HALO: Hadamard-Assisted Lower-Precision
Optimization for LLMs

Saleh Ashkboos*f Mahdi Nikdan* Soroush Tabesh™* Roberto L. Castro

ETH Zurich ISTAustria ISTAustria ISTAustria
Torsten Hoefler Dan Alistarh
ETH Zurich ISTAustria & Neural Magic
Abstract

Quantized training of Large Language Models (LLMs) remains an open challenge,
as maintaining accuracy while performing all matrix multiplications in low preci-
sion has proven difficult. This is particularly the case when fine-tuning pre-trained
models, which can have large weight, activation, and error (output gradient) out-
lier values that make lower-precision optimization difficult. To address this, we
present HALO, a new quantization-aware training approach for Transformers that
enables accurate and efficient low-precision training by combining 1) strategic
placement of Hadamard rotations in both forward and backward passes, which
mitigate outliers, 2) high-performance kernel support, and 3) FSDP integration for
low-precision communication. Our approach ensures that all large matrix multipli-
cations during the forward and backward passes are executed in lower precision.
Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent
results during fine-tuning on various tasks, while delivering up to 1.41 x end-to-end
speedup for full fine-tuning on RTX 4090 GPUs. HALO efficiently supports both
standard and parameter-efficient fine-tuning (PEFT). Our results demonstrate the
first practical approach to fully quantized LLM fine-tuning that maintains accuracy
in INT8 and FP6 precision, while delivering performance benefits.

1 Introduction

The high performance of large language models (LLMs) across a wide series of tasks comes with
considerable computational costs; reducing them is one of the key directions in Machine Learning
Systems research [9; 16; 21]. For LLM inference, a standard acceleration approach has been the
quantization of weights and activations, which reduces the precision at which they are stored and
potentially also computed over, e.g. [17; 42; 1; 35; 3].

By contrast, much less is known about quantization in the context of LLM training. While the
recent DeepSeek breakthrough [11] has showed that 8-bit floating-point (FP8) pre-training of large
models can be done both accurately and efficiently, it is not known how to extend this result using
the more widely-supported 8-bit integer (INT8) format, or lower-precision 6-bit formats such as
MXFP6 [38; 41]. Intuitively, accurate and efficient quantized training is much more challenging
than quantized inference: while in inference a single large matrix multiplication occurs in lower
precision, for training, all three matrix multiplications (one during the forward pass and two during
back-propagation) must be executed in lower precision. This creates critical issues both in terms of
accuracy—as quantizing weights, activations, and errors can induce significant training instability—

*Equal contribution
TCorrespondence to: saleh.ashkboos@inf.ethz.ch

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Errors Reft-hand-side Hadamard Left-hand-side Hadamard
(Kurtosis: 118.4) (Kurtosis: 76.48) (Kurtosis: 3.59)

Figure 1: Largest magnitudes of first 512 channels in output gradients, or errors, of the mlp output
(down_proj) in the 15-th layer of LLAMA3-8B model over 128 tokens in the 60th step of the VIGGO
fine tuning (see Appendix A.4 for other data types). The outliers are propagated across columns and
can be mitigated after applying left-hand-side Hadamard transformations.

but also in terms of performance—as the overheads of switching between representations can negate
the performance gains of lower-precision computation.

This accuracy problem is especially challenging in the popular practical scenario where the user
fine-tunes a pretrained model: as we illustrate in this paper, since pretrained LLMs often have large
outlier values in the weight, activation, and error distributions [37; 42; 34; 28], stable results are
much harder to achieve compared to from-scratch quantized pre-training.

Contributions. We present a new quantized training technique called Hadamard-Assisted Low-
precision Optimization (HALO), which modifies the structure of Transformer-based models [36]
in transparent fashion, allowing them to be fine-tuned in lower precision (INTS, or even FP6), with
minimal accuracy loss. Importantly, we do so while performing all large matrix multiplications in
lower precision. HALO applies equally well to full and parameter-efficient fine-tuning.

HALO starts from an in-depth analysis of the quantization error sensitivity of different internal
representations (weight, input, and output gradients) during back-propagation [33; 22]. We identify
the forward pass and output gradients as key sources of sensitivity to quantization, each exhibiting
distinct outlier patterns. Specifically, while applying a Hadamard transformation is sufficient to
mitigate outliers in the forward pass, addressing outliers in the output gradients during the backward
pass requires applying the Hadamard matrix from the left side, referred as Left-hand-side Hadamard
(Figure 1). This results in two “levels” of HALO, which can be chosen based on precision, data
format, and acceptable accuracy drop. We complement our algorithmic contributions with efficient
kernel support, allowing for computational speedups. In addition, we integrate HALO with the Fully
Sharded Data Parallel (FSDP) scheme, to enable further savings via low-precision communication.

In summary, our contributions are as follows:

1. We consider the challenging problem of quantized fine-tuning of a pre-trained model using
only lower-precision multiplications, and analyze the impact of quantization errors on model
accuracy during training, specifically linking them to the presence of outliers across various
model dimensions and internal states. Starting from this analysis, we propose using left- and right-
hand-side Hadamard transforms to address outliers over matrix rows and columns, respectively.
We show how these transforms can be inserted “strategically” in the Transformer architecture for
both forward and backward passes, minimizing overheads.

2. We then explore different outlier protection levels for HALO, based on the number and placement
of Hadamard transforms during training: Intuitively, HALO-1 strikes a trade-off between accuracy
and performance that is well-suited for distributions with moderate dynamic ranges (such as FP6).
In contrast, HALO-2 employs rotations to protect all multiplications during both the forward and
backward passes, making it more suitable for integer representations (such as INT8). Importantly,
the levels are independent of the precision used, allowing us to adjust them to recover final
accuracy while maximizing end-to-end speedup. HALO is compatible with full fine-tuning (FFT)
and PEFT methods, and is backed by new efficient GPU kernel implementations, currently aimed
at NVIDIA RTX GPUs. Moreover, the fact that all computation happens in quantized form offers

the opportunity to also perform quantized communication during sharded (FSDP) training, for
which we also add support in HALO.

3. We examine the accuracy and performance of HALO for fine-tuning LLAMA and Qwen-family
models [13; 43], via both FFT and PEFT. We observe that HALO closely tracks the accuracy
of full-precision variants across a wide series of tasks, improving upon the best known prior
methods [38; 41] on the more challenging INT8 and FP6 formats. We provide performance
measurements per module and end-to-end, with peak speedups of 1.82x and 1.41x for INTS,
relative to a well-optimized half-precision baseline.

Overall, our results show for the first time that it is possible to perform fast and accurate fine-tuning
while the majority of the forward-backward computation (all linear modules) is in lower precision,
even if the model initially has an outlier structure in weights, activations, and errors.

2 Background

Related Work. Inference quantization methods aim to compress either the model weights [17; 14; 35]
or jointly quantizing weights and activations, allowing for lower-precision forward computation [42].
It is known that activation quantization is challenging due to “outlier features” [37] of much larger
magnitude. Recent works apply transforms to mitigate such features on top of pre-trained models.
Chee et al. [5] observed that the magnitude of the largest elements (outliers, roughly defined as
values > 10 larger than the value average in the considered tensor) in the weight matrices W that
we wish to quantize for inference can be reduced by applying orthogonal transformations to W
from both sides, a method known as Incoherence Processing [6]. QuaRot [3] mitigates the impact
of outliers in both weights and activations by applying (randomized) Hadamard rotations that are
fused into the weights—a technique known as computational invariance. This approach enables most
inference computations to be performed in 4 bits without incurring the transform overhead during
inference. SpinQuant [23] builds on a similar idea but trains a subset of orthogonal transformations.
Unfortunately, the QuaRot approach cannot be used for low-precision training (see Section 3.1).

