

000 RANDOM SPIKING NEURAL NETWORKS ARE STABLE 001 002 AND SPECTRALLY SIMPLE 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Spiking neural networks (SNNs) are a promising paradigm for energy-efficient
012 computation, yet their theoretical foundations—especially regarding stability and
013 robustness—remain limited compared to artificial neural networks. In this work,
014 we study discrete-time leaky integrate-and-fire (LIF) SNNs through the lens of
015 Boolean function analysis. We focus on noise sensitivity and stability in classifi-
016 cation tasks, quantifying how input perturbations affect outputs. Our main result
017 shows that wide LIF-SNN classifiers are stable on average, a property explained
018 by the concentration of their Fourier spectrum on low-frequency components. Mo-
019 tivated by this, we introduce the notion of *spectral simplicity*, which formalizes
020 simplicity in terms of Fourier spectrum concentration and connects our analy-
021 sis to the *simplicity bias* observed in deep networks. Within this framework, we
022 show that random LIF-SNNs are biased toward simple functions. Experiments
023 on trained networks confirm that these stability properties persist in practice. To-
024 gether, these results provide new insights into the stability and robustness proper-
025 ties of SNNs.

026 1 INTRODUCTION 027

028 Artificial Neural Networks (ANNs) have become central to modern machine learning, but their rapid
029 growth in scale demands increasingly unsustainable computational and energy resources (Thom-
030 pson et al., 2021). This challenge is especially acute for low-power devices, where efficiency is
031 critical. Spiking Neural Networks (SNNs), inspired by biological neurons and operating through
032 event-driven spikes, offer a promising energy-efficient alternative (Roy et al., 2019; Davies et al.,
033 2018). Their sparse communication and compatibility with neuromorphic hardware position them
034 as strong candidates for sustainable machine learning (Mehonic et al., 2024; Fono et al., 2025).

035 Despite this potential, the theoretical understanding of SNNs remains limited compared to that
036 of classical ANNs. While substantial progress has been made on designing training algorithms
037 (Eshraghian et al., 2023) and hardware implementations (Davies et al., 2018; Indiveri & Liu, 2015),
038 core theoretical properties—such as stability, robustness, and generalization—are still largely un-
039 derexplored. This gap limits our ability to rigorously assess the strengths and limitations of SNNs
040 in practice.

041 Among these properties, stability is crucial for designing networks resilient to input perturbations
042 and adversarial attacks, yet no single definition exists. It can refer to algorithmic stability of learning
043 algorithms (Elisseeff et al., 2005), dynamical systems stability (naturally aligned with the temporal
044 dynamics of spiking neurons) (Ding et al., 2024), or—as we consider here—to sensitivity to input
045 changes. Intuitively, a stable network should be resilient to small perturbations in inputs or parame-
046 ters, which is critical for both reliable inference and efficient learning. Many SNN models, including
047 the discrete-time Leaky Integrate-and-Fire (LIF) neuron, can be viewed as iterative compositions of
048 Boolean functions, since neurons emit spikes only when their membrane potential crosses a thresh-
049 old (a binary event), motivating the study of stability via Boolean function analysis (O’Donnell,
050 2014). While prior work has examined SNN stability from dynamical systems (Ding et al., 2024)
051 or neuroscience perspectives (Calair et al., 2022), to our knowledge this is the first study to apply
052 Boolean analysis to characterize and investigate stability in SNNs.

053 The Boolean perspective on SNNs suggests a natural link to the notion of simplicity in neural net-
054 works: if a network is stable, small input perturbations rarely change its output, hinting at a bias

toward “simple” input-output mappings. In the SNN setting, this can be formalized via the predominance of low-frequency components in the Fourier–Walsh expansion of a classifier. Motivated by this, we introduce *spectral simplicity*, which quantifies the concentration of the Fourier spectrum on low frequencies. This notion connects naturally with other notions of simplicity studied in the context of *simplicity bias*, proposed as a lens to understand generalization in deep networks. For example, prior work has shown that random deep ANNs tend to implement “simple” functions (De Palma et al., 2019), formalized as a large average Hamming distance to the nearest input with a different predicted class (Valle-Pérez et al., 2019). Spectral simplicity represents a weaker notion, but one that arises intrinsically in spiking networks.

To make these questions precise, we focus on the discrete-time LIF model. This model combines theoretical simplicity with widespread adoption in practice, serving as the foundation of software frameworks such as SNN-Torch and being implemented in digital neuromorphic platforms including Loihi 2 and SpiNNaker 2 (Orchard et al., 2021; Gonzalez et al., 2023). In this work, we restrict attention to networks at initialization. This choice reflects the still-developing theory of SNN training and our goal of isolating stability properties intrinsic to the model, without confounding effects from learning dynamics. Moreover, random networks have been shown to serve as useful priors in PAC-Bayes generalization bounds (Valle-Pérez et al., 2019). Understanding the effect of training dynamics is an exciting question; here, we explore it experimentally and leave a theoretical treatment for future work.

Contributions. We summarize our main contributions as follows:

- We derive quantitative bounds on the stability of discrete-time LIF SNN classifiers, showing that they are stable on average with respect to random parameter initialization. In particular, when input sequences lie in the binary cube $\{-1, 1\}^n$, the classifier output remains unchanged under perturbations of up to $\mathcal{O}(\sqrt{n})$ coordinates, with high probability for n large enough. The bounds depend explicitly on the model’s hyperparameters and reveal that LIF SNNs exhibit stability properties comparable to other (time-independent) Boolean networks (Jonasson et al., 2023).
- We introduce the notion of *spectral simplicity*, defined via the Fourier decomposition of discrete-time LIF SNN classifiers for static data. We prove that random SNNs are biased toward spectrally simple functions, i.e., those whose Fourier spectrum is predominantly concentrated on low-frequency components.
- We complement these theoretical results with numerical experiments, investigating in particular the effect of training on stability. Our experiments reveal that both shallow and deep SNNs are noise stable, and that training tends to increase their stability on average.

1.1 RELATED WORKS

Stability of ANNs and SNNs. As previously noted, stability in SNNs can be approached from multiple perspectives. Each neuron follows a (typically non-linear) dynamical system, raising the natural question of how input perturbations affect its output. In the ANN and Neural ODE literature, Lyapunov-based analyses (Jimenez-Rodriguez et al., 2022; Kang et al., 2021; Rahnama et al., 2019) establish robustness via bounds on how perturbations propagate through the network. The discrete-time LIF model’s robustness to input perturbations has been analyzed from a dynamical systems perspective by Ding et al. (2024), who derived bounds on output spike sequence variations under perturbed inputs. Our work differs in three key ways: (i) we study stability at the classifier level, where predictions may remain unchanged even if spike trains differ; (ii) we consider the reset-by-subtraction mechanism, which introduces additional complexity compared to the reset-to-zero simplification in (Ding et al., 2024); and (iii) our analysis extends beyond single neurons to multi-neuron networks. Methodologically, our approach is different building on Boolean function analysis (O’Donnell, 2014), aligning more closely with Jonasson et al. (2023), but introduces new challenges stemming from reset dynamics and temporal evolution, which create nontrivial probabilistic dependencies.

Simplicity bias. Simplicity bias has been proposed as a mechanism underlying the generalization of deep networks, both in trained models with SGD (Arpit et al., 2017; Nakkiran et al., 2019; Valle-Pérez et al., 2019) and in random ANNs (De Palma et al., 2019). The central idea is that learning

108 favors simple functions, though the precise definition of simplicity varies, and pitfalls have been
 109 noted in (Shah et al., 2020). We introduce *spectral simplicity*, based on the Fourier–Walsh decom-
 110 position of Boolean functions, as a complementary notion. While our focus on random networks
 111 parallels (De Palma et al., 2019), the techniques differ substantially: their analysis relies on Gaussian
 112 process arguments, whose extension to SNNs is unclear, whereas we draw on Boolean function anal-
 113 ysis, which adapts naturally to our setting. While a weaker measure of simplicity, spectral simplicity
 114 arises organically in spiking networks.

115 1.2 NOTATION

116 Give a positive integer a , we denote with $[a]$ the sets $\{1, \dots, a\}$. Given $x, y \in \{-1, 1\}^n$, we define
 117 the Hamming distance between x and y as $d_H(x, y) := |\{i \in [n] : x_i \neq y_i\}| = \frac{1}{2} \sum_{i=1}^n |x_i - y_i|$.
 118 We use $\text{sign}(x) \in \{-1, 1\}$ for the sign function, i.e. $\text{sign}(x) = 1$ if $x \geq 0$ and -1 otherwise. We
 119 write $\mathcal{N}(u, \Sigma)$ for the Gaussian distribution with mean u and covariance Σ , $\text{Unif}(\{-1, 1\}^n)$ for the
 120 uniform distribution on the hypercube, and $\text{Bin}(n, p)$ for the Binomial distribution with parame-
 121 ters (n, p) . Similarly, $\text{Rad}(\kappa)$ denotes a vector with i.i.d. Rademacher coordinates with parameter
 122 κ (dimension clear from context). For asymptotics, we use the standard asymptotic notation: $\mathcal{O}(\cdot)$,
 123 $o(\cdot)$ and $\omega(\cdot)$.

124 2 THE DISCRETE-TIME LIF MODEL

125 We aim to study the stability of SNNs in classification tasks. Specifically, we consider SNN models
 126 constructed as compositions of *sign leaky integrate-and-fire* (sLIF) neurons. Each neuron acts as an
 127 information-processing unit that maps time series inputs¹ $(x_t)_{t \in [T]} \in (\{-1, 1\}^n)^T$ to binary spike
 128 sequences $(s_t)_{t \in [T]} \in \{-1, 1\}^T$, based on a neuronal dynamic. The dynamics of a single neuron
 129 are defined as follows.

