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ABSTRACT

The goal of representation learning is the unsupervised learning of simple and
useful representations that model sensory input. Various methods have been pro-
posed in representation learning, but a unified theory has not yet been established.
Two problems exist in the representation learning of a visual scene that contains
multiple objects: scene representation learning and object representation learning.
Scene representation refers to decomposing a single visual scene that contains
multiple objects into a combination of multiple individual objects. Object rep-
resentation refers to decomposing a single object into a combination of multiple
attributes, such as position and shape. Scene representation learning and object
representation learning have been formulated in different ways in previous stud-
ies. Recently, Ohmura et al. (2023) proposed a theory of object representation
learning in which transformations between two objects are learned to satisfy al-
gebraic independence so that one attribute of a single object can be transformed
while the other remains invariant. In existing methods of object representation
learning, independence is often imposed between scalar variables, whereas theory
based on algebraic independence successfully weakens the constraint from be-
tween scalar variables to between latent vectors. The latent vector is also used to
represent an individual object in existing methods of scene representation learn-
ing because such a vector can contain more information than the scalar variable.
Furthermore, one of the main components of algebraic independence is commu-
tativity. Existing methods of scene representation learning typically represent a
visual scene as the sum of multiple object representations, and the sum satisfies
commutativity. We focused on the commonalities between object representation
learning and scene representation learning: constraints between latent vectors and
commutativity. We proposed a unified theory based on algebraic independence
that explains both scene representation learning and object representation learn-
ing. We validated our theory in experiments on an image dataset that contained
multiple objects.

1 INTRODUCTION

The goal of representation learning is the unsupervised learning of simple and applicable represen-
tations that model sensory input (Bengio et al., 2013). Various representation learning methods have
been proposed, such as those based on variational autoencoders (Kingma & Welling, 2014; Higgins
et al., 2017), generative adversarial networks (Goodfellow et al., 2014; Chen et al., 2016), Lie group
transformations (Takada et al., 2022), and manifolds (Fumero et al., 2021). Several studies have
formulated based on group theory toward a unified theory of representation learning (Higgins et al.,
2018; Takada et al., 2021); however, such a theory has not yet been established.

Two problems exist in the representation learning of a visual scene that contains multiple objects:
scene representation and object representation. Scene representation refers to decomposing a single
visual scene that contains multiple objects into a combination of multiple individual objects. Object
representation refers to decomposing a single object into a combination of multiple attributes, such
as position and shape. A number of previous studies were conducted in which scene and object
representations were learned simultaneously (Burgess et al., 2019; Greff et al., 2019; Crawford &
Pineau, 2019; Engelcke et al., 2019; 2021; Emami et al., 2021; Lin et al., 2020; Vikström & Ilin,
2022; Jia et al., 2022; Seitzer et al., 2023; Singh et al., 2022; Jiang et al., 2023). For scene rep-
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resentation, existing methods typically represent an input image by segmenting it into component
images by ensuring that each component image is uniquely bound to each single latent vector. The
input image is then modeled as the sum of the component images. For object representation, exist-
ing methods typically constrain the latent vectors to satisfy stochastic independence (Higgins et al.,
2017). Thus, scene representation learning and object representation learning appear to be based on
very different mechanisms.

Recently, Ohmura et al. (2023) proposed a theory of object representation learning in which the
transformation between two objects is learned to satisfy algebraic independence so that one attribute
of a single object can be transformed while the other remains invariant. The algebraic indepen-
dence structure in category theory (Simpson, 2018) is a generalization of several independences in
mathematics, including orthogonality and stochastic independence used in representation learning
(Higgins et al., 2017; Fumero et al., 2021). In conventional methods of object representation learn-
ing, independence is often imposed between scalar variables, whereas Ohmura et al. (2023) suc-
cessfully weakens the constraint from between scalar variables to between latent vectors. By such a
relaxation, the object can be represented by decomposing it into attributes, such as color and shape,
without separating them into scalar variables such as red and blue. Latent vectors are also used to
model individual objects in existing methods of scene representation learning. Furthermore, one of
the key components of algebraic independence is commutativity, and the summation used in scene
representation also satisfies commutativity. Therefore, based on the commonality of commutativ-
ity and the relaxation to independence between vectors, we assume that both object representation
learning and scene representation learning can be explained by a unified theory.

