
Mathematical Models of Computation in Superposition

Kaarel Hänni * 1 Jake Mendel * 2 Dmitry Vaintrob * Lawrence Chan

Abstract
Superposition – when a neural network represents
more “features” than it has dimensions – seems to
pose a serious challenge to mechanistically inter-
preting current AI systems. Existing theory work
studies representational superposition, where su-
perposition is only used when passing informa-
tion through bottlenecks. In this work, we present
mathematical models of computation in superpo-
sition, where superposition is actively helpful for
efficiently accomplishing the task.

We first construct a task of efficiently emulating
a circuit that takes the AND of the

(
m
2

)
pairs of

each of m features. We construct a 1-layer MLP
that uses superposition to perform this task up to
ε-error, where the network only requires Õ(m

2
3 )

neurons, even when the input features are them-
selves in superposition. We generalize this con-
struction to arbitrary sparse boolean circuits of
low depth, and then construct “error correction”
layers that allow deep fully-connected networks
of width d to emulate circuits of width Õ(d1.5)
and any polynomial depth. We conclude by pro-
viding some potential applications of our work
for interpreting neural networks that implement
computation in superposition.

1. Introduction
Mechanistic interpretability seeks to decipher the algorithms
utilized by neural networks (Olah et al., 2017; Elhage et al.,
2021; Räuker et al., 2023; Olah et al., 2020; Meng et al.,
2023; Geiger et al., 2021; Wang et al., 2022; Conmy et al.,
2024). A significant obstacle is that neurons are polyseman-
tic – activating in response to various unrelated inputs (Fusi
et al., 2016; Nguyen et al., 2016; Olah et al., 2017; Geva
et al., 2021; Goh et al., 2021). As a proposed explanation
for polysemanticity, Olah et al. (2020) introduce the ‘super-
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position hypothesis’ (see also Arora et al. (2018); Elhage
et al. (2022)): the idea that networks represent many more
concepts in their activation spaces than they have neurons by
sparsely encoding features as nearly orthogonal directions.

Previous work has studied how networks can store more
features than they have neurons in a range of toy models
((Elhage et al., 2022; Scherlis et al., 2022)). However, pre-
vious models of superposition either involve almost no com-
putation (Elhage et al., 2022) or rely on some part of the
computation not happening in superposition (Scherlis et al.,
2022). Insofar as neural networks are incentivized to learn
as many circuits as possible (Olah et al., 2020), they are
likely to compute circuits in the most compressed way pos-
sible. Therefore, understanding how networks can undergo
more general computation in a fully superpositional way is
valuable for understanding the algorithms they learn.

In this paper, we lay the groundwork for understanding
computation in superposition in general, by studying how
neural networks can emulate sparse boolean circuits.

• In Section 2, we clarify existing definitions of linearly
represented features, and propose our own definition
which is more suited for reasoning about computation.

• In Section 3, we focus our study on the task of emulat-
ing the particular boolean circuit we call the Universal
AND (U-AND) circuit. In this task, a neural network
must take in a set of boolean features in superposi-
tion, and compute the pairwise logical ANDs of these
features in a single layer with as few hidden neurons
as possible. We present a construction which allows
for many more new features to be computed than the
number of hidden neurons, with outputs represented
natively in superposition. We argue that real neural
networks may well implement our construction in the
wild by proving that randomly initialised networks are
very likely to emulate U-AND.

• In Section 4 we demonstrate a second reason why this
task is worth studying: it is possible to modify our
construction to allow a wide range of large boolean cir-
cuits to be emulated entirely in superposition, provided
that they satisfy a certain sparsity property.

We conclude with a discussion of the limitations of our for-
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Figure 1. The naive way to linearly represent the pairwise ANDs of m boolean variables using an MLP is to use one neuron to compute
the AND of each pair of variables (left). This requires

(
m
2

)
= O(m2) neurons. However, when inputs are sparse, there is a much more

efficient implementation using superposition (right). Here, each neuron checks for whether or not at least two variables are active in a
subset of random variables. Then, for any pair of variables, we can read off the AND of that pair by averaging together the activations of
all neurons corresponding to the subsets containing both variables. With appropriately chosen subsets, we can ε-linearly represent all
pairwise ANDs using only Õ(m

2
3 ) neurons, even when the inputs are themselves represented in superposition (Section 3).

mal models, including the fact that our results are asymptotic
and deal with only boolean features, and provide directions
of future work that could address them.

2. Background and setup
2.1. Notation and conventions

Asymptotic complexity and Õ notation We make exten-
sive use of standard Bachmann–Landau (“big O”) asymp-
totic notation. We use Õ to indicate that we are ignoring
polylogarithmic factors:

Õ(g(n)) := O(g(n) logk n) for some k ∈ Z.

(And so forth for Θ̃, Ω̃, etc.)

Fully connected neural networks We use Mw : X → Y
to denote a neural network model parameterized by w that
takes input x ∈ X and outputs Mw(x) ∈ Y . In this work,
we study fully-connected networks consisting of L MLP
layers with ReLU activations:

a⃗(0)(x) = x

a⃗(l)(x) = MLP(l)(⃗a(l−1)(x))

= ReLU(Win
(l)a⃗(l−1)(x) + wbias

(l))

Mw(x) = Wouta⃗
(L),

where ReLU(x) = max(0, x) with max taken elementwise.
We assume that our MLPs have width d for all hidden layers,
that is, a⃗(l) ∈ Rd for all l ∈ {1, ..., L}. For simplicity’s sake
we will be dropping l whenever we only talk about a single
layer at a time.

Figure 2. In Section 2.2, we distinguish between boolean features
that are ε-linearly represented (left), ReLU-linearly represented
(center left), and those that are only linearly separable (i.e. weakly
linearly represented) (center right). Red/blue indicates the presence
or absence of the feature. In addition to being linearly separable,
ε-linearly represented features must satisfy the further condition
that the variance in the readoff direction r⃗k within the positive and
negative clusters is small compared to the margin between the two.

Features and feature vectors Following previous work in
mechanistic interpretability (e.g. Tamkin et al. (2023); Raja-
manoharan et al. (2024)), we suppose that the activations of
a model can be thought of as representing m > d boolean
features fk : X → {0, 1} of the input in superposition. That
is,

a⃗(x) =

m∑
i=1

ϕ⃗kfk(x)

for some set of feature vectors ϕ⃗1, ..., ϕ⃗m ∈ Rd and features
f1, ..., fm : X → {0, 1}. Equivalently,

a⃗(l)(x) = Φb

where Φ = (ϕ⃗1, ..., ϕ⃗m) is the d × m feature encoding
matrix with columns equal to the feature vectors and b ∈
{0, 1}m is the boolean vector with entries bk = fk(x).
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In addition, as in previous work, we assume that these fea-
tures are s-sparse, in that only at most s ≪ d,m features
fi can be nonzero for any input x (equivalently, ||b||1 ≤ s.)
For clarity, we preferentially use k, ℓ ∈ {1, ...,m} to in-
dex features (in {0, 1}m) and i, j ∈ {1, ..., d} to index the
standard neuron basis of activations (in Rd).

Sparse boolean circuits We construct tasks where
a neural network needs to emulate a boolean circuit
C : {0, 1}m → {0, 1}m′

. We assume that this circuit can
be written as C = CL ◦ · · · ◦ C1, where each intermediate
“layer” Cl : {0, 1}m → {0, 1}m is a collection of m parallel
boolean gates (of fan-in up to 2), for l < L. We say that a cir-
cuit C is s-sparse on boolean input b ∈ {0, 1}m if the input
b(0) = b and all intermediate activations b(l) = Ci(b(l−1))

are s-sparse, i.e. they satisfy ||b(i)||1 ≤ s.

2.2. Strong and weak linear representations

Given the activations of a neural network at a particular
layer a(l) : X → Rd, we can also ask what features are
linearly represented by a(l). In this section, we present
three definitions for a feature being linearly represented by
a(l), which we illustrate in Figure 2.

The standard definition of linear representation is based on
whether or not the representations of positive and negative
examples can be separated by a hyperplane:

Definition 1 (Weak linear representations). We say that a
binary feature fk is weakly linearly represented by a : X →
Rd (or linearly separable in a) if there exists some r⃗k ∈
Rd such that for all x1, x2 ∈ X where fk(x1) = 0 and
fk(x2) = 1, we have:

r⃗k · a(x1) < r⃗k · a(x2).

Or, equivalently, the sets {x|fk(x) = 0} and {x|fk(x) =
1} are separated by a hyperplane normal to r⃗k.

That being said, features being linearly separable does not
mean a neural network can easily “make use” of the features.
For some weakly linearly represented features f1 and f2,
neither f1 ∧ f2 nor f2 ∨ f2 need to be linearly represented,
even if their read-off vectors r⃗1, r⃗2 are orthogonal (Figure 3).
In fact, a stronger statement is true: it might not even be
possible to linearly separate f1 ∧ f2 or f2 ∨ f2 in MLP ◦ a,
that is, even after applying an MLP to the activations (see
Theorem 9 in Appendix C.1).

As a result, in this paper we make use of a more restrictive
notion of a feature being linearly represented:

Definition 2 (ε-linear representations). Let X be a set of in-
puts and a : X → Rd be the activations of a neural network
(in a particular position/layer in a given model). We say
that f1, . . . , fm are linearly represented with interference

Figure 3. When two features f1, f2 are ε-linearly represented in
activations a(x), we can use two MLP neurons with input weights
r⃗1, r⃗2 to read-off the two features, after which f1 ∧ f2 and f1 ∨ f2
are ε-linearly represented in the MLP activations MLP(a(x)).
However, because linearly-separable features can have arbitrarily
small margin, there might exist no MLP such that f1 ∧ f2 and
f1 ∨ f2 are linearly separable in MLP(a(x)).

ε (or ε-linearly represented from these activation vectors)
if there exists a read-off matrix R ∈ Matm×d with rows
r⃗1, . . . , r⃗m ∈ Rd such that for all k ∈ {1, . . . ,m} and all
x ∈ X , we have

|r⃗k · a⃗(x)− fk(x)| < ε.

We refer to r⃗k as a read-off vector for the feature fk. It
follows that if a⃗(x) =

∑m
i=1 ϕ⃗kfk(x), then we have:

||RΦ− Idm||∞ < ε

where Idm is the m×m identity matrix1.

For brevity’s sake, we very slightly abuse notation here to
include the bias term in r⃗k. This is equivalent to assuming
that one of a⃗’s outputs is a constant, that is, ai(x) = c for
all x for some i ∈ {1, ..., d} and some c ∈ R.

In contrast to features that are merely linearly separable,
features that are ε-linearly represented are easy to linearly
separate, as we show in Figure 3. We formalize and prove
this in Theorem 10 in Appendix C.1.

Comparison with Anthropic’s Toy Model of Superposi-
tion Finally, Elhage et al. (2022) and Bricken et al. (2023)
consider a definition of linearly represented feature that
involves using a ReLU to remove negative interference:

Definition 3 (ReLU-linear representations). A set of m
binary features F⃗ = (f1, ..., fm) is ReLU-linearly repre-
sented in a : X → Rd with error ε if there exists a read-off
matrix R ∈ Matm×d such that

Ex∈X ||F⃗ (x)− ReLU (Ra(x)) ||2 < ε.

1In some cases if the feature vectors satisfy |ΦTΦ− Idm| ≤
µ — that is, if the feature vectors are almost orthogonal with
interference µ, then the features vectors can function as their own
readoffs.

3



Computation in Superposition

Note that in contrast to ε-linearly represented features,
where each individual feature must be able to be read off
using an affine function with small error on every data-
point, ReLU-linear representated features are read off using
a MLP layer with m neurons (one per feature), such that the
expected ℓ2 loss (summed across all m features) is small.

3. Universal ANDs: a model of single-layer
MLP superposition

We start by presenting one of the simplest non-trivial
boolean circuits: namely, the one-layer circuit that com-
putes the pairwise AND of the input features. Note that due
to space limitations, we include only proof sketches in the
main body and may ignore some regularity conditions in
the theorem statement. See Appendix E for more rigorous
theorem statements and proofs.

Definition 4 (The universal AND boolean circuit). Let b ∈
{0, 1}m be a boolean vector. The universal AND (or U-
AND) circuit has m inputs and

(
m
2

)
outputs indexed by

unordered pairs k, ℓ of locations and is defined by

CUAND(b)k,ℓ := bk ∧ bℓ.

In other words, we apply the AND gate to all possible pairs
of distinct inputs to produce

(
m
2

)
outputs.

We will build our theory of computation starting from a
single-layer neural net that emulates the universal AND
when the input b is s-sparse for some s ∈ N (this implies
that the output has sparsity O(s2)).

3.1. Superposition in MLP activations enables more
efficient U-AND

First, consider the naive implementation, where we use
one ReLU to implement each AND using the fact that for
boolean x1, x2:

ReLU(x1 + x2 − 1) = x1 ∧ x2.