130 **Definition 1** (sLIF neuron). *Let $T \geq 1$ be an integer, $\beta \in [0, 1]$, $\theta \in (0, \infty)$. We define the
 131 sign leaky integrate-and-fire (sLIF) neuron, with input $(x_t)_{t \in [T]} \in (\{-1, 1\}^n)^T$ and output
 132 $(s_t)_{t \in [T]} \in (\{-1, 1\})^T$, as a parametric computational unit that evolves over discrete time steps
 133 $t \in [T]$ accordingly to the following recursive dynamic*

$$134 \quad \begin{cases} u_t = \beta u_{t-1} + w^\top x_t - \frac{\theta}{2} (s_{t-1} + 1) \\ s_t = \text{sign}(u_t - \theta) \\ u_0 = 0 \end{cases}, \quad (1)$$

135 where $(u_t)_{t \in [T]} \in ([0, \infty))^T$ is the sequence of membrane potentials and $w \in \mathbb{R}^n$ are the model’s
 136 weights. Equivalently, this can be regarded as a function mapping $(x_t)_{t \in [T]} \rightarrow (s_t)_{t \in [T]}$.
 137 To make the dependence on inputs and parameters explicit, we occasionally use the notation
 138 $s_t((x_k)_{k \in [t]}, w)$.

139 Each neuron processes an input sequence $(x_t)_{t \in [T]}$ through its membrane potentials $(u_t)_{t \in [T]}$, which
 140 evolve according to an autoregressive decay dynamics over the time horizon T (referred to as the
 141 *latency* of the model). The *leak parameter* $\beta \in [0, 1]$ controls this decay, specifying the fraction of
 142 potential retained per time step. Whenever the membrane potential exceeds the activation threshold
 143 $\theta > 0$ at some time t' , the neuron emits a spike, recorded as $s_{t'} = 1$ in the spike train $(s_t)_{t \in [T]}$,
 144 and the potential is reduced by θ (*reset by subtraction*). Weights are initialized as $w \sim \mathcal{N}(0, I_n/n)$,
 145 ensuring $w^\top x = O(1)$ with high probability for $x \in \{-1, 1\}^n$, thereby avoiding degenerate regimes
 146 of vanishing or overly frequent firing. For further background on the LIF model, see (Gerstner &
 147 Kistler, 2002). In short, we use the term *leaky integrate-and-fire (LIF) neuron* for the variant with a
 148 Heaviside step function and reset rule $v_t \mapsto v_t - \theta s_{t-1}$, and *integrate-and-fire (IF)* when the leakage
 149 is absent ($\beta = 1$); networks composed of such units are referred to as LIF and IF SNNs, respectively.

150 **Networks of spiking neurons.** In the sLIF SNNs considered here, multiple sLIF neurons are
 151 interconnected through weighted synapses. The spike train generated by each neuron can serve

152 ¹While our theory focuses on binary data, the definition extends to real-valued inputs.

as input to other neurons, and the overall network dynamics evolve over time, akin to a recurrent network. In what follows, we focus on SNNs composed of fully connected sLIF neurons, arranged in layers, as formalized in the next definition.

Definition 2 (sLIF SNN). *Fix positive integers $L, T, n_0, \dots, n_L \geq 1$, $\beta \in [0, 1]$, $\theta \in [0, \infty)$, and let the input sequence be $(x_t)_{t \in [T]} \in (\{-1, 1\}^{n_0})^T$. An L -layer sLIF neural network with latency T and layer widths n_1, \dots, n_L is defined as the Boolean dynamical system*

$$\begin{cases} u_t^{(l)} = \beta u_{t-1}^{(l)} + W^{(l)} s_t^{(j-1)} - \frac{\theta}{2} (s_{t-1}^{(l)} + 1), \\ s_t^{(l)} = \text{sign}(u_t^{(l)} - \theta), \\ u_0^{(l)} = 0, \\ s_t^{(0)} = x_t, \end{cases} \quad (2)$$

where, for each layer $l \in [L]$, $W^{(l)} \in \mathbb{R}^{n_l \times n_{l-1}}$ denotes the weight matrix, $(u_t^{(l)})_{t \in [T]}$ the membrane potential sequence, and $(s_t^{(l)})_{t \in [T]}$ is the (output) the spike sequence. We collect all parameters into a single vector $W = \text{vec}(W^{(1)}, \dots, W^{(L)}) \in \mathbb{R}^d$, where $d = \sum_{l=1}^L n_l n_{l-1}$.

Given a L -layers sLIF SNN as in Definition 2, a widely used choice of classifier in SNNs (see e.g., (Diehl & Cook, 2015)) is based on spike counts at the output layer, namely

$$f^{L,T}((x_t)_{t \in [T]}, W) := \arg \max_{i \in [n_L]} \sum_{t=1}^T s_{t,i}^{(L)}((x_t)_{t \in [T]}, W), \quad (3)$$

where the predicted class corresponds to the neuron in the final layer with the largest total spike count. Here, $s_{t,i}^{(L)}$ is the i -th coordinate of the spiking sequence $s_t^{(L)}$.

Assumptions. Throughout this work, we assume $n_0 = \dots = n_{L-1} = n$, with n_L equal to the number of classes. For simplicity, we focus on a variant of the sLIF model equation 2 with $\beta = 1$. Our analysis allows dynamic input sequences $(x_t)_{t \in [T]}$, though some results only apply to static inputs, interpreted as repeated presentations of the same sample over time. Such constant input encoding is commonly used in practice for time-static datasets such as MNIST or CIFAR-10 (Rathi & Roy, 2023; Rueckauer et al., 2017). Finally, the model parameters are initialized as

$$W_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1/n), \quad i \in [d].$$

3 NOISE SENSITIVITY OF BOOLEAN FUNCTIONS

Within this framework, sLIF neurons can be viewed as compositions of Boolean functions, allowing stability analysis via Boolean function theory. We recall the basic definitions here and refer the reader to (O’Donnell, 2014) for a comprehensive treatment. Additionally, we introduce *spectral simplicity*, which is central to the statement of our main result.

Noise sensitivity and stability. The stability of a Boolean function is classically quantified by its *noise sensitivity*. For $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ and noise rate $\nu \in [0, 1]$, define

$$\mathbf{NS}_\nu(f) := \mathbb{P}_{x, \xi}[f(x) \neq f(x \odot \xi)],$$

where $x \sim \text{Unif}(\{-1, 1\}^n)$ and $\xi = (\xi_1, \dots, \xi_n)$ has i.i.d. entries $\xi_i \sim \text{Rad}(1 - \nu)$. Equivalently, the *noise stability* is

$$\mathbf{Stab}_{1-2\nu}(f) := \mathbb{E}_{x, \xi}[f(x)f(x \odot \xi)] = 1 - 2\mathbf{NS}_\nu(f),$$

capturing the probability that f preserves its value under input perturbations. Given this equivalence, we will use noise sensitivity in the sequel.

Definition 3 (Expected noise sensitivity). *For a parametric family $\{f_w\}_{w \in \mathcal{W}}$, a probability measure μ on \mathcal{W} , and x, ξ distributed as above, define*

$$\mathbf{ENS}_\nu(\{f_w\}_{w \sim \mu}) := \mathbb{P}_{w \sim \mu, x, \xi}[f_w(x) \neq f_w(x \odot \xi)].$$

216 **Fourier analysis and spectral concentration.** Every $f : \{-1, 1\}^n \rightarrow \mathbb{R}$ admits a unique
 217 Fourier–Walsh expansion (O’Donnell, 2014, Thm. 1.1):
 218

$$219 \quad f(x) = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S(x), \quad \chi_S(x) = \prod_{i \in S} x_i.$$

221 Low-degree terms ($|S|$ small) correspond to *low frequencies*, and high-degree terms to *high frequencies*. A constant function, for instance, has spectrum supported on \emptyset . The notion of *spectrum*
 222 *concentration* formalizes when a function is “simple”: most of its Fourier weight lies on low-degree
 223 terms, i.e., subsets of size $o(n)$. Formally (O’Donnell, 2014, Def. 3.1), f is ϵ -concentrated up to
 224 degree k if
 225

$$226 \quad \sum_{S: |S| > k} \hat{f}(S)^2 \leq \epsilon.$$

228 **Definition 4** (Expected spectrum concentration). *Given a parametric family of functions*
 229 $\{f_\theta : \{-1, 1\}^n \rightarrow \mathbb{R}\}_{\theta \in \mathcal{W}}$, *and a probability measure* μ *in* \mathcal{W} , *we say that* $\{f_w\}_{w \in \mathcal{W}}$ *has, in*
 230 *expectation under* μ , *spectrum* ϵ -concentrated up-to degree k if
 231

$$232 \quad \mathbb{E}_{w \sim \mu} \left[\sum_{\substack{S \subseteq [n] \\ |S| > k}} \hat{f}_w^2(S) \right] \leq \epsilon.$$

236 A key connection between noise stability and spectral concentration is given by (O’Donnell, 2014,
 237 Prop. 3.3), which states that for a Boolean function f , if we set $\epsilon = 3 \mathbf{NS}_\nu(f)$, then the spectrum
 238 of f is ϵ -concentrated up to degree $1/\nu$. This result extends naturally to parametric families of func-
 239 tions by linearity, replacing $\mathbf{NS}_\nu(f)$ with $\mathbf{ENS}_\nu(f)$ and spectral concentration with its expected
 240 counterpart (see Lemma 6).
 241

