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Abstract

Multi-modal image fusion aims to integrate com-
plementary information from different modali-
ties to enhance perceptual capabilities in appli-
cations such as rescue and security. However,
real-world imaging often suffers from degrada-
tion issues, such as noise, blur, and haze in vis-
ible imaging, as well as stripe noise in infrared
imaging, which significantly degrades model per-
formance. To address these challenges, we pro-
pose a task-gated multi-expert collaboration net-
work (TG-ECNet) for degraded multi-modal im-
age fusion. The core of our model lies in the
task-aware gating and multi-expert collaborative
framework, where the task-aware gating oper-
ates in two stages: degradation-aware gating dy-
namically allocates expert groups for restoration
based on degradation types, and fusion-aware gat-
ing guides feature integration across modalities
to balance information retention between fusion
and restoration tasks. To achieve this, we de-
sign a two-stage training strategy that unifies the
learning of restoration and fusion tasks. This
strategy resolves the inherent conflict in infor-
mation processing between the two tasks, en-
abling all-in-one multi-modal image restoration
and fusion. Experimental results demonstrate that
TG-ECNet significantly enhances fusion perfor-
mance under diverse complex degradation con-
ditions and improves robustness in downstream
applications. The code is available at https:
//github.com/LeeX54946/TG-ECNet.
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Figure 1. Comparison of degraded multi-modal image fusion. For
multi-degraded multi-modal images, the proposed method shows
superior restoration and fusion quality compared to the SOTA
methods DRMF (Tang et al., 2024) and Text-1F (Yi et al., 2024),
especially in the highlighted regions, where our method better
preserves details and reduces noise.

1. Introduction

Multi-modal image fusion plays a pivotal role in applica-
tions (Sun et al., 2022a; Liu et al., 2024) such as rescue,
security, and surveillance by integrating complementary
information from diverse imaging modalities (Ma et al.,
2019a; Zhang et al., 2021; Xu et al., 2022a; Liu et al., 2021;
2022b). The visible modality provides superior textural
details, while the infrared modality effectively highlights
thermal targets. The combination of visible and infrared
imaging advantages enables the synthesis of fused images
suitable for all-day operation (Sun et al., 2022b; Liu et al.,
2023; Zhao et al., 2023b; Cao et al., 2023; Liu et al., 2020),
thereby enhancing application robustness in complex envi-
ronments.

However, real-world multi-modal imaging systems are sus-
ceptible to performance degradation caused by multiple in-
terfering factors (Tang et al., 2022b; 2023; Sun et al., 2024;
Tang et al., 2024; Yi et al., 2024). Specifically, the key com-
ponent for capturing thermal information in infrared sensors
is the focal plane array, whose variations in the bias voltage
of the readout circuit in different columns often result in
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alternating bright and dark stripe noise in the infrared image.
Visible imaging is also susceptible to mixed degradation
by noise, blur, haze, and other disturbances. These degra-
dations seriously weaken the visual quality of multi-modal
images (as shown in Fig. 1), leading to a degradation in the
performance of the fused images and affecting their robust-
ness and effectiveness in critical downstream applications.

To address the problem of degraded multi-modal image fu-
sion, a direct approach is to cascade two tasks sequentially:
first, restore the degraded images, and then fusion the re-
stored multi-modal images. However, this strategy presents
dual limitations. On one hand, the diversity of degradation
types necessitates pre-storing a large number of restoration
models for multiple degradation conditions, entailing pro-
hibitive costs when addressing complex scenarios (Tang
et al., 2022b; 2023; Sun et al., 2024). On the other hand,
the inherent disconnection between these two tasks leads
to performance degradation: restoration operations aiming
to restore degraded information may inadvertently weaken
features beneficial for fusion, while fusion processes risk
propagating restoration failures into the final results. Cur-
rent state-of-the-art methods, such as DRMF (Tang et al.,
2024) and Text-IF (Yi et al., 2024), attempt to address these
limitations by integrating restoration and fusion into a uni-
fied framework through diffusion models or text-guided
mechanisms. Nevertheless, as illustrated in Fig. 1, these
approaches demonstrate insufficient capability in handling
complex multi-degradation scenarios, yielding suboptimal
fusion outcomes that hinder practical applications in real-
world environments with intricate degradation conditions.

In this work, we propose the task-gated multi-expert collab-
oration network (TG-ECNet) that unifies degraded multi-
modal image restoration and fusion into a common frame-
work. Specifically, we propose task-aware gating modules
for the degradation and fusion stages, respectively. Among
them, degradation-aware gating ensures robust restoration
based on input features by adaptively learning the degrada-
tion types (e.g., noise, blur, haze, streak noise) and select-
ing the most appropriate processing paths with a group of
experts. Meanwhile, the fusion-aware gating selectively ag-
gregates multi-modal features and selects the most valuable
complementary information for high-quality fusion by multi-
expert collaboration. TG-ECNet adopts a two-stage training
strategy to bridge the image restoration and fusion tasks,
which ensures a balanced optimization of the restoration and
fusion objectives. By decoupling the learning process, the
two-stage strategy minimizes the interference between the
tasks and ultimately achieves all-in-one multi-modal image
restoration and fusion. This unified approach not only im-
proves the fusion quality but also enhances the adaptability
of the model to downstream applications in various com-
plex degradation scenarios. In addition, we also construct
a large-scale benchmark, DeMMI-REF, for degraded image

restoration and fusion. The main contributions of this paper
are summarized as follows:

* We propose a unified framework for degraded multi-
modal image restoration and fusion, which bridges
different tasks together through a two-stage training
strategy to learn inter-task information while avoiding
mutual interference, enabling all-in-one processing.

* We propose the task-aware gating and multi-expert
collaboration module. The degradation-aware gating
adapts to different degradation types and selects the
optimal expert group for image restoration, while the
fusion-aware gating dynamically balances the informa-
tion retention between fusion and restoration tasks to
achieve better fusion performance.

* We construct a large-scale degraded multi-modal im-
age fusion benchmark, DeMMI-RF, which contains
more than 30, 000 multi-modal data of different degra-
dation types, including those from UAVs and driving
viewpoints. Results on multiple datasets validate the su-
perior performance of the model in complex degraded
scenarios and robustness for downstream applications.

2. Related Work

2.1. Multi-modal Image Fusion

Multi-modal image fusion integrates complementary infor-
mation from various modalities (e.g., visible and infrared)
to produce enriched representations (Ma et al., 2019a; Liu
et al., 2024). Deep learning has driven progress in this field,
with CNNs (Zhang et al., 2020; Wang et al., 2022a; Sun
et al., 2022b; Xu et al., 2022b) and GANSs (Liu et al., 2022a;
Ma et al., 2019b) learning fusion rules directly from the
data. Recent innovations, such as attention mechanisms and
transformer-based architectures (Tang et al., 2022c; Wang
et al., 2022b), enhance performance by modeling long-range
dependencies and modality-specific features. Frameworks
like MGDN (Guan et al., 2023) further unify sub-tasks
within fusion. However, most existing deep learning meth-
ods focus solely on fusion and neglect the impact of degra-
dations, such as noise, blur, and haze, which are common in
real-world scenarios. This limitation significantly reduces
their robustness and applicability in practical applications.

