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ABSTRACT

The performance of Large Multimodal Models (LMMs) on downstream tasks im-
proves substantially when examples of visual-text relationships are incorporated
as context, with performance gains increasing as the number of examples and
the context window size grow. However, collecting high-quality training sets for
In-Context Learning (ICL) to retrieve multimodal examples is not trivial, particu-
larly in specialized domains like healthcare, remote sensing, finance, and scientific
research, due to the significant costs of manual labeling and strict privacy regu-
lations. In this paper, we introduce Active In-Context Learning (AICL), a novel
paradigm that eliminates the need for traditional training sets in multimodal ICL.
AICL dynamically selects and annotates a small, highly informative set of samples
in real-time during the query phase of LMMs. This active set evolves throughout
querying, with the most relevant examples being continuously retrieved from it to
optimize LMM performance on new data, without relying on pre-existing training
sets. To construct an optimal active set, we propose Spectral-based Representative
Sampling, which applies spectral clustering in the early query phase to select sam-
ples that are early, class-balanced, and representative, ensuring the active set cap-
tures key features of the data distribution and reduces data bias. To fully leverage
the active set, we propose Similarity-enhanced TopK Prompt Construction, which
retrieves the most relevant multimodal examples using a TopK similarity strategy
and integrates the visual similarities between the multimodal examples and the
query samples directly into the text prompts. By incorporating this similarity in-
formation, LMMs can better grasp the relationships, leading to more accurate and
context-aware predictions. Experimental results on 10 specialized datasets and
four LMMs show that our method significantly enhances LMMs’ generalization
performance. For example, in medical diagnosis tasks, our method, using only 10
annotated samples in the active set, outperforms existing ICL methods that rely on
2,000 annotated training samples.

1 INTRODUCTION

With advancements in large model research, Large Multimodal Models (LMMs) like GPT-4o
(Achiam et al., 2023), Gemini (Reid et al., 2024), Claude (Anthropic, 2024), and Qwen2-VL (Wang
et al., 2024) are becoming essential tools in both everyday tasks and professional settings, from
interpreting medical images to enhancing virtual assistants. Recent studies (Zhang et al., 2023;
Baldassini et al., 2024; Zhou et al., 2024) have demonstrated that LMMs can perform multimodal
In-Context Learning (ICL) for supervised tasks without needing parameter updates. Unlike standard
ICL (Mann et al., 2020), multimodal ICL relies on prepending multimodal demonstration examples,
such as medical images with their class labels (Ferber et al., 2024), to the query, allowing LMMs
to make context-aware predictions. These examples are typically retrieved from large training sets,
such as MINT-1T (Awadalla et al., 2024), which includes 1 trillion text tokens and 3.4 billion im-
ages. As the size of LMMs context window grows, Agarwal et al. (2024); Jiang et al. (2024) report
that adding more demonstration examples leads to obvious performance improvements in both gen-
erative and discriminative tasks, thus requiring even larger and more comprehensive training sets.

However, collecting large high-quality training sets for multimodal ICL in new tasks is challenging
for three main reasons. First, the high cost of manual labeling presents a significant barrier, espe-
cially in specialized domains where the complexity of the data often requires domain expertise for
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Figure 1: Comparison of Multimodal In-Context Learning (ICL) and Active In-Context Learning
(AICL): In specialized domains, acquiring high-quality multimodal training sets is often challeng-
ing. Differing from conventional ICL, AICL dynamically selects a small active set in real time
during the LMM query phase to eliminate the need for pre-existing training sets.

accurate annotation (Sheng et al., 2008; Huang et al., 2015; 2021). For example, manual annotation
of a pathology image can take anywhere from 13 to 48 minutes (Cazzaniga et al., 2024). Second,
downstream query data often exhibit distributional shifts compared to training sets. This is partic-
ularly evident in healthcare, where variations in scanners and patient cohorts can exacerbate these
discrepancies (Zhang et al., 2020; Guan & Liu, 2021). Zhou et al. (2024) has shown that such dis-
tributional shifts between ICL training sets and query data significantly reduce the performance of
multimodal ICL in various discriminative tasks in healthcare. Furthermore, the real-time nature of
downstream tasks, such as online systems, complicates the preparation of training sets due to contin-
uous updates in streaming data (Rani et al., 2023; Sun et al., 2021). Third, privacy concerns severely
limit the availability of training data. For example, the European Union’s General Data Protection
Regulation (GDPR) restricts access to patient datasets (Voigt & Von dem Bussche, 2017).

Figure 2: Comparison of ICL and AICL
paradigms on the test set (Hos0 from the
Camelyon17 dataset). AICL selects 10 sam-
ples directly from the test set to create the
active set, while traditional ICL uses public
datasets, specifically hos1-hos4, as the train-
ing set. However, the distribution of hos1-
hos4 differs slightly from that of hos0.

In this paper, we introduce Active In-Context Learn-
ing (AICL), a novel paradigm that enables dynamic
multimodal ICL by constructing an evolving active
set of annotated samples, which are curated by do-
main experts during query time. Unlike conven-
tional ICL approaches that rely on extensive pre-
annotated training sets, AICL selects and annotates
the most relevant samples as the model encounters
new data. This allows for the creation of a small
but highly informative active set that adapts to the
task on the fly (Fig. 1). AICL offers several ad-
vantages: (1) Enhanced sample efficiency, achieving
superior performance with only 10 annotated sam-
ples, outperforming traditional methods that require
2,000 annotated training samples (Fig. 2). This is
because, in real-world scenarios, training sets often
exhibit distributional differences, providing limited
contextual guidance for specialized query samples;
(2) Rapid adaptation in new tasks, effectively gen-
eralizing with only a few valuable samples; and (3) Enhanced privacy protection, since it enables
real-time annotation without accessing sensitive historical datasets. The key challenges AICL ad-
dresses include efficiently selecting the most informative samples and leveraging them in real-time
ICL to enhance LMMs’ generalization capabilities.