242 **Other notions of simplicity.** Alternative notions of simplicity have been proposed in the sim-
 243 plicity bias literature (Valle-Pérez et al., 2019; De Palma et al., 2019). Closest to our setting is
 244 the definition of De Palma et al. (2019), who study, for a classifier $f : \{-1, 1\}^n \rightarrow \{-1, 1\}$ and
 245 $x \in \{-1, 1\}^n$, the quantity

$$246 \quad N_h(x; f) := |\{y : d_H(x, y) = h, f(x) \neq f(y)\}|, \quad (4)$$

248 which counts h -bit perturbations that flip the label. They show that its expected asymptotic behavior
 249 of depends on the activation function; for ReLU networks $\mathbb{E}_{x \sim \text{Unif}(\{-1, 1\}^n)}[N_h(x, f)] \rightarrow 0$, implying
 250 that the average Hamming distance to the nearest input with a different class is $\mathcal{O}(\frac{\sqrt{n}}{\log n})$. To
 251 connect this notion with noise sensitivity, note that for any parametric family of Boolean functions
 252 $\{f_w\}_{w \in \mathcal{W}}$,

$$254 \quad \mathbf{ENS}_\nu(\{f_w\}_{w \sim \mu}) = \sum_{h=1}^n \mathbb{E}_{w \sim \mu, x \sim \text{Unif}}[N_h(x; f_w)] \nu^h (1 - \nu)^{n-h}.$$

256 In principle, one could recover $\mathbb{E}[N_h(x; f_w)]$ by inverting the previous relation, but this would re-
 257 quire a precise characterization of \mathbf{ENS}_ν . In practice, only bounds on this quantity are typically
 258 attainable, as we show next.
 259

260 4 NOISE STABILITY OF SNN CLASSIFIERS

263 In this section, we apply the Boolean function analysis framework from Section 3 to quantify the
 264 stability of discrete-time LIF-SNN classifiers. Recalling the SNN classifier definition in equation 3
 265 and our main assumptions from Section 2, we begin with the single neuron case.

266 **Single neuron stability.** Under Definition 1, each output s_t in the sequence $(s_t)_{t \in [T]}$ defines a
 267 Boolean function $s_t : \{-1, 1\}^n \rightarrow \{-1, 1\}$. For any $t \in [T]$ and input sequences $(x_t)_{t \in [T]}$ and
 268 $(y_t)_{t \in [T]}$ with fixed Hamming distance, we bound the probability (over random initialization) that
 269 $s_t((x_k)_{k \in [t]}, w) \neq s_t((y_k)_{k \in [t]}, w)$.

270 **Theorem 1.** Consider a sLIF neuron, with latency $T \in \mathbb{N}_+$, threshold $\theta \in (0, \infty)$, with random
 271 parameter vector $w \sim \mathcal{N}(0, I_n/n)$. We consider two input sequences $x_1, \dots, x_T \in \{-1, 1\}^n$ and
 272 $y_1, \dots, y_T \in \{-1, 1\}^n$. Denote $\nu_t = d_H(x_t, y_t)/n$ and $\bar{\nu}_t = \frac{1}{t} \sum_{k=1}^t \nu_k$. If $\max_{t \in [T]} \nu_t = \mathcal{O}(\frac{1}{\sqrt{n}})$,
 273 then for all $t \in [T]$, we have
 274

$$275 \mathbb{P}_w [s_t(x_1, \dots, x_t) \neq s_t(y_1, \dots, y_t)] \leq C(1 + \theta)t^2 \sqrt{\bar{\nu}_t} \log n,$$

277 where $C > 0$ is an absolute constant independent of the $\theta, T, n, t, x_1, \dots, x_T$ and y_1, \dots, y_T .
 278 Moreover, for static inputs the same bound applies without the logarithmic factor.

279 Below we present a proof sketch of Theorem 1 focusing on the primary technical challenges; the
 280 full proof is deferred to Appendix C.1.
 281

283 *Proof sketch of Theorem 1.* We argue by induction. Here, we illustrate the argument for $t = 1$. In
 284 this case, the problem reduces to bounding the probability that a random linear threshold function
 285 produces different outputs for two inputs x_1, y_1 at Hamming distance $\lfloor \nu_1 n \rfloor$:

$$287 \mathbb{P} [\text{sign}(w^\top x_1 - \theta) \neq \text{sign}(w^\top y_1 - \theta)].$$

289 *Step 1: Decomposition.* Define $X = w^\top x_1$ and $Y = w^\top y_1$, which are standard Gaussians. A classic
 290 Gaussian decomposition property allow us to express $Y = \rho X + \sqrt{1 - \rho^2} Z$, where $\rho = 1 - \nu_1$.

291 *Step 2: Event characterization.* The disagreement event is equivalent to

$$293 \{X > \theta, Y \leq \theta\} \cup \{X \leq \theta, Y > \theta\}.$$

295 *Step 3: Probability estimate.* The first event has probability

$$297 \mathbb{P}[X > \theta, Y \leq \theta] = \Phi_2(-\theta, \theta; 2\nu_1 - 1),$$

299 where Φ_2 denotes the bivariate Gaussian CDF with unit variances and correlation $2\nu_1 - 1$. The
 300 second event yields a symmetric expression $\Phi_2(\theta, -\theta; 2\nu_1 - 1)$. Combining both, and using tail
 301 bounds and Lemma 3, one obtains

$$302 \mathbb{P}[\text{sign}(w^\top x - \theta) \neq \text{sign}(w^\top y - \theta)] \leq C_\theta \sqrt{\nu_1},$$

304 for a constant C_θ depending only on θ , see equation 10 for details.

305 For $t \geq 2$, the argument extends but with added complexity: temporal dependencies require union
 306 bounds, introducing the T factor in the constant. In the dynamic case, the sLIF neuron processes
 307 input sums that lie outside the hypercube, creating technical challenges. In contrast, the static case
 308 avoids these issues and the proof is simpler, with better rates.

309 \square

312 **Remarks.** For $T = 1$, our result recovers (up to logarithmic factors) the known bounds on the
 313 noise sensitivity of fixed linear threshold functions, i.e., classifiers of the form $\text{sign}(w^\top x - \theta)$. For
 314 larger T , our bounds deteriorate. This may partly reflect proof artifacts—since handling dependencies
 315 introduced by shared weights across time can loosen bounds—but it is also consistent with the
 316 general behavior of Boolean function compositions, where sensitivity typically increases with depth.
 317 A key obstacle to sharper time dependencies is the reset mechanism: thresholds adapt dynamically
 318 as the process evolves, complicating tighter analysis.

319 By inspecting the proof, we note that the assumption $\beta = 1$ can be relaxed without significant
 320 changes to the analysis, but we maintain it here for simplicity. The proof also applies, with minor
 321 modifications, to the classical LIF model with Heaviside activations, but we adopt the signed variant
 322 to enable a cleaner Fourier analysis. In contrast, the requirement of large network width is essential,
 323 as our concentration-based arguments rely on it. The influence of architectural parameters on
 stability is explored empirically in Section 5.

324 **Multiple neurons.** We now analyze the noise sensitivity of classifier outputs from L -layer sLIF
 325 neural networks. Specifically, we study classifiers defined as in equation 3 and built from L -layer
 326 sLIF networks (Definition 2).

327 **Theorem 2.** Let $f^{L,T}(\cdot, W)$ be a n_L -classes classifier, defined by a L -layer sLIF, according to
 328 equation 3, with latency $T \in \mathbb{N}_+$, $\theta \in (0, \infty)$, widths $n_1 = n_2 = \dots = n_{L-1} = n$ and weights
 329 $W \sim \mathcal{N}(0, I_d/n)$. Let $x_1, \dots, x_T \in \{-1, 1\}^n$ and $y_1, \dots, y_T \in \{-1, 1\}^n$ such that $d_H(x_t, y_t) =$
 330 $\lfloor \nu_t n \rfloor$ with $\nu_t \in [0, 1]$. Let us define $\nu := \max_{t \in [T]} \nu_t$ and assume $\nu = \mathcal{O}(\frac{1}{\sqrt{n}})$. Then, for n large
 331 enough, it holds that

$$332 \quad \mathbb{P}_W \left(f^{L,T}((x_t)_{t \in [T]}, W) \neq f^{L,T}((y_t)_{t \in [T]}, W) \right) \\ 333 \quad \leq n_L T^4 C (1 + \theta) \nu^{\frac{1}{2^{2L+1}}} \log^{3/2} n + (L-1) e^{-c \nu^{\frac{1}{2^{2L-1}}} n},$$

334 for some absolute constants $c, C > 0$ independent of $\theta, T, n, t, x_1, \dots, x_T$ and y_1, \dots, y_T .

335 *Proof sketch of Theorem 2.* We proceed by induction on $l \in [L]$. To illustrate, consider $t = 1$.
 336 Following (Jonasson et al., 2023), we analyze the Markov chain

$$337 \quad D_1^{(l)}(x_1, y_1) := \frac{1}{4} \|s_1^{(l)}(x_1) - s_1^{(l)}(y_1)\|^2, \quad l \in [L],$$

338 which has $n + 1$ states and absorbing state 0. Conditioned on $D_1^{(l-1)} = \lfloor \nu_1 n \rfloor$, we have

$$339 \quad D_1^{(l)}(x, y) \sim \text{Bin}(n, p_{\nu_1}), \quad p_{\nu_1} \leq C_\theta \sqrt{\nu_1},$$

340 where the bound on p_{ν_1} follows from Theorem 1. Hence $D_1^{(l)}(x, y)$ is stochastically dominated
 341 by $\text{Bin}(n, C_\theta \sqrt{\nu_1})$, which leads to the desired bound via Chernoff bounds (see Theorem 3) and
 342 standard manipulations. For $t \geq 2$, we repeat the previous argument which involves repeatedly
 343 applying Chernoff bounds ; see Appendix C.2. \square

344 The following corollary links the probability that input perturbations change the output to a bound
 345 on the expected noise sensitivity of binary sLIF-SNN classifiers. This, in turn, characterizes their
 346 spectrum and quantifies the degree of spectral simplicity introduced in Section 3. The proof is
 347 deferred to Appendix C.3.

