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Abstract

While the objective of reward maximization in reinforcement learning has lead
to impressive achievements in several games and artificial environments, animals
seem to be driven by intrinsic signals that are not purely extrinsic, such as curiosity.
Several reward-free approaches have emerged in the fields of cognitive neuroscience
and artificial intelligence that primarily make use of signals different from extrinsic
rewards to guide exploration and ultimately drive behavior, but a comparison
between these approaches is lacking. Here we focus on two popular reward-free
approaches, known as empowerment (MPOW) and free energy principle (FEP),
and a recently developed one, called maximum occupancy principle (MOP), and
compare them in sequential problems and fully-observable environments. We
find that MPOW shows a preference for unstable fixed points of the dynamical
system that defines the agent and environment. FEP is shown to be equivalent to
reward maximization in certain cases. None of these two principles of behavior
seem to consistently generate variable behavior: behavior collapses within a small
repertoire of possible action-state trajectories or fixed points. Collapse to an optimal
deterministic policy can be proved in specific, recent implementations of FEP, with
the only exception of policy degeneracy due to ties. In contrast, MOP consistently
generates variable action-state trajectories. In two simple environments, a balancing
cartpole and a grid world, we find that both MPOW and FEP agents stick to a
relatively small set of states and actions, while MOP agents generate short of
exploratory and dancing-like motions.

1 Introduction

The objective of reward or utility maximization pervades the fields of reinforcement learning (RL)
[1], economics [2] and psychology [3]. However, not all behaviors seem to be explainable in terms
of reward maximization. For instance, spontaneous movements of babies [4] or curiosity in kids
[5] are often taken as examples of intrinsically motivated behaviors that are driven independently of
extrinsic rewards. Thus, several frameworks have emerged where intrinsic signals are major drives
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of behavior: information seeking [6, 7], novelty seeking [8], empowerment [9, 10], minimizing free
energy [11, 12], or occupying action-state space [13] are goals that per se are independent of reward
maximization, and seem to capture certain aspects of the observed behavior of living creatures.

As each of these reward-free algorithms are designed to maximize a different objective, a comparison
between them has proven difficult, and to our knowledge experimental comparison is lacking [14].
This difficulty does not arise in standard reward-maximization algorithms, as all of them are compared
on the basis of the reward that each delivers in a common, agreed-upon benchmark [15]. One possible
route to compare reward-free approaches is to generate behaviors (action-state trajectories) from them
and study their differences. Which reward-free objective leads to behaviors that are more complex,
rich and interesting?

In this paper, we focus on three reward-free approaches and compared their resulting behaviors in two
different environments in a Markov Decision Process setting. We chose two popular sequential reward-
free approaches, Empowerment (MPOW) [9, 10] and the Free Energy Principle (FEP)[11, 12, 16],
and a recently developed one, Maximum Occupancy Principle (MOP) [13, 17]. These approaches
have been used across several disciplines, and therefore they cover a wide spectrum of ideas and
constrains. In MPOW, an agent seeks to maximize the mutual information between actions and
the resulting state transitions at some future time; MPOW agent thus tend to move to regions of
action-state space where there is a large repertoire of possible controllable transitions. In FEP, an
agent seeks to minimize the KL divergence between the distribution of states and a target distribution
that models desirable states; FEP agents thus tend to move to regions of action-state space where it
is possible to keep a homeostatic balance. In MOP, an agent seeks to maximize a combination of
future cumulative action and state path entropy; MOP agents thus tend to move to regions where it is
possible to generate more actions and visit more states.

Although these are probably the most popular reward-free approaches, they do not fully cover the
whole spectrum. Further, we purposely assume that the environments are fully observable and known,
so that there is nothing to learn and to explore, and thus novelty and information seeking lose their
relevance. Although this is indeed a limited setup, it is the one that has largely been employed in
reward-free problems [10, 12, 16, 18, 13, 17]. By virtue of simplifying the environments, we also
expect to discover some fundamental differences between the three approaches that could be obscured
in more complex environments; these differences are expected to be robust to increasing complexity.