Performing low-precision computation during the backward pass is strictly harder than quantized
inference, for instance due to the very high dynamic range of gradients with respect to layer out-
puts [24; 7]. LM-FPS [32] trains large-scale models from scratch using FP8 on 40-100B of tokens,
while Fishman et al. [15] demonstrates that FP8 training becomes unstable when training with over
>250B tokens, and proposes a new activation function to address this issue. As such, their technique
cannot be used to fine-tune an already-trained model.

Integer (INT) quantization is a promising direction due to broad hardware support [4], at the cost
of narrower dynamic range. SwitchBack [38] trains vision models with up to 1B parameters from
scratch, but only quantizes two out of three matrix multiplications in the linear modules in INTS,
while retaining the third in high precision. Jetfire [41] proposes a more complex 2D block-wise
quantization approach for training from scratch in INTS. Jetfire obtains good accuracy and significant
end-to-end speedups (1.4 — 1.5x%); yet, their method was not tested for fine-tuning, and changing the
entire data flow to INT8 comes with significant challenges. The recent DeepSeek FPS training [11]
adopts a similar approach to Jetfire, using blocks of size 256 and a different implementation.

We compare to SwitchBack and JetFire/DeepSeek as baselines, in the context of fine-tuning. HALO
achieves similar or higher accuracy than SwitchBack, while consistently outperforming it in terms
of runtime, due to executing all multiplications in low precision. Relative to JetFire/DeepSeek, we
validate that FP8 training is indeed lossless, but that both methods are lossy when applied to INTS or
FP6 formats. For INT8/FP6, HALO offers higher accuracy.

Generally, efficient fine-tuning is an important workload in the context of high-quality open-weight
models. Most recent work focuses on making fine-tuning more efficient by reducing memory usage
[12; 27] through PEFT-style schemes [19]. HALO is completely compatible with PEFT schemes.
We present results from integrations with LoRA and QLoRA, but our focus is on accelerating the
actual computations during fine-tuning, which remains a less-explored area.

Linear Layers. Let matrices W € R"*™ X € R®*™ and Y € R**" be the weights, inputs, and
outputs of an n X m linear layer acting on an input with batch size b. The forward and backward
passes include the following matrix multiplications, in PyTorch notation [31]:

Y=X-WT (la G=Ey-X (lb) Ex =Ev-W (lo)

where G, Ex , and Ev are the gradients w.r.t. the weights, inputs, and outputs (where the last two
are known as errors), respectively. The first matrix multiplication occurs during the forward pass,
denoted by F, while the last two occur during the backward pass: one for computing the weight
gradients, denoted by G, and the other for computing the errors, denoted by E.

Hadamard Transformations. For a fixed dimension d, a normalized Hadamard matrix Hy is an
orthonormal matrix where HdHE = 1. When d = 2", Hy is called the Walsh-Hadamard matrix; its
entries are :t% and can be built via the recursive construction Hq = Ha ® Hy 5.

Assume a matrix A €R9*4, Then, a right-hand-side Hadamard transformation of A applies the
linear transformation h(A) = AHq4. When d is power-of-two, Hg is the Walsh-Hadamard matrix,
and the above transformation can be done using a recursive algorithm with O(dlog d) operations
[45]. Following [3], when d is not a power of two, we factorize it as d = 2"m, where m is the size
of a known Hadamard matrix. We then apply the Kronecker construction: Hg = Han ® Hy,. We
also use the left-hand-side Hadamard transformation, defined as h’(A) = HJ A, which can be
calculated by transposing h(AT).

Full and Parameter-Efficient Fine-Tuning. Full fine-tuning (FFT) involves adjusting all the
parameters of a pre-trained model on a downstream task, but can be infeasible for LLMs on consumer
hardware. Parameter-efficient fine-tuning (PEFT) methods such as LoRA [19] focus on reducing
memory usage during fine-tuning. A LoRA linear layer is parameterized by a non-trainable weight
matrix W € R™*™ and trainable components U € R"™*™ and V € R"*" with r << min(m,n).
In the forward pass, the input tensor X will be passed through the frozen and low-rank weights and
the output will be calculated as Y = X - WT + (X - UT) . VT, In the backward pass, the gradient
will be calculated only for the low-rank matrices. For the details of the operations, see Appendix A.3.

3 Method

In this section, we introduce our proposed HALO method for low-precision fine-tuning of pre-trained
models. We begin by analyzing the key challenges of applying quantization during fine-tuning. Next,
we present our solution to these challenges and define the levels of HALO. Finally, we discuss the
details of the implementation and integration of quantized communication.

3.1 Design Space and Challenges of Low-Precision Fine-Tuning

Our primary goal is to apply Hadamard transformations to reduce quantization error while performing
the forward and backward passes of linear layers in low precision. This approach introduces several
challenges that should be addressed to achieve an optimal balance between accuracy and performance.
In this (and the next) section, we outline these challenges and propose solutions for each.

Challenge 1: Orthogonal Transformation Absorption. QuaRot [3] eliminates the overhead
of applying Hadamard transformations during inference by absorbing them into the weights of
preceding layers. This is feasible when the network exclusively uses RMSNorm as its normalization
module which has a distributive property: for any matrix X and orthogonal matrix Q, we have
RMSNorm(XQ) = RMSNorm(X)Q. As a result, if Q is absorbed into the output dimension of
weight matrix in the previous layers, it will be preserved across subsequent layers—removing the need
for explicit transformations during inference. This technique is known as computational invariance
[2]. However, this property does not hold during the backward pass, as the derivative of RMSNorm
lacks the same distributive behavior (see Appendix A.1). Therefore, QuaRot cannot be directly
extended to the backward pass to eliminate the cost of applying Hadamard transformations.

Challenge 2: Hadamard Combinations and Overheads. For given matrices A € R™** and
B € R**", our goal is to perform matrix multiplication Y = AqBq in low precision, where
Aq and Bq are the quantized versions of A and B, respectively. In the No Hadamard Case
(denoted Y), we directly apply the quantization function and compute AqgBq without any Hadamard

transformation. In the Left Case (denoted Y), we apply a left-hand-side Hadamard transformation

Avg: 0.9

Q
i)

Avg: 0.883

0.8 1

0.6

0.4 4
Avg: 0.323

0.2 4

Weight Gradient Cosine Similarity
Weight Gradient Cosine Similarity

Weight Gradient Cosine Similarity

0.0~ T T T T T

T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Layer number Layer number Layer number

(a) (b) (c)

Figure 2: Cosine similarity between the weight gradients of the baseline model (BF16) and the
quantized model when quantization is applied during the (a): backward pass, (b): forward pass, and
(c): forward pass with Hadamard transformation in a single fine-tuning step of LLAMA3-8Bon the
GSMSK dataset. Compared to the backward pass, the forward pass is more sensitive to quantization.
We improve the results by applying Hadamard transformation during the forward pass (¥). For each
case, we present the weighted average (over # parameters) for all linear modules in each layer.

of size m to A before quantization and compute H,, (H, A)gBgq?. In the Right Case (denoted
Y*H), we apply a right-hand-side Hadamard transformation of size n to B, perform Aq(BHy,)qHE.

Lastly, in the Middle Case (denoted SI}), we apply Hadamard transformations of size k from the right
to A and from the left to B, computing (AHy)q(H B)q. Any combination of these placements
yields 512 possible modes, including the "No-Hadamard" case. Selecting the optimal insertion
strategy is challenging because: (1) we aim to minimize the number of Hadamard transformations
to reduce computational overhead; and (2) we must carefully place them to suppress outliers and
maintain stability during low-precision training (see Appendix A.7 for an ablation study over different
combinations). Naively evaluating all combinations of Hadamard placements for each fine-
tuning task is clearly impractical.

