | S: 1.00

Top3: Sealyham_Terrier

RN50: 3% | S: 0.00

Top4: Japanese_Spaniel

RN50: 3% | S: 0.81

Top5: Pekinese

RN50 x S: 4%

Top1: Sealyham_Terrier

RN50 x S: 2%

Top2: Pekinese

RN50 x S: 0%

Top3: Dandie_Dinmont

RN50 x S: 0%

Top4: Japanese_Spaniel

RN50 x S: 0%

Top5: Shih Tzu

Initial class ranking by pretrained classifier C

Refined class ranking by Product of Experts C x S

Figure 26: A pretrained model C makes predictions on the Query image (ground-truth label: Sealyham Terrier)
and produces initial ranking (top row) but the top-1 predicted class does not match the ground-truth label.
The refined class ranking is presented in the bottom row where the Sealyham Terrier class has been recognized
as top-1.

41

Published in Transactions on Machine Learning Research (08/2024)

I.2 Visualization of image comparator S’s errors

The classification performance of S on C’s correct/incorrect predictions varies from 90% to 92% for both
datasets as described in Sec. B.7. We are keen to investigate the cases where S does not perform accurately
to better understand the limitations of them.

We find that if S incorrectly predicts that two images are from the same class, the image pairs often indeed
appear to be very similar. Via this analysis, we are able to find multiple examples of two identical images
which had two different labels (i.e., wrong annotations in Cars-196).

In contrast, when S incorrectly predicts that two images are dissimilar, the image pairs display notable
differences (e.g., due to different lighting or angles). Qualitative results can be found in Fig. 27 for CUB-200
and Fig. 28 for Cars-196.

Query: 178.Swainson_Warbler

Similarity score of S: 1.00

Top-1 predicted: 195.Carolina_Wren Query: 142.Black_Tern

Similarity score of S: 0.99

Top-1 predicted: 147.Least_Tern

(a)

Query: 067.Anna_Hummingbird

Similarity score of S: 0.01

Top-1 predicted: 067.Anna_Hummingbird Query: 145.Elegant_Tern

Similarity score of S: 0.07

Top-1 predicted: 145.Elegant_Tern

(b)

Figure 27: Failures of an image comparator S (94.44% test acc) on CUB-200. (a) S incorrectly accepted the
C’s predictions for both images. For the left image, the two birds (Swainson Warbler vs. Carolina Wren) appear
similar. For the right image, the birds (Black Tern vs. Least Tern) also appear visually similar. Both scenarios
led S to accept with high confidence. (b) S incorrectly rejected the C’s predictions for both images. For the
left image, the bird is a Anna Hummingbird. For the right image, the bird is a Elegant Tern. Both sets of birds
show inter-class variations, leading S to mistakenly reject the predictions.

42

Published in Transactions on Machine Learning Research (08/2024)

Query: Audi TT Hatchback 2011

Similarity score of S: 1.00

Top-1 predicted: Audi TT RS Coupe 2012 Query: Ferrari 458 Italia Coupe 2012

Similarity score of S: 1.00

Top-1 predicted: Ferrari 458 Italia Convertible 2012

(a)

Query: AM General Hummer SUV 2000

Similarity score of S: 0.00

Top-1 predicted: AM General Hummer SUV 2000 Query: Acura RL Sedan 2012

Similarity score of S: 0.47

Top-1 predicted: Acura RL Sedan 2012

(b)

Figure 28: Failures of an image comparator S (95.02% test acc) on Cars-196. (a) S incorrectly accepted the
C’s predictions for both images. We discovered that the cars are indeed identical. The image comparator’s
misclassifications are due to errors in Cars-196 dataset annotations. (b) S incorrectly rejected the C’s
predictions for both images. We observed that, in most instances, the cars display noticeable differences,
such as color, viewing angle, and lighting.