2 Describing and comparing MPOW, FEP and MOP

We are interested in modelling sequential processes, where actions are made and state transitions
are observed in sequence. We assume that the agent follows a Markov Decision Process in discrete
time. At time t the agent is at state st ∈ S and performs action at ∈ A with probability (density)
π(at|st), which defines the policy π. Then, a transition results to state st+1 at the next time t + 1
with probability (density) p(st+1|st, at). The goals of the three reward-free approaches are:

Empowerment (MPOW): Our implementation is identical to the one used in [10]. Given cur-
rent state st, the agent computes the empowerment of all of its successor states. The agent then
moves to the state with the highest empowerment. Empowerment of a state st, denoted E(st),
is defined as the maximum mutual information (channel capacity) between the n-step actions
ant = (at, at+1, ..., at+n−1) ∈ An and the resulting state st+n (actions are planned in an open
loop manner, that is, without any feedback being provided about intermediate states), and it is written
as

E(st) = max
τ(an

t |st)

∑
an
t ,st+1

p(st+n|st, ant )τ(ant |st) log

(
p(st+n|st, ant )∑

an
t
p(st+n|st, ant )τ(ant |st)

)
, (1)

where τ(ant |st) is the probability distribution of n-step actions ("imagined" n-step policy, not
actually used to generate actions) that mutual information is maximized over, and p(st+n|st, ant ) =
τ(ant |st)

∏t+n−1
τ=t p(sτ+1|sτ , aτ ) is the conditional n-step state transition probability. The horizon n

is chosen to be small (< 10), so that the integrals in Eq. (1) are numerically tractable. For continuous
action and state spaces, the sums are replaced by integrals. The optimization of the n-step policy is
done via the Blahut-Arimoto algorithm [19]

Biases from MPOW: The agent tends to visit regions of action-state space where there are many
future accessible states but where actions can predictably lead to them – this maximizes mutual
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information between future states and the sequence of actions. In a sense, the agent looks for states
where it is in control of what it will happen. In deterministic continuous dynamical systems, highly
empowered states typically correspond to unstable fixed points, as in those states small actions lead
to large predictable state changes.

Remarks: MPOW is based on maximizing mutual information, which is not additive over action-state
paths [13]. This implies that no Bellman equation (recursion) exists for MPOW. One consequence of
lacking a Bellman equation is that information that has been gained about the value (empowerment)
of a state cannot be reused in the future, and thus empowerment needs to be fully recomputed at every
step. One attempt of writing the objective in Eq. (1) as a Bellman equation is based on dividing the
trajectory in one-step mutual information and maximize its discounted sum [20], but the sum does
not in general equal the mutual information in the full trajectory [13].

Free Energy Principle (FEP): Here we follow the sophisticated active inference formalization of
FEP, where an agent computes its expected free energy (EFE) assuming it will follow a policy that
minimizes its EFE in the future [16]. The agent, starting at state st at time t and performing actions
aT−1
t = (at, at+1, ..., aT−1), traverses the states sTt+1 = (st+1, st+2, ..., sT ) up to some final time T

that defines the end of an episode. The agent is characterized by a target probability distribution q(sTt )
assigning large probability to a subset of states ("desired" states). Desired states define "homeostatic"
configurations of the agent that allows its survival, and the probability distribution defines how big the
set of those desired configurations is. Formally, the goal of a FEP agent is to find the 1-step policy π
that minimizes the expected KL divergence between the generated and the target distribution, defined
as

Gπ,t(st) = EaT−1
t ∼πKL

(
p(sTt+1|aT−1

t , st)||q(sTt+1)
)

=
∑

sTt+1,a
T−1
t

pπ(s
T
t+1, a

T−1
t |st) log

p(sTt+1|aT−1
t , st)

q(sTt+1)
, (2)

where pπ(s
T
t+1, a

T−1
t |st) =

∏T−1
τ=t π(aτ |sτ )p(sτ+1|sτ , aτ ) and p(sTt+1|aT−1

t , st) =∏T−1
τ=t p(sτ+1|sτ , aτ ) are the joint probabilities of future states and actions, and their condi-

tional, respectively, given an initial state. We assume that the target probability q(sTt+1) factorizes as
q(sTt+1) =

∏T−1
τ=t q(sτ+1), where q(s) is a time-independent probability describing the "desired"

states of the agent, modelling the idea that desired states are time-independent.

Note that because the time horizon is finite, here we need to consider time-dependent policies, so
π(at|st) is understood as the probability of selecting action at at time t given that the state at time t
is st. Time-independent policies will be suboptimal in general in finite horizon MDPs.

By virtue of the Markov property, the objective in Eq. (2) can be recursively written as

Gπ,t(st) =
∑

st+1,at

π(at|st)p(st+1|st, at)
[
log

p(st+1|st, at)
q(st+1)

+Gπ,t+1(st+1)

]
(3)

for t < T − 1 and the terminal cost is

Gπ,T−1(sT−1) =
∑

sT ,aT−1

π(aT−1|sT−1)p(sT |sT−1, aT−1) log
p(sT |sT−1, aT−1)

q(sT )
, (4)

as at time T the episode terminates. Note that the above formalization slightly generalizes EFE [16]
by allowing the possibility that the optimal policy is stochastic.

