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ABSTRACT

Graph Convolutional Networks (GCNs) represent the state-of-the-art for many
graph related tasks. At every layer, GCNs rely on the graph structure to define
an aggregation strategy where each node updates its representation by combining
information from its neighbours. A known limitation of GCNs is their inability to
infer long-range dependencies. In fact, as the number of layers increases, infor-
mation gets smoothed and node embeddings become indistinguishable, negatively
affecting performance. In this paper we formalize four levels of injection of graph
structural information, and use them to analyze the importance of long-range de-
pendencies. We then propose a novel regularization technique based on random
walks with restart, called RWRReg, which encourages the network to encode
long-range information into node embeddings. RWRReg does not require addi-
tional operations at inference time, is model-agnostic, and is further supported by
our theoretical analysis connecting it to the Weisfeiler-Leman algorithm. Our ex-
perimental analysis, on both transductive and inductive tasks, shows that the lack
of long-range structural information greatly affects the performance of state-of-
the-art models, and that the long-range information exploited by RWRReg leads
to an average accuracy improvement of more than 5% on all considered tasks.

1 INTRODUCTION

Graphs are a ubiquitous data representation of many real world phenomena, with applications rang-
ing from social networks, to chemistry, biology, and recommendation systems (Zhou et al., [2018]).
Graph Neural Networks (GNNs) are the generalization of deep learning for graph structured data,
and have received a huge amount of attention from the research community.

One class of GNN models, the Graph Convolutional Network (GCN), has demonstrated to be ex-
tremely effective and is the current state-of-the-art for tasks such as graph classification, node clas-
sification, and link prediction. GCNs adopt a message passing mechanism where at each layer every
node in the graph receives a message (e.g. a feature vector) from its 1-hop neighbours. The massages
are then aggregated with a permutation invariant function (e.g. by mean or sum) and are used to up-
date the node’s representation vector with a learnable, possibly non-linear, transformation. The final
node embedding vectors are used to make predictions, and the whole process is trained end-to-end.
Empirically, the best results are obtained when the message passing procedure is repeated 2 or 3
times, as a higher number of layers leads to over-smoothing (Li et al., 2018} Xu et al., 2018b)). Thus,
GCNs are only leveraging the graph structure in the form of the 2-hop or 3-hop neighbourhood of
each node. A direct consequence of this phenomenon is that GCNs are not capable of extracting and
exploiting long-range dependencies between nodes.

Random walks with restart (Page et al., |1998) have proven to be very effective at quantifying how
closely related two nodes are (Tong et al.l [2000), regardless of their distance in the graph. In fact
random walks with restart can capture the global structure of a graph, and have been used for many
tasks including ranking, link prediction, and community detection (Jin et al.| [2019). On the other
hand, random walks with restart do not consider node features, which are instead heavily exploited
by GCNs. Combining GCNs and random walks with restart could then provide a powerful method
to fully exploit the information contained in a graph.
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In this work we are not interested in defining new state-of-the-art results, or proposing novel GNN
models. We focus on studying the impact of long-range dependencies, and identifying a first strategy,
which can easily be applied to any existing model, to incorporate this information.

Our Contribution. In more detail, we assess whether the injection of information on the graph
structure that can not be captured by 2 or 3-hop neighbourhoods has a significant impact on the
performance of several state-of-the-art GCN models. In this regard, our contributions are fourfold.
Firstly, we propose and formalize four different levels of structural information injection. Secondly,
we propose a novel and practical regularization strategy, Random Walk with Restart Regularization
(RWRReg), to inject structural information using random walks with restart, allowing GCNs to
leverage long-range dependencies. RWRReg does not require additional operations at inference
time, maintains the permutation-invariance of GCN models, and leads to an average 5% increase
in accuracy on both node classification, and graph classification. Thirdly, we prove a theoretical
result linking random walks with restart and the Weisfeiler-Leman algorithm, providing a theoretical
foundation for their use in GCNs. Fourthly, we test how the injection of structural information can
impact the performance of 6 different GCN models on node classification, graph classification, and
on the task of triangle counting. Results show that current state-of-the-art models lack the ability to
extract long-range information, and this is severely affecting their performance.

2 INJECTING LONG-RANGE INFORMATION IN GCNS

To test if GCNs are missing on important information that is encoded in the structure of a graph,
we inject additional structural information into existing GCN models, and test how the performance
of these models changes in several graph related tasks. Intuitively, based on a model’s performance
when injected with different levels of structural information, we can understand how much infor-
mation is not captured by GCNs, and if this additional knowledge can improve performance on the
considered tasks. In the rest of this section we present the notation used throughout the paper, the
four levels of structural information injection that we consider, and an analytical result proving the
effectiveness of using information from random walks with restart.

2.1 PRELIMINARIES

We use uppercase bold letters for matrices (M), and lowercase bold letters for vectors (v). We use
plain letters with subscript indices to refer to a specific element of a matrix (M ;), or of a vector
(v;). We refer to the vector containing the i-th row of a matrix with the subscript “z, :” (M; .), while
we refer to the ¢-th column with the subscript *“:, ¢ (M. ;).

For a graph G = (V, E), where V = {1,..,n} is the set of nodes and E C V x V is the set of
edges, the input is given by a tuple (X, A). X is an n X d matrix where the i-th row contains the
d-dimensional feature vector of the i-th node, and A is the n x n adjacency matrix. For the sake
of clarity we restrict our presentation to undirected graphs, but similar concepts can be applied to
directed graphs.