43

Published in Transactions on Machine Learning Research (08/2024)

Query: Appenzeller

Similarity score of S: 87.00

Top-1 predicted: Entlebucher Query: Chihuahua

Similarity score of S: 55.00

Top-1 predicted: Brabancon_Griffon

(a)

Query: Labrador_Retriever

Similarity score of S: 46.00

Top-1 predicted: Labrador_Retriever Query: Shih Tzu

Similarity score of S: 7.00

Top-1 predicted: Shih Tzu

(b)

Figure 29: Failures of an image comparator S (92.05% test acc) on Dogs-120. (a) S incorrectly accepted the
C’s predictions for both images. For the left image, the two dogs (Appenzeller vs. Entlebucher) appear similar.
For the right image, the dogs (Chihuahua vs. Brabancon Griffon) also appear visually similar. Both scenarios led S
to accept but only with low confidence. (b) S incorrectly rejected the C’s predictions for both images. For
the left image, the dog is a Labrador Retriever. For the right image, the dog is a Shih Tzu. Both sets of dogs show
variations in light and pose, leading S to mistakenly reject the predictions.

44

Published in Transactions on Machine Learning Research (08/2024)

I.3 Visualization of nearest neighbors nn

We show the nearest neighbors nn utilized for forming training pairs in training S in Figs. 30 & 31 for
CUB-200, Fig. 32 & 33 for Cars-196, and Fig. 34 & 35 for Dogs-120. From the top-1 predicted classes, we
assemble Q pairs. For the remaining classes beyond the top-1, we take the first nearest neighbor within each
class and combine with the respective query sample. With Q = 10, a total of 19 pairs are returned by the
sampling algorithm (Fig. 4).

When we prompt the pretrained model C to make predictions on its training data x, it is reasonable to
expect the top-1 predicted class to match the ground-truth label. This expectation is grounded in the fact
that model C typically exhibits nearly perfect accuracy (around 100%) on its training set.

Query: 119.Field_Sparrow

Top-1: 119.Field_Sparrow

Top-2: 130.Tree_Sparrow Top-3: 039.Least_Flycatcher Top-4: 121.Grasshopper_Sparrow Top-5: 116.Chipping_Sparrow Top-6: 152.Blue_headed_Vireo Top-7: 117.Clay_colored_Sparrow Top-8: 131.Vesper_Sparrow Top-9: 115.Brewer_Sparrow Top-10: 122.Harris_Sparrow

(a)
Query: 052.Pied_billed_Grebe

Top-1: 052.Pied_billed_Grebe

Top-2: 050.Eared_Grebe Top-3: 023.Brandt_Cormorant Top-4: 025.Pelagic_Cormorant Top-5: 051.Horned_Grebe Top-6: 086.Pacific_Loon Top-7: 072.Pomarine_Jaeger Top-8: 060.Glaucous_winged_Gull Top-9: 046.Gadwall Top-10: 008.Rhinoceros_Auklet

(b)

Figure 30: Training pairs for CUB-200 image comparator. For a given query, a pretrained model C predicts
the label Field Sparrow (a) and Pied Billed Grebe (b), which align with the ground-truth labels. Subsequently,
from each of these query images, we generate 10 positive pairs (using NNs of top-1 class in the middle row)
and 9 negative pairs (using NNs of top-2 to 10 classes in the bottom row).

45

Published in Transactions on Machine Learning Research (08/2024)

Query: 116.Chipping_Sparrow

Top-1: 116.Chipping_Sparrow

Top-2: 130.Tree_Sparrow Top-3: 132.White_crowned_Sparrow Top-4: 119.Field_Sparrow Top-5: 148.Green_tailed_Towhee Top-6: 056.Pine_Grosbeak Top-7: 165.Chestnut_sided_Warbler Top-8: 117.Clay_colored_Sparrow Top-9: 114.Black_throated_Sparrow Top-10: 091.Mockingbird

(a)
Query: 059.California_Gull

Top-1: 059.California_Gull

Top-2: 066.Western_Gull Top-3: 060.Glaucous_winged_Gull Top-4: 062.Herring_Gull Top-5: 065.Slaty_backed_Gull Top-6: 084.Red_legged_Kittiwake Top-7: 061.Heermann_Gull Top-8: 002.Laysan_Albatross Top-9: 007.Parakeet_Auklet Top-10: 047.American_Goldfinch

(b)

Figure 31: Training pairs for CUB-200 image comparator. For a given query, a pretrained model C predicts
the label Chipping Sparrow (a) and California Gull (b), which align with the ground-truth labels. Subsequently,
from each of these query images, we generate 10 positive pairs (using NNs of top-1 class in the middle row)
and 9 negative pairs (using NNs of top-2 to 10 classes in the bottom row).