This requires
(
n
2

)
= O(n2) neurons, each of which is

monosemantic in that it represents a single natural feature.
In contrast, by using sparsity, we can construct using expo-
nentially fewer neurons (Figure 1):

Theorem 1 (U-AND with basis-aligned inputs). Fix a spar-
sity parameter s ∈ N. Then for large input length m, there
exists a single-layer neural network Mw(x) = MLP(x) =
ReLU(Winx+ wbias) that ε-linearly represents the univer-
sal AND circuit CUAND on s-sparse inputs, with width
d = Õm(1/ε2) (i.e. polylogarithmic in m).

Proof. (sketch) To show this, we construct an MLP such
that each neuron checks whether or not at least two inputs in
a small random subset of the boolean input b are active (see

also Figure 1). Intuitively, since the inputs are sparse, each
neuron can be thought of as checking the ANDs of any pair
of input variables bk1 , bk2 in the subset, with interference
terms corresponding to all the other variables. That is, we
can write the preactivation of each neuron as the sum of the
AND of bk1

, bk2
and some interference terms:

−1 + bk1
+ bk2︸ ︷︷ ︸

bk1
∧bk2

+
∑

k′ ̸=k1,k2

bk′︸ ︷︷ ︸
interference terms

We then use the sparsity of inputs to bound the size of
the interference terms, and show that we can “read-off”
the AND of bk1 , bk2 by averaging together the value of
post-ReLU activations of the neurons connected to bk1

, bk2
.

We then argue that this averaging reduces the size of the
interference terms to below ε.

Specifically, we construct input weights Win ∈ Matd×m

such that the input to each neuron is connected to the kth
entry of the input bk with weight 1 with probability p =
log2 m/

√
d, and weight 0 otherwise. We set the bias of each

neuron to −1.

Let Γ(k) be indices of neurons that have input weight 1 for
bk, and Γ(k1, k2) be the indices of neurons that have input
weight 1 for bk1 , bk2 , Γ(k1, k2, k3) be the indices of neurons
reading from all of bk1

, bk2
, bk3

, and so forth. By construc-
tion, Γ(k1) has expected size Θ(log2 m ·

√
d), Γ(k1, k2) has

expected size Θ(log4 m), and Γ(k1, k2, k3) has expected
size Θ(log6 m/

√
d). In general, the set of indices for n

such inputs has expected size Θ(log2n /d(n/2−1))

Our read-off vector r⃗ for the AND bk1
∧ bk2

will have
entries:

r⃗(i) =

{
1

|Γ(k1,k2)| i ∈ |Γ(k1, k2)|
0 otherwise

We then check that r⃗ ·MLP(b) gives the correct output in
each of three cases. Note that for any input, r⃗ ·MLP(b) ≥
bk1

∧ bk2
, so it suffices to upper bound the average number

of non-k1, k2 inputs that are non-zero, divided by the total
number of neurons in Γ(k1, k2).

• When bk1
= bk2

= 0, the interference terms in each
read-off neuron have value at most s, and there are at
most ∑

bk′=bk′′=1

|Γ(k1, k2, k′, k′′)| = Θ(s2 · log8 m/d)

such neurons outputting non-zero values. So the error
is bounded above by

s ·
∑

k′ ̸=k1,k2
|Γ(k1, k2, k′, k′′)|

|Γ(k1, k2)|
= Θ(s3 · log4 m/d).
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• When bk1
= 1 or bk2

= 1, the interference terms in
each read-off neuron have value at most s − 2, and
there are at most∑

bk′=1

|Γ(k1, k2, k′)| = Θ(s · log6 m/
√
d)

neurons that have such interference terms.

So the error is bounded above by

s− 2

|Γ(k1, k2)|
∑

k′ ̸=k1,k2

|Γ(k1, k2, k′)|

= Θ(s2·log2 m/
√
d)

Combining the above, we get that the read-off error is
O(log4 m/

√
d), and so setting d = Θ(log8 m/ε2) =

Õm(1/ε2) gives us an error that is < ε outside negligible
probability.

3.2. Neural networks can implement efficient U-AND
even with inputs in superposition

Note that in Theorem 1, we assume that the network gets m
basis-aligned inputs (that is, not in superposition). However,
it turns out that we can extend the result in Theorem 1 to
inputs in superposition.

Theorem 2 (U-AND with inputs in superposition). Let
s ∈ N be a fixed sparsity limit and ε < 1 a fixed interference
parameter. There exists a feature encoding Φ and single-
layer neural net Mw(x) = MLP(x) = ReLU(Winx +
wbias) with input size and width d = Õ(

√
m/ε2), where

Mw ◦Φ ε-linearly represents CUAND on all s-sparse inputs
b.

Proof. (sketch) By picking almost orthogonal unit-norm
vectors Φ = (ϕ⃗1, . . . , ϕ⃗m), we can recover each feature up
to error ε using readoffs R = ΦT . Take the input weight
Win ∈ Matd×m for the MLP constructed in the proof of
Theorem 1. Using Win

′ = WinR and wbias
′ = wbias suffices,

as this gives us

Mw ◦ Φ(b) = ReLU(WinRΦb+ wbias)

≈ ReLU(Winb+ wbias),

which is just the model from Theorem 1, which ε-linearly
represents CUAND as desired. Carefully tracking error terms
shows that we need d = Θ̃(

√
m) neurons.

3.3. Randomly initialized neural networks linearly
represent U-AND

While the results in previous section show that there exist
some network weights that ε-linearly represents the U-AND

circuit CUAND, there still is a question of whether neural net-
works can learn to represent many ANDs starting from the
standard initialization. In this section, we provide some the-
oretical evidence – namely, that sufficiently wide randomly
initialized one-layer MLPs ε-linearly represent CUAND.

Theorem 3 (Randomly initialized MLPs linearly represent
U-AND). Let MLP : Rm → Rd be a one-layer MLP
with d = Ω̃(1/ε2) neurons that takes input b, and where
Win is drawn i.i.d from a normal distribution N (0, δ2) and
wbias = 0⃗. Then this MLP ε-linearly represents CUAND on
s-sparse inputs outside of negligible probability.

Proof. (Sketch) We prove this by constructing a read-off
vector r⃗ for each pair of features k1, k2. Let σ be the sign
function

σ(x) =


+1 x > 0

0 x = 0

−1 x < 0

and let wi,k be the contribution to the preactivation of neuron
i from bk.

We construct r⃗ coordinatewise (that is, neuron-by-neuron).
In particular, we set the ith coordinate of r⃗ to be

r⃗i = ηi

(
1σ(wi,k1)=σ(wi,k2

) − 1σ(wi,k1
) ̸=σ(wi,k2

)

)
.

That is, if k1 and k2 contribute to the neuron preactivations
with the same sign, then r⃗i = ηi, else, r⃗i = −ηi. Here, ηi
is a scaling parameter of size Θ(

√
s/d) used to scale the

read-off to be 1 when bk1
= bk2

= 1

When bk1
= 0 or bk2

= 0, the expected value of r⃗ ·Mw(b)
is zero, while the error terms have size Õm(1/

√
d). So

setting d = Ω̃(1/ε2) suffices to get error below ε with high
probability.

When bk1
= bk2

= 1, the contribution from each neuron
i to r⃗ · Mw(b) with σ(wi,k1) = σ(wi,k2) will be in expec-
tation larger than those with σ(wi,k1) ̸= σ(wi,k2) (as the
standard deviation of the sum of two weights with equal
signs is larger than the sum of two weights with different
signs, and we apply a ReLU). By setting η to be the recip-
rocal of the difference in expected contributions, we have
that this value has expectation 1. Again, as the error terms
have size Õm(1/

√
d), it follows that setting d = Ω̃(1/ε2)

suffices to get error below ε with high probability, as desired.

Before proceeding, we record a corollary, which under-
scores the surprisingly strong asymptotic representability of
the universal AND circuit.
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Corollary 4. For any fixed input size s, dimension d and
m = dO(1) polynomial in d, there exists a “universal AND”
model with hidden dimension d,

Mw : x 7→ ReLU(Win(x))

from Rd to Rd and a feature matrix Φ ∈ Matm×d such
that for any input b with sparsity ||b||1 = s, we have that
Mw(Φ(b)) ∈ Rd strongly linearly represents uAND(b) ∈
{0, 1}(

m
2 ) (with error at worst ε = Õ

(
1√
d

)
).

4. MLPs as representing sparse boolean
circuits

In the previous section we showed variants of computation
in superposition at a single layer, for one of the simplest
non-trivial boolean circuits. In this section, we extend these
results to show that neural networks can efficiently represent
arbitrary sparse boolean circuits.

As in Section 3, we include only proof sketches in the main
body due to space limitations, and may also ignore some
regularity conditions in our theorem statements. See Ap-
pendix E for more rigorous theorem statements and proofs.

4.1. Boolean circuits in single layer MLPs

We start by extending these results from Section 3 to ANDs
of more than two variables.

Let C(n)
UAND be the boolean circuit of depth L = log(n) that

computes the ANDs of each n-tuple of elements in b.2

Lemma 5 (“High fan-in” U-AND). For each n ∈ N, there
exists a one-layer neural network Mw = MLP : Rm →
Rd with width d = Õ(n/ε2) such that Mw(b) ε-linearly
represents C(n)

UAND on s-sparse inputs.

Proof. (sketch) We can extend the construction in the
proof of Theorem 1 to allow for ANDs of exactly n vari-
ables, by considering index sets I(k1, k2, ..., kn) of n vari-
ables, and changing the bias of each neuron from −1 to
−n + 1. The expected size of an index set of n vari-
ables is E[|I(k1, k2, ..., kn)|] = pnd, and we require this
expected value to be Ω(log4 m) to ensure that the index
set is non-empty outside negligible probability (using the
normal Chernoff and Union bounds). Therefore, we have
to scale up the probability that any given value in Win is 1:
p = log2 m

d1/n suffices. A similar argument to the one found in
the proof of Theorem 1 shows that all the interference terms
are o(1).

As illustrated in Figure 4, Lemma 5 allows us to construct

2Note that by our definition, boolean circuits are made of gates
of fan-in at most 2. So computing the ANDs of n variables requires
a boolean circuit of depth log(n).

Figure 4. As discussed in Section 4.1, our U-AND construction
can be extended to allow for arbitrarily high fan-in ANDs, which in
turn allows for single-layer MLPs that linearly represent all small
boolean circuits.

MLPs that ε-linearly represents arbitrary small circuits:

Theorem 6. For any s-sparse circuit C of width m and
depth L, there exists a feature encoding Φ ∈ Matd×m and
a single-layer neural network Mw(x) = ReLU(Winx +
wbias) of width d = Õ(

√
m) such that Mw(Φb) ε-linearly

represents C(b)k for all k ∈ {1, ...,m} for some ε =
Õ(m−1/3).

Proof. (sketch) First, apply the construction in Theorem 2 to
show that there exists one-layer MLPs of width d = Õ(

√
m)

that compute C(n)
UAND when the inputs are in superposition,

where n ∈ {2, 3, ..., 2L}.

Next, concatenate together the 2L − 1 networks of width
d = Õ(

√
m) that ε-linearly represent each C(n)

UAND for n ∈
{2, 3, ..., 2L}, when the inputs are in superposition. Since
the output of any boolean circuits of depth L can be written
as a linear combinations of ANDs of maximum fan-in 2L, it
follows that the concatenated network ε′-linearly represents
any boolean circuit of depth L, for some ε′ dependent on
how many ANDs need to be added together to compute the
circuit, as desired.

4.2. Efficient boolean circuits via deep MLPs

The one-layer MLP in Theorem 6 has width that is expo-
nential in the depth of the circuit. However, by combining
pairwise U-AND layers (which linearly represent any one-
layer boolean circuit) with “error correction” layers, we can
construct deeper neural networks with sublinear width and
depth linear in the depth of the circuit.

Lemma 7. Assume that m = Õ(d1.5), and c is some
large polylog constant. Then for sufficiently small input
interference ε = Õ(1/

√
d) there exists a 1-layer MLP

Mw : Rd → Rd that takes as input a boolean vector
of length m encoded in d-dimensions using superposition
and returns (outside negligible probability) an encoding of
the same boolean vector with interference ε/c.

Proof. See Theorem 22 in Appendix E.4.
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By alternating between such “error correction” layers and
U-AND layers, we can construct more efficient circuits:
Theorem 8. Let C : {0, 1}m → {0, 1}m be a circuit of
width m and of depth L = O(mc) polynomial in m. There
exists a neural network of width d = Õ(m

2
3 s2) and with

depth 2L such that Mw(Φb) ε-linearly C(b) for all but a
negligible fraction of inputs b on which C is s-sparse.

Proof. (sketch) As a single MLP layer can ε-linearly rep-
resent the ANDs of all input features (by Theorem 2), we
can use one MLP layer to approximate each layer of the
circuit. However, the naive construction suffers from (po-
tentially) exponentially growing error. To fix this, we insert
an error correction layer from Lemma 7 between every such
layer.