Challenge 3: Communication and Memory Issues. Fine-tuning large models typically requires
multiple GPUs, which must communicate over a network to perform operations like weight gathering
(AllGather) and gradient aggregation (AllReduce). These communication steps introduce significant
overhead during training. Additionally, storing activations for the backward pass (especially with
large batch sizes) can become a major memory bottleneck. Therefore, HALO has to also consider
communication and memory efficiency constraints in the method design.

3.2 HALO Solutions for Fine-tuning

As discussed in the previous section, quantized fine-tuning presents several challenges. In this section,
we present the main steps of designing HALO to address the above challenges during fine-tuning.

Step 1: Sensitivity Analysis of Forward vs. Backward Quantization.

We begin by identifying the most quantization-sensitive matrix multiplications during the forward
and backward passes. While it is known that activations (X) and error gradients (Ev) exhibit
outliers in their columns and rows, respectively [3; 39; 7], it remains unclear which specific matrix
multiplications are most vulnerable to quantization effects. To address this, we study the cosine
similarity between the weight gradients of the baseline model (no quantization) and the quantized
model when quantization is applied during the forward pass or the backward pass.

Figure 2 shows that the computed weight gradients have significantly lower cosine similarity compared
to the baseline model when quantization is applied during the forward pass. Specifically, when we
only quantize Equations (1b-1c) in the backward pass, the average cosine similarity is 0.909. In
contrast, when quantization is applied to the forward pass in Equation (1a), while leaving the backward
pass unchanged, the average cosine similarity drops to 0.323. This drop may result from larger
quantization errors in the activations, potentially caused by outliers, or from errors introduced during
the network loss computation after the forward pass is quantized.

3We apply another left-hand-side Hadamard transformation on the output of the low-precision matrix
multiplication to (approximately) cancel the effect of this transformation.

HALO levels HQ-FSDP (Forward Pass)

(Input Gradient Calculation)
HALO-1 ll
Y L1 R e AL
Multiplication| Ey GPU 1
-Reduce All-Gather
7 Local
W) o s e e (WH)q

GPU 2

Figure 3: Left: Hadamard transformations in HALO levels during the input gradient calculation.
Hadamard transformations are already applied to the weights during the forward pass. Right: Forward
pass in HQ-FSDP for two GPUs: Each GPU performs a right-hand side Hadamard transformation
and computes the absolute maximum (AbsMax) s; over its local weight shard W;. Then, all GPUs
participate in an A11-Reduce operation and compute the global maximum absolute value s. Each
GPU uses this global value to quantize its own weight shard. Finally, an A11-Gather operation is
performed on the quantized shards (W; H)¢. All GPUs use the same scales to quantize the weights
in the backward pass after applying Hadamard transformation.

We conclude that mitigating outliers is key during the forward pass, and we can recover most of the
averaged cosine similarity (0.883) by applying Hadamard transformations during the forward pass on
the weights and inputs.

Step 2: Memory- and Communication-Efficient Backward Pass.

In Step 1, we apply a right-hand-side Hadamard transformation to both weights and activations. Due
to the orthogonality of the Hadamard matrix, these transformations cancel out in Equation (1a). In
the next step, we retain the quantized transformed weights ((WH)q) and activations ((XH)q) for
the backward pass and perform the computations defined in Equations (1b—1c¢) using these tensors.
This ensures consistency between the forward and backward passes, as both operate on the same
(quantized) inputs and weights, while also enabling efficient reduction in storage and communication.

To recover the true weight and input gradients in Equations (1b—1c¢), an additional right-hand-side
Hadamard transformation must be applied to the outputs of the corresponding matrix multiplications
in the backward pass, introducing two extra Hadamard transformations into the overall scheme.

Step 3: Outlier Mitigation for Output Gradients (Errors) in the Backward.

With the first two steps, we can stabilize fine-tuning at precisions with moderate dynamic ranges
(such as FP6). However, for narrower dynamic ranges (e.g., INTS), it becomes necessary to mitigate
outliers in the error gradients during the backward pass.

Figure 1-Left shows that, unlike activation tensors X, in the error tensors Ex the outliers are
propagated across columns (channel/feature dimension). Then, using a right-hand-side Hadamard
transformation does not solve the outlier issue as such transformation rotates the input rows (Figure
1-Middle). Thus, we apply lefi-hand-side Hadamard transformation, or h'(Ey), which mitigates the
error outliers by rotating the column vectors (Figure 1-Right).

We avoid applying the Hadamard transformation during weight gradient computation because (1)
computing input gradients is more sensitive to quantization, as these gradients are propagated to
previous layers, and (2) performing a left-hand-side Hadamard transformation is more computationally
expensive due to the need for two transpositions.

3.3 The HALO Method

Full Fine Tuning. Based on the above steps, we define two levels within HALO, corresponding to
data formats with moderate and narrow dynamic ranges, respectively as follows:

1. At the first level, denoted by HALO-1(F. E", GY), we employ the middle case during the
forward pass to mitigate issues with weight gradients (Figure 2c). Specifically, right-hand-
side Hadamard transforms are applied to both input and weight matrices prior to quantization.
This introduces two implementation concerns: 1) Low-Precision Communication: We apply

aright-hand-side Hadamard transform to the weights in Equation (1c¢) to facilitate integration
with HQ-FSDP and Activation Checkpointing. 2) Memory Reduction: To improve memory
efficiency, we apply a right-hand-side Hadamard transform to the input during the backward
pass in Equation (1b). This allows us to reuse the quantized inputs from the forward pass,
eliminating the need to keep the high-precision inputs in memory.

2. Finally, to mitigate outliers in errors, we define the highest level by applying a left-hand-side
Hadamard transformation to E, denoted by HALO—Z(; HEH gH),

The main difference in the HALO levels is applying Hadamard transformations during the error
calculations. Table 3 (in Appendix A.2) summarizes the key modifications introduced to the matrix
multiplication computations across different HALO levels. The primary distinction between HALO-1
and HALO-2 is the application of a left-hand-side Hadamard transformation to the errors during input
gradient calculation, as shown in Figure 3-Left.

Parameter Efficient Fine Tuning. To accelerate parameter-efficient fine-tuning (PEFT), we apply

(?, HEH G) on the large matrices while maintaining low-rank operations in high precision due to their
inherent efficiency. For the weight quantization, we apply a right-hand-side Hadamard transformation
and quantize the frozen weights once and store the quantized weights before fine-tuning. We then
apply a single right-hand-side Hadamard transformation during the forward pass on the inputs and
two Hadamard transformations during the backward pass on the errors. Finally, we keep the gradient
calculation in high precision as it uses only low-rank matrix multiplication. We denote this variant
scheme by HALOpgrr. We present the details of the Equations in Appendix A.3.

3.4 HQ-FSDP: HALO Quantized Communication and Memory Reduction

In this section, we describe how HALO leverages quantized Fully Sharded Data Parallel (FSDP) to
reduce communication overhead, and quantized activation storage to minimize memory usage.

FSDP Integration. Fully Sharded Data Parallel (FSDP) [48] is a common distributed training
strategy for LLM fine-tuning. In FSDP, model weights are sharded (i.e., distributed) across multiple
GPUs. Whenever necessary, a subset of the weights (typically corresponding to a transformer block)
is all-gathered, enabling every GPU to have the full weight subset required for an operation. This
communication occurs before the forward and backward passes of each block. After the backward
pass, gradients are reduce-scattered, ensuring that each process maintains the averaged gradient for
its own shard (Figure 3-Right).

Since HALO requires only the quantized weights for performing the F' and E operations, it allows
for low precision all-gather communications. We refer to this approach as Hadamard-Quantized
FSDP (HQ-FSDP) and implement it as follows: (a) if necessary, each process applies a right-hand
Hadamard transformation to its shard (depending on the HALO level implemented), (b) each process
computes a local quantization scale for its shard, (c) the scales are max-reduced to ensure that every
process has the global scale per weight matrix, (d) each process quantizes its shard with the global
scales, and (e) the low-precision quantized weights are communicated. This approach significantly
reduces communication overhead while distributing the quantization and, possibly, the Hadamard
transformation overhead across processes. Notably, the global scales calculated during the forward
pass are reused in the backward pass, skipping steps (b) and (c) above. See Appendix A.5 for details.