In this study, we propose a unified theory based on algebraic independence that explains both ob-
ject representation learning and scene representation learning. We formulate scene representation
learning as satisfying algebraic independence on scene transformations, which refers to the trans-
formation from a visual scene that contains multiple objects to another scene. We also formulate
object representation learning as satisfying algebraic independence on object transformations, which
refers to the transformation from a single object to another single object. We validate our theory in
experiments on an image dataset that contains multiple objects.

Our contributions can be summarized as follows:
• We algebraically formulate scene representation learning, which previous representation learning

studies based on algebraic formulation (Higgins et al., 2018; Ohmura et al., 2023) did not address.
• We provide a unified explanation for the learning of scene and object representations, which were

formulated differently in previous studies, using algebraic independence.

2 UNIFIED THEORY BASED ON ALGEBRAIC INDEPENDENCE

In this section, we describe our unified theory of object representation learning and scene represen-
tation learning. Our theory considers the algebraic structure among multiple neural network (NN)
models that is common to both object representation learning and scene representation learning.
In object representation learning, Ohmura et al. (2023) considered the algebraic structure among
multiple NN models and formulated object representation learning as learning transformations be-
tween two objects so that they satisfy algebraic independence. As the algebraic structure, we adopt
the formulation of Ohmura et al. (2023). Conventional methods for object representation learning
have focused on constraints on data distribution, such as stochastic independence (Chen et al., 2016;
Higgins et al., 2017). Higgins et al. (2018) formulated object representation learning based on the
assumption that world dynamics have an algebraic structure. They considered constraints on the
data distribution; however, they did not consider the algebraic structure among multiple NN models.

Existing methods of scene representation learning typically represent single objects using latent
vectors and represent a scene (an image that contains multiple objects) by decoding latent vectors.
Studies have been conducted that consider the algebraic structure in object representation learning
(Higgins et al., 2018; Ohmura et al., 2023); however, no such studies have been conducted in scene
representation learning, and the connection between object representation learning and scene rep-
resentation learning has not been clear. In this study, we describe object representation learning
and scene representation learning in a common framework for the first time. Thus, we formulate
scene representation, in addition to object representation, as transformations between scenes. Then
we generalize the existing method of scene representation learning in terms of the required alge-
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braic constraints between transformations. As a result, we find that algebraic constraints for scene
representation learning also require algebraic independence.

2.1 OBJECT REPRESENTATION

We briefly describe object representation learning in the study by Ohmura et al. (2023). Object rep-
resentation is described through a relationship between two single objects X and Y. The relationship
between X and Y is formulated using N transformations as follows:

Y = F0(λ0)F1(λ1)...FN−1(λN−1)[X]. (1)

F0, ..., FN−1 are transformations (functions whose input and output dimensions are the same) and
are learned using NN models. λ0, ...,λN−1 are transformation parameters and vectors.

Object representation learning is defined as learning so that the transformations F0, ..., FN−1 are
algebraically independent. Algebraic independence consists of three conditions as follows:

(1) Commutativity The result of transformations from X is the same Y regardless of the or-
der of the transformations F0, ..., FN−1. For N = 2, for example, Y = F0(λ0)F1(λ1)[X] =
F1(λ1)F0(λ0)[X].

(2) Uniqueness of the transformation parameter The transformation parameters λ0, ...,λN−1

are uniquely determined from X and Y.

(3) Existence of the unit element For all i(i ∈ {0, ...N − 1}), there exists a transformation
parameter λI,i (i ∈ {0, ...N − 1}) such that Fi(λI,i) is an identity transformation.

2.2 SCENE REPRESENTATION

Scene representation is described through a relationship between two scenes Sx and Sy . The rela-
tionship between Sx and Sy is formulated using K transformations as follows:

Sy = O0O1...OK−1Sx. (2)

In this equation, when Sx is a unit element, O0, ...,OK−1 are transformations that add single objects
to Sx and represent each object in Sy .

We investigated the algebraic conditions that are required in this equation in existing methods of
scene representation learning (Burgess et al., 2019; Greff et al., 2019; Crawford & Pineau, 2019;
Engelcke et al., 2019; 2021; Emami et al., 2021; Lin et al., 2020; Vikström & Ilin, 2022; Jia et al.,
2022; Seitzer et al., 2023; Singh et al., 2022; Jiang et al., 2023). We extracted common algebraic
conditions among all these existing methods and the results are as follows:

(1) The input image is decoded either by summing the component images or by a permutation-
invariant process on latent vectors. These two decoding processes satisfy commutativity.