348 **Corollary 1.** Let $f^{L,T}(\cdot, W)$ be a binary classifier ($n_L = 2$) as in Theorem 2, and assume static
 349 inputs. Then, for any $\nu' \leq \frac{1}{\sqrt{n \log n}}$, we have, for n large enough,

$$350 \quad \text{ENS}_{\nu'}(\{f^{L,T}(\cdot, W)\}_{W \sim \mathcal{N}(0, I_d)}) \leq C_{T,\theta} \nu'^{\frac{1}{2^{2L+1}}} \log^{3/2} n + (L-1) e^{-c \nu'^{\frac{1}{2^{2L-1}}} n} + e^{-\frac{1}{4} \sqrt{n}},$$

351 where $C_{T,\theta} > 0$ is a constant, as in Theorem 2. Moreover, for sufficiently large n , the family of
 352 L -layer sLIF SNN binary classifiers has, in expectation under $\mathcal{N}(0, I_d/n)$, spectrum ϵ -concentrated
 353 (Definition 4) up to degree $1/\nu'$, with

$$354 \quad \epsilon = C_{T,\theta} \nu'^{\frac{1}{2^{2L+1}}} \log^{3/2} n.$$

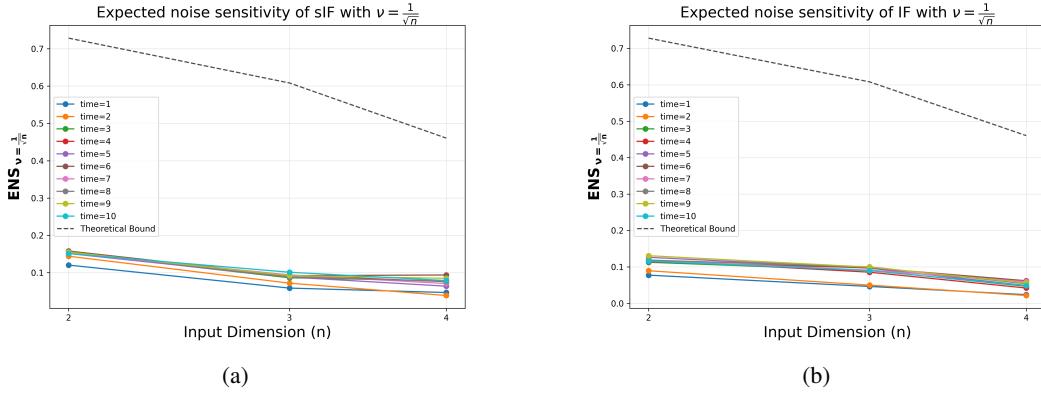
355 **Remarks.** To illustrate, take $\nu' = \frac{1}{\sqrt{n \log n}}$. In this case, an L -layer binary SNN classifier is
 356 $\mathcal{O}(n^{1/2^{2(L+1)}})$ -concentrated up to degree $\mathcal{O}(\sqrt{n \log n})$. Thus, only a vanishing fraction of degrees
 357 contribute meaningfully to the spectrum, making these classifiers spectrally simple. Interestingly,
 358 the bound on the maximal degree of concentration is independent of architectural parameters, while
 359 the concentration level deteriorates with larger L , T , and θ (the $\log^{3/2} n$ seems an artifact of the
 360 proof). The increase with L is not surprising, since compositions of Boolean networks typically
 361 behave similarly, and analogous results are known for threshold ANNs (Jonasson et al., 2023). The
 362 θ -dependence appears to be a proof artifact. Whether the T - and L -dependencies are intrinsic re-
 363 mains an open question, which we investigate experimentally in the next section.

364 5 NUMERICAL EXPERIMENTS

365 We empirically evaluate the noise sensitivity, ENS_ν , of various spiking neural networks to investi-
 366 giate how our proposed simplicity measure relates to the model dimension n and the tightness of
 367 the bounds established in Theorems 1 and 2 in the case of static inputs. In addition, we study how
 368 training (signed) SNNs influences their sensitivity to random perturbations of the input.

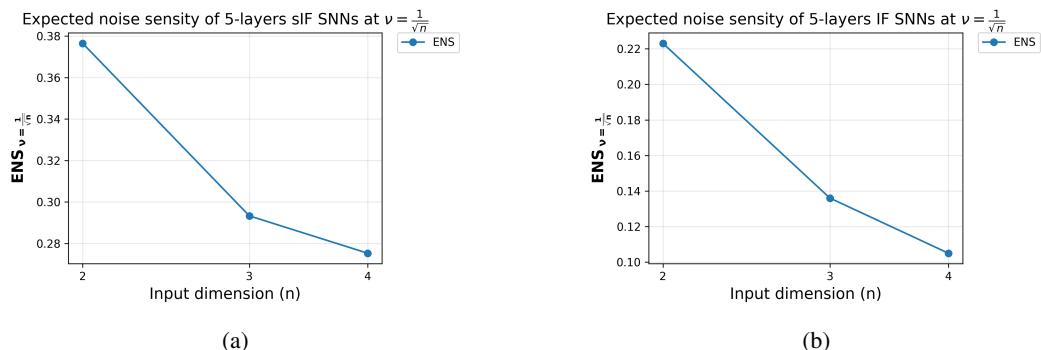
378 **Single LIF experiments.** We approximate the noise sensitivity $\text{ENS}_{1/\sqrt{n}}$ for different IF and sIF
 379 spiking neurons with input dimensions $n = 100, 1000, 10000$, threshold $\theta = 0.5$ and $T = 10$.
 380 Specifically, we compute a Monte Carlo approximation by uniformly sampling 10 model's weights,
 381 100 data points, and 100 random perturbations. The results are shown in Figure 1a and 1b. We
 382 observe that, for all considered t , the neurons exhibit low sensitivity for both sIF and IF models.
 383 In conclusion, we stress that even though for our result we need the signed neuron versions, the
 384 sensitivity seems to be similar for the IF neuron. **Moreover, the theoretical bound proved in Theorem
 385 1 is satisfied both for the sIF and the IF neuron.**

386 Additional experiments for different values of $\nu, \beta = 0.5$, and $\theta = 0$ can be found in Appendix D,
 387 see Figure 5, Figure 6, and Figure 7 respectively.



402 Figure 1: Noise sensitivity $\text{ENS}_{1/\sqrt{n}}$ for different input dimensions n for sIF and IF neurons with
 403 $\theta = 0.5$ and $T = 10$. **(a)** sIF neuron (log-scale x-axis); dashed line: scaled bound from Theorem 1.
 404 **(b)** IF neuron (log-scale x-axis); dashed line: scaled bound from Theorem 1.

406 **IF SNN with 5 layers.** We extend the experiments to the deep setting by considering IF and sIF
 407 spiking neural networks with five layers, using the same Monte Carlo approximation procedure as
 408 in the shallow case. We evaluate $\text{ENS}_{1/\sqrt{n}}$ for input dimensions $n = 100, 1000, 10000$, with each
 409 layer having width equal to the input dimension, $\theta = 0.5$ and $T = 10$. The results are shown in
 410 Figure 2a and 2b. Although depth appears to have a stronger impact on sensitivity than latency, the
 411 bound presented in Theorem 2 tends to overestimate the effect. Additional experiments for different
 412 values of ν and $\beta = 0.5$ can be found in Appendix D.



426 Figure 2: Noise sensitivity $\text{ENS}_{1/\sqrt{n}}$ for different input dimensions n for 5-layers sIF and IF neural
 427 networks with $\theta = 0.5$ and $T = 10$. **(a)** sIF neuron (log-scale x-axis); **(b)** IF neuron (log-scale x-
 428 axis).

431 **Noise sensitivity after training.** We evaluate the noise sensitivity of trained sIF and IF SNNs in
 432 static data. In particular, we train three-layer sLIF and IF SNN on MNIST (i.e., $n = 784$) using

the ADAM optimizer with surrogate gradients (Eshraghian et al., 2023) until reaching 98% training accuracy. After training, we estimate the output sensitivity by perturbing each test sample 100 times, flipping each component with probability $\nu \in \left[\frac{1}{n}, \frac{2}{n}, \dots, \frac{1}{\sqrt{n}} \right]$ and measuring the fraction of perturbations that change the network’s output. For comparison with a random network, the noise sensitivity is estimated using the same procedure, averaged over 10 independent random weight initializations. As expected, training significantly reduces the sensitivity of the model whenever the final test accuracy is sufficiently high. Figure 3a shows the results for MNIST. Figure 3 shows the same experiment on CIFAR-10 ($n = 3072$). Notice that training reduces the model’s sensitivity, but less strongly compared to MNIST. This aligns with the fact that both the training and test **accuracies** are larger for CIFAR-10 (which achieves 84.38% training accuracy).