5. Related Work
The idea that neural networks could or should make use
of distributed or compositional representations has been
a mainstay of early neural network research (Rosenblatt,
1961; Holyoak, 1987; Fodor & Pylyshyn, 1988). Arora et al.
(2018) were the first in the modern deep learning context to
discuss that neural networks could store many features in
superposition. Olah et al. (2020) developed this idea into
the ‘superposition hypothesis’: the conjecture that networks
use the same neurons for multiple circuits to maximise the
number of circuits they can learn.

Many of our results are similar in flavor to those from the
fields of sparse dictionary (Tillmann, 2014) and hyperdi-
mensional computing (Zou et al., 2021), as all rely on useful
properties of high-dimensional spaces. In addition, many of
our boolean circuit results on randomly-initialized MLP lay-
ers are similar in flavor to universality results on randomly
initialized neural networks with different non-linearities
(Rahimi & Recht, 2008a;b). However, these results con-
sider cases where there are fewer “true features” than there
are dimensions, while the superposition hypothesis requires
that the number of “true features” exceeds the dimension-
ality of the space. Randomized numerical linear algebra
(Murray et al., 2023) studies the use of random projections
to perform efficient computation, but in the context of re-
ducing the cost of linear algebra operations such as linear
regression or SVD with inputs and outputs represented in
an axis-aligned fashion.

Superposition has been studied in a range of idealised set-
tings: Elhage et al. (2022) provided the first examples of toy
models which employed superposition to achieve low loss
and Henighan et al. (2023) further explored superposition
in a toy memorisation task. Notably, they study features
that are ReLU-linear represented. (See Section 2.2 for more
discussion.) Scherlis et al. (2022) study a model of using a
small number of neurons with quadratic activations to ap-

proximately compute degree two polynomials. The models
studied in all of these papers require sparse features of de-
clining importance. In contrast, our model allows for sparse
features that are equally important. More importantly, none
of these listed works study performing computation with
inputs in superposition.

Several papers have also explored the prevalence of superpo-
sition in language models. Gurnee et al. (2023) found that
some bigrams are represented on sparse sets of neurons but
not on any individual neurons. There is also a growing liter-
ature on using sparse dictionary learning to identify features
in language models inspired by the superposition hypothesis
(Cunningham et al., 2023; Bricken et al., 2023; Tamkin et al.,
2023; Bloom, 2024; Braun et al., 2024; Templeton et al.,
2024) although it is unclear how much evidence the success
of sparse dictionary learning in finding human-interpretable
features provides for the superposition hypothesis.

6. Discussion
6.1. Summary

In this work, we have presented a mathematical framework
for understanding how neural networks can perform com-
putation in superposition, where the number of features
computed can greatly exceed the number of neurons. We
have demonstrated this capability through the construction
of a neural network that efficiently emulates the Universal
AND circuit, computing all pairwise logical ANDs of input
features using far fewer neurons than the number of output
features. Furthermore, we have shown how this construc-
tion can be generalized to emulate a wide range of sparse,
low-depth boolean circuits entirely in superposition. This
work lays the foundation for a deeper understanding of how
neural networks can efficiently represent and manipulate
information, and highlights the importance of considering
computation in superposition when interpreting the algo-
rithms learned by these systems.

6.2. Practical Takeaways for Mechanistic
Interpretability

Our primary motivation for undertaking this work was to
glean insights about the computation implemented by neural
networks. While we provide more potential takeaways in
Appendix B, here we discuss what we think are two salient
takeaways for interpretability:

Unused features The implementation of U-AND by ran-
dom matrices (Theorem 3) suggests that certain concepts
may be detectable through linear probes in a network’s acti-
vation space without being actively utilized in subsequent
computations. This phenomenon could explain the find-
ings of Marks (2024), who observed that arbitrary XORs
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of concepts can be successfully probed in language mod-
els. Furthermore, it implies that successfully probing for
a concept and identifying a direction that explains a high
percentage of variance (e.g., 80%) may not constitute strong
evidence of the model’s actual use of that concept. Conse-
quently, there is reason to be cautious about how many of the
features identified by Sparse Autoencoders (Cunningham
et al., 2023; Bricken et al., 2023; Bloom, 2024; Temple-
ton et al., 2024) are actively employed by the model in its
computation.

Robustness to noise This research underscores the critical
role of error correction in networks performing computa-
tions in superposition. Effective error correction mecha-
nisms should enable networks to rectify minor perturbations
in their activation states, resulting in a nonlinear response
in output when activation vectors are slightly altered along
specific directions. Expanding on this concept, Heimer-
sheim & Mendel (2023) conducted follow-up investigations,
revealing the presence of plateaus surrounding activation
vectors in GPT2-small (Radford et al., 2019). Within these
plateaus, model outputs exhibit minimal variation despite
small changes in activation values, providing weak evidence
for an error correcting mechanism in the model’s computa-
tion.

6.3. Limitations and future work

That being said, there are a number of ways in which the
computational framework presented in this work is very
likely to miss the full richness of computation happening in
any given real neural network.

Firstly, this work studies computation on binary features. It
is plausible that other kinds of features – in particular, dis-
crete features which take on more than 2 distinct values, or
continuous-valued features – occur commonly in real neural
networks. It would be valuable to extend the understanding
developed in this work to such non-binary features.

Secondly, though we do not require features to have de-
clining importance, we do require features to be sparse,
with each data point only having a small number of active
features. It is plausible that not all features are sparse in
practice (given the present state of empirical evidence, it
even appears open to us whether a significant fraction of
features are sparse in practice) – for instance, perhaps real
neural networks partly use more compositional representa-
tions with dense features.

Thirdly, in this work, we have made a particular choice
regarding what it takes for a feature to be provided in the
input and to have been computed in the output: ε-linear
representation (Definition 2). Future empirical results or
theoretical arguments could call for revising this choice —
for instance, perhaps an eventual full reverse-engineering

picture would permit certain kinds of non-linear features.

Finally and least specifically, the way of looking at neural
net computation suggested in this work could turn out to be
thoroughly confused. We consider there to be a lot of room
for the development of a more principled and empirically
grounded picture.

Impact Statement
The primary impact of our work is to advance the field of
mechanistic interpretability. While advancing this field may
have many potential societal impacts, we feel that there are
no direct, non-standard impacts of our work that are worth
highlighting.
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P., Dereziński, M., Lopes, M. E., et al. Randomized
numerical linear algebra: A perspective on the field with
an eye to software. arXiv preprint arXiv:2302.11474,
2023.

Nguyen, A., Yosinski, J., and Clune, J. Multifaceted feature
visualization: Uncovering the different types of features
learned by each neuron in deep neural networks, 2016.

Olah, C., Mordvintsev, A., and Schubert, L. Feature vi-
sualization. Distill, 2017. doi: 10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 5(3):e00024–001, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rahimi, A. and Recht, B. Uniform approximation of func-
tions with random bases. In 2008 46th annual allerton
conference on communication, control, and computing,
pp. 555–561. IEEE, 2008a.

Rahimi, A. and Recht, B. Weighted sums of random kitchen
sinks: Replacing minimization with randomization in
learning. Advances in neural information processing
systems, 21, 2008b.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Improving
dictionary learning with gated sparse autoencoders. arXiv
preprint arXiv:2404.16014, 2024.

Rosenblatt, F. Principles of neurodynamics. perceptrons
and the theory of brain mechanisms. Technical report,
Cornell Aeronautical Lab Inc Buffalo NY, 1961.

9

https://www.sciencedirect.com/science/article/pii/S0959438816000118
https://www.sciencedirect.com/science/article/pii/S0959438816000118
http://arxiv.org/abs/2012.14913
http://arxiv.org/abs/2012.14913
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/LajDyGyiyX8DNNsuF/interim-research-report-activation-plateaus-and-sensitive-1
https://www.alignmentforum.org/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.alignmentforum.org/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features
https://www.alignmentforum.org/posts/hjJXCn9GsskysDceS/what-s-up-with-llms-representing-xors-of-arbitrary-features


Computation in Superposition
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A. Mathematical definitions
Here, we list and define the mathematical terms that we use throughout this work.

X set of inputs
Y set of outputs
Mw : X → Y neural network with ReLU activations, parameterized by w

a⃗(l)(x) ∈ Rd the activations of a neural network at layer l, l ∈ {0, ..., L}
MLP(l) : Rd → Rd the lth MLP layer, MLP(l)(x) = ReLU(Win

(l)x+ wbias
(l))

fk : X → {0, 1} boolean feature of the input, k = 1, . . . ,m

F : X → {0, 1}m the concatenation of m boolean features
ϕ⃗k ∈ Rd vector linearly representing the kth boolean feature
Φ ∈ Rd×m the feature embedding matrix, Φ = (ϕ⃗1, ..., ϕ⃗m)

b = b(x) ∈ {0, 1}m a boolean vector of length m associated to an input/activation
bk = bk(x) ∈ {0, 1} the kth entry in the boolean vector, equal to fk(x)

||b(x)||1 “sparsity”, a.k.a. number of bits that are “on” for the boolean vector b,
equal to

∑m
k=1 fk(x).

C : {0, 1}m → {0, 1}m′
a boolean circuit

Cl : {0, 1}m → {0, 1}m′
layer l of the boolean circuit C, consisting of m′ boolean gates of fan-in at
most two.

Table 1. Definitions of terms used in this work.

We also use the following conventions for clarity:

i, j ∈ {1, ..., d} indices for neurons
k, ℓ, p ∈ {1, ...,m} indices for features
µ amount of interference between near-orthogonal vectors
ε error in the read-off of a boolean feature
s A bound on the “sparsity”; we require ||b(x)||1 ≤ s ∀ x ∈ X.

Table 2. Conventions used in this work.

We assume our terms satisfy the following asymptotic relationships in terms of the principal complexity parameter m (the
number of features):

d is polynomial in m so d = Ω̃(mα+), d = Õ(mα−) for some finite exponents 0 < α ≤ α− < ∞.
s is at worst polynomial in m, so s = O(mβ). Note that this is different from the body,

where we assumed s is a constant (so β = 0).
s = Õ(d1/3). This is a technical “sparsity” condition that will be useful for us.

Table 3. Asymptotic relationships between variables in this work.
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B. Potential takeaways for practical mechanistic interpretability
Our motivation for studying these mathematical models is to glean insights about the computation implemented by real
networks, that could have ramifications for the field of mechanistic interpretability, particularly the subfield focussed on
taking features out of superposition in language models using sparse dictionary learning (Cunningham et al., 2023; Bricken
et al., 2023; Tamkin et al., 2023; Bloom, 2024; Braun et al., 2024; Templeton et al., 2024). In order to render the models
mathematically tractable, we have had to make idealising assumptions about the computation implemented by the networks.

1. Early work on superposition (Elhage et al., 2022) suggested that it may be possible to store exponentially many features
in superposition in an activation space. On the other hand, early sparse dictionary learning efforts (Cunningham et al.,
2023; Bricken et al., 2023; Bloom, 2024) learn dictionaries which are smaller than even the square of the dimension of
the activation space. Our work suggests that the number of features that can be stored in superposition and computed
with is likely to be around Õ(d2) (this is also the information-theoretic limit). We think that by using a dictionary size
that scales quadratically in the size of the activations, while computationally challenging, this will likely lead to better
performance on downstream tasks. We are heartened by more recent work by Templeton et al. (2024) which works
with dictionaries that are closer to this size, and would encourage more systems-oriented work to scale to ever larger
dictionaries.

2. The current mainstream sparse autoencoder (SAE) architecture used by Cunningham et al. (2023); Bricken et al. (2023);
Bloom (2024); Templeton et al. (2024) and others uses ReLUs to read off feature values, in accordance with the toy
model of superposition of Elhage et al. (2022) and features being ReLU-linearly represented. Our work suggests that
networks may be more expressive when storing features ε-linearly. If so, this suggests that future work should consider
sparse dictionary learning with alternative activation functions that only allow for removing errors of size ε, such as a
noise-filtering nonlinearity

NFε(x) =

{
x |x| > ε

0 |x| ≤ ε
.

or nonlinearities that filter all but the k largest positive and largest negative preactivations. Notably, recent work by
Rajamanoharan et al. (2024); Taggart (2024) finds suggestive evidence that the ProLU activation:

ProLUε(x) =

{
x x > ε

0 x ≤ ε

outperforms the standard ReLU activation SAEs, which accords with the predictions in this work.

3. Previous work by Gurnee et al. (2023) found some features that were represented on a small set of neurons, even
when they weren’t represented on any singular particular neuron. In our constructions, feature representations end up
distributed over a larger range of neurons. We expect that networks which employ superposition heavily to maximise
their expressiveness are unlikely to have many sparse features that are localised to one or even a few neurons.

C. Additional discussion of various feature definitions
C.1. Formal statements and proofs for facts referenced in main body

We present formal statements and proofs that we referred to in Section 2.1. Note that without loss of generality, we can
include the activation function a into our input set X , so we omit the use of a in this section.
Theorem 9 (Composition of linearly separable features). There exist a set of inputs X and two features f1, f2 weakly
linearly represented in X such that there exists no MLP layer MLP such that either f1∧f2 or f1∨f2 are linearly separable
in MLP(x).

