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Figure 1: Example sequence of driving scenes with per-object driver responses according to our proposed labeling method. The top
row shows the scene from the driver view and bottom row shows the same scene via a birds-eye-view. Labels are shown as coloured
arrows which correspond to buttons on the steering wheel. Responses are only required when the element is first seen by the driver.
Red corresponds to vehicle labels and cyan to pedestrian labels.

ABSTRACT
Commonly used protocols for capturing the ground-truth situational
awareness (SA) of drivers involve halting a simulation and querying
the driver. SA data collected in this way is unsuitable for training
models for predicting real-time SA since it is inherently intermittent
and does not capture transitions of SA (e.g. from not aware to aware).
We introduce an efficient VR based interactive protocol designed
to capture a driver’s ground-truth situational awareness (SA) in real
time. Our protocol mitigates the aforementioned limitations of prior
approaches, and allows capturing continuous object-level SA labels
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that are more suitable for downstream real-time SA prediction tasks.
Our initial findings highlight its potential as a scalable solution for
curating large scale driving datasets with ground-truth SA.
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1 INTRODUCTION
A driver’s situational awareness (SA) encapsulates their knowledge
of the unpredictably changing environment around them, hence guid-
ing their choices and actions [9]. Insufficient SA contributes to a
significant number of traffic accidents. A potential solution is to mon-
itor a driver’s SA and enhance it using intelligent alert systems [20].
However monitoring a driver’s SA is not trivial. Naively counting the
gazed-at objects is inefficient, as there is inherent ambiguity behind
eye-gaze movements. Eye-gaze does not necessarily correspond to
attention, as drivers might gaze at objects without gaining awareness
due to effects like inattentional blindness [19]. Additionally, drivers
can also gain cognizance of objects without gazing at objects through
their peripheral vision [9]. Our goal is to address this ambiguity in
eye-gaze movements to facilitate object level SA estimation. We do
so in a data-centric fashion, and aim to model these effects using a
large scale driving dataset with explicitly labeled ground-truth SA
for all objects that enter the Field of View (FoV) of the driver.

Existing protocols for measuring the ground-truth SA of drivers
collect data intermittently or sparsely. Recent methods [12, 23] adopt
Situational Awareness Global Assessment Technique (SAGAT) [6]
for measuring object level driver SA labels. This involved halting
simulations and measuring SA through post-hoc queries about el-
ements in the scene. However, these labels are intermittent, while
they are accurate for when the simulation is paused they are not
representative of the transition of the driver’s attention from absent
to present over each object. Modeling this transition is crucial for
SA modulated safety alert systems for driving. Additionally, these
protocols rely on the driver’s ability to remember information about
the scene elements, are also inefficient for large scale data collection.

In addition to these challenges, the labeling method should not
affect the natural gaze behaviour of the drivers. Consider a labeling
method that displays one of several icons over every scene element to
be labeled which corresponds to icons on buttons that the user needs
to press to label elements. This may cause the user to fixate on each
scene element whereas otherwise they might use their peripheral
vision to maintain awareness of that element —a clear distributional
shift of gaze behavior. Models developed using this data would fail
at test time as they might learn to associate fixations on or near scene
elements as the only way to gain awareness of them.

Overcoming these challenges, we propose a novel interactive
protocol for acquiring dense continuous driver SA labels for objects
in their FoV. While driving a vehicle in a VR-based simulated driving
environment [16], we instruct our annotators to perform a secondary
awareness task. This awareness task requires users to indicate when
they first become aware of an object by pressing a button on the
steering wheel. In contrast to SAGAT and similar methods, we
do not require the simulator to be paused and hence our method
results in dense per-object labels which can collected continuously.
Additionally, this protocol results in labels collected on the same
timeline as driver gaze and simulated world events. Finally, it also
does not affect the gaze behaviour of the driver as the secondary
task only requires information that drivers must already acquire
and process for safe driving. Refer 1 for example driving scenarios
annotated with the driver responses for the awareness task.

*These authors contributed equally to this paper.

SA Ground-
ing Method

Capture
Awareness
Transition

Dense
Object
Labels

Doesn’t Affect
Natural Gaze
Behaviour

SAGAT [8] × ✓ ✓
DAZE [17] ✓ × ×
SPAM [4] ✓ × ×

Ours ✓ ✓ ✓

Table 1: Our protocol allows us to capture the transition in the
driver’s awareness of objects in the scene, allows labels for all
objects in the scene without affecting the natural gaze behaviour
of the driver.

With this protocol, we conduct a user-study to curate our large-
scale driving dataset. Our dataset contains sequences of driving
events, the states of the ego vehicle, and other traffic elements, the
eye-gaze of the driver and the SA labels for all the vehicles and
pedestrians in the driver’s FoV. To summarize the contributions of
our work:

(1) We propose a interactive protocol for obtaining continuous
and dense SA labels for on-road agents in a driving scene,
without disrupting the driving task.

(2) We conduct a pilot user-study with our protocol which will
eventually be used to curate a driving dataset with continuous
per-object SA labels, on-road agent states, and driver eye
gaze.