2.2  STRUCTURAL INFORMATION INJECTION

We consider four different levels of structural information injection, briefly described below. We
remark that not all the injection strategies presented in this section are made for practical use, as the
scope of these strategies is to help us understand the importance of missing structural information. In
particular, in Sectiond] we study the impact of the different types of structural information injection,
and hence quantify the information that is not exploited by current GCN models. We then discuss
scalability and practicality aspects in Section [5}

Adjacency Matrix. We concatenate each node’s adjacency matrix row to its feature vector. This
explicitly empowers the GCN model with the connectivity of each node, and allows for higher
level structural reasoning when considering a neighbourhood (the model will have access to the
connectivity of the whole neighbourhood when aggregating messages from neighbouring nodes).
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Random Walk with Restart (RWR) Matrix. We perform random walks with restart (RWR)
(Page et al.l |[1998) from each node v, thus obtaining a n-dimensional vector (for each node) that
gives a score of how much v is “related” to each other node in the graph. We concatenate this vector
of RWR features to each node’s feature vector. The choice of RWR is motivated by their capability
to capture the relevance between two nodes in a graph (Tong et al., [2006)), and by the possibility to
modulate the exploration of long-range dependencies by changing the restart probability. Intuitively,
if a RWR starting at node v is very likely to visit a node u (e.g. there are multiple paths that
connect the two), then there will be a high score in the RWR vector for v at position u. This gives
the GCN model higher level information about the structure of the graph that goes beyond the 1-
hop neighbourhood of each node, and, again, it allows for high level reasoning on neighbourhood
connectivity.

RWR Regularization. We define a novel regularization term that pushes nodes with mutually
high RWR scores to have embeddings that are close to each other (independently of how far they are
in the graph). This regularization term encourages the message passing procedure defined by GCNss,
that acts on neighbouring nodes, to produce embeddings where pairs of nodes with high RWR score
have similar representations. Therefore, the model is encouraged to extract global information, from
local communications. The final embeddings are then a combination of local information and long-
range information provided by RWR. Let S be the n x n matrix with the RWR scores. We define
the RWRReg (Random Walk with Restart Regularization) loss as follows:

2

LRWRReg = Z Sijl||Hi: — Hj.|
1,j€EV

where H is a matrix of size n X d containing d-dimensional node embeddings that are in between
graph convolution layers (see Appendix [A] for the exact point in which H is considered for each
model). With this approach, the loss function used to train the model becomes: £ = L iginar +
ALRWRReg> Where Loiging 18 the original loss function for each model, and ) is a balancing term.

RWR Matrix + RWR Regularization. We combine the previous two types of structural knowl-
edge injection. The intuition is that it should be easier to enforce the RWRReg by having the ad-
ditional long-range information provided by the RWR features. We expect this type of information
injection to have the highest impact on performance of the models on downstream tasks.

2.3  RELATIONSHIP BETWEEN THE 1-WEISFEILER-LEMAN ALGORITHM AND RWRS

In this section we provide analytical evidence that the information from RWR significantly em-
powers GCNs. In particular, we prove an interesting connection between the 1-Weisfeiler-Leman
(1-WL) algorithm and RWR.

The 1-WL algorithm for graph isomorphism testing uses an iterative coloring, or relabeling, scheme,
in which all nodes are initially assigned the same label (e.g., the value 1). It then iteratively refines
the color of each node by aggregating the multiset of colors in its neighborhood. The final feature
representation of a graph is the histogram of resulting node colors. (For a more detailed description
of the 1-WL algorithm we refer the reader to Shervashidze et al.[(2011).) It is known that there are
non-isomorphic graphs that are not distinguishable by the 1-WL algorithm, and that n iterations are
enough to distinguish two graphs of n vertices which are distinguishable by the 1-WL algorithm.
There is a well known connection (Kipf & Wellingl 2017; Xu et al., |2018a) between 1-WL and
aggregation-based GCNs, which can be seen as a differentiable approximation of the algorithm. In
particular, graphs that can be distinguished in k iterations by the 1-WL algorithm, can be distin-
guished by certain GCNs in k message passing iterations (Morris et al., [ 2019).

Here, we prove that graphs that are distinguishable by 1-WL in k iterations have different feature
representations extracted by RWR of length k. Given a graph G = (V, E), we define its k-step RWR
representation as the set of vectors r, = [7y 4y, .-, o w, ], © € V, where each entry 7, ,, describes
the probability that a RWR of length k starting in v endsinu € V.

Proposition 1. Let G1 = (V1, E1) and Go = (Va, Es) be two non-isomorphic graphs for which the
1-WL algorithm terminates with the correct answer after k iterations and starting from the labelling
of all 1’s. Then the k-step RWR representations of G and G are different.
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The proof can be found in Appendix [B] Given that k iterations of the 1-WL algorithm require GCNs
of depth k to be performed, but in practice GCNs are limited to depth 2 or 3, the result above shows
that RWR can empower GCNs with relevant information that is discarded in practice.

Recent work (Micali & Zhu, 2016) has shown that anonymous random walks (i.e., random walks
where the global identities of nodes are not known) of fixed length starting at node u are sufficient
to reconstruct the local neighborhood within a fixed distance of a node u (Micali & Zhu, [2016).
Subsequently, anonymous random walks have been introduced in the context of learning graph rep-
resentations (Ivanov & Burnaev, [2018)). Such results are complementary to ours, since they assume
access to the distribution of entire walks of a given length, while our RWR representation only stores
information on the probability of ending in a given node. In addition, such works do not provide a
connection between RWR and 1-WL.

3 CHOICE OF MODELS

In order to test the effect of the different levels of structural information injection and to obtain
results that are indicative of the whole class of GCN models, our experimental study covers most
of the spatial graph convolution techniques. We conceptually identify four different categories from
which we select representative models.

Simple Aggregation Models. Such models fall into the message passing framework (Gilmer et al.,
2017) and utilize a “simple” aggregation strategy, where each node receives messages (e.g. feature
vectors) from its neighbours, and uses the received messages to update its embedding vector. As
a representative we choose GCN (Kipf & Welling| 2017)), one of the fundamental and widely used
GNNs models. We also consider GraphSage (Hamilton et al., 2017), as it represents a different
aggregation strategy where a set of neighborhood aggregation functions are learned, and a sampling
approach is used for defining fixed size neighbourhoods.