To construct an optimal active set, we propose Spectral-based Representative Sampling (SRS),
which ensures that selected samples are early, class-balanced, and representative. (1) SRS per-
forms early selection by identifying samples from the initial batch to ensure sufficient multimodal
examples are available early in the ICL process, preventing learning delays (Fig. 5(a)); (2) SRS
guarantees class balance by applying spectral clustering to high-dimensional features extracted from
the streaming data, where it selects an equal number of samples from each cluster to ensure that all
classes are well represented (Fig. 5(b)); (3) SRS ensures representativeness by choosing the samples
closest to the cluster centers, capturing the core characteristics of each class (Fig. 5(c)). To fully
leverage the active set, we introduce Similarity-enhanced TopK Prompt Construction (SimTopKPC).
SimTopKPC uses a TopK Prompt Retrieval strategy to select the most semantically relevant multi-
modal examples based on feature similarities, and explicitly incorporates these similarities into the
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text prompts. SimTopKPC enables LMMs to understand relationships between multimodal exam-
ples and the query samples. Empirical results highlight significant improvements, with a 30.1%
accuracy increase in one-shot settings on the Camelyon17 dataset and a reduction in labeling costs
by 90%, demonstrating the efficacy of our method (Fig. 3).

Figure 3: SRS with SimTopKPC consistently
outperforms other ICL methods, demonstrat-
ing significant improvements in both genera-
tive and discriminative tasks.

Our key contributions are: (1) We propose a
novel learning paradigm, Active In-Context Learn-
ing (AICL), which enables training-set-free ICL by
constructing an active set to improve the generaliza-
tion capabilities of LMMs (§3.1). (2) We identify
three critical characteristics for optimal sample se-
lection in AICL: early selection, class balance, and
representativeness. We propose the Spectral-based
Representative Sampling and Similarity-enhanced
TopK Prompt Construction modules to effectively
select and leverage these minimal active samples
(from §3.1 to §3.4). (3) We conduct comprehen-
sive experiments on 10 benchmark datasets and four
LMMs (Gemini 1.5 Flash, Gemini 1.5 Flash 8B,
Qwen2-VL-72B, Glaude 3 Sonnet), which demon-
strate that our approach significantly outperforms
baselines in real-world scenarios (§4).

2 RELATED WORK

2.1 IN-CONTEXT LEARNING

In-Context Learning (ICL) has emerged as a powerful strategy in natural language processing (Lu
et al., 2021; Huang et al., 2024; Akyürek et al., 2024; Wies et al., 2024; Wei et al., 2022), driven by
advancements in Large Language Models (LLMs) such as GPT-3 (Mann et al., 2020). For instance,
ICL can use a set of review-sentiment examples to predict the sentiment of new reviews (Dong
et al., 2022). ICL offers a more feasible solution compared to fine-tuning, which requires modify-
ing model parameters—a process often impractical due to intellectual property restrictions or the
computational expense of retraining large models. By contrast, ICL requires only examples from
a relevant task, allowing LLMs to make predictions without altering the underlying model. This
flexibility is particularly useful in specialized domains where data privacy and regulatory concerns
prevent the free exchange of annotated datasets (Dong et al., 2022; Min et al., 2022).

Multimodal ICL has gained significant attention in the multimodal domain for its ability to enhance
the generalization of Large Multimodal Models (LMMs) in specialized fields such as healthcare and
visual interpretation (Zhou et al., 2024; Ferber et al., 2024). One key strength of multimodal ICL is
its ability to retrieve demonstration examples from accessible training sets to improve performance.
The pioneering Flamingo study (Alayrac et al., 2022) highlighted the crucial role of selecting high-
quality examples for tasks like image generation and interpretation (Bar et al., 2022; Wang et al.,
2023; Liu et al., 2021). However, collecting high-quality training sets remains a challenge. To ad-
dress this, we introduce a paradigm for constructing an optimal active set during test time, enabling
models to handle real-time queries without depending on pre-existing training sets.

2.2 ACTIVE LEARNING

Active Learning (AL) seeks to improve model performance by selectively labeling a small yet highly
informative subset of samples (Michael, 2006; Settles, 2009). Traditional AL methods typically rely
on metrics derived from model outputs, such as (1) Uncertainty (Siddiqui et al., 2020; Holub et al.,
2008), including entropy; (2) Diversity (Brinker, 2003; Agarwal et al., 2020; Sener & Savarese,
2018), such as CoreSet; and (3) combined uncertainty and diversity strategies (Ash et al., 2019;
Yang et al., 2015), such as BADGE. This paper seeks to enhance the generalization of LMMs at test
time. Our approach differs in two key aspects: first, LMMs in our lightweight ICL framework often
act as black-box models, making it difficult to extract conventional uncertainty or diversity metrics.
As a result, we propose spectral-based representative sampling to construct an optimal active set.
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Second, due to the complexity and size of LMMs, fine-tuning is often impractical, which is why
we focus on developing the similarity-enhanced TopK prompt construction for more effective ICL
example utilization, further boosting model performance without modifying underlying parameters.

