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ABSTRACT

In this work, we study the evolution of the loss Hessian across many classification
tasks in order to understand the effect the curvature of the loss has on the training
dynamics. Whereas prior work has focused on how different learning rates affect
the loss Hessian observed during training, we also analyze the effects of model
initialization, architectural choices, and common training heuristics such as gradient
clipping and learning rate warmup. Our results demonstrate that successful model
and hyperparameter choices allow the early optimization trajectory to either avoid—
or navigate out of—regions of high curvature and into flatter regions that tolerate a
higher learning rate. Our results suggest a unifying perspective on how disparate
mitigation strategies for training instability ultimately address the same underlying
failure mode of neural network optimization, namely poor conditioning. Inspired
by the conditioning perspective, we show that learning rate warmup can improve
training stability just as much as batch normalization, layer normalization, MetaInit,
GradInit, and Fixup initialization.

1 INTRODUCTION

Optimization of neural networks can easily fail. While recent architectural advances such as skip
connections (He et al., 2016a) and Batch Normalization (Ioffe and Szegedy, 2015) have been applied
successfully to produce architectures and hyperparameters that reliably train well, even small changes
to a trainable configuration can easily result in training that diverges. More generally, producing a
configuration that strikes the right balance between stable training and rapid optimization progress on
a new domain can be difficult—practitioners and researchers have few reliable heuristics to guide
them through the process. As a result, the specific hyperparameter tuning protocol has an outsized
influence on the results (Choi et al., 2019; Sivaprasad et al., 2020) and successes often rely on large
hyperparameter searches (Nado et al., 2021). Developing a principled understanding of what makes
general architectures trainable would allow researchers to more reliably navigate this process and has
the potential to dramatically accelerate research into finding better, more scalable architectures.

The focus of the empirical investigation of this work is to better understand what limits the maximum
trainable learning rate for deep learning models trained with the typical minibatch stochastic gradient
descent (SGD) family algorithms. As part of this investigation, we examine several methods developed
by the deep learning community that have enabled training at larger learning rates and improved
performance. Many methods have been developed that can achieve this goal, notably normalization,
learning rate warmup, gradient clipping (Pascanu et al., 2013), and better model initializations such
as Fixup (Zhang et al., 2019b), MetaInit (Dauphin and Schoenholz, 2019), and GradInit (Zhu et al.,
2021). While these methods are certainly not exactly equivalent, a key property they all have in
common is that they can enable training at larger learning rates when applied to certain models (see
for example Figure 1).
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Figure 1: Left: Three different methods which when applied to a WideResnet 28-10 architecture (w/o
Batch Normalization) enable training at larger learning rates: learning rate warmup, MetaInit, and
adding normalization layers. Each point reports the �nal training loss after training with cosine decay
for 300 epochs. The test performance of the models closely matches the training loss behavior (see
Figure 7 of the appendix). Right: The evolution of the largest eigenvalue of the Hessian throughout
the training for the No-BatchNorm model with and without warm-up.

A natural hypothesis is that methods which enable training at larger learning rates do so through
reducing thesharpness1 of the loss surface during training. Indeed, this hypothesis has already been
proposed as one of the bene�cial effects of Batch Normalization (Ghorbani et al., 2019; Santurkar
et al., 2018) and residual connections (Li et al., 2017), and quadratic models of the loss surface
predict that optimization with SGD is unstable when� 1 > 2=� (Wu et al., 2018). However, recent
empirical investigations into the relevance of quadratic stability bounds to neural network training
have either focused on smaller models, focused on full batch training at small learning rates, and do
not investigate connections between sharpness, model initialization and learning rate warmup (Cohen
et al., 2021; Jastrzebski et al., 2020).

In this work, we design a series of large scale experiments studying the evolution of the loss sharpness
as we vary the learning rate, warmup period, initialization, and architectural choices. Our results
demonstrate the central role that� 1 plays in neural network optimization—maintaining suf�ciently
small� 1 during optimization is a necessary condition for successful training at large learning rates.
Consequently, reducing� 1 is a primary bene�t of proper tuning of a number of architecture and
optimization hyperparameters: including model initialization, location of normalization, and warmup
schedule. Speci�cally, we show the following:

• We provide large scale empirical con�rmation that training of neural networks with
SGD+momentum is stable only when the optimization trajectory primarily resides in a
region of parameter space where� 1 . 2=� , where� denotes the learning rate. This corrob-
orates the theoretical predictions of Wu et al. (2018) and recent empirical observations of
Jastrzebski et al. (2020) and Cohen et al. (2021).