Attention Models. Several models have used an attention mechanism in a GNN scenario (Lee
et al.| [2018a3b; Velickovic et al.L[2018; Zhang et al., [2018)). While they fall into the message passing
framework, we consider them separately as they employ a more sophisticated aggregation scheme.
As a representative we focus on GAT (Velickovi¢ et al.l [2018)), the first to present an attention
mechanism over nodes for the aggregation phase, and currently one of the best performing models
on several datasets. Furthermore, it can be used in an inductive scenario.

Pooling Techniques. Pooling on graphs is a very challenging task, since it has to take into account
that each node might have a different sized neighbourhood. Among the methods that have been
proposed for differentiable pooling on graphs (Cangea et al., 2018} |Ying et al., 2018bj [Diehl et al.|
2019; |Gao & Ji, 2019; |Lee et al., |2019), we choose DiffPool (Ying et al.l |2018b) for its strong
empirical results. Furthermore, it can learn to dynamically adjust the number of clusters (the number
is a hyperparameter, but the network can learn to use fewer clusters if necessary).

Beyond WL. |Morris et al.|(2019) prove that message-passing GNNs cannot be more powerful than
the 1-WL algorithm, and propose k-GNNs, which rely on a subgraph message-passing mechanism
and are proven to be as powerful as the k-WL algorithm. Another approach that goes beyond the
WL algorithm was proposed by Murphy et al.[(2019). Both models are computationally intractable
in their initial theoretical formulation, so approximations are needed. As representative we choose
k-GNNess, to test if subgraph message-passing is affected by additional structural information.

4 EVALUATION OF THE INJECTION OF STRUCTURAL INFORMATION

We now present our framework for evaluating the effects of the injection of structural information
into GNNss, and the results of our experiments. We consider one transductive task (node classifica-
tion) and two inductive tasks (graph classification, and triangle counting), and we further study the
impact of the restart probability of RWR on the results.

We use each architecture for the task that better suits its design: GCN, GraphSage, and GAT for
node classification, and DiffPool and £-GNN for graph classification. We add an adapted version of
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Table 1: Node classification accuracy results of different models with added Adjacency matrix fea-
tures (AD), RWR features (RWR), RWR Regularization (RWRReg), and RWR features + RWR
Regularization (RWR+RWRReg).

Model Structural Dataset
Information Cora Pubmed Citeseer
none 0.799 + 0.029 0.776 £ 0.022 0.663 £ 0.095
AD 0.806 £+ 0.035 0.779 £ 0.070 0.653 +£0.104
GCN RWR 0.817 +0.025 0.782 £ 0.042 0.665 £ 0.098
RWRReg 0.861 4+ 0.025 0.799 4+ 0.034 0.686 £ 0.096
RWR+RWRReg  0.842 +0.026 0.811 4 0.037 0.690 + 0.102
none 0.806 = 0.017 0.807 £0.016 0.681 £ 0.021
AD 0.803 +£0.014 0.803 £0.013 0.688 £ 0.020
GraphSage RWR 0.816 +=0.014 0.807 £0.015 0.693 £ 0.019
RWRReg 0.841 +0.016 0.818 £ 0.017 0.721 +0.021
RWR+RWRReg 0.837 +£0.015 0.820 4+ 0.010 0.728 £ 0.020
none 0.815 +0.021 0.804 +0.011 0.664 £ 0.008
AD 0.823 +0.019 0.796 +£0.014 0.672 +£0.017
GAT RWR 0.833 +0.020 0.811 £ 0.009 0.686 £+ 0.009
RWRReg 0.824 +0.022 0.811 +£0.013 0.702 £+ 0.013

RWR+RWRReg 0.848 +0.019 0.828 +0.010 0.701 £0.011

GCN for graph classification, as a common strategy for this task is to deploy a node-level GNN, and
then apply a readout function to combine node embeddings into a global graph embedding vector.

With regards to datasets, for node classification we considered the three most used benchmarking
datasets in literature: Cora, Citeseer, and Pubmed (Sen et al., 2008)). Analogously, for graph classifi-
cation we chose three frequently used datasets: ENZYMES, PROTEINS, and D&D (Kersting et al.}
2016). Dataset statistics can be found in Appendix [C]

For all the considered models we take the hyperparameters from the implementations released by the
authors. The only parameter tuned using the validation set is the balancing term A when RWRReg
is applied. We found that the RWRReg loss tends to be larger than the Cross Entropy loss for
prediction, and the best values for A lie in the range [10~?, 107°]. For all the RWR-based techniques
we used a restart probability of O.IEﬂ (The effects of different restart probabilities are explored
below.) Detailed information on our implementations can be found in Appendix

Node Classification. For each dataset we follow the approach that has been widely adopted in
literature: we take 20 labeled nodes per class as training set, 500 nodes as validation set, and 1000
nodes for testing. Most authors have used the train/validation/test split defined by |Yang et al.|(2016).
Since we want to test the general effect of the injection of structural information, we differ from this
approach and we do not rely on a single split. We perform 100 runs, where at each run we randomly
sample 20 nodes per class for training, 500 random nodes for validation, and 1000 random nodes
for testing. We then report mean and standard deviation for the accuracy on the test set over these
100 runs.

Results are summarized in Table[T] where we observe that the simple addition of RWR features to
the feature vector of each node is sufficient to give a performance gain (up to 2%). The RWRReg
term then significantly increments the gain (up to 7.5%), showing that even for the task of node
classification structural information and long-range information are important, confirming that only
looking at neighbours and close nodes is not enough.