46

Published in Transactions on Machine Learning Research (08/2024)

Query: Suzuki SX4 Hatchback 2012

Top-1: Suzuki SX4 Hatchback 2012

Top-2: Suzuki SX4 Sedan 2012 Top-3: Dodge Caliber Wagon 2012 Top-4: Chevrolet Malibu Sedan 2007 Top-5: Ford Focus Sedan 2007 Top-6: Hyundai Veracruz SUV 2012 Top-7: Dodge Caliber Wagon 2007 Top-8: Mazda Tribute SUV 2011 Top-9: Chevrolet Impala Sedan 2007 Top-10: Suzuki Aerio Sedan 2007

(a)
Query: Hyundai Azera Sedan 2012

Top-1: Hyundai Azera Sedan 2012

Top-2: Hyundai Sonata Sedan 2012 Top-3: Honda Odyssey Minivan 2012 Top-4: Hyundai Genesis Sedan 2012 Top-5: Toyota Camry Sedan 2012 Top-6: Ford Fiesta Sedan 2012 Top-7: Honda Accord Sedan 2012 Top-8: Suzuki Kizashi Sedan 2012 Top-9: Mercedes-Benz E-Class Sedan 2012 Top-10: Hyundai Veracruz SUV 2012

(b)

Figure 32: Training pairs for Cars-196 image comparator. For a given query, a pretrained model C predicts
the label Suzuki SX4 Hatchback 2012 (a) and Hyundai Azera Sedan 2012 (b), which match the ground-truth labels.
Subsequently, from each of these query images, we generate 10 positive pairs (using NNs of top-1 class in the
middle row) and 9 negative pairs (using NNs of top-2 to 10 classes in the bottom row).

47

Published in Transactions on Machine Learning Research (08/2024)

Query: Ford Freestar Minivan 2007

Top-1: Ford Freestar Minivan 2007

Top-2: Dodge Caravan Minivan 1997 Top-3: Ford Focus Sedan 2007 Top-4: GMC Yukon Hybrid SUV 2012 Top-5: Daewoo Nubira Wagon 2002 Top-6: Chevrolet Malibu Sedan 2007 Top-7: Lincoln Town Car Sedan 2011 Top-8: Hyundai Elantra Sedan 2007 Top-9: Buick Rainier SUV 2007 Top-10: Mazda Tribute SUV 2011

(a)
Query: Dodge Caravan Minivan 1997

Top-1: Dodge Caravan Minivan 1997

Top-2: Buick Rainier SUV 2007 Top-3: Ford Expedition EL SUV 2009 Top-4: Ford Freestar Minivan 2007 Top-5: Chrysler Town and Country Minivan 2012 Top-6: Hyundai Santa Fe SUV 2012 Top-7: Mazda Tribute SUV 2011 Top-8: Isuzu Ascender SUV 2008 Top-9: Suzuki SX4 Sedan 2012 Top-10: Dodge Durango SUV 2007

(b)

Figure 33: Training pairs for Cars-196 image comparator. For a given query, a pretrained model C predicts
the label Ford Freestar Minivan 2007 (a) and Dodge Caravan Minivan 1997 (b), which match the ground-truth labels.
Subsequently, from each of these query images, we generate 10 positive pairs (using NNs of top-1 class in the
middle row) and 9 negative pairs (using NNs of top-2 to 10 classes in the bottom row).