• We demonstrate that several successful initialization strategies for architectures without
normalization operate primarily by reducing curvature early in training, enabling training at
larger learning rates.

• We show that learning rate warmup gradually reduces� 1 during training, offering similar
bene�ts to better model initialization. We connect the mechanism by which warmup operates
to the dynamical stability model of Wu et al. (2018).

• We show that learning rate warmup is a simple yet competitive baseline for research into
better model initialization. We demonstrate that key progress in this area (Dauphin and
Schoenholz, 2019; Zhang et al., 2019b; Zhu et al., 2021) can be matched by the application
of learning rate warmup and/or gradient clipping alone.

1Throughout this work we will use the term sharpness to refer to the maximum eigenvalue of the loss Hessian,
denoted as� 1 . See Appendix B for more details.
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• Finally, we show that large loss curvature can result in poor scaling at large batch sizes and
interventions designed to improve loss conditioning can drastically improve the model's
ability to leverage data parallelism.

2 RELATED WORK

Understanding BatchNormThe loss Hessian has been a central object of study for understanding
optimization of neural networks. Santurkar et al. (2018) argues that an important bene�t of Batch
Normalization is improved smoothness of the loss surface, while Lewkowycz et al. (2020) notes that
this is improved smoothness is only observed when higher learning rates are used in combination
with Batch Normalization. Our results are generally consistent with this current understanding of
Batch Normalization, however some of our experiments provide additional nuance—notably we
observe several instances where models suffer from training instability (and high loss curvature) early
in training despite using Batch Normalization (see Section 4).

Evolution of the loss HessianRecent research has closely studied the interaction between sharpness
and learning rate. Wu et al. (2018) provides a dynamical stability model which predicts that the loss
curvatureat convergencemust satisfy2 � 1 � 2=� . Recent work has provided empirical evidence
that � 1 . 2=� often holds well before convergence (Cohen et al., 2021; Jastrzebski et al., 2020).
Cohen et al. (2021) focused on full batch training at small learning rates, and observed “progressive
sharpening”, where� 1 increases during training until� 1 � 2:0=� . We observe the progressive
sharpening phenomenon also occurs for many models trained with SGD, though we do not investigate
batch sizes� 8, where Cohen et al. (2021) argue that progressive sharpening does not occur. We
note that Wu et al. (2018) equation 8 predicts the “edge of stability” is dependent on the batch size
and that at small batch sizes this can be will below the2=� bound. We con�rm this prediction holds
even early in training (see Appendix Figure 16). Lewkowycz et al. (2020) proves that for single
hidden layer neural networks initialized at point with� 1 > 2:0=� and trained with an MSE loss may
enter a “catapult” regime—where the loss increases early until a �atter region of the loss surface
is found, with divergence occurring in cases where� 1 greatly exceeds2:0=� . In contrast to the
simpli�ed setting considered in Lewkowycz et al. (2020), we �nd that divergence may occur even
though� 1 � 2=� at initialization.

3 EXPERIMENTAL SETUP

We investigate models trained on several benchmarks: CIFAR-10 (Krizhevsky, 2009) and ImageNet
(Russakovsky et al., 2015) for image classi�cation, LM1B (Chelba et al., 2013) for Language
Modeling, and WMT for Neural Machine Translation (NMT). On CIFAR-10 we consider the
WideResnet (Zagoruyko and Komodakis, 2016) and DenseNet (Huang et al., 2017) architectures,
both with and without Batch Normalization. We consider two variants of the DenseNet architecture.
The standard variant from the open sourced code of Zhu et al. (2021) is considered in Figure 5 and
Table 1. A less stable variant changes the strides in the average pooling layers to (1,1) is used for
Figure 2 and is denoted as Stride-(1,1) DenseNet (see Appendix D.1 for a more detailed discussion).
When training without Batch Normalization we consider several initialization strategies including
the default “LeCun Normal” initialization, and running MetaInit. As a way to arti�cially induce
worse initializations, we also consider experiments where we scale every variable produced by the
default initialization by a constant factor� . The NMT models are trained on the WMT'16 EN-DE
training set, tuned for hyper-parameters on the WMT'16 EN-DE validation set and evaluated on the
WMT'14 EN-DE test set for BLEU scores. For NMT and LM1B Language Modeling, we train 6
layer Transformer models (Vaswani et al., 2017). Inspired from Xiong et al. (2020), we experiment
with three Layer Norm settings: pre-Layer Norm, post-Layer Norm (Liu et al., 2020) and no Layer
Norm for the transformer models.