Proof. (sketch) Let X = [−1, 1]2 be the unit square in R2, and let f1(x) = 1(x1 > 0) and f2(x) = 1(x2 > 0) be
the indicator functions of whether the first and second coordinates are greater than zero. There exists no MLP layer
MLP : X → Rd of any width d such that f1 ∧ f2 is linearly separable in MLP(X).

To show this, it suffices to notice that any MLP layer has finite Lipschitz coefficient, and that any function weakly linearly
representing f1 ∧ f2 or f1 ∨ f2 will need to have arbitrarily high Lipschitz coefficient (since there exist points that are
arbitrarily close to the separating hyperplanes of f1 and f2.

12



Computation in Superposition

Theorem 10 (Composition of ε-linearly represented features). For any set X and features f1, f2 that are ε-linearly
represented in X, there exists a two neuron MLP MLP : X → R2 such that f1 ∧ f2 and f1 ∨ f2 are ε′-linearly represented
in MLP(X) for some ε′.

Proof. (sketch) We use an MLP with two neurons MLP1, MLP2 with input weights equal to the read-off vectors of r⃗1, r⃗2.
To read off f1 ∧ f2, we use the read-off vector r⃗1∧2 defined by r⃗1∧2(x) = MLP1(x) +MLP1(x)− 3/4. Similarly, to read
off f1 ∨ f2, we use the read-off vector r⃗1∨2(x) = MLP1(x) +MLP1(x)− 1/4.

In fact, by allowing for wider MLPs, it is fairly easy to construct an MLP MLP : X → Rd such that f1 ∧ f2 and f1 ∨ f2 are
also ε-linearly represented in MLP(X) (that is, with equal error). We leave the construction of this MLP as an exercise for
the reader.

D. Additional definitions and formalism
Here we provide additional definitions required for our proofs in Appendix E.

D.1. Negligible probabilities

Most results in this paper are proven outside negligible probability. This is a standard notion in complexity theory and
cryptography (Bellare, 2002), with the following formal definition:

Definition 5. Let {En}∞n=1 be a sequence of events parameterized by n. We say that En is true with negligible probability
(w. n. p.) if for any polynomial exponent c ∈ N, there exists some constant Nc ∈ N such that P (En) < O(n−c) for all
n > Nc. Similarly, we say that En is true outside negligible probability (o. n. p.) if its complement En is true with negligible
probability.

Intuitively, the reason why this probability is “negligible” is that the union of polynomially many events of negligible
probability also has negligible probability. As we never consider more networks requiring more than polynomially many
operations, we can ignore events of negligible probability at each step when performing asymptotic analysis, which greatly
simplifies our proofs.
Example 1. Let b be a random boolean vectors of length n. Then outside negligible probability, b has between n/2 +
log(n)

√
n and n/2− log(n)

√
n zeroes.

This follows from the central limit theorem. (Note that if we used
√

log(n)
√
n, the result would be false!)

D.2. Precise and mixed emulations

The parameters in the models Mw in the proofs of our emulation results depend on random matrices of ±1’s and 0’s, hence
can be understood as suitable random variables. In terms of this point of view, we make the following definition.

Suppose that C : {0, 1}m → {0, 1}m′
is a boolean circuit with input size m. We always assume that the output size m′ and

the depth are at most polynomial in m. Let B ⊂ {0, 1}m be a class of inputs (usually characterized by a suitable sparsity
property). Let ε < 1 be an interference parameter.

Definition 6. An ε-precise emulation of C (on input class B) is a triple of data (Φ,Mw,R) all possibly depending on
random parameters where Φ ∈ Matdin×m is a feature matrix, R ∈ Matm′×dout

is a readoff matrix and

Mw : Rdin → Rdout

is a (not necessarily linear) function given by a neural net, with the following property:

For any b ∈ B, we have, outside negligible probability,

||R ◦Mw ◦ Φ(b)− C(b)||∞ < ε.

Importantly, we do not consider the boolean circuit C or the input b ∈ B to be random variables, and the randomness
involved in the negligible probability statement is purely in terms of the parameters that go into the emulation scheme

13
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(Φ,Mw,R). In particular, this guarantees that if the boolean input b is generated in a non-random way (e.g., adversarially),
an emulation nevertheless guarantees (in the “negligible probability sense”) safe performance on b so long as the parameters
of the emulation were chosen randomly.

It will be useful to extend the notion of emulation to one which correctly approximates C on inputs x ∈ Rdin which represent
a boolean input b ∈ {0, 1}m not in the sense of “pure superposition” x = Φ(b) but in the sense of “read-off”,

||Rin(x)− b||∞ < εin.

Here Rin ∈ Mat×mdin is a readoff matrix that should be thought of as a noisy inverse to the feature matrix on sparse inputs.
Formally, we make the following definition. Here we will assume that the matrix Rin was generated at an earlier stage of
the computation, and does not depend on random variables.

Fix a circuit C : {0, 1}m → {0, 1}m′
, a class of inputs B ⊂ {0, 1}m, and an “input readoff” matrix Rin ∈ Matm×din

. Let
εin, εout be two interference parameters.

Definition 7. A mixed emulation of C with precision εin → εout (on input class B and relative to a fixed input readoff
matrix Rin) is a pair of data (Mw,Rout) both possibly depending on random parameters where R ∈ Matm′×dout is a
readoff matrix and

Mw : Rdin → Rdout

is a (not necessarily linear) function given by a neural net, with the following property:

For any boolean input b ∈ B and x ∈ Rdin satisfying

||Rin(x)− b||∞ < εin,

we have, outside negligible probability,

||R ◦Mw(x)− C(b)||∞ < εout.

Remark 11. Note that if it is impossible to accurately represent b via the matrix R, i.e., to satisfy ||R(x)− b||∞ < εin, then
the notion of mixed emulation is vacuous (any neural net would satisfy it for tautological reasons). We will generally apply
this notion in contexts where such representations are possible (for example, with via a suitable feature matrix x = Φ(b)).

Here as before we do not consider the boolean circuit C or the input b ∈ B to be random variables, and in addition the
representation x and the input readoff matrix Rin are assumed fixed. So the randomness involved in the negligible probability
statement is purely in terms of the parameters that go into the pair (Mw,R).

E. Precise statements and proofs of theorems
Let m be a parameter associated to the length of a boolean input. For the remainder of this section, we will work with real
parameters α, βin, βout, γ which do not scale with m and corresponding to scaling exponents. We impose the following
asymptotic relationships on parameters m (length of boolean input), d = din (width of emulating neural net), s (sparsity, i.e.,
number of 1 values, of suitable boolean variables), εin (incoming interference, if applicable) and εout (outgoing interference):

m = Ω̃(rα) (1)

εin = Ω̃(r−βin) (2)

εout = Õ(r−βout) (3)

s = Õ(rγ). (4)

More precisely, we assume that a large parameter m is given and the O(polylog(m)) scaling factors implicit in the Õ, Ω̃
asymptotics can be chosen in a suitable way to make the results hold.

E.1. Emulation of AND layer

In this section we prove a generalization of Theorem 3.2.

14
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Let Γ ⊂ {1, . . . ,m}[2] be the edges of a graph (here the superscript [2] denotes the “exterior power” of a set, i.e., the set of(
m
2

)
unordered pairs). Assume that the number of edges |EΓ| = Õ(m). Let CΓ : {0, 1}m → {0, 1}EΓ be the circuit with

value
CΓ(b)(k,ℓ) = bk ∧ b

at the unordered pair (k, ℓ) ∈ EΓ corresponding to an edge of Γ. We think of CΓ as the (not quite universal) circuit that
takes AND’s of pairs of features in Γ and returns a boolean vector of roughly the same size.

We will show that this circuit can be emulated with suitably small interference on the output.

The proof is very similar to the proof of the error correction theorem above (Theorem ??), in particular with the main
argument controlled by a subset Σ ⊂ {1, . . . ,m}×{1, . . . , d}, with m the number of edges of Γ (i.e., outputs of the circuit).

There are however two main differences.

1. What we read from each subset Σk,ℓ associated to an edge (k, ℓ) ∈ Γ is a the result of a nonlinearity applied to a sum
of two random ±1 vectors ϕk, ϕℓ (associated to the two inputs k, ℓ), that returns (up to small error) the sum of neurons
in of Σij where the signs of ϕk and ϕℓ are both 1.

2. To control interference issues, we need to carefully partition the graph Γ into pieces with a certain asymptotic “balanced”
property (see Lemma ??).

3. The output interference is Õ(
√

s2

d instead of Õ(
√

s
d since there are O(s2) active output features (corresponding to

pairs of features that are on).

Theorem 12 (Targeted superpositional AND). Let m be an integer and Γ ⊂ {1, . . . ,m} × {1, . . . ,m} a graph. Assume we
have a readoff matrix Rin ∈ Matm×d that maps a d-dimensional space to an m-dimensional space, and let s = o(

√
m) be

a sparsity parameter (either polynomial or polylogarithmic in m). Let εin be an interference parameter.

Assume that we have ε2inmd
√
d/s = Õ(1) is bounded by some sufficiently small inverse polylogarithmic expression in

m. Then there exists a single-layer mixed emulation Mw(x) = ReLU(Winx+ wbias) of the universal AND circuit Cuand
(together with an “output readoff” matrix Rout) such that Mw is an emulation of CΓ on the input class B = Bs of boolean

vectors of sparsity ≤ s, with precision εin → εout, for εout = Õ

(√
s2

d

)
.

Before proving the theorem, we note that our UAND statements are corollaries:

Corollary 13 (U-AND with basis-aligned inputs). Fix a sparsity parameter s ∈ N. Then for large input length m, there
exists a single-layer neural network Mw(x) = MLP(x) = ReLU(Winx+ wbias) that ε-linearly represents the universal
AND circuit CUAND on s-sparse inputs, with width d = Õm(1/ε2) (i.e. polylogarithmic in m).

This follows from the fact that the incoming interference εin = 0 since the incoming feature basis is basis-aligned.

Corollary 14 (U-AND with inputs in superposition). Let s ∈ N be a fixed sparsity limit and ε < 1 a fixed interference
parameter. There exists a feature encoding Φ and single-layer neural net Mw(x) = MLP(x) = ReLU(Winx+wbias) with
input size min and width d = Õ(

√
min/ε

2), such that Mw ◦ Φ ε-linearly represents CUAND on all s-sparse inputs b.

This follows by restricting all but min =
√
m input features to 0 and taking Γ to be the complete graph on vertices

{0, . . . ,min}.

Now we prove the theorem.

Proof. We begin by considering a simpler case. We say that a graph Γ with m edges is self-balanced if each vertex has
degree at most Õ(1) (some fixed polylogarithmic-in-m bound).

Suppose Γ is self-balanced. Define A :=
√
d/s. For each edge (k, ℓ) ∈ Γ, choose at random a subset Σkℓ ⊂ {1, . . . , d} of

size within a polylog error of A. Write also
Σk =

⋃
ℓ|(k,ℓ)∈Γ

Σk,ℓ.
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Write down feature vectors ϕ⃗kℓ =
∑

i∈Σk
±e⃗i, with signs σk,i chosen independently and randomly for each k, i. For a pair

k, ℓ ∈ Γ, define the vector r⃗k,ℓ to be the indicator of the set of neurons

Σout
k,ℓ := {i ∈ {1, . . . , d} | σk,i = σℓ,i = 1},

Note that |Σout
k,ℓ | has, o. n. p., within a polylog difference from 1

4 |Σk,ℓ| = A
4 elements.

Write
ϕ⃗in
k :=

∑
ℓ|(k,ℓ)∈Γ

ϕ⃗k,ℓ,

Note that this is a indicator function of a union polylog-many independently chosen sets of size A. Write Φin for the m× d
matrix with columns ϕ⃗in

k .

Now we define the emulation net to be

MwΓ(x) =
4

A
ReLU(Φin(x)− 1).

We note that (outside interference and collision errors of frequency bounded o. n. p. by Õ(εout),) we have

ReLU(ΦT (b))− 1)i =

{
1, ∃k, ℓ ∈ S with i ∈ Σk,ℓ and σk,i = σℓ,i = 1

0, otherwise,
.

Here as before we take S ⊂ {1, . . . ,m} for the set of features that are on.

Analogously to our proof of Lemma 24’s part ?? we see that the difference ΦT (b)− ΦT (Rin(x)) is (o. n. p.) bounded by
o(1), and thus we are done just as in the previous lemma.

For general graphs Γ, we might have an issue if some vertices have very high degree; if one were to try to run the same
proof, their corresponding features would then admit unmanageably high interference.

To fix this, we note that in order to emulate CΓ it is sufficient (up to polylogarithmically increasing the number of neurons)
to emulate CΓ1 , . . . , CΓT

for some polylogarithmic collection of graphs Γt with ∪tΓt = Γ. We now split an arbitrary graph
Γ into subgraphs with a nice “balanced” property.