FSDP is often combined with Activation Checkpointing (AC), which saves only selected activations
(checkpoints, e.g., before and after transformer blocks) during the forward pass, reducing memory
usage. Before the backward pass of each block, intermediate activations are recomputed via a second
forward pass. With AC, FSDP communicates each weight only once during the backward pass,
reusing it for both the second forward pass and the backward pass. Thus, when using HQ-FSDP
with AC, applying the same Hadamard transformation to the weights in both F' and E operations is
essential to ensure communication speedup.

Activation Quantization For Memory Reduction. Xi et al. [40] have shown that up to 40% of
memory is used to store activations during training in LLAMA-style models. This is because the
activation tensor X in Equation (1a) must be stored and reused in Equation (1b) during the backward
pass. We always store the quantized version of X for the backward pass to address this issue. When
we apply a right-hand Hadamard operation on X during the forward pass, we need to apply another
right-hand Hadamard operation on the output of Equation (1b) to ensure identical computation.

4 Experimental Validation

We implement HALO in PyTorch [31] based on the the 11m-foundry codebase [25] for FFT, and the
standard HuggingFace PEFT library for HALOpgpr. We use tensor-wise symmetric quantization
(a single scale for the entire tensor) for all data types, and Round-to-Nearest (RTN) quantization
across all our experiments. We implement our own low-precision matrix multiplications using the
CUTLASS library [29] for all linear modules (except for the LM head and embeddings) and keep
the rest of the model in the original precision (BF16) during fine-tuning. For outlier mitigation, we
adapt efficient Hadamard CUDA kernels [10]. We use E4M3 for the 8-bit floating-point format; after
comparing accuracies, we chose the E3M?2 format for FP6 as the more accurate variant.

Model, Tasks, and Hyper-parameters. For FFT, we evaluate HALO on LLAMA3-8B [13] as well
as large scale Qwen (14B and 32B) models [44] (in Appendix A.13), following published fine-tuning
recipes [26; 27] for both FFT and PEFT. For both FFT and PEFT, we consider three standard datasets:
1) ViGGO [20], with 5.1k training and 1.08k test samples, 2) Grade-School Math (GSMS8k) [8], with
7.74k training and 1.32k test samples, and 3) SQL generation [49; 46], with 30k training and 1k
test samples. These datasets are particularly interesting because they are either highly-specialized
(like SQL and ViGGO), or the pre-trained model has low few-shot accuracy (like GSM8K), making
fine-tuning necessary. We use the same hyperparameters as BF16 fine-tuning, detailed in Appendix
A.6. Each experiment is repeated with 5 seeds; we report the mean and standard error.

Baselines. For full fine-tuning, we compare HALO against three main baselines: BF16;
SwitchBack [38], and Jetfire [41], as described in Section 2. SwitchBack uses row-wise quanti-
zation for the inputs and errors during the forward and backward passes and performs weight gradient
calculation in 16 bits. Jetfire applies 2D block-wise quantization with a block size of 32 x 32
on the linear layers and use symmetric AbsMax for quantization. Notably, for fair comparison,
we maintain this scheme’s data flow in 16 bits and do not quantize the activation functions in our
Jetfire baseline, as this aspect is orthogonal to our scheme. Finally, we compare HALO with the
standard PEFT methods LoRA [19] with rank r» = 8.

4.1 Low-Precision Full Fine-Tuning

Integer (INTS8) Quantization. The first row in Format | Method pr— Vigeo p—~y

Table 1 summarizes HALO results across three BF16 | Baseline 09305 91003 799+05

tasks, where weights, activations, and errors : : -
SwitchBack 64.04+0.7 61.0+£28.9 79.6+0.8

are quantized using INT8 quantization. We uti- INTS Jetfire 682406 936404 802+ 0.6

lize the second level of our scheme, denoted by HALO-2 68.3+0.1 93.8+0.1 80.1+0.3
H . . . N

HALO-2(F. HeEH, gH), for integer quantization SwitchBack 62.7+0.7 934405 80.1£0.5

. FP6 Jetfire 628+ 1.1 929402 79.740.5
and compare our results against BF16 (no quan- HALO-1 665102 936404 80.2L03

tization), SwitchBack, an,d Jetfire. Acr(.)ss SwitchBack 69.1+0.3 93.2+0.2 80.4+0.3
all taSkS, HALO and Jetfire achieve relative FP8 Jetfire 69.3+0.4 93.1+0.3 80.2+0.3
accuracy within 1% of the BF16 model. How- No-HALO 69.2+£0.2 93.24+0.2 80.3+0.2

ever, HALO employs tensor-wise quantization .
for all tensors and has lower variance across 1able 1: Single-epoch accuracy results of fine-
different seeds. Additionally, our version of tuning with 8-bit (INT8/FP8) and 6-bit (FP6) quan-

Jetfire retains the data flow in BF16, making tizations. We use HALO-Z(IE, HEH gH) for in-

it more accurate than the original implemen- teger quantization and H ALO-1(F, E¥, GH) for

tation. Finally, SwitchBack fails to recover Fpg (E3M2), while we use no Hadamard for FP8
accuracy on both the ViGGO and GSM8K (E4M3), denoted by No-HALO.

datasets, despite using row-wise and column-

wise quantization for inputs and weights, along

with high-precision weight gradient calculations. The SQL dataset appears to be “easier”, as all
schemes match the baseline after 1 epoch of FFT.

Floating-Point Quantization. Next, we study the use of floating-point representation during fine-
tuning by applying FP6 (E3M2) and FP8 (E4M3) quantization. For FP6, we utilize the first level,

denoted by HALO-1(F. ¥, GH), where we apply the Hadamard transform on the forward pass and
use the Hadamard-transformed weights and inputs during the backward calculation. On GSMSK,
both SwitchBack and Jetfire have ~6.5% accuracy drop, while HALO-1 shows a 2.8% accuracy
loss compared to the BF16 model. On ViGGO, HALO experiences a 0.4% accuracy drop, whereas

—
(=2}
1.65x

=
i
L

Speedup Ratio
—_ —_
o v
1.40x
1.02x
1.00x
1.40x
1.14x
1.09x -
1.48x
1.43x
1.29% »
\

W SwitchBack 0.8 [0 HALO-2

B Jetfire I Ideal HQ-FSDP

B HALO-2 0.6 W HALO-2 HQ-FSDP
BS=4 BS=8 BS=16 BS=32 BS=4 BS=8 BS=16 BS=32

(a) Linear layer (of size 4096 x 4096). (b) Three consecutive transformer blocks (with/without HQ-FSDP).

Figure 4: INT8 forward + backward speedups (over BF16) for 512 sequence length in LLAMA3-8B
across batch sizes (BS). HALO-2 refers to HALO—Z(g HEH gH),

SwitchBack and Jetfire show drops of 0.6% and 1.1%, respectively. Similar to integer quanti-
zation, all methods achieve accuracy within 1% of the baseline on the SQL dataset. Although the
peak performance of FP6 is the same as FP8 [30], FP6 provides higher memory and communication
reduction with quantized activations and HQ-FSDP (see Section 3). We present the accuracy results
for HALOpgprin Appendix A.3.

4.2 Speedup Analysis

We now evaluate the runtime improvements achieved with HALO. Speedups are measured on RTX
4090 GPUs with locked clocks, to reduce variance, for: a single linear layer and for end-to-end
training. We compare different precisions and HALO levels against the BF16 base case and other
baselines. Unless mentioned, we fix the sequence length at 512 and control the input size using the
batch size. The layer-wise and block-wise speedups are averaged over 100 (+20 warm-up) and 30
(+10 warm-up) runs, respectively.