2.2. Degraded Image Restoration

Degraded image restoration aims to recover high-quality
images from degraded inputs, addressing issues like noise,
blur, and haze. While traditional approaches (Xia et al.,
2023) target individual degradations, real-world scenarios
often involve intertwined degradations. All-in-one image
restoration aims to address diverse degradation types using
a unified model. Recent advances leverage specific task
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Figure 2. The architecture of TG-ECNet. TG-ECNet consists of a U-shape Transformer framework, a degradation-aware gating, a
fusion-aware gating, and corresponding multi-expert collaboration framework.

learning (Zamir et al., 2022) or degradation-aware mech-
anisms (Li et al., 2022; Potlapalli et al., 2023; Cui et al.,
2025) to dynamically adapt to varying degradation types
without requiring prior knowledge of the degradation. Most
existing methods are limited to single-modal images or ad-
dress restoration and fusion separately, failing to handle
multi-modal data effectively. While recent works (Tang
et al., 2024; Li et al., 2024a) tackle quality issues (e.g.,
low light, haze, and noise) in multi-modal fusion, they re-
main restricted to specific degradations. Some approaches,
such as Text-IF (Yi et al., 2024) and Text-DiFuse (Zhang
et al., 2024), employ text-guided restoration but require
prior degradation knowledge, while others (e.g., AWFu-
sion (Li et al., 2024b)) are confined to weather-related sce-
narios. Methods like (Tang et al., 2025) suffer from complex
architectures and limited datasets, hindering optimal per-
formance. In contrast, our TG-ECNet introduces a unified
framework that jointly optimizes restoration and fusion,
ensuring robust and high-quality fusion in real-world sce-
narios.

3. Methods
3.1. Overall Architecture

In this work, we propose the task-gated multi-expert col-
laboration network (TG-ECNet) to address the challenges
of image quality degradation in multi-modal image fu-
sion through an all-in-one approach. The framework con-
tains: the U-shape Transformer (Zamir et al., 2022) for
feature extraction and image decoding, a degradation-aware
gated multi-expert collaborative module for all-in-one image
restoration, and a fusion-aware gated multi-modal collab-
oration module for adaptive image fusion. Additionally,
a two-stage training strategy is employed to balance the

learning of the restoration and fusion tasks.

The architecture of TG-ECNet is shown in Fig. 2. We send
a pair of degraded infrared image 1§ € R7*W>1 and de-
graded visible image I € R¥*W >3 into the patch embed-
ding and degradation-aware gating to extract the features.
Then these features are fed into the degradation-aware en-
coder and image restoration decoder to get I7 and Iy . The
structure of the encoders and decoders follows (Zamir et al.,
2022). It should be noted that the infrared and visible modal
branches share encoder and decoder weights. In the second
stage, the features F; and Fy from the decoder are also fed
into the fusion branch to obtain /. The overall structure of
our model can be notated as:

Ip = TG-ECNet(IE, I9). 1)

3.2. Task-Aware Gating and Multi-Expert Collaborative

As shown in Fig 3, the task-aware gating and multi-expert
collaborative is the core component of TG-ECNet, integrat-
ing two key mechanisms to facilitate adaptive restoration
and fusion. The first mechanism, degradation-aware gating,
is implemented in the U-shape Transformer encoder to dy-
namically identify degradation types present in the input
images, such as noise, blur, haze in visible images, and
stripe noise in infrared images. Based on the degradation
types, task-specific prompts are generated to guide the se-
lection of appropriate processing pathways, allowing the
model to adaptively restore images tailored to their degra-
dation types. The second mechanism, fusion-aware gating,
is applied in the image fusion stage and focuses on selec-
tively aggregating features from multiple modalities, such
as visible and infrared images. By weighting the contri-
butions from each modality based on their relevance and
complementarity, fusion-aware gating ensures that the most
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Figure 3. Task-aware gating and multi-expert collaborative.

informative features are combined, resulting in high-quality
fusion output. This mechanism ensures effective feature in-
tegration, enabling robust multi-modal fusion that preserves
essential information from both input sources.

Degradation-Aware Gated Image Restoration. In the first
training stage, TG-ECNet restores degraded images, begin-
ning with a degraded image I or I¢. The model applies
the degradation-aware gating mechanism G pegyrqa(1{) to
adjust based on the specific degradation present in the
input image. This gating enables the model to dynami-
cally adapt to different degradation types, ensuring that
the appropriate processing strategy is applied. The in-
put image is then processed by the degradation-aware en-
coder, which utilizes a multi-expert collaborative network
{E{j egmd, s Eﬁeg Md}, including a transformer block, to
extract and refine features that are specific to the encoun-
tered degradation types. The multi-expert mechanism se-
lects the most relevant expert to learn different image fea-
tures, optimizing the restoration process. When processing
the visible image, the formalization is as follows,

N
Output =Y Gpegraa(If)i - ELUU(IE). ()

i=1

After feature extraction, the decoder, composed of trans-
former blocks, generates a restored version of the image I/,
which is compared with the clean ground truth image I, to
compute the loss, guiding the model to improve restoration
accuracy. The same restoration process is applied to the
infrared degraded image I, generating a restored infrared
image I;.

Fusion-Aware Gated Image Fusion. In the second training
stage, TG-ECNet focuses on fusing the restored visible and
infrared images to create a high-quality fused output. The
inputs to this stage are the restored visible feature Fy and
infrared feature F; from the previous stage. We introduce
learnable weight parameters « and 3 to guide the fusion

of different modal features: Fj; = - Fyy + 3 - F1. The
fusion-aware gating mechanism G g, (F)s) is applied to
the decoder to enhance the fusion process by focusing on
the most relevant features from both modalities. This gating
mechanism enables the model to selectively weight the con-
tributions of each modality, ensuring that the most important
information from both images is retained in the fused result.
The model then uses the multi-expert collaborative network
{Efus .., EX"$} to combine features from both visible
and infrared images.

N
Output pys = Z Grus(Far)i - EF*(Fy). (3)

i=1

This collaborative fusion approach ensures that features
from both modalities are effectively integrated, preserving
critical details from both sources. The final fused image I
is obtained by merging these features, and a loss is calcu-
lated by comparing the fused image with the clean ground
truth I{; and I7. This loss is used to refine the model’s
fusion capabilities, ensuring high-quality fusion results that
combine the best features of both input modalities.

3.3. Training Strategy and Loss Function

To balance restoration and fusion tasks and minimize inter-
ference during optimization, we employ a two-stage training
strategy. The model uses a combination of loss functions
during training. In Stage 1 (Restoration-focused training),
the network is first trained to address degradations in indi-
vidual modalities, using loss functions tailored to specific
restoration tasks (e.g., denoising, deblurring). The restora-
tion loss in Stage 1 is calculated by comparing the restored
images Iy and I; with their respective clean ground truth
images I3, and I5. In Stage 2, the fusion loss is computed by
comparing the fused image I with the clean fused ground

truth image.The formulation of the loss function(ﬁgflg drad,
and £;¢97%%) follows (Cao et al., 2023).