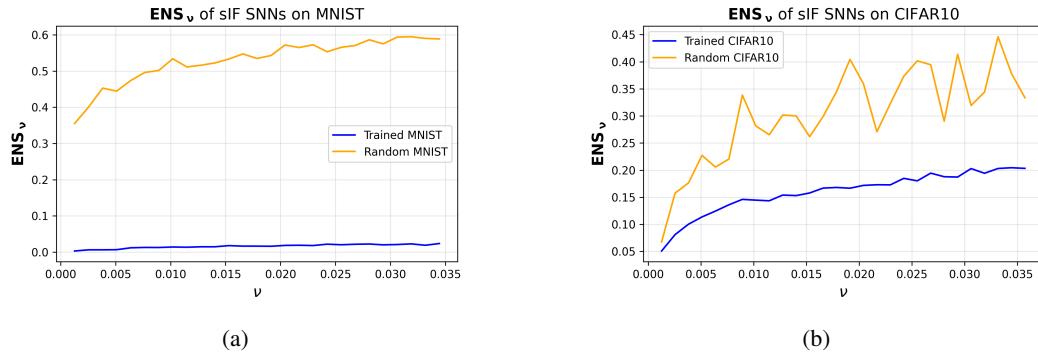


Figure 3: Sensitivity to input perturbations in sLIF-SNNs ($T = 100, \theta = 0.5, \beta = 1, L = 3$), shown at initialization and after training on (a) MNIST and (b) CIFAR-10.

Noise sensitivity on neuromorphic dataset. We evaluate the noise sensitivity of a spiking convolutional network on NMNIST Orchard et al. (2015). NMNIST is an event-based version of MNIST recorded with a dynamic vision sensor. Each data point is a tensor in $\{0, 1\}^{T \times 2 \times 34 \times 34}$ where $T \approx 30$ is the time, 2 is the polarity and 34 are the width and the height. We perturb the input sequence by replacing each time frame by flipping each component with probability $\nu \in \left[\frac{1}{n}, \frac{2}{n}, \dots, \frac{1}{\sqrt{n}} \right]$ where $n = 2312 (= 34 \times 34 \times 2)$. The results are displayed in Figure 4. Notice that the model has small ENS both before and after training. Moreover, the training does not affect the ENS as much as for static data.

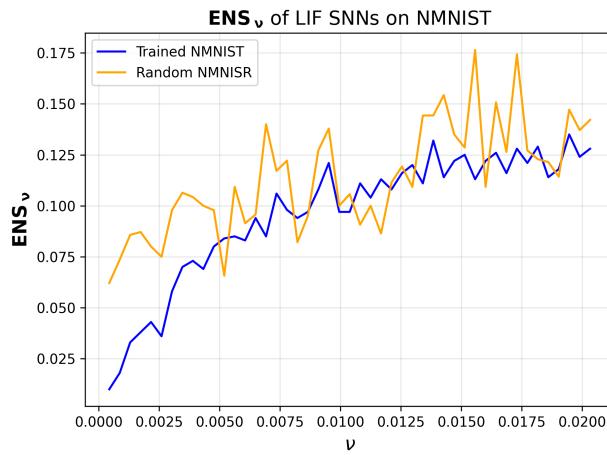


Figure 4: Sensitivity to input perturbations of a convolutional SNN with $T = 100, \theta = 0.5$ and $\beta = 0.5$, shown at initialization and after training on NMNIST

486
487

488 **Dropping 5% of the input.** We evaluate the noise sensitivity when the 5% of the input component
 489 are randomly dropped. In detail, we evaluate the noise sensitivity for a 5-layers (s)SNN with input
 490 dimension $n = 1000$, and we compare the probability of observing different output with respect to
 491 this input perturbation. The results are reported in Table 1. We notice that, both for the LIF and the
 492 sLIF model, dropout leads to smaller output sensitivity than random flipping. This is indeed expected
 493 since dropout does not affect zero components in the case of inputs in the $\{0, 1\}^n$ hypercube.

494
 495 Table 1: Sensitivity of 5-layer (s)LIF neural networks with $\beta = 0.5$ and $\theta = 1$ under two types
 496 of input perturbations: *random flipping* and *dropout*. For each model, the lowest (i.e., most robust)
 497 sensitivity value is highlighted in bold.

Model / Perturbation	Random Flipping	Dropout
sLIF	0.19	0.16
LIF	0.28	0.16

503 504 6 CONCLUSION

505 In this paper, we study the stability of wide SNN classifiers through the lens of Boolean function
 506 analysis. We provide quantitative bounds on their expected noise sensitivity and show how these
 507 stability guarantees connect to simplicity bias, motivating a new notion of simplicity. We empirically
 508 validate Theorem 1 in the case of single sIF and IF neuron. We show that both shallow and deep
 509 (s)IF neural networks exhibit a small noise sensitivity in practice, and this property extends also to
 510 random dropout perturbation of the input signal. Furthermore, we empirically suggest that training
 511 tends to preserve or even improve the ESN of SNNs.

512 The classifiers we analyze are widely used in practice, and most of our assumptions can be relaxed.
 513 The main restriction is the requirement of sufficiently large widths, needed to apply concentration of
 514 measure; whether this condition can be weakened remains an open question. On the other hand, the
 515 uniform input distribution assumed in Definition 3 does not affect Corollary 1, making extensions
 516 to other input distributions straightforward.

517 **Future directions.** Several avenues merit further investigation:

- 518 • Extending our results to feedforward RNNs, where the dynamics are simpler, as well as to
 519 more general non-feedforward SNNs.
- 520 • Studying stability under alternative perturbation distributions, a step toward understanding
 521 adversarial robustness.
- 522 • Investigating the average distance to the nearest input with a different label (see equation 4),
 523 as in (De Palma et al., 2019). Unlike their setting, a simple union bound fails here, since our
 524 $\mathcal{O}(1/\sqrt{n})$ bound is insufficient given the exponentially many inputs at distance $\mathcal{O}(\sqrt{n})$.
- 525 • Understanding how initialization impacts stability in SNNs, and whether classical ANN
 526 initialization schemes are optimal in this context.

527
528
529
530
531
532
533
534
535
536
537
538
539

540
541 ETHICS STATEMENT542
543 This work focuses on the theoretical analysis of robustness in machine learning and does not involve
544 experiments on human subjects, sensitive personal data, or applications with direct societal risks.
545 The datasets referenced are publicly available, and no private or restricted data was used. Potential
546 ethical concerns related to misuse are minimal, as the contributions are mainly theoretical.547
548 **Acknowledgment of LLM Use.** We explicitly acknowledge that large language models (LLMs)
549 were used solely for polishing code, improving sentence clarity, and refining grammar. They were
550 not used for generating research ideas, proofs, or results.551
552 REPRODUCIBILITY STATEMENT553
554 We have taken multiple steps to ensure reproducibility of our results. All theoretical claims are
555 accompanied by rigorous proofs, presented in detail in the appendix. Assumptions underlying the
556 theorems are explicitly stated, and definitions are given in full to allow independent verification.557
558 REFERENCES559 Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
560 der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Si-
561 mon Lacoste-Julien. A closer look at memorization in deep networks. In *Proceedings of the*
562 *34th International Conference on Machine Learning (ICML)*, pp. 233–242. PMLR, 2017. URL
563 <https://proceedings.mlr.press/v70/arpit17a.html>.564 Nuno Calaim, Florian A Dehmelt, Pedro J Gonçalves, and Christian K Machens. The geometry
565 of robustness in spiking neural networks. *eLife*, 11:e73276, may 2022. ISSN 2050-084X. doi:
566 10.7554/eLife.73276. URL <https://doi.org/10.7554/eLife.73276>.567 Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sankar Chod-
568 day, George Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, Yoonseok Liao, Chit-Kwan Lin,
569 Andrew Liu, Deepak Mathaikutty, Stephen McCoy, Arnon Paul, John Tse, Rajeev Venkatara-
570 manan, Andreas Wild, Yanqi Yang, and Hong Wang. Loihi: A neuromorphic manycore processor
571 with on-chip learning. *IEEE Micro*, 38(1):82–99, 2018.572 Giacomo De Palma, Bobak Toussi Kiani, and Seth Lloyd. Random deep neural networks are biased
573 towards simple functions. In *Advances in Neural Information Processing Systems*, volume 32, pp.
574 13583–13594. Curran Associates, Inc., 2019.575 Peter U. Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
576 dependent plasticity. *Frontiers in Computational Neuroscience*, Volume 9 - 2015, 2015. doi:
577 10.3389/fncom.2015.00099.578 Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking neural
579 networks. In *Proceedings of the 41st International Conference on Machine Learning, ICML’24*.
580 JMLR.org, 2024.581 Andre Elisseeff, Theodoros Evgeniou, and Massimiliano Pontil. Stability of randomized learning
582 algorithms. *J. Mach. Learn. Res.*, 6:55–79, December 2005. ISSN 1532-4435.583 Jason K. Eshraghian, Max Ward, Emre O. Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
584 Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. Training spiking neural networks
585 using lessons from deep learning. *Proceedings of the IEEE*, 111(9):1016–1054, 2023.586 Adalbert Fono, Manjot Singh, Ernesto Araya, Philipp C. Petersen, Holger Boche, and Gitta Ku-
587 tyniok. Sustainable ai: Mathematical foundations of spiking neural networks, 2025. URL
588 <https://arxiv.org/abs/2503.02013>.589
590 **Wolfram Gerstner and Werner M. Kistler.** *Spiking Neuron Models: Single Neurons, Populations,*
591 *Plasticity*. Cambridge University Press, 2002.

594 Hector Andres Gonzalez, Jiaxin Huang, Florian Kelber, Khaleelulla Khan Nazeer, Tim Hauke
 595 Langer, Chen Liu, Matthias Aleander Lohrmann, Amirhossein Rostami, Mark Schöne, Bern-
 596 hard Vogginger, Timo Wunderlich, Yixin Yan, Mahmoud Akl, and Christian Mayr. SpinNaker2:
 597 A large-scale neuromorphic system for event-based and asynchronous machine learning. In *Ma-
 598 chine Learning with New Compute Paradigms*, 2023.

599 Giacomo Indiveri and Shih-Chii Liu. Memory and information processing in neuromorphic systems.
 600 *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing*,
 601 103(8):1379–1397, 2015.