3 METHOD

3.1 ACTIVE IN-CONTEXT LEARNING

Active In-Context Learning (AICL) aims to enhance the generalization of LMMs by constructing
an ‘active set’ at test time, removing the need for a pre-existing training set. Let’s start by clarifying
the distinction between multimodal in-context learning and AICL.

Multimodal In-context Learning needs a pre-existing multimodal training set, Ds =
{(xn, yn)}Nn=1, comprising N pairs (e.g., an image and its label). Given a query image xq from
a test set Dq , a text question xt (which could ask if the image belongs to a specific class or pose a
free-form question about it) and a set of candidate answers Y = {y1, y2, ...ym} (where Y could be
class labels or a set of free-text phrases), multimodal in-context learning (ICL) is formulated as:

yq = f(P, xq, xt) | yq ∈ Y , (1)

here, P = {(x1, y1), ..., (xk, yk) ∈ Ds} denotes the multimodal ICL examples, chosen as K samples
from the training set, and K ≪ N .

Active In-Context Learning (AICL) differs from multimodal ICL by building an ‘active set’ Dl

from streaming data batches, with the batch size represented as bz . Instead of relying on a pre-
existing training set, AICL selects ICL examples from this dynamically constructed active set. The
expert labeling budget is defined as B, where B ≪ |Dq| and B ≪ |Ds|, reflecting the high cost of
expert annotation. Formally, when streaming data batch Di

q arrives in the i-th batch and |Dl| < B,
indicating available annotation resources, AICL needs to efficiently select the most valuable active
samples from Di

q for expert annotation. These samples, once annotated, are incorporated into the
active set Dl. Subsequently, for a given query image xi

q within Di
q , accompanied by a text question

xt, and a set of candidate answers Y , AICL is formulated as:

yq = f(P a, xi
q, xt) | yq ∈ Y , (2)

here, P a = {(x1, y1), ..., (xk, yk) ∈ Dl} denotes the multimodal ICL examples, chosen as K sam-
ples from our active set.

In practice, once active samples are selected from Di
q , and added to the active set, each query sample

in Di
q is processed using this set to select ICL examples for prediction. Only after the entire batch

is completed, the next batch Di+1
q is introduced. If the annotation budget has not been exhausted,

active sample selection continues for Di+1
q , and its samples are sequentially predicted; if the budget

is depleted, predictions proceed directly using the existing active set. This cycle repeats until all
batches are processed.

Challenges. According to the definition, AICL needs to address two critical factors that enhance the
generalization of LMMs. (1) Active selection: Efficiently identifying informative active samples
from streaming data batches and constructing the active set is crucial. Our experiments (Fig. 4(a))
show that selecting ICL samples using the TopK strategy from different active sets leads to varying
performance gains, with performance differences between sets reaching up to 16.9% in downstream
tasks. To enhance stability and performance, AICL requires effective sampling strategies to select
optimal active samples. (2) ICL example utilization: Selecting and utilizing relevant ICL examples
from the active set is equally important. Our experiments (Fig. 4(b)) demonstrate that random ICL
example selections yield marginal benefits, with performance increasing only about 2% on datasets
like EuroSAT and COVID-CT after annotating 10% of test samples. AICL must carefully select and
leverage relevant ICL examples to significantly improve performance in the ICL process.

To tackle these challenges, we identify three key characteristics for optimal active samples: early
selection, class balance, and representativeness. We introduce a Spectral-based Representative Sam-
pling module to identify these samples and a Similarity-enhanced TopK Prompt Construction mod-
ule to effectively select and utilize relevant ICL examples from the active set.
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(a) Active sample selection is critical to AICL (b) ICL examples utilization is critical to AICL

Figure 4: Challenges in AICL: (a) Selecting active samples with different random seeds (Rando-
mAL) generates varying active sets. Using TopK ICL example retrieval from these sets results in
performance variations of up to 16.9%. (b) Even though the active sets contain the most valuable
samples selected by our SRS module, randomly selecting ICL examples (RandomPR) from these
sets still yields minimal performance gains, with less than a 2% improvement observed in EuroSAT.
In all figures, the notation ‘p<0.05’ denotes statistical significance.

(a) Early Selection (b) Class Balance (c) Representative

Figure 5: Evaluation of the three traits of active samples using the first three domains in the Came-
lyon17 dataset follows two principles. First, Top-1 prompt retrieval effectively selects relevant ICL
samples for each query. Second, these traits are interdependent, enhancing one another: (a) Early
Selection: Choosing samples from the initial batch markedly improves performance, with ‘Batch
1’ being the earliest, followed by others sequentially. (b) Class Balance: Maintaining an even dis-
tribution of samples across classes, demonstrated by ratios such as ‘10:0’ for normal and tumor
classes, significantly boosts performance. (c) Representativeness: Selecting samples close to the
class center, described as ‘Near,’ ‘Far,’ and ‘Moderate Near,’ also enhances performance.

3.2 THREE CHARACTERISTICS OF OPTIMAL ACTIVE SAMPLES

Early Selection. As shown in Fig. 5 (a), selecting active samples early significantly improves per-
formance. Active samples chosen from the first batch outperformed those selected from the third
batch by 22.8%, 23.2%, and 20.5% for different domains (hosp0, hosp1, and hosp2), respectively.
This demonstrates the importance of beginning sample annotation as soon as the initial batch of data
is received to develop a well-prepared active set (Dl). Delaying this step leads to poorer perfor-
mance, as the early querying samples lack sufficient ICL examples for effective reference.