Let a, b ∈ R be parameters. We say that a graph is a, b-balanced if it is bipartite on a pair of disjoint subsets of vertices
V0, V1 ⊂ {0, . . . ,m}, such that |V0| = a, |V1| = b and each vertex in V0 has degree at most m/a and each vertex in V1 has
degree at most m/b. We say a graph Γ ⊂ {0, . . . ,m}[2] is balanced if it is a, b-balanced for some a, b.

It can be shown using an inductive argument that any graph Γ with m edges can be written as a union of polylog(m.)

Now it remains to show that the theorem holds for a balanced graph. Indeed, suppose that Γ has vertices supported on
V0 ⊔ V1 ⊂ {1, . . . ,m} and is a, b-balanced. Suppose (WLOG) that a ≤ b. Then we randomly partition the neurons
{1, . . . , d} into a roughly equal sets Σk for k ∈ V0 (equivalently, we choose a random map {1, . . . , d} → V0 and define Σk

to be the preimage of k). We then choose for ℓ ∈ V1 the set Σk,ℓ to be a random subset of size about
√

d/s2 inside Σk,
and define Σℓ = ∪k|(k,ℓ)∈Γ. We finish the argument by bounding the errors in the same way as in the self-balanced case,
concluding the proof.

E.2. Universal AND with inputs in superposition

We use the conventions from Section A. We make an additional assumption, that our inputs a⃗(0)(x) for x ∈ X approximately
lie on a sphere of suitable radius. Note that if m = d and the feature basis ϕ⃗i is an orthonormal basis, then |Φ(b)| =

√
||b||1,

so the ℓ2 norm of the embedding is the square root of the sparsity. If the sparsity ||b||1 is exactly s and the feature interference
parameter µ is sufficiently small compared to the sparsity bound s, we still have |Φ(b)| ≈

√
s (with some suitable bound

— in general, it will be Õ(µs1.5)). If instead, we assume only that the boolean features fi(b) are ε-linearly represented
for suitable ε > 1√

d
, in general we cannot guarantee that |⃗a(0)(x)| ≈

√
s; rather, we will have |⃗a(0)(x)| = Ω̃(

√
s) since

especially for small s, the norm might be significantly increased by adding a large vector that is almost-orthogonal to all
features (and thus doesn’t affect the linear representability of the fi). This observation allows us, in principle, to write down
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a vector with some suitable norm in θ̃(
√
s) which ε-linearly represents a very sparse boolean vector b with ||b||1 << s. We

show how to modify inputs with unknown bounded sparsity ||b(x)||1 < s to have an (approximately) constant norm in the
following section. For now, we assume in addition to ||b(x)||1 < s that all our inputs have norm equal to some s0 = Õ(

√
s)

up to a small error.

Theorem 15. Let m, d,X,Φ, ε = ε0, µ, s be as in Appendix A. Let r be a parameter so that r2 = Õ(s). Assume in addition
to the conditions on X,Φ in Appendix A that for any input x ∈ X, we have

|⃗a(0)(x)| = r + Õ(

√
s√
d
),

i.e., the inputs lie approximately on a sphere of radius r.

Let W ∈ Matd×d be a random weight matrix with i.i.d. Gaussian-distributed entries, and let a⃗(1)(x) = Mw (⃗a
(0)(x)) :=

ReLU(Wx) be the associated neural net. Then there exist some

ε(1) = Õ
(
max(sµ,

√
sε,
√
s/d)

)
and

µ(1) = Õ
(
max(

√
1/d, µ)),

such that the boolean function fk∧ℓ(x) := fk(x)∧ fℓ(x) is ε(1)-linearly represented by a feature vector ϕ⃗(1)
k∧ℓ ∈ Rd, outside

negligible probability (in the entries of W ). Moreover, up to rescaling by a fixed scalar, the feature vectors ϕ⃗k∧ℓ form an
almost-orthogonal collection with feature interference parameter µ(1).

Corollary 16. The result of Theorem 15 is true with the assumption |⃗a(0)(x)|2 = r2 + Õ(εs) (that inputs are close to a
sphere) replaced by |⃗a(0)(x)|2 = Õ(s), at the cost of increasing the depth of the neural network Mw from 1 to 3.

Proof. (Of corollary.) This follows by chaining the neural network constructed in this theorem with the “norm-balancer
network” constructed in Appendix E.3 (independent from this one).

The idea of the proof of Theorem 15 is derived from the quadratic activations case, Mw(x⃗) = Q(Wx⃗), where Q is the
function that squares entries of a vector coordinatewise. Let aik = W (ϕ⃗k)

i (for i ∈ {0, . . . , d− 1}) be the coordinates of
the preactivation vector W (ϕ⃗k) associated to the kth boolean bit.

One can show using the theory of quadratic forms that the readoff vector Ri
k,ℓ = aika

i
ℓ gives a valid readoff direction to

show ε-strong linear separation of the boolean expression bk ∧ bℓ (o. n. p.). We will show that a similar strategy works for
an arbitrary (reasonable, and in particular nonlinear) activation function, including ReLU.

Write down the unnormalized model Mw
u(x⃗) := ReLU(W (x⃗)). Define ϕ⃗′

k = Wϕ⃗k to be the preactivation under this
model of ϕ⃗k. Define the unnormalized readoff matrix for the UAND coordinate associated to the pair of features k, ℓ as
follows:

r⃗ik,ℓ = ((ϕ⃗′
k)i · (ϕ⃗′

ℓ)i),

where sign(x) is the sign function that returns −1, 0, 1 depending on whether x is negative, 0 or positive, respectively.
Remark 17. Note that as we care about the existence of a linear representation rather than a learnable formula for it, the
readoff doesn’t have to depend continuously on the parameters. However having continuous dependence is also possible;
in particular, it would also be reasonable to make the dependence continuous; indeed, the readoff vector with coordinates
aik · aiℓ (same as for quadratic activations) would also work, with an alternative normalization; the important property of the
readoff function is that it is odd in each of the x and y coordinates independently, and that it does not have wild asymptotic
behavior. We use the discrete “sign” function for the readoff for convenience.

The crucial observation is the following simple lemma. For a given input x, let a⃗(x) be the corresponding embedding. Let

a⃗(x)Λ := a⃗(x)− fk(x)ϕ⃗k − fℓ(x)]ϕ⃗ℓ

(the “hat” notation denotes that we are “skipping” information about features k and ℓ in the embedded input a⃗(x); it linearly
represents the modification of the boolean vector b(x) that zeroes out the kth and ℓth coordinates).
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Lemma 18. Suppose Φ, k, ℓ, and b are fixed. Then in the context of the theorem above, the unnormalized readoff
Ru

k,ℓ(Mw(Φ(b))) is a sum of d i.i.d. variables of the form F (xi, yi, zi), where F (x, y, z) = (x)(y)ReLU(bk(x)x +
bℓ(x)y + z) and the triple (xi, yi, zi) is drawn from the distribution (0,Σ) where

Σ =

 ||ϕ⃗k||22 ϕ⃗k · ϕ⃗ℓ ϕ⃗k · x⃗Λ

ϕ⃗k · ϕ⃗ℓ ||ϕ⃗ℓ||22 ϕ⃗ℓ · x⃗Λ

ϕ⃗k · x⃗Λ ϕ⃗ℓ · x⃗Λ ||x⃗Λ||2

 .

Proof. Write xi = (ϕ⃗′
k)i, yi = (ϕ⃗′

ℓ)i, zi = Wa⃗(x)Λ be the neuronal coordinates of the corresponding activations. Then
(Ru

k,ℓ)i = (xi)(yi) and

Mw
u(⃗a(x))i = ReLU

(
W (⃗a(x))i

)
= ReLU(b(x)kxi + b(y)kyi + zi).

It remains to show that (xi, yi, zi) are drawn according to the Gaussian distribution (0,Σ). This follows from the standard
result that applying a Gaussian-distributed matrix with entries in (0, 1/d) to a collection of vectors v⃗1, . . . , v⃗n is distributed
as a (possibly singular) Gaussian with PSD covariance matrix Σkℓ = v⃗k · v⃗ℓ.

Now our interference bounds imply that the triple (xi, yi, zi + bkxi + bℓyi) are distributed according to a matrix of the form 1 +O(µ) O(µ) bk +O(ε)
O(µ) 1 +O(µ) bℓ +O(ε)

bk +O(ε) bℓ +O(ε) r2 + Õ(s/
√
d).


Let s′ := r2 − bk − bℓ and r′ :=

√
s′.

Now o.n.p., we can assume that xi, yi ∈ Õ(1) and zi ∈ Õ(r). Since F grows linearly, we see that F (xi, yi, zi) ∈ Õ(r)
o.n.p. We can now apply Bernstein’s inequality 32 to get that, o.n.p.,

d∑
i=1

F (xi, yi, zi) = d[E(x,y,z)∼(0,Σ)f(x, y, z) + Õ(r/
√
d)].

Now since r = Õ(
√
s) and |(r′)2 − r2| is an integer equal to at most 2 (the sum of two feature readoffs of a⃗), the error term

in the Bernstein inequality is bounded by Õ(r′/
√
d). It remains to estimate the expectation

E := E(x,y,z)∼(0,Σ)F (x, y, z̄).

Assume that b(x) has nonzero coordinates other than at k, ℓ, so that r′ = Ω(1) (the case where b(x) only has nonzero
coordinates on a subset of {k, ℓ} can be handled similarly and more easily). In this case, we add a new notation

F ′(x, y, z′) := F (x, y, s′z′) = (x)(y)ReLU(r′z̄ + bkx+ bℓy),

where the third input of F is rescaled to make the distribution on (x, y, z′) closer to the identity Gaussian. Let Σ′ be the
distribution on (x, y, z′), given by

Σ′ = diag(1, 1, (r′)−1)Σdiag(1, 1, (r′)−1).

Since the two differ by a reparametrization, the expectation of F ′ on (0,Σ′) is equal to the expectation of F on (0,Σ).

Let X ′ = (0,Σ′) and X ′
0 = (0,Γ), both on R3. Our various interference bounds imply that the difference Σ−Γ is bounded

by

δ := Õ
(
max(

√
s√
d
,
ε√
s
, µ)).

This means that the total variational difference between X and X ′ is bounded by O(δ). Now the expectation F ′ on X,X0

are not affected, up to negligible terms, by (x, y, z) outside some constant Õ(1), and here F ′ is bounded by Õ(r). Thus we
have

|E(x,y,z′)∼XF ′(x, y, z′)− E(x,y,z′)∼X0
F ′(x, y, z′)| = Õ(rδ).
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It remains to estimate the mean

E0 := E(x,y,z′)∼X′
0
F ′(x, y, z′) = E(x,y,z)∼X0

F (x, y, z),

where X0 = (0, diag(1, 1, (d′)2)).

Up to symmetry, we have three cases depending on the k and ℓ coordinates of b = b(x) associated to our input:

• bk = bℓ = 0,

• bk = 0, bℓ = 1,

• bk = bℓ = 1.

The expectation calculation in the first two cases are trivial: if bk, is zero, then each F is odd in the x, resp., y coordinate, so
since the distribution X0 is independent Gaussian, the mean is

E0 = 0.

It remains to consider the case bk = bℓ = 1, i.e., the “interesting” case where ∧(bk, bℓ) = 1. We write down the integral
expression

E0 := E(x,y,z)∼X0
Qi(x, y, z) =

∫
(x)(y)ReLU(x+ y + z)p0(x, y, z)dxdydz, (5)

for p0(x, y, z) the pdf of X0 = (0, diag(1, 1, s′)). We would like to show this value is positive and bound it from below (to
show eventually that the mean in the CLT dominates the errors). We use x, y-symmetry to rewrite the integral as

A = 2

∫
x≤y

(x)(y)ReLU(x+ y + z)p0(x, y, z).

Since the independent Gaussian p0(x, y, z) is symmetric in the x and y coordinates, we can collect ±x,±y terms together
to write

E0 = 2

∫
0≤x≤y

p(x, y, z)
(
ReLU(x+ y + z)− ReLU(x− y + z)− ReLU(−x+ y + z) + ReLU(x+ y + z)

)
.

We split the domain up further into five terms,

E0 = A−− +A− +A0 +A+A++,

into regions on which the relus are constantly 0 or nonnegative linear functions:

A−− =2

∫
0≤x≤y,z≤−x−y

p0(x, y, z)dxdydz · 0

A− =2

∫
0≤x≤y,−x−y≤z≤x−y

p0(x, y, z)(x+ y + z)

A0 =2

∫
0≤x≤y,x−y≤z≤y−x

p0(x, y, z)dxdydz
(
(x+ y + z)− (−x+ y + z)

)
=2

∫
...

p0(x, y, z)dxdydz (2x)

A+ =2

∫
0≤x≤y,y−x≤z≤x+y

p0(x, y, z)dxdydz (x+ y + z)− (−x+ y + z)− (x− y + z)

=2

∫
...

p0(x, y, z)dxdydz
(
x+ y − z

)
A++ =2

∫
0≤x≤y,z≥x+y

p0(x, y, z)dxdydz
(
(x+ y + z)− (−x+ y + z)− (x− y + z) + (−x− y + z)

)
=0.
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Note in particular that each term above is nonnegative on its domain (for A+, this is because the domain includes the
inequality z ≤ x+ y). Thus in particular, E ≥ A0. Since the integrand is positive, we can get a lower bound by restricting
the domain:

A0 ≥ 2

∫
x≤1,y≥2,−1≤z≤1

2p0(x, y, z)dxdydz,

using that the integrand is 2x ≥ 2. This is, equivalently, twice the probability that |x| ≥ 1, |y| ≥ 2, |z| ≤ 1, for (x, y, z)
drawn from p0(x, y, z) = σ0,1(x)σ0,1(y)σ0,r2−2(z). By independence of p0, this is a product of 3 terms. The probability
distributions on x, y are fixed unit Gaussians, so the corresponding terms are O(1), and so the mean has (up to an O(1)
constant) the same asymptotic as the third term, which is

Pz∼σ0,r2−2
(|z| < 1) = O(1/r) = Θ̃(1/

√
s).