(2) When the input image is segmented into component images, existing methods use an auto-
encoding process and uniquely bound the component image to only one latent vector that most
accurately reconstructs this component image. Then a set of latent vectors is uniquely deter-
mined from the input image. Thus, if the latent vector is uniquely determined from the compo-
nent image, the component image is uniquely determined from the input image.

(3) Existing methods can represent component images that do not affect decoding, such as compo-
nent images with all 0 pixel values.

These common algebraic conditions correspond to the three conditions in algebraic independence.
Therefore, we conclude that it is suggested that the necessary condition for scene representation
learning is algebraic independence, which is the same regarding object representation learning. In
Equation 2, generally, the transformation can be taken as an additive operation and scene Sx as 0,
the unit element of additive operation. Then, Equation 2 is rewritten as follows:

Sy = O0 + O1 + ...+ OK−1. (3)
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3 EXPERIMENTS

3.1 NEURAL NETWORK MODELS

3.1.1 SCENE REPRESENTATION LEARNING

We formulate scene representation learning as the segmentation of input image Y into K component
images Y0, ...,YK−1. The component image Yi(i ∈ {0, ...,K − 1}) is obtained by multiplying
input image Y by a segmentation mask mi. The segmentation masks m0, ...,mK−1 are obtained
from a segmentation network Gseg , (m0, ...,mK−1) = Gseg(Y). The size of input image Y and
component image Yi is C × H × W . The size of segmentation mask mi is 1 × H × W . The
segmentation masks are constrained to have a range of values [0, 1] and to satisfy

∑K−1
i=0 mi = 1

for each pixel. Therefore, component images Y0, ...,YK−1 always satisfy
∑K−1

i=0 Yi = Y.

3.1.2 OBJECT REPRESENTATION LEARNING

We formulate object representation learning as transformation learning between two component im-
ages from different scenes Xi (a component image of scene X) and Yi (a component image of scene
Y). We briefly describe transformation learning in the study by Ohmura et al. (2023). An encoder
Genc and bijective decoder Gdec are introduced. The component image is represented by a set of
multiple latent vectors. For simplicity, we describe the case in which the number of latent vectors is
two. Genc encodes the component image Xi into two latent vectors xi

0,x
i
1, (xi

0,x
i
1) = Genc(Xi).

Gdec decodes the two latent vectors xi
0,x

i
1 into the component image Xi, Xi = Gdec(x

i
0,x

i
1).

Similarly, latent vectors yi
0,y

i
1 are defined from the component image Yi. Using Genc and Gdec,

transformations F0(λ0) and F1(λ1) in Equation 1 are defined as F0(λ0)[Xi] = Gdec(y
i
0,x

i
1) and

F1(λ1)[Xi] = Gdec(x
i
0,y

i
1).

We describe a loss function for training all NN models Gseg , Genc, and Gdec. We formulate the loss
function in the same manner as Ohmura et al. (2023):

L =

K−1∑
i=0

||Yi −Gdec(y
i
0,y

i′
1 )||+ ||Yi −Gdec(y

i′
0 ,y

i
1)|| (4)

, where (xi′
0 ,y

i′
1 ) = GencGdec(x

i
0,y

i
1) and (yi′

0 ,x
i′
1 ) = GencGdec(y

i
0,x

i
1). The derivation of this

formulation was provided by Ohmura et al. (2023).

For foreground objects, common transformations are assumed, such as color and position transfor-
mations. However, for the background, there is no such transformation. In this study, we do not
consider foreground objects and the background in the same formulation because the applicable
transformations are different for foreground objects and the background.

3.1.3 ALGEBRAIC INDEPENDENCE

We constructed our NN models so that both scene representation learning and object representation
learning satisfy algebraic independence. For scene representation learning, the summation of the
component images satisfies commutativity. For the uniqueness of the component image, we use a
segmentation network Gseg that are prone to output binarized segmentation masks. As a result, the
input image X is divided into multiple regions X0, ...,XK−1 without any overlap. And then the each
region Xi is uniquely bound to the single set of latent vectors (xi

0,x
i
1) that most accurately recon-

structs Xi. Then a combination of latent vectors (x0
0,x

0
1), ..., (x

K−1
0 ,xK−1

1 ) is uniquely determined
from the input image X. Furthermore, (xi

0,x
i
1) is uniquely determined from Xi because Gdec is

bijective. Therefore, a combination of component images X0, ...,XK−1 is also uniquely determined
from the input image X. For the existence of the unit element, when Xi = 0, Xi does not affect
the decoding of X. For object representation learning, we follow the object representation learning
method based on algebraic independence in the study by Ohmura et al. (2023). Therefore, our for-
mulation of NN models satisfies algebraic independence for both scene representation learning and
object representation learning.
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3.2 EXPERIMENTAL SETTINGS

We describe the common settings for all experiments.