Graph Classification. Following the approach from|Ying et al.| (2018b) and Morris et al.| (2019)
we use 10-fold cross validation, and report mean and standard deviation of the accuracy on graph
classification. Results are summarized in Table 2] The performance gains given by the injection of
structural information are even more apparent than for the node classification task. Intuitively, the

"We use 0.15 as it is a common default value used in many papers and software libraries.
2Source code is provided as Supplementary Material and will be made publicly available upon acceptance.
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Table 2: Graph classification accuracy results of different models with added Adjacency matrix
features (AD), RWR features (RWR), RWR Regularization (RWRReg), and RWR features + RWR

Regularization (RWR+RWRReg).

Model Structural Dataset
Information ENZYMES D&D PROTEINS
none 0.570 = 0.052 0.755 £ 0.028 0.740 £+ 0.035
AD 0.591 £0.076 0.779 £ 0.022 0.775 £ 0.042
GCN RWR 0.584 £ 0.055 0.775 £ 0.023 0.784 £ 0.034
RWRReg 0.621 = 0.041 0.786 = 0.024 0.785 + 0.036
RWR+RWRReg 0.616 +=0.065 0.790 4 0.023 0.795 + 0.032
none 0.661 = 0.031 0.793 £ 0.022 0.813 £0.017
AD 0.711 £ 0.027 0.837 £ 0.020 0.821 £ 0.039
DiffPool RWR 0.687 +0.025 0.824 £ 0.028 0.783 £ 0.043
RWRReg 0.733 £+ 0.032 0.822 +0.025 0.820 £ 0.038
RWR+RWRReg  0.721 +£0.039  0.840 4 0.024 0.834 + 0.038
none 0.515+0.111 0.756 + 0.021 0.763 £ 0.043
AD 0.572 £0.063 0.778 £0.020 0.751 +£0.034
k-GNN RWR 0.573 +£0.077  0.794 £ 0.022 0.781 £0.028
RWRReg 0.582 + 0.075 0.787 +0.022 0.780 £ 0.028
RWR+RWRReg  0.571 + 0.080 0.786 + 0.021 0.785 + 0.026

structure of the nodes in a graph is fundamental for distinguishing different graphs. Most notably,
the addition of the adjacency features is sufficient to give a large performance boost (up to 11%).

Surprisingly, models like DiffPool and k-GNN show an important difference in accuracy (up to
10%) when there is injection of structural information, meaning that even the most advanced meth-
ods suffer from the inability to properly exploit all the structural information encoded in a graph.

Impact of RWR Restart Prob-
ability. We tested how perfor-
mance change with different restart
probabilities.  Intuitively, higher
restart probabilities might put too
much focus on close nodes, while
lower probabilities may focus too
much on nodes that are “central” in
the graph structure, with fewer dif-
ferences in the RWR features be-
tween nodes. Figure [I] (a) sum-
marises how the accuracy on node
classification changes with differ-
ent restart probabilities. Results for
graph classification are shown in
Figure E] (b). In accordance to our
intuition, higher restart probabili-
ties focus on close nodes (and less
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Figure 1: Accuracy on Cora (a), and on D&D (b), of GCN
without and with the injection of structural information, and
for different restart probabilities of RWR.

on distant nodes), and produce lower accuracies. Furthermore, we notice how injecting RWR infor-
mation is never detrimental to the performance of the model without any injection.

Counting Triangles.

The TRIANGLES dataset Knyazev et al.|(2019) is composed of randomly

generated graphs, where the task is to count the number of triangles contained in each graph. This is
a hard task for GNNSs as the aggregation of neighbouring node’s features with permutation invariant
functions does not allow the model to explicitly access to structural information. The TRIANGLES
dataset has a test set with 10’000 graphs, of which half are similar in size to the ones in the training
and validation sets (4-25 nodes), and half are bigger (up to 100 nodes). This permits an evaluation
of the generalization capabilities to graphs of unseen sizes.
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For this regression task we use a three layer GCN, and we minimize the Mean Squared Error (MSE)
loss (more details can be found in Appendix [A). Table 3] presents MSE results on the test dataset as
a whole and on the two splits separately. We see that the addition of RWR features and of RWRReg
provides significant benefits (up to 19% improvements), specially when the model has to generalize
to graphs of unseen sizes, while the addition of adjacency features leads to overfitting.

5 PRACTICAL RWR REGULARIZATION

As shown in Section [4] the addition of

RWR features as node features coupled

with RWRReg provides a significantim- Table 3: Mean Squared Error (MSE) of GCN with differ-
provement of the accuracy on all con- ent levels of structural information injection on the TRI-
sidered tasks. However, these benefits ANGLES test set.

come at a high cost: adding RWR fea- Model TRIANGLES Test Set
tures increases the input size of n X n Global Small Large
elements (which is prohibitive for large GCN 5900 1311  3.608
graphs), and RWRReg requires the com- GCN-AD 4746 1.162  5.971
putation of an additional loss term (and GCN-RWR 2044 1.101 2.988
the Storage of the RWR matrix) dur- GCN-RWRReg 2.187 1.282 3.014

ing training. Furthermore, all the con- GCN—RWR+RWRReg 2.029 1.166 2.893
sidered models have a weight matrix at :

each layer that depends on the feature

dimension, which means we are also increasing the number of parameters at the first layer by 1 x d(!)
(where d(!) is the dimension of the feature vector for each node after the first GCN layer). In this sec-
tion we propose a practical way to take advantage of the injection of structural information without
increasing the number of parameters, and controlling the memory consumption during training.