Er(zs: HIV_I‘C/H"‘HII_.[?” (4)

Estagel = Eres + E‘ifzgdrad + nggrad' (5)

In Stage 2 (Fusion-focused training), after restoration, the
network is fine-tuned for fusion tasks. The final loss for
the entire network is the sum of the restoration losses from
Stage 1 and the fusion loss from Stage 2, allowing the model
to simultaneously optimize both tasks. By decoupling the
learning processes, the strategy ensures that restoration and
fusion tasks do not interfere with each other, ultimately en-
abling all-in-one image restoration and fusion. The formu-
lation of the fusion loss function(Ly;zet, Lgrad, and [ZlFogj)
follows (Cao et al., 2023).

EstageZ = Epiwel + ﬁgrad + ‘Cl}:)zz (6)
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Figure 4. The visualization of the proposed DeMMI-RF dataset.

Figure 5. Qualitative comparisons of various methods.

4. Experiment
4.1. Experimental Setting

Implementation Details. All experiments in this paper
were performed on 6 NVIDIA GeForce RTX 4090 GPUs,
and the model was implemented using the PyTorch 1.12.0
framework. During the training phase, we used the Adam
optimizer to optimize the network, setting the initial learning
rate to 1.0 x 10~* and adjusting it using the cosine annealing
strategy. In addition, we randomly cropped the images to a
size of 128 x 128 pixels for training. In each small batch,

data augmentation was performed by flipping the images
horizontally or vertically to expand the training sample size.
We conduct experiments on both our constructed dataset and
the EMS dataset (Yi et al., 2024). We trained a single model
under 6 degradation settings. The first stage training pro-
cess lasted for 30 epochs, and the model was directly tested
across multiple restoration tasks. The second stage training
process lasted for 30 epochs, and the model was directly
tested across multiple restoration and fusion tasks. In exper-
iments, the number of experts N and the number of selected
experts K were heuristically set to 11 and 6, respectively.
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Relevant analysis can be found in Appendix A.3.

Details of the Constructed Dataset. Existing infrared-
visible image datasets rarely take complex degradation sce-
narios into account, and there are no multimodal degra-
dation datasets related to low-altitude drone perception
scenarios. Therefore, we constructed a multimodal multi-
degradation image dataset, DeMMI-RF, involving urban
street view perspectives and low-altitude drone perspectives.
Our DeMMI-RF dataset includes 6 types of degradation:
high/medium/low levels of Gaussian noise, haze, defocus
blur, and striped noise. Typical cases of the dataset are
shown in Fig. 4, which includes both ground and drone sce-
narios. DeMMI-RF has 26631 training datasets and 9895
testing datasets, providing a powerful benchmark for de-
graded image fusion.

Competing Methods. To comprehensively evaluate the
performance of our proposed framework, we conducted ex-
periments on three typical image restoration tasks: image
dehazing, denoising, and deblurring. We compared our
method with three state-of-the-art models that jointly ad-
dress image restoration and fusion: AWFusion (Li et al.,
2024b), DRMF (Tang et al., 2024), and Text-IF (Yi et al.,
2024). These comparisons were designed to assess the gen-
eralization ability of our model in handling multiple types
of degradations. In addition, we selected six image fusion
models(DenseFuse (Li & Wu, 2018), SwinFuse (Wang et al.,
2022b), CDDFuse (Zhao et al., 2023a), SeAFusion (Tang
etal., 2022a), MGDN (Guan et al., 2023) and EMMA (Zhao
et al., 2024) ) for further evaluation. Since these models
lack inherent image restoration capabilities, we first pre-
processed the degraded images using the AdalR model (Cui
et al., 2025), an all-in-one image restoration framework, to
obtain restored images. The restored images were then fed
into the aforementioned fusion models.

4.2. Restoration and Fusion Results on DeMMI-RF and
EMS Dataset

To illustrate the visual differences in restored images, Fig. 5
shows fusion results of degraded visible-infrared images
from our dataset after restoration and fusion. Additional
results on the EMS dataset are provided in Appendix A.2.
Compared to existing methods (e.g., DenseFuse, CDDFuse,
SeAFusion, MGDN, EMMA), our TG-ECNet better pre-
serves color information during fusion. Restoration-fusion
unified models like AWFusion, Text-IF and DRMF priori-
tize fusion over degradation handling, limiting their restora-
tion performance.

To quantitatively evaluate the performance of different meth-
ods in restoring the original image quality, we use CC, MSE,
PSNR, Ngp ¢, and MS-SSIM as evaluation metrics, as shown
in Table 1. The quantitative performance for each task can
be found in the A.4. The quantitative results confirm that

TG-ECNet consistently achieves superior denoising perfor-
mance and structural preservation.

Degraded Visible Images with Noise. Following standard
image restoration protocols, we evaluated performance un-
der medium, high, and extreme Gaussian noise conditions.
For moderate noise (Fig. 5, first row), TG-ECNet effectively
removes noise while preserving structural details, outper-
forming SeAFusion and EMMA in clarity and information
retention. Under high noise (second row), most methods fail
to completely eliminate noise, significantly degrading fusion
quality. In extreme conditions (third row), while AWFusion
and DRMF exhibit excessive blurring and CDDFuse retains
noise artifacts, TG-ECNet maintains superior noise suppres-
sion and detail preservation, achieving optimal information
integration from both modalities.

Degraded Visible Images with Haze. In this experiment,
we employ a novel atmospheric scattering model that in-
herently diminishes image brightness and contrast. The
degradation model produces images with reduced bright-
ness, lower contrast, and slight color distortions, approxi-
mating real-world foggy scenes (see A.l). Infrared images,
already limited in brightness and contrast, exacerbate these
issues during fusion, leading to severe color deviations in
cascade-based two-stage models (e.g., DenseFuse, Swin-
Fuse, CDDFuse). Restoration-fusion unified models often
skew toward one task: AWFusion removes haze but alters
colors, DRMF prioritizes dehazing over infrared fusion, and
Text-IF favors fusion at the cost of haze removal. In contrast,
TG-ECNet balances dehazing and fusion, preserving both
visible details and infrared information for clearer, more
natural results.

Degraded Visible Images with Defocus Blur. In the de-
focus blur scenario, our method demonstrates the ability to
capture and restore fine texture details effectively without
losing the deblurring effect during fusion. While cascade-
based two-stage models provide some degree of restoration,
their performance is significantly compromised in the fu-
sion stage due to the inherently low texture clarity of in-
frared images. This degradation leads to a weakened deblur-
ring effect in the final fusion result, as seen in SeAFusion
and EMMA, where noticeable residual blurriness remains.
Restoration-fusion unified models also struggle to eliminate
blur, though they outperform cascade models. However,
their results still fall short compared to TG-ECNet, which
maintains a significantly sharper and more detailed fused
output, demonstrating its effectiveness in handling defocus
blur while preserving structural details.

Degraded Infrared Images with Stripe Noise. Stripe noise
is a specific degradation type affecting infrared images, and
traditional image restoration models perform poorly in re-
moving such noise. Similarly, restoration-fusion unified
models tend to prioritize either restoration or fusion. For
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Figure 6. Quantitative comparison between related works on multi-degraded scenarios.

Table 1. Comparison of average quantitative performance of single tasks across our DeMMI-RF and EMS dataset.