In Sec. (A.1) we show (i) that the optimal policy is deterministic and (ii) that in deterministic
environments the FEP agent is identical to a reward-maximizing agent with reward log q(s).

Biases from FEP: An FEF agent minimizes (2), and therefore its goal is to minimize the KL diver-
gence between the future and desired state distributions by selecting a suitable policy. This amounts
to finding a policy that makes the desired states highly probable under the environment dynamics.

Maximum Occupancy Principle (MOP): We follow the formalization of MOP provided in [13].
The goal of a MOP agent is to maximize the cumulative future (weighted) action and state transition
entropy. Starting at t = 0 in state s0, an agent performing a sequence of actions and experiencing
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Figure 1: Dancing in a MOP cartpole, but not in MPOW and FEP (EFE implementation) cartpoles.
(a) The cart has a pole attached. (b) Time-shifted snapshots of the pole in the reference frame of the
cart as a function of time. (c) Position and angle occupation for for the three agents.

state transitions traverses the path τ ≡ (s0, a0, s1, ..., at, st+1, ...), and gets a return (intrinsic reward)
equal to

R(τ) = −
∞∑
t=0

γt ln
(
πα(at|st)pβ(st+1|st, at)

)
, (5)

with weights α > 0 and β ≥ 0 and discount factor 0 < γ < 1. A large return is obtained when a
low-probability action is followed by a low-probability transition. This captures the idea that a MOP
agent tends to "occupy" actions and states that have a low visit probability. Action and state entropy
is a consistent way of quantifying the intuitive notion of action-state occupancy [13].

The agent is assumed to follow the policy π that maximizes the state-value Vπ(s), defined as

Vπ(s) ≡ Eat∼π(at|st),st+1∼p(st+1|st,at)[R(τ)|s0 = s]

= Eat∼π(at|st),st+1∼p(st+1|st,at)

[ ∞∑
t=0

γt (αH(A|st) + βH(S′|st, at))
∣∣∣s0 = s

]
, (6)

which is the expected return given the initial condition s0 = s and following policy π,
where we have defined the entropies H(A|s) = −

∑
a π(a|s) lnπ(a|s) and H(S′|s, a) =

−
∑

s′ p(s
′|s, a) ln p(s′|s, a). An optimality Bellman equation exists for Eq. (6) (Sec. A.2). The

advantage of the existence of a Bellman equation is algorithmic efficiency, as the values that have
been learnt for some states can be reused in the future if during planning the agent expects to visit
those states.

Biases from MOP: Maximizing the value function in Eq. (6) over policies π means that a MOP agent
will tend to look for actions that lead to future states with many potential actions and state transitions.
Terminal states are avoided to keep obtaining future action and state entropy. States that provide
energy for the agent are also looked for because they guarantee further future motion and thus further
future action-state entropy.

Comparison between MPOW, FEP and MOP. Comparing MPOW, FEP and MOP requires making
choices about model parameters beyond environment specifications. MPOW has only the number
of look-ahead actions n as free parameter. FEP requires defining the horizon T = H (a receding
horizon in our simulations), but more importantly the target distribution q(s). As we are interested
in generating rich behavior, we do not restrict the repertoire of desired states: we take q(s) to be
approximately uniform, except for the terminal states, which need to be avoided. Specifically, terminal
states are given low target probabilities, while all other accessible states have similarly high target
probability. MOP has two free parameters, the ratio β/α and the discount factor γ. In deterministic
environments state transition entropy is equivalent to action entropy, and thus we arbitrarily set β = 0
and α = 1.

We have tested the three agents in a cartpole environment (see Sec. A.4.2 for details). A cart can
move laterally within some boundaries, and a pole is attached to it (Fig. 1a). A terminal state is
reached if the angle |θ| > 36 deg or the borders are hit. The three agents thus try to avoid the terminal
states while maximizing their respective objectives. We find that MPOW and FEP agents tend to
prefer upright pole positions, while the MOP agent generates some sort of dancing behavior (Fig.
1b). The upright pole position is the configuration with highest empowerment, and thus it is selected
by the MPOW agent. The FEP agent in the EFE implementation acts as a reward maximizer, and
thus it looks for the safest state: the upright position is the one furthest from the terminal states. In
contrast, the MOP agent generates random, but guided, actions to occupy action state while avoiding
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the terminal states (Fig. 1c, see Video 1). Analogous differences are observed in a 4-room grid world
with food sources, where agents can die due to starvation (Appendix Sec. A.3; see Video 2).