Class Balance. Fig. 5 (b) demonstrates that a balanced class distribution in the active set (Dl)
greatly improves performance. In binary classification, the ‘5:5’ ratio achieved a performance gain
of 38.6%, 32.6%, and 35.5% over the extreme ‘10:0’ ratio in different domains, respectively. This
demonstrates the necessity of maintaining a balanced class distribution to prevent bias in the selec-
tion of ICL examples. When the active set is imbalanced, the model struggles to correctly identify
underrepresented classes due to the absence of relevant ICL examples.

Representativeness. As shown in Fig. 5 (c), selecting samples closer to their class centroids sig-
nificantly improves performance. Samples closer to the centroids outperformed those farther away
by 26.7%, 24.2%, and 14.0% for different domains, respectively. This highlights the importance of
selecting representative samples to maintain the quality of the active set. Centroid-proximate sam-
ples provide clearer class separation and more accurate information, enhancing the model’s ability
to interpret downstream queries and improving overall performance in LMMs.
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Figure 6: The framework of our method combines Spectral-based Representative Sampling (SRS)
and Similarity-enhanced TopK Prompt Construction (SimTopKPC). SRS leverages spectral clus-
tering to select optimal samples near cluster centers in the initial streaming data batches, ensuring
early, balanced, and representative sampling. SimTopKPC uses a TopK similarity strategy to re-
trieve relevant demonstration examples and embeds visual similarities between these examples and
test samples directly into the text prompts, enhancing the understanding of LMMs.

3.3 SPECTRAL-BASED REPRESENTATIVE SAMPLING

As shown in Fig. 6, we introduce a Spectral-based Representative Sampling (SRS) module to ex-
plore the optimal active samples. The overarching formula is as follows.

Dl =

v⋃
i=1

(
m⋃
c=1

{(
x∗
i = argmin

xi∈Cc

∥z(xi)− µc∥, y
)

| xi ∈ Di
q, |Xc| = nc

})
, (3)

Here, v represents the total number of data batches with active sample selection, Di
q is the batch

samples from the i-th batch, z(x) represents the feature vector from the encoder such as CLIP-ViT,
y is the true label of xi, m denotes the number of cluster centroids, µc is the average features of
cluster c, Cc represents the samples within the cluster c, Xc represents the number of active samples
selected from the cluster c, where |Xc| = nc. The label budget for the i-th streaming query batch Bi

=
∑m

n=1 nc ∗m, and the total label budget B =
∑v

i=1 B
i.

Next, we analyze why the selected Dl meets the above three characteristics.

(1) To ensure a sufficient active set, SRS selects active samples from the initial streaming query
batches {D1

q ,...Dv
q}, where v ≪ nbz , with nbz representing the total number of batches.

(2) To obtain class-balanced active samples, we first need to cluster samples Di
q from the i-th stream-

ing query batch to form well-defined groups. Spectral clustering (Von Luxburg, 2007) is applied to
the features z extracted by the pre-trained encoder from the Di

q . This method is chosen due to its
superior performance in handling high-dimensional, nonlinear feature spaces, outperforming tra-
ditional clustering algorithms and producing results more aligned with true class distributions, as
shown in Fig. 7. Once clusters are established, an equitable selection of samples from each cluster
is made to maintain class balance:

nc =
Bi

m
, c ∈ 1, 2, ...,m , (4)

where nc represents the number of active samples selected from the c-th cluster, Bi is the labeling
budget in the i-th batch, and m is the number of clusters formed.

(3) To obtain representative active samples, SRS builds on the well-formed clusters by selecting
samples closest to each class centroid within each class:

x∗
i = argmin||z(xi)− µc||, xi ∈ Cc , (5)

where x∗
i denotes the selected active sample from cluster c, Cc represents the samples within cluster

c, and µc is the average features (class centroid) of cluster c.

3.4 SIMILARITY-ENHANCED TOPK PROMPT CONSTRUCTION

Similarity-enhanced TopK Prompt Construction (SimTopKPC) aims to select and utilize the multi-
modal ICL examples from the active set, integrating both image and text modalities.

6
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Figure 7: Comparison of clustering results from different unsupervised clustering algorithms on
the hosp1 dataset at the first data batch. High-dimensional features, reduced via PCA, are plotted
using the first two principal components on the horizontal and vertical axes. Among these, spectral
clustering (top center) more closely matches the true labels (top left) than the other algorithms.

For the image modality, SimTopKPC employs the TopK unsupervised technique (Zhou et al., 2024)
to select visual examples by assessing the similarity between the feature vectors of the query image
xq and those within the active set. This similarity is quantified using the cosine metric, computed
by a pre-trained vision encoder such as CLIP-ViT (Radford et al., 2021):

cos(xq, xa) =
z(xq) ∗ z(xa)

||z(xq)|| ∗ ||z(xa)||
, (6)

where z(x) represents the feature vector from the encoder, with xq from the querying test set Dq

and xa from the active set Dl. The top K images most similar to the query are selected by:

topK({cos(xq, xa) : i = 1, ..., B}) , (7)

where the operation topK selects indices corresponding to the K most pertinent samples from the
active set. These chosen images serve as in-context examples for LMMs, thereby enhancing their
understanding and effectiveness in our specialized domains.

For the text modality, we refine the model’s understanding of active labels in ICL samples by incor-
porating prompts that specify expert-designated true labels, such as: ‘The image [i] has been ac-
curately categorized as [true class] by domain experts.’ To further enhance the model’s context-
awareness of downstream query samples, we introduce prompts emphasizing the similarity between
the ICL image and the query image, stating: ‘Note that image [i] is similar to the next query im-
age.’ By explicitly outlining these similarities, the model can better comprehend the relationships
between ICL examples and query samples, allowing it to more efficiently identify key information
and characteristics in new queries.