OUR DATASET

EMS DATASET

METHODS CcC MSE PSNR Naby MS-SSIM CcC MSE PSNR Navy MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5185 0.0923 29.5794 0.0863 0.2291 0.5018 0.1090 28.9558 0.0715 0.3313
SWINFUSE (WANG ET AL., 2022B) | 0.5279 0.0928 29.5190 0.1180 0.2418 0.5002 0.1717 28.1347 0.1176 0.1396
CDDFUSE (ZHAO ET AL., 2023A) | 0.5286 0.0787 29.8441 0.1116 0.2359 0.5005 0.1120 28.8962 0.0933 0.3197
SEAFUSION (TANG ET AL., 20224) | 0.5288 0.0904 29.5892 0.1170 0.2265 0.5013  0.1115 28.9057 0.0874 0.3187
MGDN (GUAN ET AL., 2023) 0.5279  0.0669 30.2216 0.1195 0.2431 0.4985 0.1314 28.7083 0.0924 0.1763
EMMA (ZHAO ET AL., 2024) 0.5198 0.0821 29.7471 0.1266 0.2384 0.4996 0.1132 28.8699 0.0966 0.3057
AWFUSION (LI ET AL., 2024B) 0.5265 0.0979 29.4554 0.1429 0.2073 0.5013 0.2221 27.5428 0.2796 0.1114
TEXT-IF (YT ET AL., 2024) 0.5309 0.0880 29.5656 0.0804 0.2379 0.5007 0.1115 28.9034 0.0800 0.3210
DRMF (TANG ET AL., 2024) 0.5249 0.0883 29.5077 0.1203 0.2179 0.4991 0.1261 28.6382 0.0739 0.3158
TG-ECNET(OURS) 0.5340 0.0570 30.5822 0.0385 0.2972 0.5035 0.0738 29.7962 0.0405 0.4273

Table 2. Comparison of quantitative performance of multi-tasks and degradation-free task on our DeMMI-RF dataset.

MULTI-TASKS(NOISE+HAZE+DEFOCUSBLUR+STRIPE)

DEGRADATION-FREE TASK

METHODS CcC MSE PSNR Napf MS-SSIM CcC MSE PSNR Naps MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5225 0.0950 29.2285 0.1240 0.1740 0.5209 0.0819 29.7344 0.0516 0.3365
SWINFUSE (WANG ET AL., 2022B) | 0.5075 0.0940 29.4485 0.1010 0.2540 0.5464 0.0659 30.2302 0.0493 0.3882
CDDFUSE (ZHAO ET AL., 2023A) 0.5225 0.0880 29.4665 0.1330 0.1790 0.5464 0.0722 30.0046 0.0653 0.3480
SEAFUSION (TANG ET AL., 2022A) | 0.5220 0.0940 29.2615 0.1240 0.1640 0.5471  0.0752 29.8970 0.0645 0.3452
MGDN (GUAN ET AL., 2023) 0.5200 0.0790 29.6820 0.1570 0.1750 0.5475 0.0546 30.5682 0.0652 0.3676
EMMA (ZHAO ET AL., 2024) 0.5195 0.0820 29.5760  0.1580 0.1600 0.5452  0.0689 30.1192 0.0682 0.3446
AWFUSION (LI ET AL., 2024B) 0.5190 0.0990 29.1365 0.1970 0.1360 0.5458 0.0730 29.9619 0.0827 0.3244
TEXT-IF (YT ET AL., 2024) 0.5205 0.0970 29.1655 0.1640 0.1620 0.5462  0.0757 29.8425 0.0666 0.3350
DRMF (TANG ET AL., 2024) 0.4960 0.0900 29.3640 0.2390 0.1560 0.5449 0.0812 29.6828 0.0683 0.3259
TG-ECNET(OURS) 0.5245 0.0630 30.2200 0.0110 0.2870 0.5518 0.0455 30.9863 0.0373 0.4300
Table 3. Ablation studies on our DeMMI-RF dataset.
SETTING NOISE AVERAGE ¢ = 15, 25,50 STRIPE NOISE
CcC MSE PSNR  Ngy MS-SSIM ccC MSE PSNR  Ngy MS-SSIM
W/O TASK-AWARE GATING 0.5527 0.0430 31.136 0.028 0.411 0.5335 0.0543 30.577 0.050 0.399
W/0 ALL MULTI-EXPERT BLOCKS 0.5547 0.0399 31.314 0.030 0.396 0.5306 0.0489 30.844 0.057 0.387
W/0 MULTI-EXPERT BLOCK IN RESTORATION STAGE | 0.5511 0.0410 30.014 0.044 0.386 0.5106 0.0509 29.897 0.077 0.287
W/0 MULTI-EXPERT BLOCK IN FUSION STAGE 0.5523  0.0397 31.343 0.029 0.410 0.5378 0.0484 30.894 0.051 0.391
W/0 TWO-STAGE TRAINING STRATEGY 0.5537 0.0451 31.010 0.033 0.394 0.5313  0.0595 30.310 0.129 0.278
OURS 0.5536 0.0386 31.388 0.026 0.414 0.5310 0.0472 30.932 0.048 0.412

example, DRMF focuses on removing stripe noise but simul-
taneously eliminates a substantial amount of useful infrared
details, leading to an unnatural fusion result. Conversely,
Text-IF prioritizes image fusion, resulting in incomplete
noise removal. TG-ECNet achieves a better trade-off, ef-
fectively suppressing stripe noise while preserving the fine
details of the infrared image, leading to a cleaner and more
informative fusion result.

From these experimental settings, it is evident that TG-
ECNet consistently outperforms other methods by maintain-
ing a stable restoration effect across different degradation

types. Existing cascaded methods that first restore and then
fuse images often perform poorly, leading to noise enhance-
ment or loss of critical image information. Unlike existing
methods, TG-ECNet effectively balances these two tasks,
demonstrating strong adaptability to complex degradation
conditions and ensuring superior fusion quality.

4.3. Ablation Study

In this experiment, we investigate the effect of different com-
ponents on task-specific restoration and fusion performance
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Figure 7. Visual results in segmentation scenario when the target is “car” with Grounded-SAM.

Table 4. Object Detection Evaluation on Noise(o = 50).