Each model is trained with various learning rates using cosine decay (unless mentioned explicitly).
For warmup experiments we use linear warmup which starts at 0 and scales linearly to a max value
� before applying cosine decay. To measure the max eigenvalue of the loss Hessian we use the

2This is a simpli�ed, potentially loose bound. See the original work for a more general bound that depends
on both the loss curvature and the noise covariance matrix.
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Lanczos method where the number of iterations varied as needed depending on the architecture
(details provided in the appendix).

4 EARLY TRAINING INSTABILITY AND THE LOSSHESSIAN

In Figure 2 we plot the curvature at initialization and during training for a series of models trained on
different datasets (plots showing �nal performance for all models can be found in the appendix). Each
row indicates a different base model, the left column plots the curvature of the model at initialization
and indicates with an `X' whether or not the model diverges when trained without warmup. On the
right we plot the measured curvature and learning rate at a speci�ed point during training. We observe
across all datasets that successful training occurs only when optimization enters a region of parameter
space where� 1 � 2=� , and that divergent models are outside this region shortly before divergence.
At initialization, some models can be successfully trained even when they start out in the unstable
region and generally speaking, divergence is more likely for models deeper in the unstable region.

For CIFAR-10 WideResnet, removing batch norm results in a model with higher curvature at
initialization and results in divergent models when trained with a learning rate� > : 1. Scaling the
WideResnet initialization up by a factor of1:5 exacerbates the problem, resulting in even higher
curvature at initialization and divergence when� > 10� 2. MetaInit starts the model out at a point
with very small� 1, and allows training without Batch Normalization at higher learning rates than
the default initialization. We also observed that higher learning rates can be unlocked when the
models are trained with learning rate warmup. Warmup was particularly effective for models which
exhibit large� 1 either at initialization or early in training. Other models such as the post activation
Resnet-50, and WideResnet w/ Batch Normalization did not bene�t from warmup at the considered
learning rates (see Appendix).

For the Stride-(1,1) DenseNet experiments, it is noteworthy that the models with Batch Normalization
actually start out with higher curvature than the non-BN variants. This is contrary to the generally
accepted narrative that Batch Normalization improves the smoothness of the loss surface (Ghorbani
et al., 2019; Santurkar et al., 2018). We found that the Batch Normalization models were more
unstable than the non-BN variants here, as some models diverged at smaller learning rates. However,
when combined with warmup the BN models were trainable at learning rates� > : 1, whereas this
did not hold for the non-BN variants, which diverge both with and without warmup at these learning
rates. This result suggests that BN still offers training stability for this model, and �atter curvature
mid trainingif trained with warmup and a higher learning rate, however no smoothness bene�ts are
observed at initialization. See Appendix D.1 for more details on this phenomenon.

For Resnet-50 trained on ImageNet we compare two different residual blocks: the preactivation
block (He et al., 2016b) and the more commonly used post activation block (He et al., 2016a).
For the preactivation block, we also consider �ipping the order of the ReLU activation and batch
normalization, as was considered in Brock et al. (2021). We �nd that both preactivation models start
out in a region of higher curvature relative to the post activation variant, and that these models diverge
when� > : 5 whereas the post activation variant is trainable with learning rates as large at10.

Notably, there are several models in our experiments which diverge despite starting out in a region
where� 1 < 2=� . This occurs for both the pre and post layernorm transformer, and the WideResnet
model initialized with MetaInit. We found for these divergent models that the curvature rapidly
increases in the initial steps of training, which is partially visible in the mid training plot where we
plot the �nal observed curvature before divergence. Full training curves for these models can be
found in the appendix. This implies that measuring� 1 at initialization is not always suf�cient to
predict whether or not the model will be easily trained. Currently, some architectural innovations
are motivated by an analysis of either gradient statistics or smoothness at initialization (Liu et al.,
2020)—a more robust analysis would consider the evolution of these statistics under SGD.