2 RELATED WORK
Situational Awareness (SA) grounding methods: The most pop-
ular situational awareness measurement technique is Situational
Awareness Global Assessment Technique (or SAGAT) [6]. In SAGAT,
the simulation is halted mid-task (e.g., simulated driving), and the
driver is queried about the position, type and future status of ele-
ments within the scene to measure their SA. SAGAT was originally
developed for flight interfaces, but has since been applied to driv-
ing tasks [8]. However, SAGAT provides intermittent labels, and
hence does not capture the transition in the driver’s awareness. The
halting also limits the number of labels per drive that could be col-
lected while maintaining the flow of simulation. Daze [17], and
SPAM [4] mitigate halting issues by using real-time in situ questions.
While they avoid pausing the simulation, they do not provide dense,
per-object labels. Additionally, answering queries mid-task is dis-
ruptive and undesirably modifies gaze behavior. Table 1 compares
our method to prior SA grounding methods, across their ability to
generate continuous, dense object level SA without affecting the
natural eye-gaze behaviour.

Physiological signals such as EEG [11], respiratory rate [18], and
heart rate [13] have also been employed to measure SA. The most
commonly used physiological technique was based on eye tracking.
This included signals as blink rates, pupil dilation, but also behav-
ioral characteristics such as fixation rates, dwell times, and saccade
frequency to measure SA [22]. However, physiological methods are
noisy, show small correlations with SA, and only provide an overall
impression of SA rather than per-object SA.
Driver’s attention prediction datasets: While we try to predict
objects a particular driver is aware of, another line of work tries
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Figure 2: The interface for collecting data using our protocol
in VR simulator. Driver ego view during data collection (left)
and hardware steering wheel (right) are shown. The hardware
buttons used to solicit responses are mirrored on the steering
wheel for user feedback while in the VR simulator. Each set
of 4 buttons corresponds to a type of traffic element (Vehicles
or Pedestrians). The left “Vehicles” button is currently being
pressed and is hence lit up in the simulation. Driver eye gaze is
also visualized (red reticle).

to predict the regions most drivers would pay attention to [1, 14,
15, 21]. To do so, they leverage large scale datasets of front view
RGB driving videos, where regions traversed by the driver’s gaze
are considered salient. While, these works assume that eye-gaze
correlates with attention, in our dataset we explicitly label objects
attended by the driver using our protocol. Dreyeve [15], is one of the
largest datasets driver attention prediction dataset recorded in-car,
while BDD-A [21] is the largest driver attention prediction dataset
recorded in lab. More recent driver attention prediction datasets [1, 7]
focus on accidents. Unlike these works, our dataset is recorded in-lab
in a VR-based driving simulator [16] which closely replicates the
driving environment. This allows us to enjoy the benefits of both
in-car and in-lab curation strategies.

3 METHOD
In this section, we first explain our protocol for SA measurement,
and then describe our user study design which will be eventually
used for curating our novel dataset.

3.1 Protocol for SA measurement
We propose a novel protocol that allows drivers to indicate their
object level SA while driving a vehicle in a VR-based driving simu-
lation [16]. Along with the primary task of driving safely, according
to traffic rules, we introduce a secondary awareness task. The aware-
ness task requires users to indicate when they first become aware
of an object by pressing a button on the steering wheel. We use
two 4-way directional button palettes on the steering wheel, one to
indicate vehicles and the other for pedestrians. Refer Fig 2, for an
image of the interface. Typically, a user while driving in the VR
simulation will press the button from the respective button palette
when they first become aware of a vehicle or a pedestrian. They will
press the directional buttons corresponding to the relative direction
of the object when the driver first became aware of it.

This protocol, allows us to obtain dense continuous SA labels over
objects in the scene and alleviates the need for halting the simulation
as in SAGAT. Furthermore, the secondary task does not require any
other information than is necessary for the primary task of safely
driving, and hence does not affect the natural gaze behaviour. Finally,

Figure 3: Physical setup with a driver in a driving pose, driving
the ego vehicle within the DReyeVR [16] simulator.

our protocol results in labels collected on the same timeline as the
driver’s gaze and the simulated world events, unlike methods that
use verbal natural responses which require manual annotation and
may have timing inconsistencies. Our protocol can also be used to
indicate per-object SA at all SA levels as defined in [5]. In the current
form, labels indicate per-object situational awareness at SA levels 1
(perception —traffic elements must be perceived to be responded to)
and 2 (comprehension —traffic elements are distinguished between
vehicles and pedestrians). However, our protocol can be modified to
incorporate level 3 SA by modifying the task objective to pressing
directional buttons corresponding to the direction in which objects
will travel in the next few seconds” but we consider only levels 1
and 2 in this work.