METRIC DENSEFUSE SWINFUSE CDDFUSE SEAFUSION MGDN EMMA AWFUSION TEgEXT-IF DRMF | OURS
MAP50 0.926 0.914 0.935 0.959 0.901 0.963 0.921 0.963 0.95 0.969
AP(0.5:0.95) 0.526 0.476 0.511 0.52 0.488 0.523 0.519 0.536 0.493 | 0.537
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Visible Infrared

DFuse
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AWFusion Text-1F DRMF

Figure 8. Visual results on real-world haze images.

using a series of ablation studies. The results are summa-
rized in Table 3, which shows the performance metrics for
noise average (o = 15,25, 50) and stripe noise scenarios.

w/o Task-aware Gating. The first ablation study exam-
ines the effect of removing the task-aware gating, which
is used to guide the task-specific restoration process and
multi-modal image fusion process. In this configuration,
the model operates without task-aware gating, which may
lead to suboptimal task-specific guidance during the fusion
and restoration phases. As shown in the Table 3, the model
performs slightly worse in terms of CC, MSE, PSNR, and
MS-SSIM metrics, as the task prompt plays a significant
role in guiding the network toward optimal restoration for
each specific task.

w/o Multi-Expert Block. We conducted three comparative
experiments without expert blocks, namely removing the
restoration expert block, fusion expert block, and removing
both, which is responsible for expert selection and task adap-
tation. By doing so, the model loses its ability to selectively
choose the most appropriate expert for each task, potentially
leading to performance degradation. The results show that
removing the multi-expert block has a slight negative effect

on performance, with a reduction in PSNR and MS-SSIM,
suggesting that the multi-expert block plays a critical role
in guiding the model towards the most effective expert for
each task. The drop in N further supports the importance
of selection in fine-tuning restoration and fusion. Among
these three settings, it can be seen that restoration expert
blocks are more important for overall performance, while
fusion slightly optimizes performance.

w/o Two-stage Training Strategy. Finally, we examine the
effect of the two-stage training strategy by comparing it with
a single-stage network. In this experiment, the two-stage
training strategy involves first training the restoration net-
work and then freezing part of its parameters while using the
fusion module to generate the fused restoration results. This
staged approach ensures a better balance between restoration
and fusion tasks. The results show that the two-stage train-
ing strategy performs slightly better than the single-stage
network in terms of CC, PSNR, and MS-SSIM, confirm-
ing that freezing certain parameters during the fusion stage
helps improve the fusion quality. While the difference in
Ny s is minimal, the two-stage strategy proves to be a more
effective approach for achieving task-specific restoration
and fusion.

4.4. Discussion

Multiple Degradation Scenario All-in-One Image Fu-
sion. In this experiment, we extend our evaluation to more
complex scenarios by combining multiple degradation types
for restoration and fusion. In addition to single-degradation
tasks, we test the model’s performance on mixed degrada-
tion tasks, comparing our restoration-fusion unified model
with other methods. The experiment covers a total of 9 dif-
ferent degradation combinations, which are derived from the
same scenarios. We have also set 8 other scenarios, which
can be found in our DeMMI-RF dataset. However, only the
most challenging settings are presented in Table 2, with the
remaining combinations provided in the A.6. As shown
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in Table 2, TG-ECNet outperforms all of other methods.
For the Noise50 + Defocusblur + Haze + Stripe condition,
TG-ECNet achieves higher PSNR, Nabf, and MS-SSIM, in-
dicating superior performance in both restoration and fusion.
In Fig. 6, which represents the visualization results, most
methods fail to eliminate all of the degradations, resulting in
inferior image quality of the fusion results. Notably, Text-IF
suppressed blurring and haze, but it cannot simultaneously
removing noise. DenseFuse suffers from a significant loss
of visible spectrum information. In contrast, TG-ECNet
demonstrates superior degradation suppression while effec-
tively preserving fine details, ensuring that both infrared and
visible information are meaningfully integrated.

Degradation-Free Scenario Image Fusion. In order to ver-
ify the excellent fusion effect of the experiment on conven-
tional images, we selected some data without degradation
and directly compared it with all image fusion algorithms.
The experimental results are shown in Table 2. Based on
our experimental framework, we employ a two-stage evalu-
ation process to assess comparative fusion algorithms. This
methodology requires images to undergo restoration through
the preprocessing network prior to fusion, introducing a cas-
caded processing pipeline. However, this sequential archi-
tecture inevitably leads to incremental information degrada-
tion, as quantitatively evidenced by the performance metrics.
Restoration-fusion unified models did not take this situation
into consideration, obtaining a relatively weak performance.
TG-ECNet has a moderate increase in all metrics.

Real-World Degradation Scenario Image Fusion. To
verify the effectiveness of the model on real-world data, we
used real collected data AWMM (Li et al., 2024b) for testing,
and the qualitative results are shown in Fig. 8. The results
of TG-ECNet effectively suppress haze to make the image
clearer, while fusing infrared information simultaneously,
and the overall effect is very close to that of data provider
AWFusion.

4.5. Detection and Segmentation Evaluation

Detection Evaluation. We fed the experimental results
generated by ten models into the YOLOvS5 model, along
with degraded input images and clean images. The dataset
was split into a 7:3 training-to-testing ratio, with 50 training
epochs and an image resolution of 640 x 640. The detection
metrics are presented in Table 4. Our method achieves state-
of-the-art performance in terms of mean Average Precision
(mAP) and AP(0.5:0.95), outperforming all compared meth-
ods. This demonstrates the effectiveness of our framework
in accurately detecting and localizing objects under various
degradation conditions. The superior performance in these
metrics highlights the robustness and generalization ability
of our approach.

Segmentation Evaluation. We fed the experimental re-

sults generated by ten models into the Grounded-SAM
model (Ren et al., 2024), using the pretrained model param-
eters of Grounded-SAM and selecting “car” as the prompt
for the image shown in Fig. 7 to obtain the segmentation
results. As shown in Fig. 7, almost all of the other methods
mistakenly divide the traffic light or the electric bicycle into
cars except AWFusion. Besides, SwinFuse, AwFusion, and
DRMEF cannot segment two cars. However, we successfully
segmented the clear outlines of the two cars and did not mix
them together.

5. Conclusion

We propose the Task-Gated Multi-Expert Collaboration Net-
work (TG-ECNet), a novel framework for degraded multi-
modal image fusion. TG-ECNet unifies image restoration
and fusion into a single end-to-end model, addressing chal-
lenges posed by combined degradations like noise, blur,
haze, and stripe noise. The core innovation is its task-aware
gating, which integrates degradation-aware gating in the
encoder and fusion-aware gating in the decoder to adapt
to diverse degradation types. A multi-expert collaborative
framework and two-stage training strategy ensure balanced
optimization. Experiments on benchmark datasets show that
TG-ECNet outperforms state-of-the-art methods, improving
fusion quality and robustness in challenging environments.
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A. Appendix.
A.1. The haze Setting

The traditional method for adding haze to an image is the
atmospheric scattering model, with the formula:

1
—I(z)—A—+0b 7
(@)~ Ay + ™
Where ¢(z) indicates image with haze, J(x) indicates image
without haze, A indicates atmospheric light intensity. In our
work, we set A as:

A= MEAN(J(z)) ®)

which avoids the image being too bright and makes it close
to reality.

A.2. Qualitative performance on each task in EMS
dataset.

As shown in Fig. 9, qualitative comparison has been made
on each task in EMS dataset. Since the EMS dataset utilized
some lower clarity datasets, the overall effect appears blurry.

Degraded Visible Images with Noise. In the denoising
task, our method effectively suppresses noise and makes the
edge information of the image clearer. Except for Text-IF,
most methods cannot effectively suppress noise. Although
Text-IF can better preserve color information, it does not
preserve contour information very well. This is enough to
demonstrate the effectiveness of our method.

Degraded Visible Images with Haze. The performance
of different methods in dehazing tasks varies. DenseFuse,
CDDFuse, SwinFuse, EMMA, and DRMF cannot com-
pletely remove haze. SwinFuse, MGDN, and AWFusion
have caused significant color distortion. Although Text-IF
removed most of the haze, it did not completely preserve
the profile of people and car, and our method outperformed
it in this regard.