5 THE INTERACTION BETWEENLEARNING RATE WARMUP, INITIALIZATION

AND CURVATURE

The success of learning rate warmup is inconsistent with conventional optimization wisdom, which
traditionally suggests adapting the step size to the curvature (see for example the discussion around
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Figure 2: Measurements of the Hessian max eigenvalue of different models at initialization (left)
and during training (right). Divergent models are indicated with an X. On the left, we plot� 1 at
initialization along with the peak learning used during training. On the right, we plot� and� 1 at a
speci�ed step in training. For divergent models on the right plot, we record the last learning rate and
max eigenvalue that occur before divergence is detected (de�ned as observing a NaN in the loss).
Across all datasets and models, successful training occurs only when optimization enters a stable
region of parameter space where� 1 � 2=� . Models with higher initial loss curvature tend to diverge
at smaller learning rates relative to models initialized with �atter curvature, however larger learning
rates are possible in these cases when warmup is used. Note, to avoid overlapping points we have
applied a small deterministic shift to the x-position of points on the right hand plots. In the case of
Stride-(1,1) DenseNets w/ BN we observed some models exhibit catapult behavior (loss increases
early followed by normal training), these have been marked accordingly.
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Figure 3:Top row: Measured� 1 at initialization (left) and mid training (right) for variants of the
WideResnet 28-10 model on Cifar10. Both BatchNorm and MetaInit reduce� 1 at initialization.
Bottom Row: Full time evolution of� 1 and� for select runs (labeled with letters in the top row).A:
The non-BN variant diverges when trained at� = :1. B: Same peak� as (A), but when warmup is
used� 1 gradually decreases without diverging.C: MetaInit allows training without warmup at� = :1
by starting� 1 small.D: An example of a model diverging despite starting out in the “stable” region.
E: An example of progressive sharpening when training with small� . F: Learning rate warmup
recovers from an even poorer initialization.

equation 2.4 in McCandlish et al. (2018)). However, with the understanding that� 1 is a dynamic
quantity whose evolution is tightly coupled with the learning rate schedule, the bene�ts of a warmup
period are more easily understood. We argue that the success of learning rate warmup follows
naturally from two properties of training deep models:

1. Models diverge when the learning rate is too large relative to the2=� 1 bound.

2. When the learning rate only slightly exceeds2=� 1 optimization is unstable until the parame-
ters move to a region with smaller� 1 (Wu et al., 2018; Lewkowycz et al., 2020).

The �rst criteria implies that we can't start� off at too large of a value relative to� 1 at initialization.
The second criteria implies that gradually increasing� can gradually “push” the parameters to a
region of parameter space where optimization is stable (with lower values of� 1). In Figure 4 there is
clear evidence for this “pushing”, as during the warmup period the we see that� 1 � 2:0=� holds for a
large part of the warmup phase. Furthermore, this approximation holds even as we vary the length of
the warmup period. Other examples can be seen in Figure 3 (B and F), and Figure 15 in the appendix.

Warmup is not the only method capable of reducing� 1 during training, one can instead initialize the
model in a region where� 1 starts off small. Consider for example, the points A, B and C in Figure 3.
Each point shows optimization of a non-BN WideResnet with peak learning rate of:1. In (A) we see
the model diverges within 3 steps without warmup using the default initialization. In (B) we see that
a linear warmup period results in� 1 progressively decreasing until the peak step size of:1 is reached
at step 1000, with no divergence occurring. Finally in (C) we initialize the same model with MetaInit,
at which point� 1 is small at initialization, and the model can be trained at� = :1 without warmup.

Similar to the aforementioned MetaInit, the success of related initialization strategies can be explained
by reduced� 1 early in training. In Figure 5 (left) we look at the evolution of� 1 during the GradInit
meta optimization process and compare this with simply training the same model using gradient
clipping3. Both methods result in� 1 decreasing dramatically, after which� 1 hovers around2=� .

3Similar to warmup, gradient clipping reduces the step size in regions of large curvature.
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