The results in Section 4| show that the sole addition of the RWRReg term increases the performance
of the considered models by more than 5%. Furthermore, RWRReg does not increase the size of
the input or the number of parameters (as it does not add any feature to the node’s feature vectors),
does not require additional operations at inference time, and maintains the permutation invariance
of GCN models. Therefore, RWRReg alone is a very practical tool that significantly improves the
quality of GCN models. However, when dealing with very large graphs, keeping in memory the
RWR matrix to compute RWRReg during training might be too expensive. We then explore how
the sparsification of this matrix affects the resulting model. In particular, we apply a fop-K strategy:
for each node, we only keep the K highest RWR weights. Figure [2] shows how different values of
K impact performance on node classification (which usually is the task with the largest graphs).
We can see that the addition of the RWRReg term is always beneficial. Furthermore, by taking the

top-%, we can reduce the number of entries in the RWR matrix of %2 elements, while still obtaining
an average 3.2% increment on the accuracy of the model. This strategy then allows the selection of
the value of K that best suits the available memory, while still obtaining a high performing model
(better than GCN without structural information injection).
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Figure 2: Performance of GCN-RWRReg on node classification when trained using Top-K sparsifi-
cation of the RWR matrix.
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6 RELATED WORK

The field of GNNs has become extremely vast, for a thorough review we refer the reader to the
latest survey on the subject (Wu et al., [2019). To the best of our knowledge there are no studies
that test if additional structural information can significantly impact GCNs, and there has been very
few interest in long-range dependencies between nodes. However, there are some works that are
conceptually related to our approach.

Klicpera et al.|(2019b)) use RWR to create a new (weighted) adjacency matrix where message pass-
ing is performed. While this can enable long-range communication, it is impractical for inductive
scenarios, as the RWR matrix needs to be calculated for each new graph. In contrast, our RWRReg
method only uses the RWR matrix in the training phase, and does not require any additional opera-
tion at inference time. Other works have used random walks with GCNs in different ways. |Li et al.
(2018) use random walks in a co-training scenario to add new nodes for the GCN’s training set.
Ying et al.|(2018a)) and Zhang et al.|(2019) use random walks to define aggregation neighbourhoods
that are not confined to a fixed distance. |Abu-El-Haija et al.| (2018)) and |Abu-El-Haija et al.| (2019)
use powers of the adjacency matrix, which can be considered as random walk statistics, to define
neighbourhoods of different scales. |[Zhuang & Mal (2018)) use random walks to define the positive
pointwise mutual information (PPMI) matrix and then use it in place of the adjacency matrix in
the GCN formulation. [Klicpera et al. (2019a) use a diffusion strategy based on RWR instead of
aggregating information from neighbours. This last work has recently been extended by [Bojchevski
et al. (2020) to scale to large graphs using RWRs to sample neighbourhoods. We remark how all
the aforementioned papers focus on creating smart or extended neighbourhoods which are then used
for node aggregation, while we show that node aggregation (or message-passing) without additional
information (e.g., RWR features or RWR-based regularization) is not capable of fully exploiting
structural graph information.

Pei et al.| (2020) propose a strategy to insert long-range dependencies information in GCNs by per-
forming aggregation between neighbours in a latent space obtained with some classical node em-
bedding techniques, but it is limited to transductive tasks. Our method can be easily applied to any
existing GCN architecture, and works also on inductive tasks. |Gao et al.| (2019), and Jiang & Lin
(2018) use regularization techniques to enforce that the embeddings of neighbouring nodes should
be close to each other. The first uses Conditional Random Fields, while the second uses a regular-
ization term based on the graph Laplacian. Both approaches only focus on 1-hop neighbours and do
not take long-range dependencies into account.

With regards to the study of the capabilities and weaknesses of GNNs, [Li et al.| (2018) and Xu
et al.| (2018b) study the over-smoothing problem that appears in Deep-GCN architectures, while Xu
et al.| (2018a) and Morris et al.| (2019) characterize the relation to the Weisfeiler-Leman algorithm.
Other works have expressed the similarity with distributed computing (Sato et al.l 2019} [Loukas,
2020), and the alignment with particular algorithmic structures (Xu et al., 2020). These important
contributions have advanced our understanding of the capabilities of GNNSs, but they do not quantify
the impact of additional structural information.

Our approach relies on the computation of the RWR matrix for training the model. When dealing
with large graphs, there is a vast literature on fast approximations of RWR scores (Andersen et al.,
20006; Tong et al., 20065 Bahmani et al., 2010; Lofgren, 2015; Wei et al., [2018}; [Wang et al., 2019).

7 CONCLUSIONS

In this work we showed that state-of-the-art GCN models ignore relevant information regarding
node and graph similarity that is revealed by long distance relations among nodes. We describe four
ways to inject such information in several models, and empirically show that the performance of all
models significantly improve when such information is used. We then propose a novel regulariza-
tion technique based on RWR, which leads to an average improvement of 5% on all models. Our
experimental results are supported by a novel connection between RWR and the 1-Weisfeiler-Leman
algorithm, which proves that RWR encode long-range relations that are not captured by considering
only neighbours at distance at most 2 or 3, as it is common practice in GCNs. Based on our results,
there are several interesting directions for future research, including the design of GCN architectures
that directly capture long distance relations.
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A  MODEL IMPLEMENTATION DETAILS

We present here a detailed description of the implementations of the models we use in our exper-
imental section. Whenever possible, we started from the official implementation of the authors of
each model. Table [4] contains links to the implementations we used as starting point for the code
for our experiments. Our code is available as supplementary material and will be made publicly
available after acceptance.
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Table 4: Starting model implementations.

Model Implementation

GCN (for node classification)  github.com/tkipf/pygcn
GCN (for graph classification)
GCN (for triangle counting)

github.com/bknyaz/graph_nn

GraphSage github.com/williamleif/graphsage-simple
GAT github.com/Diego999/pyGAT

DiffPool github.com/Rex Ying/diffpool

k-GNN github.com/chrsmrrs/k-gnn

Training Details. With regards to the training procedure we have that all models are trained with
early stopping on the validation set (stopping the training if the validation loss doesn’t decrease for
a certain amount of epochs), and unless explicitly specified, we use Cross Entropy as loss function
for all the classification tasks.

For the task of graph classification we zero-pad the feature vectors of each node to make them all
the same length when we inject structural information into the node feature vectors.

For the task of triangle counting we follow Knyazev et al.|(2019) and use the one-hot representation
of node degrees as node feature vectors to impose some structural information in the network.