Degraded Visible Images with Defocusblur. MGDN and
DRMF cannot fully restore clear images in defocusbluring
tasks. The remaining methods have achieved the effect of
deblurring, but the image information is too dependent on
infrared images, resulting in the loss of color details.

Degraded Infrared Images with Stripe Noise. In the stripe
task, our method not only effectively suppresses stripe noise,
but also achieves a balance between color information and
thermal information.

In summary, our method still achieved excellent results
on the EMS dataset, which proves the robustness of our
method.
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Table 5. Mixture of experts hyperparameter selection.

ALL TASK AVERAGE
SETTING
CC MSE PSNR Nabvy MS-SSIM
21IN3 0.5531 0.0408 31.2374 0.0258 0.4087
3INS 0.5529 0.0411 31.2207 0.0269 0.4056
41N 7 0.5525 0.0446 31.0421 0.0233 0.4053
5IN9 0.5520 0.0409 31.2360 0.0247 0.4069
61N 11 0.5512  0.0397 31.3086 0.0223 0.4206
7IN 13 0.5498 0.0408 31.2459 0.0235 0.4113
3IN 11 0.5512  0.0420 31.1842 0.0270 0.4074
9IN11 0.5519 0.0411 31.2394 0.0226 0.4094
ITIN11 | 0.5523 0.0410 31.2273 0.0232 0.4115
Table 6. Mixture of experts block setting.
SETTING ALL TASK AVERAGE
CcC MSE PSNR Navy  MS-SSIM

w/0 MOE-2&3(Ex1) | 0.5519 0.0403 31.2981 0.0224 0.4180
W/0 MOE-1&3(EX2) | 0.5517 0.0440 31.0731 0.0302 0.4037
Ww/0 MOE-1&2(EX3) | 0.5525 0.0397 31.2858 0.0232 0.4165
w/0 MOE-1(EX23) | 0.5530 0.0423 31.1435 0.0264 0.4123
W/0 MOE-2(Ex13) 0.5516 0.0403 31.2642 0.0217 0.4143
w/0 MOE-3(Ex12) | 0.5531 0.0414 31.2007 0.0279 0.4137
w/0 FUSIONMOE 0.5514 0.0425 31.1531 0.0271 0.4144
ALL EXPERT 0.5537 0.0397 31.3086 0.0216 0.4206

A.3. Mixture of Experts block Setting

In our experiments, we explored the optimal configuration
for the Mixture of Experts (MoE) system in a subset of
the DeMMI-RF dataset by testing various expert selection
modes, including no experts, 3 experts selecting 2, 5 experts
selecting 3, 7 experts selecting 4, 9 experts selecting 35,
11 experts selecting 6, and 13 experts selecting 7. The
results, as shown in Table 5, indicate that the 11 experts
selecting 6 configuration achieves the best performance,
highlighting the importance of balancing task specialization
and computational efficiency. Additionally, we compared
different expert quantities within the 11-expert system (11
selecting 3, 11 selecting 6, and 11 selecting 9) and found
that increasing the number of selected experts does not
always improve restoration or fusion performance, further
confirming the need for an optimal expert selection strategy.

We integrated Multi-Expert (MoE) collaborative modules
before the transformer blocks of the first three encoders and
after the last decoder’s transformer block. Ablation studies
confirm their effectiveness: in the restoration module, a
three-level MoE system outperformed partial configurations
(one or two levels), with full retention yielding optimal
feature extraction (Table 6). Similarly, removing the MoE
from the fusion module severely degraded performance,
highlighting its necessity for feature aggregation and high-
quality fusion.

Overall, these experiments validate the effectiveness of our
MoE-based design, particularly the 11 experts selecting 6
configuration and the strategic placement of MoE systems
across the restoration and fusion modules. These findings
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Figure 9. Qualitative comparisons of various methods on EMS dataset.

incomplete segmentation
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Figure 10. Visual results in segmentation scenario when the target is person with Grounded-SAM.

not only optimize the performance of our framework but achieved multiple optimal metrics on two datasets in the
also provide valuable insights for future research on task-  deblurring task. Due to MGDN’s ability to achieve multi
specific expert systems in multi-modal image processing. focus image fusion, it has achieved a suboptimal level.

. Degraded infrared Images with Stripe Noise in DeMMI-
A-4. Quantitative performance on each task RF and EMS dataset. As shown in Table 11, our method
Degraded Visible Images with Noise. As shown in Table 7 achieved the best performance on all metrics in the task of
and Table 8, we achieved the best results in multiple metrics ~ removing stripe noise on two datasets.
for both settings. DenseFuse relies more on infrared images,
which, to some extent, suppresses Gaussian noise in visible
light images, while Text IF has better noise recognition
ability and achieves relatively good results. Other methods,
such as CDDFuse, MGDN, and AWFusion only perform
well on one or two metrics.

Our experimental results demonstrate that the proposed
method achieves superior and robust performance across
both benchmark datasets. Quantitatively, the approach
shows significant improvements in key metrics, outperform-
ing current state-of-the-art methods. The method’s strength
lies in its ability to maintain an optimal balance between

Degraded Visible Images with Haze in DeMMI-RF and noise suppression and detail preservation.
EMS dataset. As shown in Table 9, in the dehazing task,

due to the different methods of generating haze, the perfor-  A.5. Other Segmentation Results
mance between the two datasets is different. Our method
achieved the best results in multiple metrics on both datasets.
On the EMS dataset, DRMF achieved a suboptimal level,
while AWFusion, which specializes in image dehazing,
achieved the best performance on CC.

We also fed the experimental results, with three persons
riding a bicycle or an electric bicycle, generated by ten
models into the Grounded-SAM model (Ren et al., 2024),
using the pretrained model parameters of Grounded-SAM
and selecting “person” as the prompt for the image shown
Degraded Visible Images with Defocusblur in DeMMI-  in Fig. 10 to obtain the segmentation results. As shown in
RF and EMS dataset. As shown in Table 10, our method Fig. 10, CDDFuse, SeAFusion, and MGDN mistook the

13
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Table 7. Quantitative comparison on our DeMMI-RF dataset in different Noise settings.