4 EXPERIMENTS

Datasets Overview. We focus on the task of specialized domains (medical imaging, remote sens-
ing, and molecular imaging), where acquiring high-quality training sets is particularly challenging.
Specifically, we conduct a rigorous evaluation involving discriminative and generative tasks and
utilizing 10 diverse datasets: HAM10000 (Tschandl et al., 2018), Chest-Xray (Wang et al., 2017),
Camelyon17 (Bandi et al., 2018), COVID-Xray (Han et al., 2021), COVID-CT (Yang et al., 2020),
DrugOOD-Assay (Ji et al., 2022), EuroSAT (Helber et al., 2019), VQA-RAD (Lau et al., 2018),
along with two proprietary optical coherence tomography (OCT) datasets. These datasets support
various tasks such as multi-class classification, fine-grained classification, and visual question an-
swering. Building on a related study (Han et al., 2024), we analyze practical test subsets from each
dataset. As the two OCT datasets are proprietary, they are excluded from the pre-training data of

7
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Method Camelyon17 EuroSAT
Hosp0 Hosp1 Hosp2 Hosp3 Hosp4 Avg Acc

Zero-shot 53.5 46.3 64.5 51.9 59.5 55.1 28.7
RandomAL + RandomPR 59.4 52.6 68.8 61.0 64.3 61.2 28.0
RandomAL + SimTopKPC 83.1 64.2 87.6 77.9 75.0 77.6 63.5
BeginAL + SimTopKPC 81.7 61.6 89.8 76.6 78.0 77.6 62.7
SRS + RandomPR 63.4 55.8 72.0 66.2 61.4 63.8 30.3
SRS + TopKPR 72.3 54.7 76.3 61.0 59.5 64.8 56.6

SRS + SimTopKPC 90.1 80.0 87.1 83.1 85.7 85.2 64.7

Table 1: Performance comparison on Camelyon17 and EuroSAT datasets

Method HAM10000 COVID-CT VQA-RAD
RD VMod VMol Vdis Avg Acc Acc

Zero-shot 26.1 33.8 55.4 68.9 46.1 54.5 69.0
RandomAL + RandomPR 30.9 38.9 53.0 77.8 50.5 57.5 60.1
RandomAL + SimTopKPC 33.1 32.5 37.8 71.1 48.3 68.3 76.5
BeginAL + SimTopKPC 33.4 32.1 62.1 81.1 52.2 68.8 76.5
SRS + RandomPR 32.1 38.9 53.0 73.3 49.3 55.5 53.5
SRS + TopKPR 35.2 44.6 65.1 86.7 57.9 57.0 63.5

SRS + SimTopKPC 36.4 46.5 63.5 86.7 58.4 72.5 79.5

Table 2: Performance comparison on HAM10000, COVID-CT, and VQA-RAD datasets

Large Multimodal Models (LMMs), resulting in distributional shifts. The inclusion of these datasets
is intended to rigorously evaluate the proposed methods’ effectiveness across varied distributions. A
detailed description of all datasets can be found in the Appendix, Table 4.

Models Overview. We employ four state-of-the-art large multimodal models with publicly available
API access: Gemini 1.5 Flash (Reid et al., 2024), Gemini 1.5 Flash 8B (which has a different number
of parameters), (Reid et al., 2024), Claude3 Sonnet (Anthropic, 2024), and Qwen2-VL-72B (Wang
et al., 2024). Given the free accessibility of Gemini 1.5 Flash, we primarily focus on its performance,
with additional validation using the other models.

Baselines. In AICL, we design seven baselines: Zero-shot, RandomAL + RandomPR, RandomAL
+ SimTopKPC, BeginAL + SimTopKPC, SRS + RandomPR, SRS + TopKPR, and SRS + Sim-
TopKPC. Here, RandomAL, BeginAL, and SRS represent active sample selection strategies, while
RandomPR, TopKPR, and SimTopKPC denote various approaches for selecting and leveraging ICL
examples from the active set. For active sample selection under the constraint of the label budget
B, RandomAL selects and labels active samples using different random seeds in the initial batch (v
= 1) to construct the active set. We conduct experiments using five seeds (0, 1, 2, 3, 4) and report
the averaged results. BeginAL selects the first B active samples from the start of different data
streams, with repeated experiments using the same seeds. SRS, our proposed strategy, identifies
the top optimal samples. Notably, we exclude traditional active learning methods such as entropy
(Holub et al., 2008) and coreset (Sener & Savarese, 2018), as LMMs, being API-based models,
cannot reliably output uncertainty scores like entropy values. After constructing the active set, Ran-
domPR randomly selects ICL examples from this set. In contrast, TopKPR selects ICL examples
using a nearest neighbor approach (Eq. 7), while SimTopKPC applies the optimal selection and
utilization strategy for ICL examples, developed in this work, across both image and text modalities.
Implementation details are provided in the Appendix.