Linear Layer. First, we consider a single linear layer of size 4096 x 4096, matching the majority
of linear modules in the LLAMA3-8B model. We evaluate our most accurate INT8 quantization

scheme, HALO—Z(%, HEH gH), relative to the SOTA Jetfire and SwitchBack methods. Since
Jetfire uses an INT8 data flow, we consider a setup where its inputs, outputs, and errors are in
INTS, bypassing its quantization overhead: this is an “idealized” version of Jetfire to ensure a
fair comparison. Figure 4-(a) illustrates the speedups relative to the baseline BF16 implementation.
HALO-2 attains additional 20-40% speedups compared to SwitchBack, primarily due to the higher
precision matrix multiplication for weight gradient calculations in SwitchBack. Additionally, for
batch sizes greater than 4, HALO-2 has at least 20% more speedup than Jetfire, as Jetfire’s
complex 2D block-wise quantization introduces significant overhead during both quantization and
dequantization. However, for a batch size of 4, Jetfire is slightly faster than HALO-2 due to the
overhead from Hadamard transformations and transpositions. Switching HALO to a low-precision
data flow would increase speedups; we leave this for future work.

The Effect of HQ-FSDP. To evaluate the impact of HQ-FSDP across different batch-sizes, we run
forward and backward passes over three consecutive transformer blocks that fit in GPU memory
at BS=32—using four GPUs with FSDP enabled. Figure 4-(b) reports speedups with and without
quantized communication. HQ-FSDP achieves 1.37x to 1.43x speedups, delivering 10-40% higher
speedups compared to 16-bit communication. The improvement is more significant at smaller batch
sizes (e.g. BS=4), as communication becomes the primary bottleneck for training.

End-to-End Speedups. Finally, in Table 2, we NVIDIA 4x GPUs | 8x GPUs
compare the end-to-end fine-tuning speedups for (RTX-4090) BS=4 BS=8 | BS=4 BS=8
LLAMA3-8B when we use INT8 HALO-2 and FP8 INTS (HALO-2) 135x OOM | 141x 141x
without Hadamard transformation, denoted by No- ~ FP8 (No-HALD) 1.36x OOM | 141x 1.39x
HALO, both of which are near-lossless for the cor-

responding precisions. Using four GPUs, we can fit 1able 2: End-to-end speedups one epoch
only four samples into GPU memory, whereas with LLAMA3-8B full fine-tuning with best per-

eight GPUs, we can fit up to eight samples, each with forming HALO level using INT8 and FPS.

512 tokens. In the former case, No-HALO and HALO-2 achieve speedups of 1.35x and 1.36x,
respectively. However, the speedups are higher with eight GPUs, reaching up to 1.41x, mainly
due to increased communication overhead in this configuration. All experiments were conducted
in a realistic setting for both four and eight GPUs, with HQ-FSDP and Activation Checkpointing
enabled. W In addition, in Appendix A.9, we provide inference speed results for the model which
is fine-tuned using HALO, showing that the Hadamard transformations have minimal impact on
inference performance.

5 Conclusion

We introduced HALO, an LLM fine-tuning scheme that performs all matrix multiplications in lower-
precision, leveraging Hadamard transforms to mitigate outliers. HALO uses simple tensor-wise
quantization for all weights, inputs, and errors, utilizes low-precision communication (HQ-FSDP),
and reduces memory usage by storing quantized activations. For INT8, HALO achieves up to a
1.36 x end-to-end speedup which is comparable to the 1.41x speedup of FP8 without any Hadamard
transformations. This holds during fine-tuning of LLAMA3-8B on four and eight commodity GPUs,
while maintaining accuracy close to the baseline. In future work, we plan to investigate HALO for
pre-training accurate models from scratch, and extend it for additional GPU hardware types.

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 program (grant agreement PSAP, No. 101002047. This research also obtained
funding from the “UrbanTwin: An urban digital twin for climate action: Assessing policies and
solutions for energy, water and infrastructure” project, funded by the ETH-Domain Joint Initiative
program in the Strategic Area Energy, Climate and Sustainable Environment.

References

[1] Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language
models. arXiv preprint arXiv:2310.09259, 2023.

[2] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[3] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan
Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated
llms. arXiv preprint arXiv:2404.00456, 2024.

[4] Mart van Baalen, Andrey Kuzmin, Suparna S Nair, Yuwei Ren, Eric Mahurin, Chirag Patel,
Sundar Subramanian, Sanghyuk Lee, Markus Nagel, Joseph Soriaga, et al. Fp8 versus int8 for
efficient deep learning inference. arXiv preprint arXiv:2303.17951, 2023.

[5] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

[6] Yudong Chen, Ashkan Jalali, Sujay Sanghavi, and Huan Xu. Incoherence-optimal matrix
completion. arXiv preprint arXiv:1310.0154,2013. Available at https://arxiv.org/abs/
1310.0154.

[7] Kamran Chitsaz, Quentin Fournier, Gon¢alo Mordido, and Sarath Chandar. Exploring quantiza-
tion for efficient pre-training of transformer language models. arXiv preprint arXiv:2407.11722,
2024.

[8] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

10

https://arxiv.org/abs/1310.0154
https://arxiv.org/abs/1310.0154

[9] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

[10] Tri Dao. Fast hadamard transform in cuda, 2023. URL https://github.com/Dao-AILab/
fast-hadamard-transform.

[11] DeepSeek-Al Deepseek-v3 technical report, 2024. URL https://arxiv.org/abs/2412.
19437.

[12] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[14] Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv
preprint arXiv:2401.06118, 2024.

[15] Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling fp8 training to
trillion-token 1lms. arXiv preprint arXiv:2409.12517, 2024.

[16] Flashinfer.ai. Flashinfer: Kernel library for 1lm serving, 2023. URL https://github.com/
flashinfer-ai/flashinfer.

[17] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[18] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[19] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[20] Juraj Juraska, Kevin Bowden, and Marilyn Walker. ViGGO: A video game corpus for
data-to-text generation in open-domain conversation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation, pages 164—172, Tokyo, Japan, October—
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-8623.
URL https://aclanthology.org/W19-8623.

[21] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611-626, 2023.

[22] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pages 9-50. Springer, 2002.

[23] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant-1lm
quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

[24] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

[25] MosaicML. Llm training code for databricks foundation models, 2023. URL https://github.
com/mosaicml/11lm-foundry.

[26] Artur Niederfahrenhorst, Kourosh Hakhamaneshi, and Rehaan Ahmad. Fine-tuning LLMs:
LoRA or Full-Parameter? an in-depth analysis with Llama 2. https://www.anyscale.com/
blog?author=rehaan-ahmad, 2023.

11

https://github.com/Dao-AILab/fast-hadamard-transform
https://github.com/Dao-AILab/fast-hadamard-transform
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://aclanthology.org/W19-8623
https://github.com/mosaicml/llm-foundry
https://github.com/mosaicml/llm-foundry
https://www.anyscale.com/blog?author=rehaan-ahmad
https://www.anyscale.com/blog?author=rehaan-ahmad

[27] Mahdi Nikdan, Soroush Tabesh, and Dan Alistarh. Rosa: Accurate parameter-efficient fine-
tuning via robust adaptation. arXiv preprint arXiv:2401.04679, 2024.

[28] Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and
Yoon Kim. Mitigating the impact of outlier channels for language model quantization with
activation regularization, 2024. URL https://arxiv.org/abs/2404.03605.

[29] NVIDIA. Cutlass: Cuda templates for linear algebra subroutines, 2017. URL https://
github.com/NVIDIA/cutlass.