602 Ivan Jimenez-Rodriguez, Aaron D. Ames, and Yisong Yue. Lyanet: A lyapunov framework for
 603 training neural odes. In *Proceedings of the 39th International Conference on Machine Learning
 604 (ICML)*, volume 162 of *Proceedings of Machine Learning Research*, pp. 10234–10254. PMLR,
 605 2022.

606 Johan Jonasson, Jeffrey E. Steif, and Olof Zetterqvist. Noise sensitivity and stability of deep neural
 607 networks for binary classification. *Stochastic Processes and their Applications*, 165:130–167,
 608 2023. doi: 10.1016/j.spa.2023.08.003.

609 Qiyu Kang, Yang Song, Qinxu Ding, and Wee Peng Tay. Stable neural ODE with lyapunov-stable
 610 equilibrium points for defending against adversarial attacks. In A. Beygelzimer, Y. Dauphin,
 611 P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*,
 612 2021. URL <https://openreview.net/forum?id=9CPc4EIr2t1>.

613 Adnan Mehonic, Daniele Ielmini, Kaushik Roy, Onur Mutlu, Shahar Kvatinsky, Teresa Serrano-
 614 Gotarredona, Bernabe Linares-Barranco, Sabina Spiga, Sergey Savel'ev, Alexander G. Balanov,
 615 Nitin Chawla, Giuseppe Desoli, Gerardo Malavena, Christian Monzio Compagnoni, Zhongrui
 616 Wang, J. Joshua Yang, Syed Ghazi Sarwat, Abu Sebastian, Thomas Mikolajick, Stefan Slez-
 617 azeck, Beatriz Noheda, Bernard Dieny, Tuo-Hung (Alex) Hou, Akhil Varri, Frank Brückerhoff-
 618 Plückelmann, Wolfram Pernice, Xixiang Zhang, Sebastian Pazos, Mario Lanza, Stefan Wiefels,
 619 Regina Dittmann, Wing H. Ng, Mark Buckwell, Horatio R. J. Cox, Daniel J. Mannion, An-
 620 thony J. Kenyon, Yingming Lu, Yuchao Yang, Damien Querlioz, Louis Hutin, Elisa Vianello,
 621 Sayeed Shafayet Chowdhury, Piergiulio Mannocci, Yimao Cai, Zhong Sun, Giacomo Pedretti,
 622 John Paul Strachan, Dmitri Strukov, Manuel Le Gallo, Stefano Ambrogio, Ilia Valov, and Rainer
 623 Waser. Roadmap to neuromorphic computing with emerging technologies. *APL Materials*, 12
 624 (10):109201, 2024.

625 Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L. Edelman, Fred
 626 Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. In *Ad-
 627 vances in Neural Information Processing Systems (NeurIPS)*, volume 32, pp. 3491–3501, 2019.
 628 URL <https://arxiv.org/abs/1905.11604>.

629 Ryan O'Donnell. *Analysis of Boolean Functions*. Cambridge University Press,
 630 2014. ISBN 9781107038325. doi: 10.1017/CBO9781139814782. URL <https://analysisofbooleanfunctions.org/>.

631 Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
 632 datasets to spiking neuromorphic datasets using saccades. *Frontiers in neuroscience*, 9:437, 2015.

633 Garrick Orchard, E. Paxon Frady, Daniel Ben Dayan Rubin, Sophia Sanborn, Sumit Bam Shrestha,
 634 Friedrich T. Sommer, and Mike Davies. Efficient neuromorphic signal processing with loihi 2. In
 635 *2021 IEEE Workshop on Signal Processing Systems (SiPS)*, pp. 254–259, 2021.

636 Afshin Rahnama, Trung Nguyen, Edward Raff, Charles Nicholas, and Mark McLean. Robust design
 637 of deep neural networks against adversarial attacks based on lyapunov theory. *arXiv preprint
 638 arXiv:1911.04636*, 2019.

639 Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct input
 640 encoding and leakage and threshold optimization. *IEEE Transactions on Neural Networks and
 641 Learning Systems*, 34(6):3174–3182, 2023.

642 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
 643 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

648 Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
649 version of continuous-valued deep networks to efficient event-driven networks for image classifi-
650 cation. *Frontiers in Neuroscience*, 11, 2017.

651
652 Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Ne-
653 trapalli. The pitfalls of simplicity bias in neural networks. In H. Larochelle,
654 M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural In-*
655 *formation Processing Systems*, volume 33, pp. 9573–9585. Curran Associates, Inc.,
656 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6cfe0e6127fa25df2a0ef2ae1067d915-Paper.pdf.

657
658 Neil C. Thompson, Kristjan Greenewald, Keeheon Lee, and Gabriel F. Manso. Deep learning’s
659 diminishing returns: The cost of improvement is becoming unsustainable. *IEEE Spectrum*, 58
660 (10):50–55, 2021.

661
662 Guillermo Valle-Pérez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes because
663 the parameter-function map is biased towards simple functions. In *International Conference on*
664 *Learning Representations (ICLR)*, 2019. URL <https://openreview.net/forum?id=Syx1W23C->.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A KNOWN RESULTS IN STATISTICS**
 703

704 In this appendix, we recall some standard results from probability and statistics that are used
 705 throughout our proofs

706 **Lemma 1** (Linear Combination of Gaussians). *Let X_1, \dots, X_n be independent Gaussian random
 707 variables with $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, and let $a_1, \dots, a_n \in \mathbb{R}$. Then the linear combination*

$$709 \quad Y = \sum_{i=1}^n a_i X_i$$

711 is also a Gaussian random variable with mean and variance given by:

$$713 \quad \mathbb{E}[Y] = \sum_{i=1}^n a_i \mu_i, \quad \text{Var}(Y) = \sum_{i=1}^n a_i^2 \sigma_i^2.$$

715 **Theorem 3** (Chernoff Bound). *Let $\{X_i\}_{i=1}^n$ a sequence of independent random variables such that
 716 $X_i = 1$ with probability p_i and $X_i = 0$ with probability $1 - p_i$. Let us consider $X = \sum_{i=1}^n X_i$.
 717 Then $\mu := \mathbb{E}[X] = \sum_{i=1}^n p_i$ and for all $\varepsilon > 0$:*

$$718 \quad \mathbb{P}(X \geq (1 + \varepsilon)\mu) \leq e^{-\frac{\varepsilon^2}{2+\varepsilon}\mu}$$

720 **Definition 5.** *Let X and Y be two random variables such that*

$$722 \quad P\{X > x\} \leq P\{Y > x\} \quad \text{for all } x \in (-\infty, \infty)$$

723 *then X is said to be smaller than Y in the usual stochastic order (denoted by $X <_{\text{st}} Y$).*

725 We have the following result for the stochastic domination in Binomial variables. We include its
 726 proof for completeness.

727 **Lemma 2.** *If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(n, q)$ for some $0 < p < q < 1$. Then, for all $k \in [0, n]$,
 728 we have that $X <_{\text{st}} Y$.*

730 *Proof.* Let us recall that the probability mass functions:

$$731 \quad f_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad f_Y(k) = \binom{n}{k} q^k (1-q)^{n-k},$$

733 and, hence, we have

$$734 \quad \frac{f_Y(k)}{f_X(k)} = \left(\frac{q}{p}\right)^k \left(\frac{1-q}{1-p}\right)^{n-k} =: \Phi(k).$$

737 Let $h(k) := f_X(k) - f_Y(k)$. Since f_X and f_Y are both probability mass functions, it holds
 738 $\sum_k h(k) = \sum_k (f_X(k) - f_Y(k)) = 0$ and, hence, h is a signed measure with total mass zero.
 739 Since the Φ is increasing in k , $\Phi(0) < 1$ and $\Phi(n) > 1$, by continuity of Φ , there exists a (unique)
 740 $k^* \in (0, n)$ such that:

- 741 1. $0 < \Phi(k) < 1$ for all $k \in (0, k^*)$;
- 742 2. $\Phi(k) > 1$ for all $k \in (k^*, n]$.

744 Therefore, we have that:

$$746 \quad h(k) > 0 \text{ for } k \in (0, k^*) \text{ and } h(k) < 0 \text{ for } k \in (k^*, n] \quad (5)$$

747 Combining equation 5 and $\sum_{k=0}^n h(k) = 0$, we notice that $\sum_{j=0}^k h(j) \geq 0$ for all $k \in [n]$. Therefore,
 748 for all $k \in [0, n]$, we obtain that

$$750 \quad \mathbb{P}(X > k) = 1 - \sum_{j=0}^k f_X(j) = 1 - \sum_{j=0}^k f_Y(j) - \sum_{j=0}^k (f_X(j) - f_Y(j)) = 1 - \sum_{j=0}^k f_Y(j) - \sum_{j=0}^k h(j)$$

$$752 \quad \leq 1 - \sum_{j=0}^k f_Y(j) = \mathbb{P}(Y > k),$$

755 which concludes the proof. \square

756 The following result may already be established; however, since we were unable to find a reference,
757 we provide a proof here.