3 Conclusions

We have contrasted three reward-free approaches (MPOW, FEP and MOP agents) in two different
environments. While MPOW and FEP prefers unstable fixed points and low-risk states, respectively,
MOP prefers continual motion.
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A Appendix

A.1 Optimal policy for EFE

To find the optimal policy in Eqs. (3,4), we proceed backwards in time [21]. At time T − 1 the
optimal policy is deterministic because Eq. (4) is linear in the policy. The only exception is that
there could be ties between several actions having the same value of the objective, in which case one
arbitrary action can be always chosen, or any action can randomly be chosen. Therefore, the optimal
action is

a∗T−1(sT−1) = argmin
a

∑
sT

p(sT |sT−1, a) log
p(sT |sT−1, a)

q(sT )
. (7)

The optimal return at time T − 1 becomes

G∗
T−1(sT−1) =

∑
sT

p(sT |sT−1, a
∗
T−1(sT−1)) log

p(sT |sT−1, a
∗
T−1(sT−1))

q(sT )
. (8)

Proceeding backwards, with t = T − 2, T − 3, ..., we find that again for all times the optimal policy
is deterministic, and that the optimal action is

a∗t (st) = argmin
a

∑
st+1

p(st+1|st, a)
[
log

p(st+1|st, a)
q(st+1)

+G∗
t+1(st+1)

]
, (9)

where the optimal return is recursively computed as

G∗
t (st) =

∑
st+1

p(st+1|st, a∗t (st))
[
log

p(st+1|st, a∗t (st))
q(st+1)

+G∗
t+1(st+1)

]
. (10)

In deterministic environments, the transition probability gives probability one just for a single
successor state s′ = s′(s, a). In this case, the first sum in Eqs. (9,10) reduces to a single term, equal
to − log q(s′(s, a)), which can be readily interpreted as the immediate reward R(s, a) [16] when the
equations are mapped into classical dynamical programming of reward-maximization.

A.2 Bellman equation for MOP

The state-value Vπ(s) in Eq. (6) can be recursively written using the values of successor states
through the standard Bellman equation

Vπ(s) = αH(A|s) + β
∑
a

π(a|s)H(S′|s, a) + γ
∑
a,s′

π(a|s)p(s′|s, a)Vπ(s
′)

=
∑
a,s′

π(a|s)p(s′|s, a) (−α lnπ(a|s)− β ln p(s′|s, a) + γVπ(s
′)) , (11)

where the sum is over the available actions a from state s and over the successor states s′ given
the performed action at state s. The optimal policy π∗ that maximizes the state-value is defined as
π∗ = argmaxπ Vπ and the optimal state-value is

V ∗(s) = max
π

Vπ(s), (12)

where the maximization is with respect to the {π(·|·)} for all actions and states.

A.3 Comparing MPOW, FEP and MOP in a grid world

We find that both MPOW and FEP agents visit states in a quite restricted manner compared to the
MOP agent (Fig. 2). This is expected, as the MPOW agent tries to find states with large accessibility
of states, which happens to be close to the food sources. Similarly, the FEP agent in this deterministic
environment acts as a reward maximizer in terms of survival time, and thus it sticks close to a food
source as well. In contrast, the MOP strikes a balance between visiting the food sources to get just
enough energy so that it can generate actions in the future (see Video 2).
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Figure 2: Large coverage for MOP agent in a gridworld. MPOW shows preference between standing
away from the food, and gathering food (food source in the corners of arena). EFE agent with a small
reward for the food stays on it forever (λ > 0 in Eq. A.4.3), and only a degenerate EFE agent (λ = 0)
that maximizes survival shows large coverage.

A.4 Experiments

Both the grid world and the cartpole experiments have been described elsewhere [13], so we limit the
description to the implementation of the algorithms.

A.4.1 Four-room grid world

The arena is composed of four rooms. At each of these rooms, there is a food source located in the
corner furthest from the openings. The states are the Cartesian product between location (x, y) and
internal state u. The internal state u is simply a scalar value between a minimum of 0 and a maximum
capacity of 100, representing the agent’s current energy level. All u = 0 states are absorbing states,
independently of the location (x, y). The agent has a maximum of 9 actions: up, down, left,
right, up left, up right, down left, down right, and nothing. Whenever the agent is
next to a wall, the number of available actions decreases such that the agent cannot choose to go
into walls. Finally, whenever the agent is in an absorbing state, only nothing is available. At any
transition, there is a reduction in u of 1 unit for being alive. On the other hand, whenever the agent is
located at a food source, there is an increase in u that we fix to 10. The initial condition for all agents
is s0 = (x0, y0, u0) = (3, 3, 30), and they all have a capacity of umax = 100.