4.1 MAIN RESULTS

As shown in Tables 1, 2, and 3, we first evaluate the zero-shot performance of large multimodal mod-
els (LMMs) on eight benchmark datasets. These results reveal significant limitations in generalizing
to specialized domains with zero-shot learning. In expert-dependent datasets like Camelyon17,
EuroSAT, and HAM10000, zero-shot performance remains low at 55.1%, 28.7%, and 46.1%, re-
spectively, highlighting the major challenges in applying LMMs to these domains.
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Method Chest-Xray COVID-Xray DrugOOD Assay
AP PA Avg Sou Tar Avg Acc

Zero-shot 8.6 11.3 10.0 46.3 44.9 45.6 48.5
RandomAL + RandomPR 17.0 17.0 17.0 47.2 47.9 47.6 55.5
RandomAL + SimTopKPC 16.2 18.2 17.2 79.0 66.1 72.5 56.3
BeginAL + SimTopKPC 16.7 17.3 17.0 77.8 66.5 72.2 60.8
SRS + RandomPR 17.3 18.3 17.8 54.2 52.1 53.2 59.5
SRS + TopKPR 19.0 18.6 18.8 50.9 66.5 58.7 53.5

SRS + SimTopKPC 21.3 19.3 20.3 82.7 69.9 76.3 63.0

Table 3: Performance comparison on Chest-Xray, COVID-Xray, and DrugOOD Assay datasets

For active sample selection, the baseline RandomAL and BeginAL approaches, which select exam-
ples from the initial batch, are markedly less effective than our proposed SRS method. Even when
integrated with SimTopKPC for in-context example selection and utilization, RandomAL and Be-
ginAL fall short. Across the Camelyon17, EuroSAT, HAM10000, COVID-CT, NIH-Chest, Chest-
Xray, and DrugOOD-Assay datasets, our SRS method outperforms zero-shot results by margins of
30.2%, 36%, 12.3%, 18%, 10.3%, 30.7%, and 14.5%, respectively, using only a 10% annotation
budget. This substantial improvement highlights SRS’s capability to pinpoint optimal samples from
streaming data, far surpassing existing active learning baselines.

After constructing the active sample set using the SRS method, we evaluated the efficacy of
RandomPR, TopKPR, and our SimTopKPC methods for selecting and utilizing in-context ex-
amples from the active set Dl to enhance downstream task predictions. RandomPR, which
randomly selects in-context examples, generally performs poorly. Conversely, combining SRS
with a pre-trained vision encoder for example selection based on feature similarity—denoted as
SRS+RandomPR—achieves significant improvements, with increases of 12.6% and 26.3% on the
HAM10000 and EuroSAT datasets, respectively. However, this approach yields only marginal en-
hancements of 1.0% and 1.5% on the Camelyon17 and COVID-CT datasets, indicating inconsistent
performance across different contexts. Our SRS+SimTopKPC strategy consistently surpasses all
other methods, showing notable gains of 20.4% on Camelyon17 and 15.5% on COVID-CT com-
pared to SRS+TopKPR. These results underscore the critical role of sophisticated visual active sam-
ple selection and contextual cues in AICL to improve the generalization capabilities of LMMs.

4.2 ANALYSIS

Ablation on three characteristics. To evaluate whether the active samples selected by our SRS
achieve class balance and representativeness, we defined two metrics: Class Entropy (CE) and Class
Similarity (CS). CE is calculated by the entropy (Holub et al., 2008) of p, where p is the distri-
bution vector of class quantities within the selected active samples, indicating class balance. A
more uniform distribution vector, such as p = [0.5, 0.5] in binary classification, signifies optimal
class balance. CS quantifies representativeness as CS = Avg(s), where s measures the similarity
of class-specific samples to their class centers, with higher averages suggesting closer proximity to
class centers and greater representativeness, exemplified by s = [1.0, 1.0] in binary classifications
using cosine similarity. For analytical clarity, we compared the combined metric: Values = CE×CS
across different tasks in the Camelyon and HAM10000 datasets, as depicted in Fig. 8, our SRS con-
sistently achieves higher values, indicating superior selection of active samples that simultaneously
meet criteria for class balance and representativeness. To maintain selection fairness, all baselines
employed a priority-based selection for their first active sample batch at v = 1.

Evaluation on Different LMMs. We select two proprietary Large Multimodal Models
(LMMs)—Gemini 1.5 Flash 8B and Claude 3 Sonnet—and an open-source LMM, Qwen2-VL-72B,
for a comprehensive comparative analysis. Due to the high computational demands and associated
costs of Claude 3 Sonnet, our experimental scope was confined to the Camelyon17 dataset. As
depicted in Fig. 8(b), our method consistently demonstrates superior performance across various
LMMs, proving its robust generalization capability across different domains and thereby expanding
the application boundaries of generic large models.

Evaluation on Distribution shifts. We evaluate the robustness of our method in handling distribu-
tion shifts (the differences between the data used for training and the data encountered during testing)
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(a) Camelyon17 (b) HAM10000 (c) Performance comparison on different LMMs

Figure 8: (a) and (b) present the ablation study on Class Balance and Representativeness for the
Camelyon17 and HAM10000 datasets. The horizontal axis shows different domains, while the
vertical axis represents the composite metric (CE * CS), where CE measures class balance (entropy)
and CS measures representativeness (average similarity to class centers). Higher values indicate
better sample selection, highlighting the superior efficacy of our SRS. (c) shows the performance
comparison across three LMMs.

(a) OCT-1 (b) OCT-2 (c) Label Budget

Figure 9: Performance comparison on proprietary datasets with distribution shifts ((a) and (b)).
Ablation study on label budget B (c).

using two proprietary medical datasets (OCT-1 and OCT-2). These datasets were not included in the
original training set of LMMs, allowing for an objective assessment of the models’ ability to gen-
eralize across real-world distributional discrepancies. As demonstrated in Fig. 9(a) and (b), even
with only 10% of the samples labeled, our method enables LMMs to effectively generalize across
these distribution shifts, leading to more accurate diagnoses of eye diseases. By leveraging our ap-
proach, LMMs outperform existing baselines, demonstrating superior adaptability and robustness in
handling real-world variations commonly found in medical imaging.