758 **Lemma 3.** *Let $\rho \in (0, 1]$, $a, b > \mathbb{R}$ and $\bar{X}, \bar{Z} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, it holds*

$$\begin{aligned} 760 \quad \mathbb{P}[\bar{X} \leq a, \rho\bar{X} + \sqrt{1-\rho^2}Z > b] &\leq \sqrt{1-\rho^2} + |a|\frac{1-\rho}{\rho} + \left|\frac{(b-a)}{\rho}\right| \\ 761 \quad \mathbb{P}[\bar{X} > a, \rho\bar{X} + \sqrt{1-\rho^2}Z \leq b] &\leq \sqrt{1-\rho^2} + |a|\frac{1-\rho}{\rho} + \left|\frac{(b-a)}{\rho}\right|. \end{aligned}$$

765 *Proof.* Let $\varphi(x) := \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$ be the density of a normal random variable and $\Phi(x)$ the corre-
766 sponding CDF, then

$$\begin{aligned} 769 \quad \mathbb{P}[\bar{X} > a, \rho\bar{X} + \sqrt{1-\rho^2}Z \leq b] &= \int_a^\infty \Phi\left(\frac{b-\rho x}{\sqrt{1-\rho^2}}\right) \varphi(x) dx \\ 770 \quad &= \int_{-\infty}^{\frac{b-\rho a}{\sqrt{1-\rho^2}}} \Phi(\eta) \varphi\left(\frac{\sqrt{1-\rho^2}\eta - b}{\rho}\right) \frac{\sqrt{1-\rho^2}}{\rho} d\eta \\ 771 \quad &\leq \int_{-\infty}^0 \Phi(\eta) \varphi\left(\frac{\sqrt{1-\rho^2}\eta - b}{\rho}\right) \frac{\sqrt{1-\rho^2}}{\rho} d\eta + \left| \int_0^{\frac{b-\rho a}{\sqrt{1-\rho^2}}} \Phi(\eta) \varphi\left(\frac{\sqrt{1-\rho^2}\eta - b}{\rho}\right) \frac{\sqrt{1-\rho^2}}{\rho} d\eta \right| \\ 772 \quad & \end{aligned}$$

773 The first term can be bounded by

$$\begin{aligned} 779 \quad \int_{-\infty}^0 \Phi(\eta) \varphi\left(\frac{\sqrt{1-\rho^2}\eta - b}{\rho}\right) \frac{\sqrt{1-\rho^2}}{\rho} d\eta &\leq \int_{-\infty}^0 \frac{1}{\sqrt{2\pi}} e^{-\frac{\eta^2}{2} - \frac{(\sqrt{1-\rho^2}\eta - b)^2}{2\rho^2}} \frac{\sqrt{1-\rho^2}}{\rho} d\eta \\ 780 \quad &= \frac{\sqrt{1-\rho^2}}{\sqrt{2\pi}\rho} \int_{-\infty}^0 e^{-\frac{\eta^2\rho^2 + (1-\rho^2)\eta^2 - 2\sqrt{1-\rho^2}\eta b + b^2}{2\rho^2}} d\eta \\ 781 \quad &= \frac{\sqrt{1-\rho^2}}{\sqrt{2\pi}\rho} \int_{-\infty}^0 e^{-\frac{\eta^2 - 2\sqrt{1-\rho^2}\eta b + b^2}{2\rho^2}} d\eta \\ 782 \quad &= \frac{\sqrt{1-\rho^2}}{\sqrt{2\pi}\rho} e^{-\rho^2 b^2} \int_{-\infty}^0 e^{-\frac{(\eta - \sqrt{1-\rho^2}b)^2}{2\rho^2}} d\eta \\ 783 \quad &\leq \sqrt{1-\rho^2} \end{aligned}$$

784 We control now the second term, obtaining that

$$\begin{aligned} 793 \quad &\left| \int_0^{\frac{b-\rho a}{\sqrt{1-\rho^2}}} \Phi(\eta) \varphi\left(\frac{\sqrt{1-\rho^2}\eta - b}{\rho}\right) \frac{\sqrt{1-\rho^2}}{\rho} d\eta \right| \\ 794 \quad &\leq \left| \frac{b-\rho a}{\sqrt{1-\rho^2}} \right| \frac{\sqrt{1-\rho^2}}{\rho} \\ 795 \quad &= \left| \sqrt{\frac{1-\rho}{1+\rho}} a + \frac{(b-a)}{\sqrt{1-\rho^2}} \right| \frac{\sqrt{1-\rho^2}}{\rho} \\ 796 \quad &\leq |a| \left| \frac{\sqrt{(1-\rho)(1-\rho^2)}}{\sqrt{(1+\rho)}\rho} \right| + \left| \frac{(b-a)}{\sqrt{1-\rho^2}} \right| \frac{\sqrt{1-\rho^2}}{\rho} \\ 797 \quad &\leq |a| \frac{1-\rho}{\rho} + \left| \frac{(b-a)}{\rho} \right| \end{aligned}$$

800 Combining the previous equations, we conclude the proof by noticing that

$$\mathbb{P}[\bar{X} > a, \rho\bar{X} + \sqrt{1-\rho^2}Z \leq b] = \mathbb{P}[-\bar{X} \leq -a, -\rho\bar{X} - \sqrt{1-\rho^2}Z > -b]$$

801 and $-\bar{X}$ and $-\rho\bar{X} - \sqrt{1-\rho^2}Z$ are ρ -correlated. \square

810 **B TECHNICAL LEMMAS**
 811

812 We now provide a more explicit expression for the output of a sLIF neuron with threshold θ at time
 813 t . We give the result with $\beta = 1$, but it clearly generalizes to $\beta \in [0, 1]$ by considering a weighted
 814 sum of the input sequence, instead of the sum itself.

815 **Lemma 4.** *Let $\theta > 0, T \in \mathbb{N}_+$, and $w \in \mathbb{R}^n$. Let us consider a (discrete) sLIF neuron, according
 816 to equation 1, with parameters w, θ, T and $\beta = 1$, and input signal $(x_t)_{t \in [T]}$. Then, for all $t \in [T]$,
 817 the output of the sLIF neuron at time t can be computed recursively as described below*

$$819 \quad \begin{cases} s_t = \text{sign} \left(w^\top (\sum_{k=1}^t x_k) - \theta \left(1 + \frac{1}{2} \sum_{k=0}^{t-1} (s_k + 1) \right) \right) \\ s_0 = -1 \end{cases} .$$

822 *Proof.* For $k \in [T]$, we notice that

$$824 \quad u_k - u_{k-1} = w^\top x_k - \frac{\theta}{2} (s_{k-1} + 1),$$

826 then, summing over $k \in [t]$, we get

$$827 \quad u_t = w^\top \left(\sum_{k=1}^t x_k \right) - \frac{\theta}{2} \sum_{i=1}^t (s_{i-1} + 1),$$

830 from which, together with equation 1, the result follows. \square

832 In the next lemma, we address a key challenge for dynamic inputs: although each element of an
 833 input sequence x_1, \dots, x_T lies in the hypercube $\{-1, 1\}^n$, their partial sums—processed by the
 834 neuron at each time step (cf. Lemma 4)—do not. This technical issue is absent in the static case,
 835 where the lemma is unnecessary.

836 **Lemma 5.** *Let $T \geq 1, x_1, \dots, x_T \in \{-1, 1\}^n, y_1, \dots, y_T \in \{-1, 1\}^n$ and define $h_t = d_H(x_t, y_t)$,
 837 $h = \frac{1}{T} \sum_{t=1}^T h_t$, $\bar{x}_T := \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{y}_T := \frac{1}{T} \sum_{t=1}^T y_t$. Let us assume that $h = \mathcal{O}(\sqrt{n})$, then, it
 838 holds that either $\|\bar{y}_T\| = \|\bar{x}_T\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$ or $\|\bar{y}_T\| = \|\bar{x}_T\| = \mathcal{O}\left(\frac{\sqrt{n}}{\log n}\right)$.*

840 *Proof.* Let $I_t := \{i \in [n] : x_{t,i} \neq y_{t,i}\}$ and $I = \bigcup_{t=1}^T I_t$. We notice that $h_t = |I_t|$ since
 841 $x_t, y_t \in \{-1, 1\}^n$, and therefore

$$843 \quad |I| \leq \sum_{t=1}^T |I_t| = \sum_{t=1}^T h_t = hT. \quad (6)$$

846 We observe that

848 (i) $\bar{x}_T^{I^c} = \bar{y}_T^{I^c}$ by definition of I ;
 849 (ii) $\|\bar{x}_T\| = \|\bar{x}_T^I\| + \|\bar{x}_T^{I^c}\|$ and $\|\bar{y}_T\| = \|\bar{y}_T^I\| + \|\bar{y}_T^{I^c}\|$ since $I \cap I^c = \emptyset$.

852 Let us assume that $\|\bar{y}_T\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$. Then, we have two possibilities:

854 1. If $\|\bar{y}_T^{I^c}\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$, then $\|\bar{x}_T^{I^c}\| \stackrel{(i)}{=} \|\bar{y}_T^{I^c}\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$ and, using (ii), we conclude that
 855 $\|\bar{x}_T\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$;
 856 2. If $\|\bar{y}_T^I\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$, combining equation 6 and the fact $|\bar{y}_{T,i}^I| \leq 1$ for $i \in I$ and $\bar{y}_{T,i}^I = 0$
 857 for $i \in I^C$, we obtain that

$$861 \quad hT > |I| \geq \|\bar{y}_T^I\|^2 = \omega\left(\frac{n}{\log^2 n}\right).$$

863 We note that, since $h = \mathcal{O}(\sqrt{n})$, this scenario cannot occur for n large enough.

864 Finally, we conclude that either $\|\bar{y}_T\| = \|\bar{x}_T\| = \omega\left(\frac{\sqrt{n}}{\log n}\right)$ or $\|\bar{y}_T\| = \|\bar{x}_T\| = \mathcal{O}\left(\frac{\sqrt{n}}{\log n}\right)$ □
 865
 866

867 We now give a straightforward generalization of (O'Donnell, 2014, Prop.3.3.) to the case of expected
 868 spectrum concentration (Definition 4).