Dataset We conducted experiments on Multi-dSprites (Kabra et al., 2019), where the image con-
tained multiple objects of uniform random RGB color. We set the image size to 3 × 32 × 32. We
normalized the pixel values from [0, 255] to [0, 1]. We set the pixel values of the background to 0
(black). We randomly sampled the color of each object in the range [0.1, 1]; the shape and angle
of each object; and the position of each object under conditions that did not cause occlusion. We
describe the settings for the size and number of objects individually in each section because these
settings differed for each experiment.

Networks As the segmentation network Gseg , we adopted U-Net (Ronneberger et al., 2015),
which is widely used in image segmentation. For the parameters and normalization settings of Gseg ,
we adopted the settings in the study by Burgess et al. (2019), which was a scene representation
learning study. We adopted the softmax function as the activation function of the final output layer
of Gseg to satisfy

∑K−1
i=0 mi = 1 for each pixel. We adopted a different number of segmentation

masks K for each experiment, depending on the number of objects in scenes X and Y. We adopted
exactly the same encoder Genc and decoder Gdec used by Ohmura et al. (2023).

Training setup We trained the model for 100, 000 steps, which was sufficient for convergence.
We adopted the same optimizer, learning rate, and batch size used by Ohmura et al. (2023).

Evaluation of scene representation We prepared 1, 000 test images for each experiment. We
evaluated the scene representation based on the quantified segmentation performance using the ad-
justed Rand index (ARI) (Hubert & Arabie, 1985); the larger the values the better. When the seg-
mentation masks m0, ...,mK−1 matched the ground-truth masks, the ARI took the maximum value
of 1. We prepared ground-truth masks of foreground objects in input images X and Y.

Evaluation of object representation In Multi-dSprites, the number of attributes (color, shape,
position, size, and rotation) is greater than 2, which is the number of latent vectors. Thus, the correct
solution is not uniquely determined for the decomposition into latent vectors. Unlike Ohmura et al.
(2023), in this study, we did not perform a quantitative evaluation that assumes the existence of a
unique ground-truth decomposition. We visualized the object representation by projecting a latent
space into two-dimensional space using principal component analysis (PCA) (Hotelling, 1933).

3.3 EXPERIMENT1: TWO OBJECTS

We evaluated the NN model based on our theory in the simplest setting. We randomly sampled the
pixel size of the objects in the range [9, 14] for each object. We set the number of segmentation
masks to 2 according to the number of objects.

Figure 1 shows an example of the resulting image after training. After 100 steps of training, single
objects are not appropriately segmented. After 1, 800 steps of training, the single objects are appro-
priately segmented, but the learning of the transformations has not been completed. Finally, learning
of the transformations also converges.

For scene representation learning, because the pixel value of the background was 0 (black), the seg-
mentation masks did not need to be optimized for areas that did not belong to the object, which
resulted in a gray mask for the background. For foreground objects, the pixel values of the segmen-
tation masks in the region corresponding to each object converged to 1. For object representation
learning, images after one transformation F0(λ0)[Xi] and F1(λ1)[Xi] showed that the latent vector
xi
0 mainly represented color, and xi

1 mainly represented shape and position.

The proposed model correctly segmented single objects from input images X and Y to component
images X0, X1, Y0, and Y1. The index of segmentation performance (ARI) was 0.99, which was
almost the maximum value of 1, and demonstrated quantitatively that appropriate segmentation was
performed. Thus, the results showed that the NN models based on our theory can appropriately
perform scene representation learning.
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Figure 1: Result images in Experiment 1 (the number of objects in X and Y is 2) in Section 3.3.
The learning progress is shown as 100 steps, 1, 800 steps, and at the end of learning. From left
to right: a scene containing multiple objects X, segmentation masks mi,x(i ∈ {0, 1}), component
images Xi, images after one transformation F0(λ0)[Xi] and F1(λ1)[Xi], images after two trans-
formations F0(λ0)F1(λ1)[Xi] and F1(λ1)F0(λ0)[Xi], component images Yi, segmentation masks
mi,y , and a scene Y. After 100 steps of training, single objects are not appropriately segmented.
After 1, 800 steps of training, the single objects are appropriately segmented, but the learning of the
transformations has not been completed. Finally, learning of the transformations also converges. In
this example, the 0th transformation F0 mainly transformed the color, and the 1st transformation F1

mainly transformed the shape and position.
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Figure 2 shows the result of projecting the latent vectors xi
0 and xi

1 into points in respective two-
dimensional space using PCA. The color of each point in the two-dimensional spaces indicates the
color of a single object in the component image Xi. In the 0th space for xi

0, the color distance is
mainly reflected, but not in the 1st space for xi

1.