3.2 Pilot User Study
Participants: We pilot our protocol with users from within the Ro-
botics Institute at CMU. We require our users to have a valid US
issued driving license. Since, our physical rig associated with the VR
simulator stays fixed while the user drives inside the simulator, it can
sometimes induce nausea, hence it is necessary to identify whether
our participants are fit to drive inside a VR simulator. Thus before
collecting data we conduct trial rounds to verify whether users are
fit to drive in the simulator. As a part of the trial rounds the users are
instructed to drive a vehicle according to US driving laws, to a goal
location in the simulator following in-world navigational signs.
Instructions: For the main rounds of the pilot study, the partici-

pants were instructed to do two tasks. For the primary task, they
were asked to drive the ego vehicle in the simulator to a goal location
by following navigational signs, by abiding the general US driving
rules. The only difference was that right turns on red lights were
not allowed. Along with this they were asked to do the secondary
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awareness task. As a part of the secondary task we gave the fol-
lowing instruction: “When you first become aware of a vehicle or
a pedestrian in your FoV, press a button from the respective 4-way
button palette on the steering wheel. Within the 4 directional buttons
choose the one that corresponds to the direction in your FOV the
object appeared in.” We conducted two trial rounds with each pilot
participant, first to identify whether can drive in the simulator and
the second to get acquainted with the system. In the first trial round
we instructed them to only do the primary driving task. In the second
trial round, we instructed them to do both the tasks. We conducted
the main round after the two trials, where the users performed both
the tasks, and we recorded their eye gaze, their awareness indications
and other simulation data (For e.g., object states)

Implementation Details : We use DReyeVR [16] as the VR-driving
simulator. DReyeVR extends the Carla [3] simulator to add vir-
tual reality integration, a first-person maneuverable ego-vehicle, eye
tracking support, and several immersion enhancements such as mir-
rors and sounds. Our physical setup includes a HTC Vive Pro Eye as
the head-mounted VR device, which has built-in eye tracking, and
an available eye tracking SDK. For our driving hardware we use a
Logitech G29 wheel and pedals kit. Fig 3, shows the entire physical
setup used for the study. For driving routes, we plan on using routes
from the training maps of the Longest6 [2] benchmark, which is a
commonly used benchmark in the autonomous driving community.
Furthermore, we control the traffic in the simulation such that only a
single vehicle or pedestrian enters the FoV of the driver from a single
direction. If multiple objects enter the driver’s FoV from the same
direction at the same time, even if the user presses the corresponding
directional buttons multiple times, we have no way of associating
the button presses with the objects.

4 DISCUSSION
Our pilot study shows encouraging signs towards the development
of our protocol as a reliable and scalable method for capturing dense,
continuous object-level driver situational awareness data. However,
there are certain limitations, which need to be addressed.

We have to rely on a VR based driving simulation to collect data.
As mentioned before, driving in a VR simulation induces nausea
(cyber sickness), which makes recruiting participants difficult. Not
everyone is capable of driving a vehicle inside a VR simulator for a
long time. Younger participants (such as university undergrauates)
are generally less susceptible to cyber sickness but also have less-to-
no driving experience. Thus, while our method is scalable, recruiting
participants can be challenging. Furthermore, our protocol will be in-
effective in collecting SA data in heavy traffic. Our protocol involves
drivers performing a secondary task in addition to the primary task
of safe driving. Hence, in cases when the cognitive load of driving
increases the driver’s performance on the secondary task will suffer,
resulting in inaccurate SA labelling. Furthermore, in our current
design we have 4 directional buttons for vehicles and pedestrians.
Due to this we can only associate button clicks with a single vehicle
or pedestrian in each direction. While some other input method like
spoken-aloud natural language could resolve this issue, manual cod-
ing of varied responses can be challenging. Additionally, the button

presses are a crisp signal with a clear point indicating the transition
from unaware to aware which is not true for natural language.

Drivers are not naturally deft at performing the secondary task.
During our pilot we observed that participants mixed up between the
two sets of buttons, i.e, they pressed a button for vehicles when they
saw a pedestrian and vice-versa. This happened as the participants
hand-eye coordination had not adjusted to perform the secondary
task. However, we observed a decrease in such errors as the partic-
ipants spent more time with our system. Finally, marking objects
on turns was difficult —when the driver turns the steering wheels
their hands move away from the buttons, and hence they have to
recalibrate their hands to the buttons, once they complete the turn.
Recalibrating hands in to the buttons on the physical steering wheel
can be challenging since participants cannot see their hands while
wearing the VR headset. To mitigate this, we readjusted the sen-
sitivity of the steering wheel so that it was not necessary to turn
the wheel to its extremes to accomplish turning in the simulator.
However, these issues persist mainly due to the shift between driving
in a real-world and driving within our simulator with a secondary
task and can be mitigated by adding more trial rounds to increase
familiarity with our system.

5 CONCLUSION
In this paper, we presented a novel protocol for capturing the dense
and continuous object level ground-truth situational awareness of
a driver. Prior methods were highly inefficient which made them
unsuitable for curating large dataset driving dataset with continuous
and dense object level ground-truth SA. Our protocol mitigates these
adverse effects, and our pilot studies show encouraging results to
position our protocol as a viable solution for obtaining continuous
SA labels over objects in the scene at scale. Our pilots surfaced some
limitations and we modified the study parameters to minimize their
occurrence and effects. We plan to use our proposed protocol to
curate a large scale dataset for training realtime driver SA estimation
systems. In the future, we wish to develop a SA support driving
system, that combines SA estimation methods with important object
estimation methods [10] to alert drivers to important objects in the
scene that they are unaware of.
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