Evaluation on Different Label Budgets B. We analyze the impact of different label budgets B
on our method’s performance compared to established baselines (RandomAL and BeginAL) within
hosp0. As shown in Fig. 9(c), our approach (SRS + SimTopKPC) consistently outperforms these
baselines across various labeling costs, due to its superior selection of optimal active samples.

5 CONCLUSION AND DISCUSSION

To address the challenge of acquiring high-quality training sets for In-context Learning, we intro-
duced a novel paradigm, Active In-context Learning (AICL). AICL dynamically selects and la-
bels informative samples to form an active set, thus eliminating the need for traditional training
sets. We utilized Spectral-based Representative Sampling to construct this optimal active set, em-
ploying spectral clustering to ensure the samples are early, class-balanced, and representative. Our
Similarity-enhanced TopK Prompt Construction module further refines the similarity relations be-
tween selected samples and query inputs in both image and text modalities, enhancing the model’s
understanding. This paradigm not only surpasses standard zero-shot performance with minimal
annotation but also outperforms existing active learning baselines. Experimental results across mul-
tiple datasets and models confirm our method’s enhanced generalization capabilities. This paper
focuses on a relatively static scenario where the downstream data distribution remains unchanged
over time. Future work will explore dynamic scenarios where the distribution evolves, enhancing
the LMMs’ ability to understand and adapt to new and changing tasks.
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We present the following items in the Appendix:

A. Experimental Details.

B. Additional Experimental results.

A EXPERIMENTAL DETAILS

A.1 DATASETS

Dataset Task and image Type # Classes # Domain size #Test set size Per-domain label budget Example Image

Camelyon17 Tumor detection on pathol-
ogy images

2 5 450 10

HAM10000 Skin disease classification
on clinical photos

7 4 450 10

COVID-Xray Pneumonia detection on X-
radiation

3 2 450 20

Chest-Xray Multi-label lung disease de-
tection on chest X-rays

15 2 400 20

COVID-CT Pneumonia detection on
Computed Tomography

2 1 200 20

DrugOOD-Assay Drug binding prediction on
molecular images

2 1 200 20

EuroSAT Land use / land cover classi-
fication on satellite images

10 1 300 30

VQA-RAD Medical vision question an-
swer with Yes/No

2 1 200 20

OCT-1 Ophthalmic Disease Diag-
nosis

3 1 200 20

OCT-2 Ophthalmic Disease Diag-
nosis

4 1 200 20

Table 4: Summary of benchmark datasets. We use 10 datasets spanning multiple domains (medical
imagery, remote sensing, molecular imagery) and tasks (multi-class classification, fine-grained clas-
sification, and visual question answering).

We evaluate model performance on 10 datasets spanning multiple domains, including medical imag-
ing, remote sensing, and molecular imaging, covering tasks such as multi-class classification, fine-
grained classification, and visual question answering (VQA). For the VQA task, we specifically
assess the model’s accuracy on yes/no questions. The two proprietary OCT (OCT-1 and OCT-2)
datasets facilitate the evaluation of the model’s robustness in handling unseen downstream data with
distributional shifts. The OCT-1 dataset was generated using a commercial 70 kHz spectral domain
OCT system and comprises 160 images categorized as Normal, Age-related Macular Degeneration
(AMD), and Diabetic Retinopathy (DR). The OCT-2 dataset was collected using the Heidelberg
Spectralis OCT system, containing 400 images classified into Choroidal Neovascularization (CNV),
Diabetic Macular Edema (DME), Drusen, and Normal. A detailed summary of the datasets used in
this study is provided in Table 4.
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Following existing works (Zhou et al., 2024; Jiang et al., 2024), we construct test sets from the
original test splits, where available, to evaluate model performance. We sample the test sets from
the original datasets without replacement. For Camelyon17, HAM10000, and COVID-Xray, we
utilize publicly available subsets. For the remaining datasets, we select test sets based on the number
of domains: for datasets with a single domain, 200 samples are randomly selected; for EuroSAT,
due to its larger number of categories, 300 samples are chosen. Furthermore, for each dataset, we
designate approximately 10% of samples per domain as active samples in our AICL. For example,
in a domain with 100 samples, 10 are actively labeled, and in a domain with 200 samples, 20 are
labeled, following this proportional approach.

A.2 PROMPTS

Referencing the template designed for existing Prompts, the complete prompt for our paper is as
follows:

1 image_descriptions = [f"Image {i+1} has been accurately categorized as {
image_class}" for i by domain experts, (desc, image_class) in
enumerate(source_images). "Note that image {i+1} is similar with the
next query image."]

2

3 prompt = Given the images, answer the following question, using the
specified format.{images_description}.

4

5 Question: What is the class of the next image? Choices: {class_names}.
6

7 Please respond with the following format for each image:
8 ---BEGIN FORMAT TEMPLATE---
9 Answer Choice: [Your Answer Choice Here]

10 Confidence Score: [Your Numerical Prediction Confidence Score Here From 0
To 1]

11 ---END FORMAT TEMPLATE---
12

13 Do not deviate from the above format.
14 Repeat the format template for the answer.

A.3 IMPLEMENTATION DETAILS

In our experimental setup, we employ the CLIP (vit-large-patch14-224-clip-laion2b) configuration
to extract features from each dataset sample, which are subsequently used for clustering and the
TopKPR process. In the VQA task, we leverage CLIP’s text encoder to extract textual features from
the ‘question’ field and combine these with image features to select the top-K ICL samples. We
adjust the budget B for active samples based on dataset size: for datasets containing fewer than
200 samples, the budget is set at 10; for those with more than 200 samples, it is increased to 20,
ensuring that active samples represent approximately 10% of the total streaming query samples.
Correspondingly, the batch size is established at 32 for smaller datasets and increased to 64 for
larger datasets. The TopKPR strategy, as outlined in Eq. 7, is implemented to select ICL example
samples with the parameter K set to 1, motivated by the relatively low token count in the input
examples which enhances computational efficiency and reduces costs. We explore a static scenario
with consistent query distributions, using the initial batch as a representative sample to approximate
the entire dataset. Thus, we set v to 1 for adequate ICL referencing.