Computing Infrastructure. The experiments were run on a GPU cluster with 7 Nvidia 1080Ti,
and on a CPU cluster (when the memory consumption was too big to fit in the GPUs) equipped with
8 cpus 12-Core Intel Xeon Gold 5118 @2.30GHz, with 1.5Tb of RAM.

In the rest of this Section we go through each model used in our experiments, specifying
architecture, hyperparameters, and the position of the node embeddings used for RWRReg.

A.1  GCN (node classification)

We use a two layer architecture. The first layer outputs a 16-dimensional embedding vector for each
node, and passes it through a ReLu activation, before applying dropout|Srivastava et al.| (2014)), with
probability 0.5. The second layer outputs a c-dimensional embedding vector for each node, where
c is the number of output classes and these vectors are passed through Softmax to get the output
probabilities for each class. An additional L2-loss is added with a balancing term of 0.0005. The
model is trained using the Adam optimizer Kingma & Ba|(2015) with a learning rate of 0.01.

We apply the RWRReg on the 16-dimensional node embeddings after the first layer.

A.2 GCN (graph classification)

We first have two GCN layers, each one generating a 128-dimensional embedding vector for each
node. Then we apply max-pooling on the features of the nodes and pass the pooled 128-dimensional
vector to a two-layer feed-forward neural network with 256 neurons at the first layer and c at the
last one, where c is the number of output classes. A ReLu activation is applied in between the two
feed-forward layers, and Softmax is applied after the last layer. Dropout |Srivastava et al.| (2014) is
applied in between the last GCN layer and the feed-forward layer, and in between the feedforward
layers (after ReLu), in both cases with probability of 0.1. The model is trained using the Adam
optimizer |Kingma & Bal(2015) with a learning rate of 0.0005.

We apply the RWRReg on the 128-dimensional node embeddings after the last GCN layer.

A.3 GCN (counting triangles)

We first have three GCN layers, each one generating a 64-dimensional embedding vector for each
node. Then we apply max-pooling on the features of the nodes and pass the pooled 64-dimensional

vector to a one-layer feed-forward neural network with one neuron. Dropout Srivastava et al.|(2014)
is applied in between the last GCN layer and the feed-forward layer with probability of 0.1. The
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model is trained by minimizing the mean squared error (MSE) and is optimized using the Adam
optimizer |Kingma & Bal(2015) with a learning rate of 0.005.

We apply the RWRReg on the 64-dimensional node embeddings after the last GCN layer.

A.4 GRAPHSAGE

We use a two layer architecture. For Cora we sample 5 nodes per-neighbourhood at the first layer
and 5 at the second, while on the other datasets we sample 10 nodes per-neighbourhood at the first
layer and 25 at the second. Both layers are composed of mean-aggregators (i.e., we take the mean
of the feature vectors of the nodes in the sampled neighbourhood) that output a 128-dimensional
embedding vector per node. After the second layer these embeddings are multiplied by a learnable
matrix with size 128 x ¢, where c is the number of output classes, giving thus a c-dimensional vector
per-node. These vectors are passed through Softmax to get the output probabilities for each class.
The model is optimized using Stochastic Gradient Descent with a learning rate of 0.7.

We apply the RWRReg on the 128-dimensional node embeddings after the second aggregation layer.

A5 GAT

We use a two layer architecture. The first layer uses an 8-headed attention mechanism that outputs
an 8-dimensional embedding vector per-node. LeakyReLu is set with slope @ = 0.2. Dropout
Srivastava et al.| (2014) (with probability of 0.6) is applied after both layers. The second layer
outputs a c-dimensional vector for each node, where c is the number of classes, and before passing
each vector through Softmax to obtain the output predictions, the vectors are passed through an Elu
activation|Clevert et al.[(2016)). An additional L2-loss is added with a balancing term of 0.0005. The
model is optimized using Adam [Kingma & Ba(2015) with a learning rate of 0.005.

We apply the RWRReg on the 8-dimensional node embeddings after the first attention layer. A
particular note needs to be made for the training of GATs: we found that naively implementing the
RWRReg term on the node embeddings in between two layers brings to an exploding loss as the
RWRReg term grows exponentially at each epoch. We believe this happens because the attention
mechanism in GATs allows the network to infer that certain close nodes, even 1-hop neighbours,
might not be important to a specific node and so they shouldn’t be embedded close to each other.
This clearly goes in contrast with the RWRReg loss, since 1-hop neighbours always have a high
score. We solved this issue by using the attention weights to scale the RWR coefficients at each
epoch (we make sure that gradients are not calculated for this operation as we only use them for
scaling). This way the RWRReg penalizations are in accordance with the attention mechanism, and
are still encoding long-range dependencies.

A.6 DIFFPoOOL

We use a 1-pooling architecture. The initial node feature matrix is passed through two (one to
obtain the assignment matrix and one for node embeddings) 3-layer GCN, where each layer outputs
a 20-dimensional vector per-node. Pooling is then applied, where the number of clusters is set as
10% of the number of nodes in the graph, and then another 3-layer GCN is applied to the pooled
node features. Batch normalization |loffe & Szegedy|(2015)) is added in between every GCN layer.
The final graph embedding is passed through a 2-layer MLP with a final Softmax activation. An
additional L2-loss is added with a balancing term of 10~7, together with two pooling-specific losses.
The first enforces the intuition that nodes that are close to each other should be pooled together and
is defined as: Lrp = ||[A®, SO SW||, where || - || is the Frobenius norm, and S() is the
assignment matrix at layer [. The second one encourages the cluster assignment to be close to a one-
hot vector, and is defined as: L = % 21;1 H (SL:), where H is the entropy function. However,
in the implementation available online, the authors do not make use of these additional losses. We
follow the latter implementation. The model is optimized using Adam [Kingma & Ba|(2015) with a
learning rate of 0.001.