[30] NVIDIA. Nvidia blackwell architecture technical brief. "https://resources.nvidia.com/
en-us-blackwell-architecture", 2024.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[32] Houwen Peng, Kan Wu, Yixuan Wei, Guoshuai Zhao, Yuxiang Yang, Ze Liu, Yifan Xiong,
Ziyue Yang, Bolin Ni, Jingcheng Hu, et al. Fp8-Im: Training fp8 large language models. arXiv
preprint arXiv:2310.18313, 2023.

[33] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533-536, 1986.

[34] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

[35] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better Ilm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

[36] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[37] Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang,
Fengwei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer
language models. Advances in Neural Information Processing Systems, 35:17402-17414, 2022.

[38] Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer, Ari Morcos, Ali Farhadi, and Ludwig
Schmidt. Stable and low-precision training for large-scale vision-language models. Advances
in Neural Information Processing Systems, 36:10271-10298, 2023.

[39] Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit
integers. Advances in Neural Information Processing Systems, 36:49146-49168, 2023.

[40] Haocheng Xi, Han Cai, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfei Chen, and Song Han. Coat:
Compressing optimizer states and activation for memory-efficient fp8 training. arXiv preprint
arXiv:2410.19313, 2024.

[41] Haocheng Xi, Yuxiang Chen, Kang Zhao, Kaijun Zheng, Jianfei Chen, and Jun Zhu. Jetfire:
Efficient and accurate transformer pretraining with int8 data flow and per-block quantization.
arXiv preprint arXiv:2403.12422, 2024.

[42] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087-38099. PMLR, 2023.

[43] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671,2024. URL https://arxiv.org/abs/2407.10671.

[44] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

12

https://arxiv.org/abs/2404.03605
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
"https://resources.nvidia.com/en-us-blackwell-architecture"
"https://resources.nvidia.com/en-us-blackwell-architecture"
https://arxiv.org/abs/2407.10671

[45] Raytheon Yavne. An economical method for calculating the discrete fourier transform. In
Proceedings of the December 9-11, 1968, fall joint computer conference, part I, pages 115-125,
1968.

[46] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

[47] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

[48] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

[49] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

13

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are justified in the paper. The practical claims are shown in the
"Experimental Validation" Section (Section 4).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss that in the "Conclusion" section of the paper as our future work
plan.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We explained all details for our experiments in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: For the paper, we provide an anonymous code.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .
Justification: All details are presented in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We repeat all experiments with 5 different random seeds and report the mean
and standard deviations for our results (See Section 4).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: Our accuracy results are independent of the GPU types (as we only show
the final accuracy). For speedup results, we provide details about the GPU type and
configurations in Section 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We preserve anonymity in both text and codebase and follow the CoE.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .
Justification: No societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .
Justification: We use open-source models and datasets in the paper and cited all of them.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

18

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: The paper does not involve crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA] .

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Technical Appendices and Supplementary Material

A.1 RMSNorm Backward Pass

For every vector x € R4, we define

xT

f(ﬁ) = m = \/Z‘Ll x? = \/wa.

Given a matrix X, the RMSNorm(X) applies Equation (2) on each row of X in the for-
ward pass. For a given orthogonal transformation matrix Q, we will have f(Qx) = Qf(x) as
[1Qx|| = vVxTQTQx = ||z||, which is known as the distributive property. Using this fact, Ashk-
boos et al. [2] showed that any orthogonal transformation Q can be fused to the weights of the
previous layer, and RMSNorm will preserve it because of the distributive property above. This
approach eliminates the overhead of applying Hadamard transformations during the forward pass.

@

Now, consider the derivative of f(x) which is used during the backward pass of fine-tuning. For a
given input vector x € R4, we will have

0 x 1 zx "
()= — (1- , 3
r (nxn)] (||x||2> ©

which does not have the above distributive property. This shows that one cannot use the fusion
idea [3; 2; 23] to merge the Hadamard transformations into the previous weight matrix during the
backward pass, especially as we need to apply left-hand-side Hadamard transformations on the errors
(see Figure 1).

A.2 HALO Levels for FFT

We summarize all the HALO levels for fine-tuning of a linear layer in Table 3. We use tensor-wise
symmetric quantization function Q for all data types (input, weights, and errors).

Forward Input Gradient Weight Gradient .
Method ‘ Calculation (F) Calculation (E) ‘ Calculation (G) ‘ Notes
No-HALO ‘ qua ‘ (Evy)qWaq ‘ (ET)qXq ‘ 1. Suitable for wide ranges (e.g., FP8).

1. Outlier mitigation during the forward pass.
2. Easy integration with FSDP with AC.

3. Quantized activation for memory reduction.
4. Suitable for moderate ranges (e.g., FP6).

HALO-1(*.g".¢") | (XH)g(WH)G | (Ey)q(WH)q HT | (EY)q(XH)oHT

1. Most accurate scheme.

H
HALO-2(F."E",) 2. Suitable for narrow ranges (e.g., INT8).

(XH)Q(WH)G | HY(HEy)o(WH)QHT | (E})q(XH)H"
Table 3: HALO levels for full fine-tuning (FFT). We use the quantization function Q for quantizing
different data types and perform the computation with low precision. AC stands for Activation
Checkpointing.

A.3 LoRA-style Linear Module and HALO for PEFT

A LoRA linear module includes the following operations:

Y=X-Wr'(x.UT). vt)

Ex =EYV+EY =(Ey-V)-U+Ey W, o)
Gy =E¥ - (X-UT), (6)

Gu = (VT -EY)-X,)

where Gy and Gv are the gradients of U and V, respectively. Since low-rank operations are fast,
our goal is to quantize operations not involving the the low-rank matrices U and V.

21

As mentioned in Section 3, we integrate HALO with PEFT by quantizing the majority of the
computation while retaining the low-rank computations in high precision. In this case, the Equations
(4-5) will become

Y ~ (XH)q - (WH)§ + (XUT) - VT, ®)
Ex ~EYY +H. - (HTEy)q - (WH)qH".)

We show the above scheme by HALOpgpr.
Next, we compare HALOpgpr against LoRA [19], on GSM8K, SQL, and ViGGO for FP8, FP6 and
INTS in Table 4. For INT8 and FP8, HALOpgpt is always within the standard deviation of baseline.
On GSMBK, FP6 has approximately a 2% accuracy degradation, showing the challenge of recovering

high-precision accuracy with only 6 bits. For VIGGO and SQL, both INTS and FP6 recover accuracy
with at most a 0.5% average accuracy drop.

Table 4: Single-epoch accuracy comparison between LoRA [19] and HALOpgpr(ours). We use rank
r = 16 for adapters and apply FP6 (E3M2) and INTS for quantization.

Precision | Method GSM8k ViGGO SQL
BF16 | LoRA 69.440.8 941402 80.04+04
INT8 69.0+05 934407 799404
FP6 HALOpgrr 67.3+£0.6 93.6+£0.7 79.9+0.5
FP8 694+1.0 94240.6 80.04+0.3

A.4 Hadamard Effect

Figure 5 illustrates the effect of applying Hadamard transformations to the right and left sides of
the activations (input matrices), errors (gradients with respect to the output), and weights. For the
activations, applying Hadamard on the right side effectively removes outliers, whereas for the errors,
a left-side Hadamard transformation is necessary to eliminate outliers, as also noted in Figure 1.