A.4 LIMITATIONS.

Our experiment is constrained by two principal limitations: the lack of contextual learning capabili-
ties in existing open-source models for medical datasets and the restrictive recognition of only pre-
defined natural labels, which complicates the design of medically relevant prompts. Consequently,
our experiments were solely conducted on private large multimodal model APIs, which limits the
comprehensiveness of our results. Additionally, the selected datasets, both medical and proprietary,
are relatively small, typically ranging between 100 and 400 samples. This limited data volume re-
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(a) hosp0 (b) hosp1 (c) hosp2 (d) hosp3 (e) hosp4

Figure 10: Comparison of performance on five domains (hosp0 - hosp4) in the Camelyon17 dataset
across three settings: zero-shot without ICL examples, unsupervised ICL examples lacking correct
labels, and our supervised ICL examples during the multimodal ICL process.

(a) ICL example count (b) Time for active selection (c) Active learning in small model

Figure 11: (a) Ablation study on label budget B. (b) Experimental results show that selecting all 10
active samples in the first batch outperforms distributing them across multiple batches (e.g., 5+5 in
two batches [‘Batch 1&2’] or 4+3+2 in three [‘Batch 1&2&3’]) (3) Comparison on active learning
for the small model (ResNet50) and active in context learning for LMM (Gemini 1.5 Flash).

stricts the robustness and generalizability of our findings, emphasizing the need for further research
with more diverse and extensive datasets to validate our conclusions.

B ADDITIONAL EXPERIMENTAL RESULTS.

B.1 ICL EXAMPLES WITH VARIOUS SHOTS.

To examine the impact of in-context learning (ICL) examples within the SimTopKPC framework, we
conducted an empirical study using the first three domains of the Camelyon17 dataset, adjusting the
number k in TopKPR from 1 to 5 per domain. Fig. 11(a) shows that optimal performance is attained
at k = 1. Increasing k reduces method efficacy due to the limited availability of actively labeled
examples. An excessive number of in-context samples often leads to class mismatches between
selected and query samples, where similar text prompts from SimTopKPC may be detrimental. In
our setup, employing one in-context sample (k = 1) (Fig. 11(a)) optimally reduces the computational
load on large multimodal models by minimizing extensive image token processing, thus conserving
computational resources and prediction time.

B.2 HYPERPARAMETER v IN ACTIVE SAMPLE SELECTION.

In all experiments, we use the entire labeling budget (B) in the first batch D1
q , with no updates to

the active set in subsequent batches. This design is based on two key considerations: (i) In this
paper, we focus on a static scenario, where the distribution of downstream query samples remains
unchanged. As the first batch is typically considered representative of the overall dataset, selecting
active samples from this batch approximates the full data stream distribution, providing sufficient
ICL references. (ii) Experiments (Fig. 11(b)) show that allocating the full labeling budget to the
first batch improves performance by 3% on average compared to dynamic updates, confirming that
early selection provides adequate ICL support for the entire data stream. Delaying labeling reduces
the model’s ability to understand earlier batches due to the lack of sufficient ICL examples.
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B.3 COMPARISON ON ACTIVE LEARNING FOR SMALL MODELS AND ACTIVE IN CONTEXT
LEARNING FOR LMMS.

We perform a comparative analysis of the application of active samples for fine-tuning small models
versus their utilization in in-context learning to augment the generalization capabilities of large
models. As depicted in Fig. 11(c), on the Camelyon17 dataset, the Gemini 1.5 Flash model, which
employs in-context learning, achieves a performance improvement of approximately 5% over the
gains observed in the ResNet50 model. This result validates the efficacy of our AICL paradigm,
affirming its superiority in enhancing the generalization capabilities of large models compared to
traditional updates of smaller models.

B.4 EVALUATION ON DIFFERENT CLUSTERING ALGORITHMS IN ACTIVE SAMPLING

To evaluate the effectiveness of spectral clustering in our SRS module for active sample selection,
we compare it with other clustering methods, including K-means, DBSCAN, Agglomerative, and
Mean-Shift clustering on the HAM10000 dataset. All other conditions, including the SimTopKPC
module, remain constant to ensure fairness. As shown in Table 5, our SRS with spectral clustering
consistently outperforms the other algorithms. This demonstrates that spectral clustering, as applied
in this study, yields more accurate initial clustering based on the original features, enabling the
selection of the best active samples.

Clustering zero-shot kmeans agglometative dbscan meanshift spectral (ours)

RD 26.1 35.7 33.9 26.6 30.1 36.5
VMod 33.8 33.8 38.2 38.9 35.6 46.5
VMol 55.4 63.1 62.4 63.9 57.8 63.9
Vdis 68.9 82.2 82.2 77.8 73.3 86.7

Avg 46.1 54.2 52.3 51.8 49.2 58.4

Table 5: Performance comparison of clustering algorithms for active sampling on HAM10000.
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