A.4.2 Cartpole

A cart is placed in a one-dimensional track with boundaries at |x| = 1.8. It has a pole attached to it,
that rotates like an inverted pendulum with its pivot point on the cart. The system can be described
by a four-dimensional external state (x, v, θ, ω), where x is the position of the cart, v is its linear
velocity, θ is the angle of the pole with respect to the vertical which grows counterclockwise, and ω is
its angular velocity. In this case, we model the internal state u simply with the binary variable alive,
dead, where the agent enters the absorbing state dead if its position exceeds the boundaries, or if its
angle exceeds 36 degrees. This amplitude of angles is larger than that typically assumed (12 degrees
in [22]), and therefore our system is allowed to be more non-linear and unstable. Any time the agent
is alive, it has 5 possible actions: forces of {−40,−10, 0, 10, 40}, where zero force is understood
as nothing. If the agent is dead, then only nothing is allowed.

A.4.3 Agents

MOP agent

The objective function that this agent maximizes in general is Eq. (6). The α and β parameters
control the weights of action and next-state entropies to the objective function, respectively. Unless
indicated otherwise, we always use α = 1, β = 0 for the experiments. Given that the environments
are deterministic, then the next-state entropy is H(S′|s, a) = −

∑
s′ p(s

′|s, a) ln p(s′|s, a) = 0, and
therefore β does not change the optimal policy.

We have implemented an iterative map to solve for the optimal value. It has been proven that this
iterative map finds the unique optimal value regardless of the initial condition of the value function in
the first orthant [13].
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MPOW agent

Grid world: For the 4-room gridworld, we implemented empowerment in its original discrete
formulation, in [9]. The agent looks ahead at all possible subsequent states s′, computes their
empowerment, and greedily chooses the action that corresponds to the successor state with highest
empowerment (environment is deterministic). In our particular formulation, we allowed for a
stochastic choice of action in case of empowerment ties between successor states. Given the nature
of the arena, we implemented 5−step empowerment, to give the agent enough lookahead to consider
going into other rooms, while keeping the computations tractable, given the large amount of 1-step
actions (9 for center cells).

Cartpole: For the case of the cartpole experiment, we implemented continuous-state empowerment,
as developed in [10]. In order to have enough lookahead without needing high n, we used 3−step
empowerment with each action in the 3−step action held constant for k = 10 time steps, in order for
the computation of empowerment to be meaningfully different between states. The computation of
empowerment is done similarly as in the gridworld, through a Blahut-Arimoto algorithm described in
[10]. Similarly, the agent looks ahead at successor states, computes their empowerment and greedily
chooses the action that corresponds to the state with the highest empowerment.

EFE agent

We constructed the preferred distribution using the reward scheme described in Ref. [16],

qλ(s) =
exp(λR(s))∑
s′ exp(λR(s′))

,

where λ is an inverse temperature parameter that controls how reward-driven the agent is, and R(s) is
the reward of being in state s. This description leads to an EFE agent that is minimizing free energy
as equivalent as maximizing reward.

In the case of infinite temperature, λ = 0, q0(s) is uniform over (living) state space, and thus the free
energy is completely degenerate, rendering the EFE agent a survival maximizer. For small positive λ,
qλ(s) is almost uniform, but has a little bump at around the reward location. Due to the min operator,
even a tiny bump will create a massive preference of the reward state, as shown in Fig. (2c,d).

For any temperature, the preferred distribution qλ(s) only has support over living states, such that
qλ(x, y, u = 0) = 0. In other words, R(dead) = −∞. In practice, in order for the information
about absorbing states to propagate, we set qλ(x, y, u = 0) ≪ 1, such that log (qλ(x, y, u = 0)) is
finite. The actual value is not relevant, as long as log (qλ(x, y, u = 0)) is less than zero, the reward
for surviving, which we have verified empirically.

For the particular experiments, we chose the following reward functions,

Grid world:

R(x, y, u) =


1, if u > 0, and (x, y) corresponds to a food source
0, if u > 0, and (x, y) is not a food source
−∞ if u = 0

Cartpole:

R(x, y, u) =

{
0, if u = alive
−∞ if u = dead

Additionally, we implemented a receding horizon for the EFE agent, which means that the optimal
expected free energy was computed for a given horizon H , and the action at each time step was
drawn from using the initial free energy at the given state for horizon H . The choice of horizon for
the grid world is irrelevant for horizons that are longer than the diameter of a room (H > 5). For the
cartpole, we chose the longest horizon at which MOP and EFE live about the same. Coverage results
are robust for choice of horizon, for sufficiently long horizons.
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