(a) 0th space for xi
0 (b) 1st space for xi

1

Figure 2: Result of projecting the latent vectors xi
0 and xi

1 into points in respective two-dimensional
space using PCA. The color of each point in the two-dimensional spaces indicates the color of a
single object in the component image Xi. Contribution rate: 73.8% in 0th space, 61.9% in 1st space.
In this example, in the 0th space for xi

0, the color distance is mainly reflected, but not in the 1st
space for xi

1.

3.4 EXPERIMENT2: DIFFERENT NUMBER OF OBJECTS

We evaluated the proposed model in settings where the number of objects was more than 2 and the
number of objects could be different in X and Y. We set the pixel size of the objects to 7. We
randomly sampled the number of objects in the range [2, 4]. We set the number of segmentation
masks to 4 according to the maximum number of objects.

Figure 3 shows an example of the resulting image after training. Images after one transforma-
tion F0(λ0)[Xi] and F1(λ1)[Xi] showed that the latent vector xi

1 mainly represented color, and xi
0

mainly represented shape and position.

Even if the number of objects was different, the proposed model correctly segmented single objects
from input images X and Y into component images Xi and Yi (i ∈ {0, ..., 3}). The index of segmen-
tation performance (ARI) was 0.98, which was almost the maximum value of 1, and demonstrated
quantitatively that appropriate segmentation was performed.

4 CONCLUSION

We proposed a unified theory of scene representation learning and object representation learning.
Previous methods of scene representation learning represented a single object as a latent vector and
reconstructed a scene by a decoding process that satisfied commutativity. Conventional methods
of object representation learning have been based on stochastic independence, which constrains be-
tween scalar variables. Therefore, the relationship between scene representation learning and object
representation learning has been unclear. We first regarded object representations as transformations
between objects and scene representations as transformations between scenes. Then, we focused on
the algebraic condition between transformations, and found that scene representation learning and
object representation learning can be explained by a common mathematical structure - algebraic
independence.

The goal of this study is to define the minimum conditions for representation learning, and we show
the necessary conditions for optimal representation. Therefore, it is essential to learn better represen-
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tation. For example, the number of functions for representation (in the case of scene representation,
the number of objects. e.g., whether to consider a hand as five fingers or one hand) could be opti-
mized. However, the problem is still open because the optimal representation is not static and often
context-dependent.

When decomposing the attributes of a single object in our representation learning method, we of-
ten fall into suboptimal results on realistic datasets (e.g., splitting ”color and shape” into ”red and
blue” and ”shape and green”). For now, we use normalization methods that do not compromise
algebraic independence, such as weight normalization (Salimans & Kingma, 2016), but they are not
sufficiently effective yet. The problem of unsupervised decomposition into vectors has not been
addressed nearly at all, so there are many open problems regarding techniques for optimal decom-
position.

Our formulation has been based on the assumption of transformations between relatively similar
objects, such as between alphabets and between polygons. Therefore, we assumed that common
transformations can be applied to objects. However, with respect to background and foreground
objects, the background is very different from the foreground, so applying the same transformations
as those between foreground objects does not work well. Therefore, it is an open problem how
transformations such as those between background and foreground objects should be learned.

Scene (X)
Masks & Component 

images (X)

Transformed images Masks & Component 

images (Y)
Scene (Y)𝐹0: 𝐹1:

Segment Segment

Loss

Loss

Transform

Transform

Transform

Transform

LossTransform Transform

LossTransform Transform

Figure 3: Result images in Experiment 2 (the number of objects in X and Y could differ) in Section
3.4. In this example, the number of objects in X was four and the number of objects in Y was two.
The proposed model correctly segmented a single object from input images X and Y into component
images Xi and Yi (i ∈ {0, ..., 3}). In this example, the 0th transformation F0 mainly transformed
the shape and position, and the 1st transformation F1 mainly transformed the color.
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