A.5 HQ-FSDP Details

Here we discuss some details about our HQ-FSDP implementation. Master Weights. In HALO,
weights are maintained in BF16. Accordingly, HQ-FSDP stores the parameters in BF16 and applies
quantization before communication. Forward vs. Backward. Since the weights remain unchanged
between the forward and backward passes, the quantized shard could be stored during the forward
pass in each process and only communicated during the backward pass. This approach eliminates
the need for a second quantization and potential Hadamard transform during the backward pass.
However, it introduces additional memory overhead, as the quantized weights must be stored alongside
the master BF16 weights. Additionally, since the quantization and Hadamard transform on the
weights are distributed across FSDP processes, their overhead is relatively small. Instead, we adopt
an intermediate approach: save only the global quantization scales during the forward pass and
recompute the quantization and Hadamard transform during the backward pass. FSDP Wrapping
Policy. Following standard practice, we wrap each transformer block with an FSDP module (FSDP
communications happen before each transformer block). However, for HQ-FSDP, we skip the
layer-norm modules (keeping full weights in every process) as we do not intend to quantize them.
Our experiments show that this only marginally increases memory usage and does not change
runtime. Distributed Hadamard Transformation. When the scheme requires a right Hadamard
transformation, HQ-FSDP applies it in a distributed way; process ¢ performs W,;H where W;
denotes the ¢’th shard. However, this requires the weight matrix to be sharded by row, i.e., each row
should entirely reside within a single shard. As FSDP requires equally sized shards to be fast, we
dynamically insert small dummy parameter tensors of carefully chosen sizes when needed. This
guarantees row-aligned sharding without compromising performance.

A.6 Hyper-Parameters

In all experiments, we tune the hyper-parameters on the base BF16 tasks, and re-use the same values
for low-precision training. We always perform single-epoch experiments using the AdamW optimizer

22

Activation - No Hadamard Error - No Hadamard ‘Weight - No Hadamard

——— 25000 ——— ——
Mean: -2.09¢-05 — Mean: -2.54e-09 — 401 (Moan: -1.08007 -
20.04 |std: 3.57e-02 Std: 5.01e-05 Std: 1.0e-02
Skew: 2.85 Skew: 0.05 Sker
Kurt: 583.83 Kurt: 78.19 351 |Kurt:
17.5- |Hyperskewness: -71303.47 20000 Hyperskewness: 195.31 Hyperskewness: -13.90
sis: 11399506.00 Hyperkurtosis: 40284|11 30 Hyperkurtosis: 1740.51
15.01
B125] 15000 25
2
3 10.0 20
A 10000
7.5 15
] 10

5.0 5000

2.54 5

0.0 0 0

-1.0 -0.5 0.0 0.5 1.0 -1 0 1 =5
le-3
Activation - Left Hadamard Error - Left Hadamard
Moan: 115005 — Mean: -6.516-00 40

144 g;e“’ss;;uz 8000 5.01e-05
Kurt: 4549.94 35 04
Hyperskewness: -2263881 /50 3 lerskewness: 0.00|

127 |Hyperkurtosis: 1145242752.00 Hyperkurtosis: 164 30 Hypgerkurtosis: 15.58

101 6000

= 25
‘D g
g 8 20
8 4000
6
15
44
2000 10
21 5
0 0 0
-1.0 -0.5 0.0 0.5 1.0 -5.0 =25 0.0 2.5 5.0 -4
le—-4
Activation - Right Hadamard Error - Right Hadamard
AN — 40
: e e
S 25000 1 [Skew: 0.03 Skew: -

101 [¥ Rort 52.66 351 [Kin'ags
Hyperskewness: 0.03 Hyperskewness: 21.42 Hyperskewness:
Hyperkurtosis: 16.46 Hyperkurtosis: 13853.24. 30 (Hsperkurtosis: 31

20000
8
"E’ 15000 ®
12}
6
g 20
a
N 10000 15
10
2 5000
5
0 0 0
-1 0 1 -0.5 0.0 0.5 1.0 -1.0 -0.5
Value le-1 Value le-3

Figure 5: The effect of applying Hadamard transformations on the left and right hand sides of the the
activations, errors, and weights.

with 81 = 0.9, B2 = 0.999, and a linear learning rate warm-up of 20 steps. The batch size and
sequence length are fixed at 32 and 512. For FFT, we choose learning rates 4 x 1075,6 x 1076, and
3 x 1075 for ViGGO, GSM8k, and SQL, respectively, and for PEFT LoRA experiments, we choose
the learning rate 6 x 10~% and LoRA rank of 16 for all datasets. These learning rates were found to
be the best using a grid search within the range [10*6, 10*3] of 20 uniform log-linearly separated
grid points, trained and evaluated using the non-quantized BF16 training precision.

A.7 Ablation study on Hadamard schemes

Figure 6 presents various combinations of applying Hadamard transformations during the forward
and backward passes. As shown in Figure 6-Left, applying Hadamard in the forward pass is crucial.
For the backward pass, Figure 6-Right indicates that HALO-I(%, Ef, gH) and HALO-Z(%, HEgH
GH) are the optimal configurations, balancing the minimization of Hadamard transformations with
system-level considerations such as memory usage and communication compression.

23

Without Forward M Hadamard With Forward M Hadamard

Z
- Y -
= ////// / ,’ %2 7 &1 61s6s041 68.330.16 68.43+0.63 68.42+0.52
7

-70

H HALO-2

/ -68
Q /

I<PE® 0.00+0.00 0.9240.42 IR NI | 67.32+0.66 68.07+0.69 67.850.84 67.710.77

[}

g

7] 66
=)

SR 1.87+1.03 1.84+0.83 2.81%1.78 2.70%1.44 64.29+0.74 67.0520.61 65.0120.67 65.07+0.81

?

a 64
g

Ss 1.74+0.95 2.39+1.59 EIPSI = - 67.52+0.24 67.67%0.31 67.65%0.31 68.070.60

m

o 4.09+1.89 1.94%0.71 3.24+1.¢ 3.09+1.53 63.17+0.67 63.54+0.37 63.48+0.54 63.42+0.76

60

LR

R L
G (Weight-Grad) scheme

R L
G (Weight-Grad) scheme

Figure 6: Different combinations of applying Hadamard transformations during the forward and
backward passes of training LLAMA3-8B on GSMS8K using INT8 precision. Here, "L" denotes
applying a Hadamard transformation on the left-hand side, "R" indicates applying it on the right-hand
side, and "M" refers to the middle case. "LR" represents applying Hadamard transformations on both
the left and right sides, while "O" denotes the case where no Hadamard transformation is applied.

A.8 Ablation Study on HALO Levels

One interesting question concerns the comparison between the different levels of HALO introduced

in Section 3.3, that is HALO-0O(F, E, G), HALO-l(%, EY, GgH), and HALO-Z(IFI, HgH GH) used during
the fine-tuning of FP8, FP6, and INTS, respectively.

Table 5 shows the effect of using different levels for INT8 and FP6, illustrating the natural finding
that a higher HALO level results in higher final test accuracy. For INTS8 precision, HALO-O0 fails
to recover accuracy, leading to an approximate 40% drop in accuracy (on average) on our datasets.
At the next level, HALO-1 recovers approximately 37% of the above accuracy gap by applying
right-hand-side Hadamard transformations on the weights and inputs during both the forward and
backward passes. Finally, HALO-2 applies left-hand-side Hadamard transformations on the errors,
achieving within 1% of the BF16 accuracy. For FP6 precision, although HALO-2 achieves higher
accuracy on the GSMS8K dataset, believe HALO-1 provides a better trade-off between accuracy and
the number of Hadamard transformations.

Table 5: The accuracy effects of using different HALO levels within each quantization precision.
The selected level for each precision is presented with bold text. We exclude FP8 experiments as
HALO-0 recovers the BF16 accuracy.

Precision | Method GSM8k ViGGO SQL
BF16 | Baseline 69.26+0.51 94.02+£0.29 79.83+0.49
HALO-0 62.32+0.65 92.92+0.73 79.24 +0.36
FP6 HALO-1 66.54 +0.22 93.56 +0.38 80.20 + 0.26
HALO-2 67.42+£0.99 93.56+£0.38 80.00 + 0.62

HALO-0 4.50+1.03 55.984+20.89 74.73+0.45
INT8 HALO-1 62.27+0.64 93.23+0.45 79.43 +0.59
HALO-2 68.15£0.08 93.79+£0.08 80.12+0.31

A.9 HALO Inference Speedups

We present HALO as a low-precision fine-tuning method. However, it can be presented as a QAT
scheme where the inference of the fine-tuned model will be done in low precision. To this end,
following QuaRot [3], we fuse the Hadamard transformations into the previous linear modules and
just apply two Hadamards before out-projection and down-projection layers in the Attention
and MLP modules. Table 6 shows the inference speedups of a single Transformer block when we

24

use HALO for INTS fine-tuning. As expected, the speedups increase with batch size, peaking at a
batch size of 8. However, with a batch size of 16, the multi-head attention module becomes another
bottleneck, leading to reduced speedup gains.