The Bernstein bound applied to d i.i.d. such variables now gives us o.n.p.

d∑
i=1

F (xi, yi, zi)(xi,yi,zi)∼X0
= d · E0 +

√
dÕ(r).

Incorporating error terms, we get

r⃗uk,ℓ(Mw
u(⃗a(x))) = d · E0 +

√
dÕ(r) + dÕ(rδ).

We now normalize:

Mw (⃗a) :=
Mw

u(⃗a)√
dE0

(6)

r⃗k,ℓ :=
r⃗uk,ℓ√
d
. (7)

Then if fk(x) ∧ fℓ(x) = 1, then (o.n.p.)

r⃗k,ℓ(x) = 1 +
Õ(r)√

d
+ Õrδ.

Alternatively if fk(x) ∧ fℓ(x) = 0, the expectation is zero and we are left with the error term,

r⃗k,ℓ(x) =
Õ(r)√

d
+ Õrδ

The theorem follows.

E.3. Norm-balancer network

In this section, we prove a technical result that was needed in the previous section. Namely, at one point we assumed that
the norm of our inputs a⃗0(x) are (o.n.p., and up to a multiplicative error of 1 + Õ( 1√

d
)) equal to a specific value λ, which is

related to the sparsity by a bound of the form λ = Õ(
√
s). It is not difficult to guarantee this if we know the exact sparsity

of the sparse boolean vector sexact = ||b0||1. However, in the process of chaining together multiple boolean circuits, we
would like to allow the exact sparsity of intermediate layers to vary (so long as it is bounded by s), even if the exact sparsity
of the input layer is fixed. In this section we give a two-layer neural network mechanism that allows us to circumvent this
issue by modifying all inputs a⃗0(x) to have roughly the same norm, equal to some specific value

√
s0 = Õ

√
s.

We note that while it seems plausible that real neural networks share properties in common with the past two artificial neural
nets we constructed (error correction and universal AND), the neural net constructed here

Theorem 19. Let s0 = Õ(
√
d) be a sparsity parameter. There exists a 2-layer neural net balances0 : Rd → Rd depending

on random parameters, with hidden layers of width O(d), with the following property.

Suppose that ϕ⃗1, . . . , ϕ⃗d is a collection of features of length < 2, and a⃗x is an input satisfying |⃗ax| <
√
s0. Then

1. |balance(⃗ax)| =
√
s0 · (1 + Õ(1/

√
d))
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2. a⃗x · ϕ⃗k − balance(⃗ax) · ϕ⃗k = Õ(
√
s0√
d
).

Proof. Let W ∈ Matd×d be a random square matrix, with entries drawn independently from σ(0, 1/d2). Define the
function N (⃗a) =

∑d
i=1 ReLU(Wx)i. Then N (⃗a) is a sum of d i.i.d. random variables of the form Ni = ReLU(x) |

x ∼ σ(0, |⃗a|/d). Applying arguments similar to those used in the proof of the previous theorem, we see that Ni has norm
c · |⃗a|/d, for c > 0 the absolute constant

c = Ex∼σ(0,1)ReLU(x) =
1

2
√
π
.

The variance of Ni is O(|⃗a|2)/d, and Ni is bounded o.n.p. by Õ(|⃗a|). Thus Bernstein’s inequality implies that, o.n.p.,

N (⃗a) =

d∑
i=1

Ni = c · |⃗a|+ Õ(|⃗a|/
√
d).

Now |⃗a| < s0 = Õ(
√
s), so N (⃗a) = |⃗a|+ Õ(ε). Let f(y) =

√
s0 − y2 (for |y| ≤ √

s0), a semicircle of radius
√
s0 viewed

as a function of a real variable. Define the piecewise-linear function fPL given by splitting the semicircle into d equal arcs,
and connecting the endpoints of the arcs (extending the first and last arc linearly outside the domain of definition). The
difference between the values of f on the endpoints of each arc is bounded by its arclength, which is O(

√
s0/d). Thus

|f(x)− fPL(x)| = O(
√
s0/d) (in fact, much better asymptotic bounds are possible.) Now fPL is a sum of d ReLUs, thus

it is a scalar-valued function which can be expressed by a width-d neural net. Now choose a random “approximately unit”
vector v ∈ Rd according to the Gaussian v ∼ σ(0, 1/

√
d). Now we define the neural net balance(⃗a) := a⃗+ fPL(N (⃗a))v.

Since both N (⃗a) and fPL can be expressed as width-d neural nets, balance can be expressed as a width-O(d) neural net.
Now since v is a random vector, we have, o.n.p.,

v · a⃗ = Õ(|⃗a|/
√
d)

and v · ϕ⃗k = Õ( 1√
d
). Since there are at most polynomially-many (in r) features, the “negligible probablity” exceptions

remain negligible when combined over all features. The bound N (⃗a) = Õ(
√
s) thus implies both bounds in the theorem.

Let α(x), β(x, y) be functions. Let W be random and Φ be a matrix of features. Fix k, ℓ ∈ {0, . . . ,m − 1}. Let
b ∈ {0, 1}m be a boolean vector. Let bkl = bkϕ⃗k + bℓϕ⃗ℓ, and b′ = b − bkℓ. Outside negligible probability, we know
that Φ(bkℓ) · Φ(b′) = Õ(ε). This means that if ε = Θ̃(1/

√
d) and we apply a random matrix W then we still have

WΦ(b′) ·WΦ(bkℓ) = Õ(ε) (outside negligible probability). Define x⃗kl = WΦ(bkl) and x⃗′ = WΦ(b′). Since random
matrices are O(d)-invariant, we can assume WLOG that these are drawn independently and randomly from appropriate
Gaussian distributions EXPAND. Specifically, x⃗kl is drawn from a distribution with variance 2 and x⃗′ is drawn from a
distribution with variance O(s).

Define
Mw(x⃗) = α(W (x⃗)),

and define
Ri

kℓ := β(ϕ⃗i
k, ϕ⃗

i
ℓ).

Lemma 20. For suitable choices of a piecewise-linear function α and some function β (both depending on s) we can
guarantee that Rk,ℓ · Mw(Φ(b)) = bk ∧ bℓ + Õ(εout).

Proof. As explained above, we can assume that xi
kℓ, (x

i)′ are drawn from independent boolean distributions with variance
respectively 2

d ,
s
d . Define X = σ(0, s

dI) to be the Gaussian variable with variance s
d . Define

∆i(x) := α
(
x+ x⃗i

kℓ)− α(x)
)
.

Write
Mw∆(y⃗)

i := ∆i(y⃗).

Then Mw(x⃗) = Mw(x⃗
′) + ∆i(x⃗

′). It remains to prove the following sublemma:
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Lemma 21. (Outside negligible probability:)

Rkℓ · Mw(x⃗
′) = Õ(εout) (8)

Rkℓ ·∆i(x⃗
′) = bk ∧ bℓ + Õ(εout) (9)

We start with the first expression. We have

• x⃗′
i random from Gaussian X , variance s/d.

• α(x⃗′
i) random, bounded by B (o.n.p. bound for α on X).

• From POV of x′ : we know (x, y) random Gaussian, variance 1/d.

• So Rkl · Mw(x⃗
′) is the sum of d samples of β(x, y)α(z) for x, y, z from appropriate Gaussians.

• WTS: ± symmetric in independent way, variance Õ(εout)/d, bounded (onp) by Õ of stdev (check if this bound correct
for Azuma inequality). For this (modelling on quadratic case): choose β to be ± symmetric in either coordinate
independently, and appropriately bounded.

For the second expression, we treat two cases, namely (bk, bℓ) ∈ {(1, 1), (0, 1)}. We do not need to treat other cases as
(1, 0) follows by symmetry and (0, 0) is trivial. Start with (1, 1) case, so bk ∧ bℓ = 1. We then have

• Want
E (β(x, y)∆x,y(z)))

to be 1.

• Above bounded to make Azuma ok (prob enough to check ∆ = O(1) and use Azuma bounds from previous).

Final case, (0, 1).

• Want E((β(x, y)∆x(z))) to be 1.

• This follows from ± symmetry of β (and bounds as above).

E.4. Error correction layers

Theorem 22. Suppose we are in the context of Appendix A. Then there exists a polylog constant K = K(d) and a
single-layer neural net Mw(x) = v1 + W1ReLU(v0 + W0(x)) and a feature matrix Φ(1) ∈ Matd×m such that if
ε(= ε(0)) < K d1/4

m1/2s1/4
, then for each input x, o.n.p., the feature ϕ⃗

(1)
k linearly separates the boolean function fk on the

activation a⃗(1)(x) = Mw(x), with error

ε(1) = O
(
log(d) ·

√
s√
d.

)
Moreover, we can choose the new feature vectors ϕ(1)

k such that they have feature interference bounded by

µ(1) = Õ
(√s√

d

)
.

Proof. We begin by defining an unnormalized version of the output feature matrix. Define p = 1√
ds
, a probabil-

ity parameter. Let Φ(1),u ∈ Matm×d be a matrix of entries M i
k drawn uniformly from the ternary random variable

p(M i
k = 1) = p/2

p(M i
k = −1) = p/2

p(M i
k = 0) = 1− p

.
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Let Γ ⊂ {0, . . . ,m} × {0, . . . , d} be the set of nonzero values of Φ(1),u. Note that (o.n.p.), it has size

|Γ| = m

√
d

s
+ Õ(1).

We think of this as a graph, connecting each feature k to a set of (approximately
√

d
s ) neurons it “activates”, Γk ⊂ {1, . . . , d}.

We also write Γi ⊂ {1, . . . ,m} for the set of features connected to the ith neuron.

Let
round[0,1](x) := 3 (ReLU(x− 1/3)− ReLU(x− 2/3)) ,

the piecewise-linear function that maps R to the interval [0, 1] and is non-constant only on the interval (1/3, 2/3).

Now for any integer, define

round[0,a](x) := round[0,1](x) + round[0,1](x− 1) + · · ·+ round[0,1](x− a+ 1),

and similarly,
round[−a,a](x) := round[0,a](x)− round[0,1](−x).

This is a piecewise-linear “staircase” function with the following properties:

• round[−a,a](x) ∈ [−a, a] for all x ∈ R and

• round[−a,a](n+ ε) = n, whenever n ∈ [−a, a] is an integer and ε < 1/3.

Thus for all sufficiently small values x, the function round will “round” x to the nearest integer, so long as the nearest
integer is less than 1/3 away; hence its name. By construction, the function round[−a,a](x) is a sum of a 4a ReLUs.

We will use for our nonlinearity the function

round(x) = round[−2,2](x) :

x(x)

(Using larger intervals [−a, a] in our nonlinearity round[−a.a] would give slightly stronger results, but won’t be needed.)

Now we define the unnormalized neural net model as follows:

Mw
u(x) := round(Φ(1),u

(
Φ(0)

)T
(x)). (10)

Finally, we normalize:

Mw(x) :=
Mw

u(x)√
d/s

(11)

Φ(1) :=
Φ(1),u√

d/s
. (12)

For each feature k ∈ {1, . . . ,m} in an input x, the unnormalized neural net Mw
(1),u roughly does the following.

1. “Reads” the feature ϕk

2. “Writes” 1s in all neurons i ∈ Γk connected to k assuming ϕk is present

3. “Rounds” each neuron which is close to −2,−1, 0, 1 or 2 to the closest integer.
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At the end, we hope to obtain a vector with exactly the entry M i
k ∈ ±1 for each k with fk(x) = 1 and zero elsewhere.

If we’re lucky and there are no issues with excess interference and no pairs of active features k, ℓ that share a neuron
i ∈ Γk ∩ Γℓ, the result of this computation will be Φ(1),u(b(x)), and its error can then be controlled by understanding the
interference of the new normalized feature matrix Φ(1).

In order to make this work, we need to control two types of issues:

• Collision: it’s possible that two simultaneously active features k, ℓ with fk(x) = fℓ(x) = 1 share some neurons, so
some of the entries of ϕ⃗(1),u

k + ϕ⃗
(1),u
ℓ have “colliding” information from the kth and ℓth neurons that gives the wrong

answer after getting rounded to one of {−2,−1, 0, 1, 2}.