48

Published in Transactions on Machine Learning Research (08/2024)

Query: Chihuahua

Top-1: Chihuahua

Top-2: Toy_Terrier Top-3: French_Bulldog Top-4: Pomeranian Top-5: Papillon Top-6: Miniature_Pinscher Top-7: Toy_Poodle Top-8: Staffordshire_Bullterrier Top-9: Mexican_Hairless Top-10: Boston_Bull

(a)
Query: Japanese_Spaniel

Top-1: Japanese_Spaniel

Top-2: Pekinese Top-3: Shih Tzu Top-4: Papillon Top-5: Blenheim_Spaniel Top-6: Border_Collie Top-7: Tibetan_Terrier Top-8: Shetland_Sheepdog Top-9: Boston_Bull Top-10: Affenpinscher

(b)

Figure 34: Training pairs for Dogs-120 image comparator. For a given query, a pretrained model C predicts
the label Chihuahua (a) and Japanese Spaniel (b), which match the ground-truth labels. Subsequently, from each
of these query images, we generate 10 positive pairs (using NNs of top-1 class in the middle row) and 9
negative pairs (using NNs of top-2 to 10 classes in the bottom row).

49

Published in Transactions on Machine Learning Research (08/2024)

Query: Rhodesian_Ridgeback

Top-1: Rhodesian_Ridgeback

Top-2: Redbone Top-3: Vizsla Top-4: Bloodhound Top-5: English_Foxhound Top-6: Bull_Mastiff Top-7: Boxer Top-8: Great_Dane Top-9: Black And Tan_Coonhound Top-10: Doberman

(a)
Query: English_Foxhound

Top-1: English_Foxhound

Top-2: Walker_Hound Top-3: Wire Haired_Fox_Terrier Top-4: Entlebucher Top-5: Ibizan_Hound Top-6: Beagle Top-7: Basenji Top-8: Redbone Top-9: German_Short Haired_Pointer Top-10: Whippet

(b)

Figure 35: Training pairs for Dogs-120 image comparator. For a given query, a pretrained model C predicts
the label Rhodesian Ridgeback (a) and English Foxhound (b), which match the ground-truth labels. Subsequently,
from each of these query images, we generate 10 positive pairs (using NNs of top-1 class in the middle row)
and 9 negative pairs (using NNs of top-2 to 10 classes in the bottom row).

50

	Introduction
	Related Work
	Methods
	Tasks
	Datasets and pretrained classifiers C
	Re-ranking using both image comparator S and classifier C
	The architecture and training of comparator S
	Network architecture
	Training the comparator S
	Sampling positive and negative pairs

	Results
	C S re-ranking consistently outperforms classifier C
	Hyperparameter tuning and ablation studies
	Training comparators on image pairs is key
	Well-trained comparator S works well with an arbitrary classifier C in a C S model
	CS outperforms prototype-based classifiers
	PCNN improves human accuracy in predicting AI misclassifications on bird images

	Limitations
	Discussion and Conclusion
	Additional details of training, evaluation, and architecture
	Training
	Evaluation
	Architecture

	Hyperparameter tuning and ablation studies
	At test time, comparing input with multiple nearest neighbors achieves better weights for re-ranking
	Using Q = 10 in sampling yields the optimal balance between the accuracy of S and the training cost
	Using K = 10 in re-ranking yields the optimal classification accuracy
	Using C's predicted labels to sample hard negative pairs is more beneficial than using random negative pairs
	Simple and parametric similarity functions are insufficient to distinguish fine-grained species
	Finetuning pretrained conv features is important in training S
	The performance of S and re-ranking algorithm is statistically consistent
	Removing data augmentation degrades the performance of S
	The importance of the finetuned feature f, self-attention, cross-attention, and MLP in comparator S

	Well-trained comparator S works well with an arbitrary classifier C
	Re-ranking algorithms for single-label image classification
	Baseline classifiers
	Baseline: Re-ranking using similarity scores of S alone
	Soft re-ranking using product between scores of C and S

	Computational costs of image classifiers
	Improving runtime of C S with reduced number of queries to image comparator S
	Improving runtime of C S with reduced training set during inference

	Sanity checks for image comparator S
	Controlling nearest-neighbor explanations
	Comparator S tends to be more confidence when it is correct than when it is wrong

	Maximum possible accuracy with re-ranking algorithms
	Evaluating probable-class nearest-neighbor explanations on humans
	Visualizations
	Visualization of top-1 corrections via re-ranking in single-label image classification
	Visualization of image comparator S's errors
	Visualization of nearest neighbors nn