DENOISE
METHODS OUR DATASET (NOSISEs=15) OUR DATASET (NOSISE,—25)
CC MSE PSNR Naby MS-SSIM CcC MSE PSNR Napy MS-SSIM
DENSEFUSE (L1 & Wu, 2018) 0.5200 0.1028 29.2159 0.0850 0.2139 0.5198 0.0927 29.4729 0.0805 0.2228
SWINFUSE (WANG ET AL., 2022B) | 0.5272 0.0977 29.2750 0.1453 0.1930 0.5372 0.0936 29.3787 0.1377 0.2116
CDDFUSE (ZHAO ET AL., 2023A) 0.5266  0.0896  29.4820 0.1265 0.2135 0.5366  0.0798 29.7036 0.1201 0.2194
SEAFUSION (TANG ET AL., 2022A) | 0.5269 0.1062 29.1165 0.1303 0.2075 0.5362  0.0926 29.4142 0.1209 0.2170
MGDN (GUAN ET AL., 2023) 0.5262 0.0746 29.8921 0.1299 0.2286 0.5350 0.0656 30.1583 0.1268 0.2291
EMMA (ZHAO ET AL., 2024) 0.5190 0.0902 29.4201 0.1758 0.1961 0.5280 0.0795 29.7504 0.1728 0.1917
AWFUSION (LI ET AL., 2024B) 0.5244 0.1108 29.0827 0.1501 0.1874 0.5340 0.0890 29.5590 0.1399 0.1961
TEXT-IF (Y1 ET AL., 2024) 0.5253 0.0957 29.3726 0.0773 0.2314 0.5345 0.0858 29.6254 0.0740 0.2385
DRMF (TANG ET AL., 2024) 0.5211 0.1062 29.1004 0.1702 0.1803 0.5308 0.0835 29.6678 0.1675 0.1882
TG-ECNET(OURS) 0.5274 0.0602 30.3239 0.0395 0.2877 0.5382 0.0570 30.4800 0.0378 0.2858
Table 8. Quantitative comparison on our DeMMI-RF and EMS dataset in Noise Setting.
DENOISE
METHODS OUR DATASET (NOSISE;=50) EMS DATASET
CC MSE PSNR Napy MS-SSIM CC MSE PSNR Napy MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5133 0.0890 29.5150 0.1026 0.2099 0.4760 0.1040 29.0510 0.1080 0.1720
SWINFUSE (WANG ET AL., 2022B) | 0.5232 0.0922 29.3806 0.2026 0.1847 0.4755 0.1360 28.4600 0.1970 0.0720
CDDFUSE (ZHAO ET AL., 2023A) 0.5245 0.0785  29.7360 0.1751 0.1968 0.4730 0.1150 28.8275 0.1820 0.1540
SEAFUSION (TANG ET AL., 2022A) | 0.5257 0.0846 29.5466 0.1833 0.1840 0.4745 0.1060 28.9915 0.1330 0.1620
MGDN (GUAN ET AL., 2023) 0.5225 0.0672 30.0439 0.2010 0.1885 0.4755 0.0887 29.4320 0.1450 0.0950
EMMA (ZHAO ET AL., 2024) 0.5152  0.0794 29.6692 0.2538 0.1518 0.4735 0.1140 28.8270 0.1690 0.1520
AWFUSION (LI ET AL., 2024B) 0.5241 0.0810 29.6963 0.1843 0.1735 0.4890 0.1630 28.0385 0.3980 0.0450
TEXT-IF (YI ET AL., 2024) 0.5251 0.0785 29.7154 0.1263 0.1934 0.4765 0.1070 28.9845 0.0930 0.1860
DRMEF (TANG ET AL., 2024) 0.5162 0.0880 29.4381 0.2567 0.1275 0.4695 0.1330 28.4930 0.1330 0.1680
TG-ECNET(OURS) 0.5281 0.0546 30.5374 0.0374 0.2678 0.4735 0.0880 29.4120 0.0470 0.2300

ground as a person. Besides, almost all of the methods
segmented bicycles as part of person and could not separate
two people. However, we successfully segmented the clear
outlines of the three people and did not mix them together.

A.6. Multiple Degradation Results

As shown in Table 12, 13, 14, and 15, TG-ECNet outper-
forms both DRMF and Text-IF across diverse degradation
conditions shown. These results further demonstrate that
TG-ECNet consistently outperforms existing methods, even
under more complex degradation scenarios.

A.7. Weight Setting Verifications

In the experiment, after obtaining the restored visible and
infrared features, we use trainable weights to obtain fused
features. To verify the effectiveness of this experimental set-
ting, we conducted the following comparative experiments:
a).visible modality dominant(VIS Major), b).infrared modal-
ity dominant(IR Major), c).direct VIS-IR modality addi-
tion(plus). Among them, major means to obtain fused fea-
tures with a ratio of 90 percent and another modality of
10 percent. As shown in Table 16, our setting can achieve
better performance.
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A.8. Computing Efficiency Verifications

As shown in the Table 17, we compared the computational
efficiency of different methods and different MoE settings,
which can demonstrate the effectiveness of our setting.
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Table 9. Quantitative comparison on our DeMMI-RF and EMS dataset in Haze Setting.