• Interference: it’s possible that, even if Γk are disjoint for all features k appearing in b(x), the various interference
terms shift the value far enough from the “correct” value in {−1, 0, 1} that the “round” function does not successfully
return it to its original position.

These are controlled by the two parts of the following lemma.

Lemma 23. 1. For any x ∈ X , we have o.n.p.:

||
(
Φ(1,u)

(
Φ(0)

)T
(x)− Φ(1),ubx

)
||∞ = o(1).

2. For any boolean b with sparsity ||b||1 < s, we have (o.n.p.) the difference

−→errcollision := round(Φ(1,u)(b))− Φ(1,u)(b) ∈ Rd

has all unnormalized feature readoffs

ϕ⃗u
k · −→errcollision = Õmax(1,

√
s3/d).

Proof. Note that the two results are both about ℓ∞ errors, but in two different spaces, namely in the space Rd with the
neuron basis for part (1) and in the space Rm with the feature basis for part (2). We start with part (1). Since there is a
polynomial number of neurons, bounding the ℓ∞ error o.n.p. is equivalent to bounding the difference for each coordinate:

Ei(x) :=

(
Φ(1,u)

(
Φ(0)

)T
(x)− Φ(1),ub(x)

)
· e⃗i.

This difference is a linear combination of the errors ϕ⃗(0)
k · x, with coefficients given by the matrix coefficients

(
Φ(1,u)

)k
i
,

with i fixed and k varying. For a pair (i, k) ∈ Γ, let σ(i, k) ∈ ±1 be the sign of the corresponding matrix coefficient (which
is chosen independently at random in the random variable-valued definition of our neural net). We then have

Ei(x) =
∑
k∈Γi

σ(i, k)x · ϕ⃗(0)
k .

By assumption, x · ϕk ≤ ε(0). Since the signs are chosen independently at random, we can bound this value o.n.p. by the
Bernstein inequality, Theorem 32, with discrete variables Xk = σi,kx · ϕ⃗(0)

k . Here k is indexed by a |Γi|-element set. By
definition of Φ(1), each element {1, . . . ,m} has probability p = 1√

sd
of being in Γi, so

|Γi| = m√
sd

+ Õ

(√
m√
sd

)
= Õ

(
m√
sd

)
.

Since all these random variables are bounded by ε(0) in absolute value, Bernstein’s inequality implies that o.n.p.,

Ei = O

(
ε(0) ·

(
m√
sd

)1/2
)
,
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giving part (1) of the lemma.

To prove the second part, note that the “ground truth” activation a⃗ground := Φ(1,u)b is an integer-valued vector with
coefficients (⃗aground)i =

∑
k∈Γi∩b σk. It is changed by applying the round function if and only if this sum is > 2 in absolute

value, i.e., if it is a “collision” (i.e., contained in the intersection) of at least 3 subset of the form Σk. The expectation of the
number of such overlaps a given neuron i ∈ {1, . . . , d} can be can be bounded by

O(
s3

(
√
sd)3

) = O

(
s3/2

d3/2

)
.

Thus the coefficients of the error vector

(−→errcollision)i = (⃗aground)i − round(⃗aground)i

are drawn i.i.d. from a distribution with mean 0 (as it is symmetric) and variance bounded by Õ( s
3/2

d3/2 ), which is absolutely
bounded by Õ(1). In other words, we have o.n.p. that this vector has at most

Õmax
(
1,
(
s3/2

√
d
))

entries all bounded by Õ(1), and with independently random signs. When we take the dot product with another unnormalized
feature vector we are left with an error bounded by

εcollision · ϕ⃗(1),u
k = Õmax

(
1,

(
s3/2

d1/2

))
,

completing the proof.

Now we can finish the proof. The interference bound in the lemma implies that o.n.p., the d-dimensional vector

Φ(1),u(b)− Φ(1),u(Φ(0,T )(x))

has all coefficients bounded by o(1), an in particular, bounded by 1/3. Since the LHS has all integer entries, this means that

round(Φ(1),u(b)) = round(Φ(1),u(Φ(0,T )(x)))

(As the “round” function is constant on [n− 1/3, n+ 1/3] for any integer n).

Since we have assumed that s < d1/3 (in A), the asymptotic term s3/2/d1/2 in the collision error bound is bounded by 1, so
o.n.p., εcollision · ϕ⃗(1),u

k = Õ(1). Finally, when we normalize, both sides of the dot product get multiplied by A = s1/4/d1/4,

and so after normalizing the coresponding bound gets multiplied by
√
s/
√
d, and we get the expression (o.n.p.):

ϕ⃗
(1)
k ·

(
Mw(x)− Φ(1)(b(x))

)
= Õ(

√
s/
√
d).

Finally, by a similar argument to the collision proof, we see that the unnormalized dot product Φ(1),u(b(x)) · ϕ⃗k is
√
d/

√
s

up to an error of Õ(1), so the error m

We claim that the pair (Mw,Φ
(1)) satisfies (o.n.p.) the conditions for the error-correction circuit above, for some appropriate

relationships between the values d, ε(0), ε(1) depending on m, satisfying asymptotic inequalities of the form

ε(0) = Õ
( d1/4

m1/2s1/4
)
,

ε(1) = Õ

(√
s√
d

)
,

µ(1) = Õ

(√
s√
d

)
.
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Lemma 24. For a suitable choice of εin as above we can guarantee that:

1. If −→err ∈ Rm has ||−→err||∞ < εin, then ||Φ(−→err)||∞ = o(1), o. n. p. (Note that the latter value is an ℓ∞ norm in the
neuron basis.)

2. If b is boolean and s-sparse, then Φ
A (round(Φ(b)) ≈εout b, o. n. p.

To get part (1) above, observe that for any neuron index i, we have

Φ(−→err)i =
∑

k|k∈Γi

σk,i
−→errk,

where we define Γi := {k | (k, i) ∈ Γ}. Since the signs σk,i are random and independent, this is a sum with random signs
of numbers of absolute value < εin. From the Azuma inequality, we see that (o. n. p.) Φ(−→err)i = Õ(−→err ·

√
|Γi|). Since the

Γ was chosen randomly, o. n. p.

|Γi| = Θ̃(|Γ|/d) = Θ̃(d
1−γ
2 ) = o(ε−2

in ).

The last statement follows from comparing exponents in the two sides, and the freedom of choice of polylog term in εin.

For part (2) above, observe that (Rout(round(Φ(b))))k is the average over the set Γk = {i | (k, i) ∈ Γ} of

ai := round

(∑
ℓ∈S

Φℓ,i

)

where S is the set of features that are on in b, of size |S| ≤ s. We want to compare this to bk, which is 1 if k ∈ S and 0
otherwise. We expect (for i ∈ Γk) that ai = 0 if bk = 0 and ai = 1 if bk = 1. Since round() always returns a value of
absolute value ≤ 1, we can bound the error by twice the number of incorrect values. We get errors of two types.

1. Interference error, from neurons that are on when they should be off. I.e., when ai ̸= 0 despite bk = 0.

2. Collision error, from neurons which should be on but are 0 (or have wrong sign) due to contributions from both Sk and
another feature.

Either of these errors happens when Γk and
⋃

ℓ∈S′ Γℓ intersect for S′ = S \{k}, the set of nonzero values of b not equal to k.
Now Γk has Õ(d

1−γ
2 ) nonzero entries and

⋃
ℓ∈S′ Γℓ has at most Õ(dγ+

1−γ
2 ) entries; since each subset Γk is independently

random, we see (o. n. p.) that the intersection has at most Õ(d
1+γ
2 dγ+

1+γ
2

d ) = Õ(1) entries, and the average is indeed
Õ(εout).

This completes the proof of the lemma. The theorem follows. Indeed, suppose that x ∈ Rdin is a vector with Rin(x) ≈εin b
for b ∈ {0, 1}m an s-sparse boolean vector. Setting −→err = Rin(x)− b, part (1) implies that

Φ ◦Rin(x)− Φ(b)

has coefficients at most o(1); since Φ(b) has integer entries, this means that applying round to both sides produces the same
results. Part (1) then implies that the RHS Φ(b) has sufficiently small interference.

Corollary 25 (Lemma 7). For sufficiently small input interfefrence there exists a 1-layer MLP that returns (outside negligible
probability) an encoding of the same boolean vector with low interference (1/

√
d assuming low sparsity parameter).

Proof. This follows from the theorem in the case γ = 0, i.e., when the sparsity parameter s is polylog in m.
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E.5. Targeted superpositional AND likely remove

In this section we prove a generalization of Theorem 3.2.

Let Γ ⊂ {1, . . . ,m}[2] be the edges of a graph (here the superscript [2] denotes the “exterior power” of a set, i.e., the set of(
m
2

)
unordered pairs). Assume that the number of edges |EΓ| = Õ(m). Let CΓ : {0, 1}m → {0, 1}EΓ be the circuit with

value
CΓ(b)(k,ℓ) = bk ∧ b

at the unordered pair (k, ℓ) ∈ EΓ corresponding to an edge of Γ. We think of CΓ as the (not quite universal) circuit that
takes AND’s of pairs of features in Γ and returns a boolean vector of roughly the same size.

We will show that this circuit can be emulated with suitably small interference on the output.

The proof is very similar to the proof of the error correction theorem above (Theorem ??), in particular with the main
argument controlled by a subset Γ ⊂ {1, . . . ,m}×{1, . . . , d}, with m the number of edges of Γ (i.e., outputs of the circuit).

There are however two main differences.

1. What we read from each subset Γk,ℓ associated to an edge (k, ℓ) ∈ Γ is a the result of a nonlinearity applied to a sum
of two random ±1 vectors ϕ⃗k, ϕ⃗ℓ (associated to the two inputs k, ℓ), that returns (up to small error) the sum of neurons
in of Γij where the signs of ϕ⃗k and ϕ⃗ℓ are both 1.

2. To control interference issues, we need to carefully partition the graph Γ into pieces with a certain asymptotic “balanced”
property (see Lemma ??).

3. The output interference is Õ(
√

s2

d instead of Õ(
√

s
d since there are O(s2) active output features (corresponding to

pairs of features that are on).

Theorem 26 (Targeted superpositional AND). Let m be an integer and Γ ⊂ {1, . . . ,m} × {1, . . . ,m} a graph. Assume we
have a readoff matrix Rin ∈ Matm×d that maps a d-dimensional space to an m-dimensional space, and let s = o(

√
m) be

a sparsity parameter (either polynomial or polylogarithmic in m). Let εin be an interference parameter.

Assume that we have ε2inmd
√
d/s = Õ(1) is bounded by some sufficiently small inverse polylogarithmic expression in

m. Then there exists a single-layer mixed emulation Mw(x) = ReLU(Winx+ wbias) of the universal AND circuit Cuand
(together with an “output readoff” matrix Rout) such that Mw is an emulation of CΓ on the input class B = Bs of boolean

vectors of sparsity ≤ s, with precision εin → εout, for εout = Õ

(√
s2

d

)
.

Before proving the theorem, we note that our UAND statements are corollaries:

Corollary 27 (U-AND with basis-aligned inputs). Fix a sparsity parameter s ∈ N. Then for large input length m, there
exists a single-layer neural network Mw(x) = MLP(x) = ReLU(Winx+ wbias) that ε-linearly represents the universal
AND circuit CUAND on s-sparse inputs, with width d = Õm(1/ε2) (i.e. polylogarithmic in m).

This follows from the fact that the incoming interference εin = 0 since the incoming feature basis is basis-aligned.

Corollary 28 (U-AND with inputs in superposition). Let s ∈ N be a fixed sparsity limit and ε < 1 a fixed interference
parameter. There exists a feature encoding Φ and single-layer neural net Mw(x) = MLP(x) = ReLU(Winx+wbias) with
input size min and width d = Õ(

√
min/ε

2), such that Mw ◦ Φ ε-linearly represents CUAND on all s-sparse inputs b.

This follows by restricting all but min =
√
m input features to 0 and taking Γ to be the complete graph on vertices

{0, . . . ,min}.

Now we prove the theorem.

Proof. We begin by considering a simpler case. We say that a graph Γ with m edges is self-balanced if each vertex has
degree at most Õ(1) (some fixed polylogarithmic-in-m bound).
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Suppose Γ is self-balanced. Define A :=
√
d/s. For each edge (k, ℓ) ∈ Γ, choose at random a subset Γkℓ ⊂ {1, . . . , d} of

size within a polylog error of A. Write also

Γk =
⋃

ℓ|(k,ℓ)∈Γ

Γk,ℓ.

Write down feature vectors ϕ⃗kℓ =
∑

i∈Γk
±e⃗i, with signs σk,i chosen independently and randomly for each k, i. For a pair

k, ℓ ∈ Γ, define the vector r⃗k,ℓ to be the indicator of the set of neurons

Γout
k,ℓ := {i ∈ {1, . . . , d} | σk,i = σℓ,i = 1},

Note that |Γout
k,ℓ | has, o. n. p., within a polylog difference from 1

4 |Γk,ℓ| = A
4 elements.