We apply the RWRReg on the 20-dimensional node embeddings after the first 3-layer GCN (before
pooling). We tried applying it also after pooling on the coarsened graph, but the fact that this graph
could change during training yields to poor results.
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A.7 k-GNN

We use the hierarchical 1-2-3-GNN architecture (which is the one showing the highest empirical
results). First a 1-GNN is applied to obtain node embeddings, then these embeddings are used as
initial values for the 2 GNN (1-2-GNN). The embeddings of the 2-GNN are then used as initial
values for the 3-GNN (1-2-3-GNN). The 1-GNN applies 3 graph convolutions, while 2-GNN and
the 3-GNN apply 2 graph convolutions. Each convolution outputs a 64-dimensional vector and is
followed by an Elu activation |Clevert et al.| (2016). For each k, node features are then globally
averaged and the final vectors are concatenated and passed through a three layer MLP. The first
layer outputs a 64-dimensional vector, while the second outputs a 32-dimensional vector, and the
third outputs a c-dimensional vector, where c is the number of output classes. To obtain the final
output probabilities for each class, log(Softmax) is applied, and the negative log likelihood is used
as loss function. After the first and the second MLP layers an Elu activation [Clevert et al.| (2016)
is applied, furthermore, after the first MLP layer dropout [Srivastava et al.| (2014)) is applied with
probability 0.5. The model is optimized using Adam |[Kingma & Bal (2015) with a learning rate
of 0.501, and a decaying learning rate schedule based on validation results (with minimum value of
1072).

We apply the RWRReg on the 64-dimensional node embeddings after the 1-GNN. We were not able
to apply it also after the 2-GNN and the 3-GNN, as it would cause out-of-memory issues with our
computing resources.

B PROOF OF PROPOSITION 1

Given a graph G = (V| E), we define its k-step RWR representation as the set of vectors r, =
[Pougs-- s o, v € V, where each entry r, , describes the probability that a RWR of length k
starting in v ends in u.

Proposition 2. Let G = (V1, E1) and Gy = (Va, E3) be two non-isomorphic graphs for which the
1-WL algorithm terminates with the correct answer after k iterations and starting from the labelling
of all 1’s. Then the k-step RWR representations of G and G are different.

Proof. Consider the WL algorithm with initial labeling given by all 1’s. It’s easy to see that i) after
k iterations the label of a node v corresponds to the information regarding the degree distribution of
the neighborhood of distance < k from v and ii) in iteration ¢ < k, the degrees of nodes at distance ¢
from v are included in the label of v. In fact, after the first iteration, two nodes have the same colour
if they have the same degree, as the colour of each node is given by the multiset of the colours of its
neighbours (and we start with initial labeling given by all 1’s). After the second colour refinement
iteration two nodes have the same colour if they had the same colour after the first iteration (i.e.
have the same degree), and the multisets containing the colours (degrees) of their neighbours are
the same. In general, after the k-th iteration, two nodes have the same colour if they had the same
colour in iteration £ — 1, and the multiset containing the degrees of the neighbours at distance k is
the same for the two nodes. Hence, two nodes that have different colours after a certain iteration,
will have different colours in all the successive iterations. Furthermore, the colour after the k-th
iteration depends on the colour at the previous iteration (which “encodes” the distribution of degree
of neighbours up to distance k£ — 1 included), and the multiset of the degrees of neghbours at distance
k.

Given two non-isomorphic graphs G; and G, if the WL algorithm terminates with the correct
answer starting from the all 1’s labelling in & iterations, it means that there is no matching between
vertices in V; and vertices in V5 such that matched vertices have the same degree distribution for
neighborhoods at distance exactly k. Equivalently, any matching M that minimizes the number of
matched vertices with different degree distribution has at least one such pair. Now consider one such
matching M, and letv € Vi and w € V5 be vertices matched in M with different degree distributions
for neighborhoods at distance exactly k. Since v and w have different degree distributions at distance
k, the number of choices for paths of length % starting from v and w must be different (since the
number of choices for the k-th edge on the path is different). Therefore, there must be at least a node
u € V) and a node z € V; that are matched by M but for which the number of paths of length &
from v to u is different from the number of paths of length £ from w to z. Since 7, ,, is proportional
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Table 5: Node classification dataset statistics.
Dataset Nodes KEdges Classes Features Label Rate

Cora 2708 5429 7 1433 0.052
Pubmed 19717 44338 3 500 0.003
Citeseer 3327 4732 6 3703 0.036

Table 6: Graph classification and triangle counting dataset statistics.

Dataset Graphs Classes Avg. # Nodes Avg. # Edges
ENZYMES 600 6 32.63 62.14
D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.1 72.82
TRIANGLES 45000 10 20.85 32.74

to the number of paths of length k from v to u, we have that r,, ,, # 7y, ., that is r,, # r,,. Thus, the
k-step RWR representation of G and G are different. O

C DATASETS

We briefly present here some additional details about the datasets used for our experimental sec-
tion. Table E] summarizes the datasets for node classification, while Table E] presents informa-
tion about the datasets for graph classification and triangle counting. The node classification
datasets are available at https://lings.soe.ucsc.edu/data, while the graph classifi-
cation and the triangle counting at https://1sll-www.cs.tu-dortmund.de/staff/
morris/graphkerneldatasets.