DEHAZING
METHODS OUR DATASET EMS DATASET
CcC MSE PSNR Napf MS-SSIM CcC MSE PSNR Nabs MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5205 0.0977 29.4179 0.0705 0.2418 0.4795 0.0900 29.3665 0.0603 0.1998
SWINFUSE (WANG ET AL., 2022B) | 0.5324 0.1067 29.0076 0.0523 0.3128 0.4835 0.1430 28.3600 0.0950 0.0950
CDDFUSE (ZHAO ET AL., 2023A) 0.5361 0.0761 29.8585 0.0607 0.2829 0.4785 0.1000 29.1615 0.0797 0.2111
SEAFUSION (TANG ET AL., 2022A) | 0.5367 0.0917 29.5512 0.0788 0.2574 0.4790 0.0960 29.2265 0.0831 0.1978
MGDN (GUAN ET AL., 2023) 0.5372 0.0706 30.0563 0.0638 0.2761 0.4810 0.0840 29.5095 0.0680 0.1210
EMMA (ZHAO ET AL., 2024) 0.5187 0.0933 29.3895 0.0476 0.3383 0.4775 0.1030 29.0635 0.0877 0.2000
AWFUSION (LI ET AL., 2024B) 0.5342  0.1101 29.1808 0.1043 0.2394 0.4930 0.1720 27.9195 0.3630 0.0550
TEXT-IF (YI ET AL., 2024) 0.5375 0.0947 29.4805 0.0732 0.2561 0.4785 0.1030 29.0580 0.0855 0.1927
DRMF (TANG ET AL., 2024) 0.5239 0.0796 29.7185 0.0571 0.2969 0.4865 0.0940 29.2695 0.0253 0.2725
TG-ECNET(OURS) 0.5394 0.0621 30.3676 0.0419 0.3204 0.4855 0.0720 29.8560 0.0242 0.2732
Table 10. Quantitative comparison on our DeMMI-RF and EMS dataset in Blur Setting.
DEBLUR
METHODS OUR DATASET EMS DATASET
CcC MSE PSNR Naby MS-SSIM CC MSE PSNR Navy MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5169 0.0851 30.1249 0.0507 0.2772 0.4750 0.1040 29.0505 0.0650 0.1920
SWINFUSE (WANG ET AL., 2022B) | 0.5236 0.0804 30.3363 0.0436 0.3191 0.4745 0.1320 28.5435 0.1040 0.0860
CDDFUSE (ZHAO ET AL., 2023A) | 0.5253 0.0745 30.2695 0.0557 0.2880 0.4720 0.1170 28.8010 0.0850 0.1820
SEAFUSION (TANG ET AL., 2022A) | 0.5250 0.0842 30.0952 0.0598 0.2843 0.4735 0.1100 28.9290 0.0850 0.1800
MGDN (GUAN ET AL., 2023) 0.5251  0.0599 30.8097 0.0541 0.3119 0.4755 0.0873 29.2546 0.0740 0.1130
EMMA (ZHAO ET AL., 2024) 0.5214  0.0742  30.2619 0.0470 0.2858 0.4720 0.1190 28.7475 0.0850 0.1860
AWFUSION (LI ET AL., 2024B) 0.5226  0.0886 29.9665 0.0847 0.2753 0.4860 0.1550 28.1520 0.3350 0.0590
TEXT-IF (YIET AL., 2024) 0.5371 0.0915 29.4744 0.0565 0.2686 0.4760  0.1060 29.0125 0.0900 0.1860
DRMF (TANG ET AL., 2024) 0.5342  0.0968 29.2727 0.0338 0.2576 0.4680 0.1310 28.5305 0.0630 0.1940
TG-ECNET(OURS) 0.5409 0.0525 31.0968 0.0274 0.3275 0.4775 0.0850 29.4790 0.0360 0.2500
Table 11. Quantitative comparison on our DeMMI-RF and EMS dataset in Stripe Setting.
DESTRIPE
METHODS OUR DATASET EMS DATASET
CcC MSE PSNR Napf MS-SSIM CcC MSE PSNR Nabs MS-SSIM
DENSEFUSE (L1 & WU, 2018) 0.5210 0.0893 29.4865 0.1503 0.1829 0.5200 0.1160 28.8095 0.0670 0.4360
SWINFUSE (WANG ET AL., 2022B) | 0.5250 0.0904 29.4007 0.1710 0.1826 0.5165 0.1970 27.9010 0.1070 0.1800
CDDFUSE (ZHAO ET AL., 2023A) 0.5231  0.0759 29.8123 0.1661 0.1824 0.5195 0.1130 28.8715 0.0770 0.4200
SEAFUSION (TANG ET AL., 2022A) | 0.5226 0.0857 29.5779 0.1624 0.1757 0.5200 0.1170 28.8010 0.0780 0.4200
MGDN (GUAN ET AL., 2023) 0.5216 0.0663 30.1047 0.1812 0.1852 0.5140 0.1640 28.2040 0.0900 0.2250
EMMA (ZHAO ET AL., 2024) 0.5154 0.0780 29.7903 0.1068 0.2336 0.5180 0.1140 28.8630  0.0840 0.3980
AWFUSION (LI ET AL., 2024B) 0.5204 0.1118 29.0121 0.2304 0.1329 0.5100 0.2650 27.1820 0.2170 0.1540
TEXT-IF (YIET AL., 2024) 0.5216 0.0790 29.7895 0.0876 0.2224 0.5180 0.1160 28.8195 0.0730 0.4180
DRMEF (TANG ET AL., 2024) 0.5183  0.0717 29.9618 0.0814 0.2305 0.5170 0.1310 28.5460 0.0740 0.3920
TG-ECNET(OURS) 0.5259 0.0572 30.4625 0.0525 0.2762 0.5215 0.0680 29.9525 0.0440 0.5560
Table 12. Multiple degradation all-in-one results in Appendix A.6.
METHODS DEFOCUS+HAZE NOISESO+HAZE+STRIPE
CC MSE PSNR Napy  MS-SSIM CC MSE PSNR Napy  MS-SSIM
DRMF (TANG ET AL., 2024) | 0.5025 0.0770 29.851 0.008 0.310 0.4945 0.0720 29.788 0.277 0.171
TEXT-IF (Y1 ET AL., 2024) | 0.5250 0.0930 29.272 0.026 0.278 0.5620 0.0900 29.295 0.170 0.160
OURS 0.5225 0.0610 30.298 0.017 0.315 0.5650 0.0460 30.733 0.022 0.273
Table 13. Multiple degradation all-in-one results in Appendix A.6.
NOISE15+DEFOCUS NOISE15+HAZE
METHODS
CcC MSE PSNR Napy  MS-SSIM CcC MSE PSNR Napy  MS-SSIM
DRMF (TANG ET AL., 2024) | 0.5260 0.1490 28.202 0.086 0.244 0.4335 0.0840 29.600 0.197 0.276
TEXT-IF (YI ET AL., 2024) | 0.5240 0.1050 28.974 0.025 0.327 0.3525 0.0930 29.239 0.038 0.383
OURS 0.5190 0.0780 29.631 0.010 0.380 0.3435  0.0630 30.100 0.015 0.423
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Table 14. Multiple degradation all-in-one results in Appendix A.6.

METHODS NOISE25+DEFOCUS NOISE25+HAZE
CcC MSE PSNR Naby MS-SSIM CcC MSE PSNR Napy  MS-SSIM
DRMF (TANG ET AL., 2024) | 0.5255 0.1470 28.232 0.150 0.208 0.4915 0.0930 29.427 0.128 0.212
TEXT-IF (YI ET AL., 2024) 0.5285 0.1040 28.989 0.070 0.273 0.4985 0.0960 29.205 0.068 0.231
OURS 0.5265 0.0720 29.776 0.012 0.370 0.4990 0.0710 29.944 0.017 0.299
Table 15. Multiple degradation all-in-one results in Appendix A.6.
NOISESO+DEFOCUS NOISES50+HAZE
METHODS
CcC MSE PSNR Napy  MS-SSIM CC MSE PSNR Napy  MS-SSIM
DRMF (TANG ET AL., 2024) | 0.5035 0.1500 28.197 0.239 0.180 0.4945 0.0700 29.847 0.239 0.178
TEXT-IF (Y1 ET AL., 2024) | 0.5170 0.1120 28.822 0.177 0.201 0.5715 0.0800 29.561 0.109 0.189
OURS 0.5200 0.0740 29.730 0.018 0.371 0.5715 0.0500 30.559 0.035 0.267
Table 16. Weight setting verifications.
ALL TASK AVERAGE
SETTING
CC MSE PSNR Nabf MS-SSIM
VIS MAJOR 0.5430 0.0488 29.8896 0.0533 0.4184
IR MAJOR 0.5419 0.0499 29.6783 0.0483 0.4119
PLUS 0.5548 0.0482 29.9257 0.0476 0.4198
LEARNABLE WEIGHTS | 0.5537 0.0397 31.3086 0.0216 0.42006

Table 17. Computing efficiency verifications.

METHODS FPS TotAL PARAMS | MOE SETTINGS | FPS  TOTAL PARAMS
DENSEFUSE (L1 & WU, 2018) 1.64 116.001M 0 1.30 146.135M
SWINFUSE (WANG ET AL., 2022B) 1.20 239.029M 2IN3 1.20 150.967M
CDDFUSE (ZHAO ET AL., 2023A) 1.03 119.730M 3INS 1.16 153.441M
SEAFUSION (TANG ET AL., 2022A) | 1.45 164.402M 4IN7 1.12 155.915M
MGDN (GUAN ET AL., 2023) 1.39 117.910M 5IN9 1.08 158.389M
EMMA (ZHAO ET AL., 2024) 1.49 121.029M 6IN11 1.03 160.863M
AWFUSION (LI ET AL., 2024B) 0.64 192.900M 7IN13 0.96 167.337TM
TEXT-IF (Y1 ET AL., 2024) 3.09 580.850M 3IN11 1.00 160.863M
DRMF (TANG ET AL., 2024) 0.20 2610.205M 9IN11 0.92 160.863M
TG-ECNET(OURS) 1.03 160.863M NOSELECT 0.91 160.863M

16