Write

ϕ⃗in
k :=

∑
ℓ|(k,ℓ)∈Γ

ϕ⃗k,ℓ,

Note that this is a indicator function of a union polylog-many independently chosen sets of size A. Write Φin for the m× d
matrix with columns ϕ⃗in

k .

Now we define the emulation net to be

MwΓ(x) =
4

A
ReLU(Φin(x)− 1).

We note that (outside interference and collision errors of frequency bounded o. n. p. by Õ(εout),) we have

ReLU(ΦT (b))− 1)i =

{
1, ∃k, ℓ ∈ S with i ∈ Γk,ℓ and σk,i = σℓ,i = 1

0, otherwise,
.

Here as before we take S ⊂ {1, . . . ,m} for the set of features that are on.

Analogously to our proof of Lemma 24’s part ?? we see that the difference ΦT (b)− ΦT (Rin(x)) is (o. n. p.) bounded by
o(1), and thus we are done just as in the previous lemma.

For general graphs Γ, we might have an issue if some vertices have very high degree; if one were to try to run the same
proof, their corresponding features would then admit unmanageably high interference.

To fix this, we note that in order to emulate CΓ it is sufficient (up to polylogarithmically increasing the number of neurons)
to emulate CΓ1

, . . . , CΓT
for some polylogarithmic collection of graphs Γt with ∪tΓt = Γ. We now split an arbitrary graph

Γ into subgraphs with a nice “balanced” property.

Let a, b ∈ R be parameters. We say that a graph is a, b-balanced if it is bipartite on a pair of disjoint subsets of vertices
V0, V1 ⊂ {0, . . . ,m}, such that |V0| = a, |V1| = b and each vertex in V0 has degree at most m/a and each vertex in V1 has
degree at most m/b. We say a graph Γ ⊂ {0, . . . ,m}[2] is balanced if it is a, b-balanced for some a, b.

It can be shown using an inductive argument that any graph Γ with m edges can be written as a union of polylog(m.)

Now it remains to show that the theorem holds for a balanced graph. Indeed, suppose that Γ has vertices supported on
V0 ⊔ V1 ⊂ {1, . . . ,m} and is a, b-balanced. Suppose (WLOG) that a ≤ b. Then we randomly partition the neurons
{1, . . . , d} into a roughly equal sets Γk for k ∈ V0 (equivalently, we choose a random map {1, . . . , d} → V0 and define Γk

to be the preimage of k). We then choose for ℓ ∈ V1 the set Γk,ℓ to be a random subset of size about
√

d/s2 inside Γk,
and define Γℓ = ∪k|(k,ℓ)∈Γ. We finish the argument by bounding the errors in the same way as in the self-balanced case,
concluding the proof.

F. Theoretical Framework and Statistical Tools
Here we provide statistical definitions and lemmas required for our proofs in Appendix E.
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F.1. Negligible probabilities

Most results in this paper are proven outside negligible probability. This is a standard notion in complexity theory and
cryptography (Bellare, 2002), with the following formal definition:

Definition 8. Let {En}∞n=1 be a sequence of events parameterized by n. We say that En is true with negligible probability
(w. n. p.) if for any polynomial exponent c ∈ N, there exists some constant Nc ∈ N such that P (En) < O(n−c) for all
n > Nc. Similarly, we say that En is true outside negligible probability (o. n. p.) if its complement En is true with negligible
probability.

If En = En(x) depends on an input in some set X , when we say En(b) is true with negligible probability for all fixed inputs
x ∈ X we implicitly assume that there is an explicit constant Cn < O(n−c) as above that bounds the probability of En(x)
for each valid input x ∈ X .

Intuitively, the reason why this probability is “negligible” is that the union of polynomially many events of negligible
probability also has negligible probability. As we never consider more networks requiring more than polynomially many
operations, we can ignore events of negligible probability at each step when performing asymptotic analysis, which greatly
simplifies our proofs.
Example 2. Let b be a random boolean vectors of length n. Then outside negligible probability, b has between n/2 +
log(n)

√
n and n/2− log(n)

√
n zeroes.

This follows from the central limit theorem. (Note that if we used
√

log(n)
√
n, the result would be false!)

For cases where the event is a bound on a random function (as above), we can combine “negligible probability” notation and
big-O, as well as big-Õ notation, as follows.

Definition 9. Suppose a function f(x) = fn(x) depends on the complexity parameter n and a fixed input x ∈ X and is
valued in random variables3. Let g(x) ≥ 0 be a deterministic function4. Then we say that

f(x) = Õ(g(x))

if there exists a polylog constant Kn = O(polylog(n)) such that, for any input x, the event |f(x)| < g(x)K(x) is true
outside negligible probability.

This lets us rephrase the previous example as “for b a random boolean vector of length m, we have
∑

bk(x) = m/2 +
Õ(

√
m).” We also list the following result, which will be important for us.

Lemma 28. Let d ∈ N be a complexity parameter. Let v ∈ (0,Γ/d) be a Gaussian-distributed random vector in Rd, and
let x ∈ Rd be a fixed input vector. Then, outside negligible probability, we have

1. |v| = 1 + Õ
(

1√
d

)
2. v · x = Õ

(
|x|√
d

)
.

Proof. The first statement is standard (and follows from the central limit theorem applied to the real variable (0, 1)2). The
second statement follows from the fact that sums of Gaussian random variables are Gaussian (and variance adds).

Note that this in particular implies a version of the Johnson-Lindenstrauss lemma:

Corollary 29. Suppose m is a polynomial function of d (which we take to be the complexity parameter), and suppose
ϕ⃗1, . . . , ϕ⃗m ∈ Rm are random vectors drawn from (0,Γ/d). Then outside negligible probability,

ϕ⃗k · ϕ⃗ℓ =

{
1 + Õ(1/

√
d), k = ℓ

Õ(1/
√
d), k ̸= ℓ.

3The input can be an “empty input”, i.e., f is itself a random variable depending only on n
4or a constant depending on n if x is an empty input
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Proof. We are checking polynomially many (namely, O(m2) with m polynomial in d) statements, thus by the union bound,
it suffices to show that each is true outside negligible probability. The corollary now follows by inductively on k applying 28
to ϕ⃗k · ϕ⃗k = |ϕ⃗k|2 and ϕ⃗k · ϕ⃗ℓ | ℓ < k, in the latter case taking the vector ϕ⃗ℓ as fixed.

Before continuing, we record the following simple result, which will allow us to convert “negligible probability” results to
our existence results in the body.

Theorem 30. Suppose that s = O(1) is a constant sparsity parameter, Mw is a model in a fixed class that depends on some
random parameters, and a property P (Mw, x) holds outside negligible probability for all inputs x = Φ(b) corresponding
to boolean inputs b ∈ {0, 1}m of sparsity s. Then there exists a model Mw such that the property P (Mw, b) holds for all
boolean inputs b.

Proof. This follows from the union bound, since the number of possibly inputs b with sparsity s is
(
m
s

)
< ms (and negligible

probability goes to zero faster than any inverse polynomial).

Remark 31. For every “negligible probability” statement we encounter, it is straightforward to check that, up to decreasing
the asymptotic parameters in appropriate Õ-asymptotic assumptions in the variables involved, we can guarantee for a
stronger statement to hold: namely, for any fixed c, we can guarantee that the negligible probability p asymptotically
satisfies p = O(exp(− log(m)c)). Thus (by another union bound), statements that are true with negligible probability for
any boolean input b of size ||b||1 = Õ(1) (at most polylogarithmic in m) can be made to hold for all such parameters b, for
an appropriate choice of parameters.

F.2. Concentration inequalities

Concentration inequalities (in the sense we use here) bound tail probabilities of sums of random variables which are either
i.i.d. or “close to” i.i.d. in some sense. As we only care about Õ-type precision in our error bounds (i.e., up to polylog
factors) and we need statements to be true only outside negligible probability, we are able to get away with very weak
versions of bounds which exist in general with much more precision; both of the results we need follow from the Bernstein
inequality for martingales (which subsumes the Azuma inequality).

Theorem 32 (Coarse Bernstein bound). Suppose that X1, . . . , Xn are a real random variable bounded by a constant M ,
which are either i.i.d. or form the difference sequence of a Martingale, i.e., E(Xi | X1, . . . , Xi−1) = 0. Then∑

xi = nµ+ Õ(M
√
n)

outside negligible probability, uniformly in the Xi. In other words, there exists a polylogarithmic sequence of constants
Kn = O(polylog(n)) such that the probability

P
(
|

n∑
i=1

(xi − [Xi])| < Kn ·M
√
n
)
≤ Pn

for some sequence Pn that goes to zero faster than any polynomial function in n.

Proof. This follows from Bernstein’s theorem, (?). In fact, both statements also follow from the simpler Azuma-Hoeffding
inequality.

Corollary 33. Let V = Ra be a vector space, with a = O(1) a constant (we will use a = 1 and a = 3). Let Σ ∈ Mata×a

be a fixed symmetric positive-definite matrix, with X = (0,Σ) the corresponding distribution. Let f : V → R be a fixed
function with subpolynomial growth in x, and let µ = [f(x), x ∼ X] be the mean of f on x drawn from this distribution. Let
x1, . . . , xm be a collection of variables drawn from i.i.d. copies of (0,Σ). Then o.n.p.,

∑
f(xi) = mµ+ Õ(

√
m), where

the polylogarithmic constant in Õ depends on f.

Proof. Since f has polynomial growth, f(x) < K(1+|x|c) for some constants C, d. Thus o.n.p. in m, f(x) ≤ (c log(Km))
(note that f(x) doesn’t depend on m; we’re just saying that P

(
f(x) ≤ d log(m)

)
goes to 0 faster than any polynomial
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function in m; in fact this probability is O(m− log(m))). Let M = c log(Km). Then the concentration theorem above
implies that

m∑
i=1

(f(xi)− [f(xi)]) = Õ(M) = Õ(1),

since M = Õ(1).

F.3. Precise and mixed emulations

The parameters in the models Mw in the proofs of our emulation results depend on random matrices of ±1’s and 0’s, hence
can be understood as suitable random variables. In terms of this point of view, we make the following definition.

Suppose that C : {0, 1}m → {0, 1}m′
is a boolean circuit with input size m. We always assume that the output size m′ and

the depth are at most polynomial in m. Let B ⊂ {0, 1}m be a class of inputs (usually characterized by a suitable sparsity
property). Let ε < 1 be an interference parameter.

Definition 10. An ε-precise emulation of C (on input class B) is a triple of data (Φ,Mw,R) all possibly depending on
random parameters where Φ ∈ Matdin×m is a feature matrix, R ∈ Matm′×dout is a readoff matrix and

Mw : Rdin → Rdout

is a (not necessarily linear) function given by a neural net, with the following property:

For any b ∈ B, we have, outside negligible probability,

||R ◦Mw ◦ Φ(b)− C(b)||∞ < ε.

Importantly, we do not consider the boolean circuit C or the input b ∈ B to be random variables, and the randomness
involved in the negligible probability statement is purely in terms of the parameters that go into the emulation scheme
(Φ,Mw,R). In particular, this guarantees that if the boolean input b is generated in a non-random way (e.g., adversarially),
an emulation nevertheless guarantees (in the “negligible probability sense”) safe performance on b so long as the parameters
of the emulation were chosen randomly.

It will be useful to extend the notion of emulation to one which correctly approximates C on inputs x ∈ Rdin which represent
a boolean input b ∈ {0, 1}m not in the sense of “pure superposition” x = Φ(b) but in the sense of “read-off”,

||Rin(x)− b||∞ < εin.

Here Rin ∈ Mat×mdin is a readoff matrix that should be thought of as a noisy inverse to the feature matrix on sparse inputs.
Formally, we make the following definition. Here we will assume that the matrix Rin was generated at an earlier stage of
the computation, and does not depend on random variables.

Fix a circuit C : {0, 1}m → {0, 1}m′
, a class of inputs B ⊂ {0, 1}m, and an “input readoff” matrix Rin ∈ Matm×din . Let

εin, εout be two interference parameters.

Definition 11. A mixed emulation of C with precision εin → εout (on input class B and relative to a fixed input readoff
matrix Rin) is a pair of data (Mw,Rout) both possibly depending on random parameters where R ∈ Matm′×dout

is a
readoff matrix and

Mw : Rdin → Rdout

is a (not necessarily linear) function given by a neural net, with the following property:

For any boolean input b ∈ B and x ∈ Rdin satisfying

||Rin(x)− b||∞ < εin,

we have, outside negligible probability,

||R ◦Mw(x)− C(b)||∞ < εout.
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Remark 34. Note that if it is impossible to accurately represent b via the matrix R, i.e., to satisfy ||R(x)− b||∞ < εin, then
the notion of mixed emulation is vacuous (any neural net would satisfy it for tautological reasons). We will generally apply
this notion in contexts where such representations are possible (for example, with via a suitable feature matrix x = Φ(b)).

Here as before we do not consider the boolean circuit C or the input b ∈ B to be random variables, and in addition the
representation x and the input readoff matrix Rin are assumed fixed. So the randomness involved in the negligible probability
statement is purely in terms of the parameters that go into the pair (Mw,R).
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