Table 6: Inference runtimes of one Transformer block in LLAMA3-8B Model, fine-tuned with HALO-
2(%, HgH gH) with different batch sizes (BS). We use 512 sequence length.

BS BF16 HALO Speedup

2 3.21ms 2.20ms 1.46x
4 6.19ms 3.28ms 1.89x
8 13.12ms 6.88ms 1.91x
16 26.52ms 14.32ms 1.85%

A.10 Transformer Block Speedups

INTS | FP8
BS=4 BS=8 BS=16 BS=32 | BS=4 BS=8 BS=16 BS=32

Ideal 1.62x 1.69x 1.75x% 1.70x | 1.32x 1.37x 1.35x 1.28 %
HALO-0 1.52x 1.63 x 1.67x 1.63x | 1.27x 1.32x 1.32x 1.24x
HALO-1 1.26x 1.43x 1.51x 1.50x | 1.07x 1.19x 1.22x 1.16x
HALO-2 1.15x 131x 1.36x 1.38x | 099x 1.11x 1.12x 1.10x

Table 7: HALO speedups for different batch sizes (BS) on three consecutive decoder blocks of
LLAMA3-8B model with 512 sequence length on a single RTX 4090. Ideal shows the speedups
when there is no quantization and Hadamard overheads. We bold the chosen scheme for each

precision.
We evaluate using HALO on three consecutive LLAMA3-8B Transformer blocks (the largest number

of blocks that fit on one GPU with batch size 32). Table 7 shows the speedup numbers for different
levels in HALO when we apply INT8 and FPS8 precisions. Using INTS8, the most accurate HALO
level, HALO-2, achieves speedups of 1.15x to 1.38 x compared to BF16 when using our kernels. The
speedup increases with larger batch sizes, as the quantization and Hadamard overheads become less
significant, and the matrix multiplications become the primary bottleneck. For FP8, we use HALO-0,
which achieves speedups of 1.27x to 1.32x, coming within 5% of the ideal speedup. We note that
since FP6 has the same TensorCore peak performance as FP8 (with less read/write overhead), the
speedups achieved with FP8 can be considered a lower bound for the potential speedups with FP6 as
well.

A.11 FP8 Linear Layer Speedup

We also benchmark HALO-0 and HALO-1 with FP8 quantization in Table 8. HALO-O0 is nearly on
par with ideal speedup, peaking at 1.68x. We also provide HALO-1 results when we use with FP6
precision. However, since hardware support for FP6 matrix multiplication is unavailable, we use FP8
matmul instead to provide a lower bound on the FP6 speedup, which peaks at 1.52x.

Table 8: Forward + backward speedups (over BF16) of a linear layer (4096 x 4096) across batch
sizes (BS) when we quantize inputs, weights, and output gradients using FP8 representation.

(RTX-4090) ‘ BS=4 BS=8 BS=16 BS=32
Ideal | 1.20x 1.65x 1.70x 1.78x

HALO-1 1.07x 147x 1.48x 1.52x
HALO-0 1.12x 1.62x 1.63x 1.68 %

A.12 HQ-FSDP Speedups

In Table 9 we include detailed speedup numbers for FP§ HALO-0, FP§ HALO-1 and INT8 HALO-2
on four RTX 4090 GPUs, with and without HQ-FSDP.

25

w/o HQ-FSDP \ w/ HQ-FSDP
BS=4 BS=8 BS=16 BS=32 | BS=4 BS=8 BS=16 BS=32

FP8 Ideal 1.00x 1.01x 1.06x 1.14x | 1.39x 1.37x 1.31x 1.28x
FP8 HALO-0 1.00x 1.01x 1.05x 1.12x | 1.39x 1.37x 1.30x 1.26x
FP8 HALO-1 098x 0.99x 1.02x 1.08x | 1.37x 134x 125x 1.21x

INT8 Ideal 1.00x 1.02x 1.14x 1.43x | 1.40x 140x 1.48x 1.65x
INT8 HALO-2 0.99x 1.00x 1.09x 1.29x | 1.37x 1.34x 1.36x 145x

Table 9: HALO speedups for different batch sizes (BS) on three consecutive decoder blocks of
LLAMA3-8B model with 512 sequence length on four RTX 4090 GPUs, with and without HQ-FSDP.
Ideal shows the speedups when there are no quantization and Hadamard overheads.

A.13 Qwen Results

To evaluate the effectiveness of HALO on larger models, we extend our GSM8k INT8 experiments to
the Qwen-2.5 14B and Qwen-2.5 32B models [44]. Table 10 compares HALO-2 against JetFire [41]
and the BF16 baseline. This table shows that HALO-2 outperforms both JetFire and BF16 across
both model sizes.

Table 10: Comparison of HALO-2 with JetFire and BF16 on GSM8k for Qwen models.
Method Qwen-14B Qwen-32B

BF16 81.046 £0.5 86.808 +0.3
JetFire 8192 +1.12 87.1+£0.71
HALO-2 82.33 £0.68 88.40 +0.8

A.14 Pre-training Results

We apply HALO to pre-training of TinyLlama-1.1B [47] on the C4 dataset [18]. We select a random
Chinchilla-optimal subset [18] (22B tokens), and follow the same hyper-parameters as the original
TinyLlama-1.1B [47]. Applying combinations of HALO levels and precisions (INT8, FP4, FP6, and
FP8), our results can be summarized as follows:

» FP8 closely matches the base BF16 training even with HALO level 0, both achieving a
evaluation loss of 2.55.

* FP6 converges only with HALO level 2, achieving a final evaluation cross-entropy of 2.70.
e INTS8 and FP4 diverge, no matter the HALO level.

A.15 MXFP6 Results

In this section, we apply HALO-1 and HALO-2 on the MXFP6 format, comparing them with pure
MXFP6 and BF16 training. We consider the LLAMA3-8Bmodel [13] and all three datasets mentioned
in the main text. Table 11 shows that HALO-2 closes the accuracy gap with BF16 on the GSM8k [§]
dataset.

Table 11: MXFP6 fine-tuning results for LLAMA3-8B[13] on the three datasets, with and without
HALO.

Method GSM8k ViGGO SQL
BF16 69.3+05 940+03 799+£05
MXFP6 67.8+02 93.6+06 79.6+1.0

MXFP6-HALO1l 68.0+03 937+03 80.5+0.2
MXFP6-HALO2 689+0.5 935+05 80304

26

	Introduction
	Background
	Method
	Design Space and Challenges of Low-Precision Fine-Tuning
	HALO Solutions for Fine-tuning
	The HALO Method
	HQ-FSDP: HALO Quantized Communication and Memory Reduction

	Experimental Validation
	Low-Precision Full Fine-Tuning
	Speedup Analysis

	Conclusion
	Technical Appendices and Supplementary Material
	RMSNorm Backward Pass
	HALO Levels for FFT
	LoRA-style Linear Module and HALO for PEFT
	Hadamard Effect
	HQ-FSDP Details
	Hyper-Parameters
	Ablation study on Hadamard schemes
	Ablation Study on HALO Levels
	HALO Inference Speedups
	Transformer Block Speedups
	FP8 Linear Layer Speedup
	HQ-FSDP Speedups
	Qwen Results
	Pre-training Results
	MXFP6 Results