D FAST IMPLEMENTATION OF THE RANDOM WALK WITH RESTART
REGULARIZATION

Let H be the matrix containing the node embeddings, and S be the matrix with the RWR statistics.
We are interested in the following quantity
ﬁRWRReg = ZSUH}L - Hj7:| 2

0,5

To calculate it in a fast way (specially when using GPUs) we use the following procedure. Let us
first define the following matrices:

5 . s Sij+Sji fori#j
S = n x n symmetric matrix with S; ; = {S”J + o5 fzil' 7&‘7.
W3 t=17

D = n x n diagonal matrix with D, ; = Z 5'”
J

A=D-S

Where we are allowed to make S symmetric because || H;. — H; .|| = ||H,. — H;.||,Vi,j. We
then have

LRWRReg = Z Sii||H;. — H, |2 = ZH:TJAH:J =Tr(HTAH)
i, 7

Where T'r(+) is the trace of the matrix. Note that H, is the i-th column of H, transposed, so its
sizeis 1 X n. '
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E EMPIRICAL ANALYSIS OF THE RANDOM WALK WITH RESTART MATRIX

‘We now analyse the RWR matrix to justify the use of RWR for the encoding of long range dependen-
cies, and other important structural information. We consider the three node classification datasets
(see Section 4 of the paper), as this is the task with the largest input graphs, and hence where this
kind of information seems more relevant.

We first consider the distribution
of the RWRE| weights at differ-
ent distances from a given node.
In particular, for each node, we
take the sum of the weights as-
signed to the 1-hop neighbours,
the 2-hop neighbours, and so
on. We then take the average,
over all nodes, of the sum of (a) (b)
the RWR weights at each hop.

We discard nodes that belong to  Figure 3: Average distribution of the RWR weights at different
connected components with di-  distances for the node classification datasets. Distance zero indi-
ameter < 4, and we only plot the  cates the weight that a node assigns to itself.

values for the distances that have

an average sum of weights higher than 0.001. Plots are shown in Figure[3] We notice that the RWR
matrix contains information that goes beyond the immediate neighbourhood of a node. In fact, we
see that approximately 90% of the weights are contained within the 6-hop neighbourhood, with a
significant portion that is not contained in the 2-hop neighbourhood usually accessed by GCN-like
models.
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Next we analyse if RWR capture some non-trivial relationships  between
nodes. In particular, we investigate if there are nodes that are far from
the starting node, but receive a higher weight than some closer nodes.
To quantify this property we use the Kendall Tau-@

measure (Kendall| (1945)). In more detail, for each

node v we consider the sequence rw(®) where the Table 7: Average and standard deviation, over
1-th element is the weight that the RWR from node all nodes, of Kendall Tau-b values measuring
v has assigned to node i: rw(")[i] = S, ;. We then the non-trivial relationships between nodes

define the sequence drw(®) such that drw(*)[j] = captured by the RWR weights.
dist(v, fsortweights (j, 7w'®))), where dist(x, y) is “Dataset _Average Kendall Tau-b

the shortest path distance between node x and node ~Cgra 0.729 + 0.082
Y. and foort weights(j,rw()) is the node with the j-  Pubmed 0.631 + 0.057
th highest RWR weight in 7w(*). Intuitively, if the  Citeseer 0.722 £0.171

RWR matrix isn’t capable of capturing non-trivial

relationship we would have that drw(®) is a sorted

list (with repetitions). By comparing drw(?) with its sorted version with the Kendall Tau-b rank,
we obtain a value between 1 and —1 where 1 means that the two sequences are identical, and —1
means that one is the reverse of the other. Table[7] presents the results, averaged over all nodes, on
the node classification datasets. These results show that while there is a strong relation between the
information provided by RWR and the distance between nodes, there is information in the RWR that
is not captured by shortest path distances.

As an example of the non-trivial relationships encoded by RWR, Figure 4 presents a drw®) se-
quence taken from a node in Cora. This sequence obtains a Kendall Tau-b value of 0.591. We can
observe that the nodes at distance 1 are the nodes with the highest weights, however, for distances
greater than 1, we already have some non-trivial relationships. In fact, we observe some nodes at
distance 3 that receive a larger weight than nodes at distance 2. There are many other interesting
non-trivial relationships, for example we notice that some nodes at distance 7, and some at distance
11, obtain a higher weight than some nodes at distance 5.

3We consider RWR, with a restart probability of 0.15, as done for the experimental evaluation of our pro-
posed technique.
*We use the Tau-b version because the elements in the sequences we analyze are not all distinct.
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drw(1000) = (1,1, 1,2, 2,2,2,2,3,2,3,2,2,2,2,3,2,3,2,2,3,2,2,3,2,2,2,3,2,3,3,2,2,3, 3, 4, 3, 4,

3, 3

»3,3,3,38,4,3,3,4,3,3,4,3,3,4,3,3,3,3,4,4,3,3,3,4,3,3,3,3, 4,3, 4, 3,3, 3,4, 4, 3, 4, 4, 4, 4, 4
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,6,8,8,9,8,8,8,9,8,11,8,8,11,8,6,9,9,6,8,5,8,8,8,6,86,7,11,6,7,7,9,6,8,8,09,6,6,9,

10, 9, 8, 9, 9,

11, 9, 10, 10, 11, 6, 11, 11, 8,

10,

10, 6, 8, 9, 8,

10, 7, 9, 8, 8, 6,7,8,9,7, 6, 6,8, 10, 9,

10,

10,

11,

9,

9,7,7,8,8,10,8,9, 10, 13, 9, 8,9, 7,9, 8, 11, 7, 9, 10, 9, 9, 12, 8, 8, 9, 9, 11, 9, 11, 9, 12, 10, 11, 11]

Cora.

m

drw) sequence for the 1000-th node

Figure 4

17



	Introduction
	Injecting Long-Range Information in GCNs
	Preliminaries
	Structural Information Injection
	Relationship between the 1-Weisfeiler-Leman Algorithm and RWRs

	Choice of Models
	Evaluation of the Injection of Structural Information
	Practical RWR Regularization
	Related Work
	Conclusions
	Model Implementation Details
	GCN (node classification)
	GCN (graph classification)
	GCN (counting triangles)
	GraphSage
	GAT
	DiffPool
	k-GNN

	Proof of Proposition 1
	Datasets
	Fast Implementation of the Random Walk with Restart Regularization
	Empirical Analysis of the Random Walk with Restart Matrix