869
 870 **Lemma 6.** *For a parametric family $\{f_w\}_{w \in \mathcal{W}}$, a probability measure μ on \mathcal{W} , and $x \sim$
 871 $\text{Unif}(\{-1, 1\}^n)$, $\xi \sim \text{Rad}(1 - \nu)$. Then, for $\nu \in (0, 1/2]$,*

$$872 \quad \mathbb{E}_{w \sim \mu} \left[\sum_{\substack{S \subseteq [n] \\ |S| > 1/\nu}} \hat{f}_w^2(S) \right] \leq 4 \mathbf{ENS}_\nu(\{f_w\}_{w \sim \mu}).$$

$$873 \\ 874 \\ 875 \\ 876$$

877 *Proof.* Following (O'Donnell, 2014), for a fixed f_w ,

$$878 \quad \sum_{\substack{S \subseteq [n] \\ |S| > 1/\nu}} \hat{f}_w^2(S) = \mathbb{P}_{S \sim \mathbf{S}_{f_w}} [|S| > 1/\nu],$$

$$879 \\ 880 \\ 881 \\ 882$$

883 where the \mathbf{S}_{f_w} denotes the probability distribution over the subsets of $[n]$, which assigns probability
 884 $\hat{f}_w^2(S)$ to the subset S (recall that the Fourier coefficients sum to 1). Then, using (O'Donnell, 2014,
 885 Thm.2.49)

$$886 \quad 2 \mathbf{NS}_\nu(f_w) = \mathbb{E}_{S \sim \mathbf{S}_{f_w}} \left[1 - (1 - 2\nu)^{|S|} \right]$$

$$887 \\ 888 \\ 889 \\ 890 \\ 891 \\ 892 \\ 893$$

$$\geq \left(1 - (1 - 2\nu)^{1/\nu} \right) \mathbb{P}_{S \sim \mathbf{S}_{f_w}} [|S| > 1/\nu]$$

$$\geq \frac{1}{2} \sum_{\substack{S \subseteq [n] \\ |S| > 1/\nu}} \hat{f}_w^2(S).$$

894 In the first inequality, the fact that $1 - (1 - 2\nu)^k$ is non-decreasing in k is used. Then the result
 895 follows by taking expectation with respect to $w \sim \mu$. □
 896

998 C PROOFS OF THE MAIN RESULTS

999 C.1 PROOF OF THEOREM 1

900 Consider $x_1, \dots, x_T \in \{-1, 1\}^n$ and $y_1, \dots, y_T \in \{-1, 1\}^n$ with $d_H(x_t, y_t) = h_t$ for $t \in [T]$ and
 901 define $\bar{h}_t = \frac{1}{t} \sum_{k=1}^t h_t$. Notice that $h_t = \lfloor \nu_t n \rfloor$ and $\bar{h}_t = \lfloor \bar{\nu}_t n \rfloor$. We proceed by induction over
 902 $t \in [T]$.

903 The base case $t = 1$ requires to control $\mathbb{P}[s_1(x_1, w) \neq s_1(y_1, w)]$. We note that $\bar{h}_1 = h_1$. Let us
 904 define $X = \sqrt{n}w^\top \frac{x_1}{\|x_1\|}$ and $Y = \sqrt{n}w^\top \frac{y_1}{\|y_1\|}$, then X and Y are ρ -correlated with

$$905 \quad \rho = \left\langle \sqrt{n}w^\top \frac{x_1}{\|x_1\|}, \sqrt{n}w^\top \frac{y_1}{\|y_1\|} \right\rangle = \frac{n}{\|x_1\| \|y_1\|} \sum_{j=1}^n w_j^2 x_i y_i$$

$$906 \\ 907 \\ 908 \\ 909 \\ 910 \\ 911 \\ 912 \\ 913 \\ 914 \\ 915 \\ 916 \\ 917$$

$$\geq \frac{1}{2} \left(\frac{\|x_1\|}{\|y_1\|} + \frac{\|y_1\|}{\|x_1\|} - \frac{h_1}{\|x_1\| \|y_1\|} \right) \tag{7}$$

$$= \frac{1}{2} \left(\frac{\|x_1\|^2 + \|y_1\|^2 - h_1}{\|x_1\| \|y_1\|} \right)$$

$$\geq \left(1 - \frac{h_1}{2\|x_1\| \|y_1\|} \right).$$

918 Hence, it holds that
 919

$$\begin{aligned}
 & \mathbb{P}[s_1(x_1, w) \neq s_1(y_1, w)] \\
 &= \mathbb{P}[\text{sign}(w^\top x_1 - \theta) \neq \text{sign}(w^\top y_1 - \theta)] \\
 &= \mathbb{P}\left[X > \theta \frac{\sqrt{n}}{\|x_1\|}, Y \leq \theta \frac{\sqrt{n}}{\|y_1\|}\right] + \mathbb{P}\left[X \leq \theta \frac{\sqrt{n}}{\|x_1\|}, Y > \theta \frac{\sqrt{n}}{\|y_1\|}\right]. \tag{8}
 \end{aligned}$$

925 Using Lemma 5, we can distinguish two cases
 926

927 1. In the case $\|x_1\| = \|y_1\| = \mathcal{O}(\frac{\sqrt{n}}{\log n})$, we get
 928

$$\begin{aligned}
 & \mathbb{P}\left[X > \theta \frac{\sqrt{n}}{\|x_1\|}, Y \leq \theta \frac{\sqrt{n}}{\|y_1\|}\right] \leq \mathbb{P}\left[X > \theta \frac{\sqrt{n}}{\|x_1\|}\right] \stackrel{(i)}{\leq} e^{-\theta^2 \frac{n}{\|x_1\|^2}} = \mathcal{O}(e^{-\theta^2 \log^2 n}) \tag{9} \\
 & \mathbb{P}\left[X \leq \theta \frac{\sqrt{n}}{\|x_1\|}, Y > \theta \frac{\sqrt{n}}{\|y_1\|}\right] \leq \mathbb{P}\left[Y > \theta \frac{\sqrt{n}}{\|y_1\|}\right] \stackrel{(ii)}{\leq} e^{-\theta^2 \frac{n}{\|y_1\|^2}} = \mathcal{O}(e^{-\theta^2 \log^2 n}),
 \end{aligned}$$

933 where in (i) and (ii) we used Gaussian tail bounds. Combining equation 9 and equation 8,
 934 it holds
 935

$$\mathbb{P}[s_1(x_1, w) \neq s_1(y_1, w)] = \mathcal{O}(e^{-\theta^2 \log^2 n}).$$

937 2. In the case $\|x_1\| = \|y_1\| = \omega(\frac{\sqrt{n}}{\log n})$, combining equation 7 and equation 8, it holds
 938

$$\begin{aligned}
 & \mathbb{P}[s_1(x_1, w) \neq s_1(y_1, w)] \\
 &= \mathbb{P}\left[X > \theta \frac{\sqrt{n}}{\|x_1\|}, Y \leq \theta \frac{\sqrt{n}}{\|y_1\|}\right] + \mathbb{P}\left[X \leq \theta \frac{\sqrt{n}}{\|x_1\|}, Y > \theta \frac{\sqrt{n}}{\|y_1\|}\right] \\
 &\stackrel{(iii)}{\leq} 2\sqrt{1-\rho^2} + 2\theta \frac{\sqrt{n}}{\|x_1\|} \frac{1-\rho}{\rho} + 2\theta\sqrt{n} \frac{\|y_1\| - \|x_1\|}{\|x_1\| \|y_1\| \rho} \\
 &= 2\sqrt{1+\rho}\sqrt{1-\rho} + 2\theta \frac{\sqrt{n}}{\|x_1\|} \frac{1-\rho}{\rho} + 2\theta\sqrt{n} \frac{\|y_1\| - \|x_1\|}{\|x_1\| \|y_1\| \rho} \tag{10} \\
 &\stackrel{(iv)}{\leq} 2\sqrt{\frac{h_1}{\|x_1\| \|y_1\|}} + 2\theta \frac{\sqrt{n}}{\|x_1\|} \frac{h_1}{2\|x_1\| \|y_1\| - h_1} + 4\theta \frac{\sqrt{n}\sqrt{h_1}}{2\|x_1\| \|y_1\| - h_1} \\
 &\leq C\sqrt{\frac{h_1 \log^2 n}{n}} + C\theta \frac{h_1 \log^2 n}{n} + 4\theta C\sqrt{\frac{h_1 \log^2 n}{n}} \\
 &\leq C(1+5\theta)\sqrt{\frac{h_1 \log^2 n}{n}},
 \end{aligned}$$

956 where $C > 0$ denotes a positive absolute constant independent by the model but dependent
 957 on the data, in (iii) we have used Lemma 3 and in (iv) we applied the inverse triangular
 958 inequality and the fact that $0 \leq \rho \leq 1$ since $h_1 = \mathcal{O}(\frac{n}{\log^2 n})$.
 959

Combining equation 9 and equation 10, we conclude the proof of the base case, that is
 960

$$\mathbb{P}[s_1(x_1, w) \neq s_1(y_1, w)] \leq C(1+5\theta)\sqrt{\frac{h_1 \log^2 n}{n}},$$

964 for n large enough such that
 965

$$e^{-\theta^2 \log^2 n} < \sqrt{\frac{h_1 \log^2 n}{n}}.$$

968 Let us now inductively assume that, for all $t \leq T-1$, the following probability estimate holds
 969

$$\mathbb{P}[s_t(x) \neq s_t(y)] \leq C(1+5\theta) t \sqrt{\frac{\bar{h}_t \log^2 n}{n}}. \tag{11}$$

Then, we have

$$\begin{aligned}
& \mathbb{P}[s_T(x) \neq s_T(y)] \\
&= \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) \neq \sum_{t=1}^{T-1} s_t(y) \right] + \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) = \sum_{t=1}^{T-1} s_t(y) \right] \\
&\leq \mathbb{P} \left[\sum_{t=1}^{T-1} s_t(x) \neq \sum_{t=1}^{T-1} s_t(y) \right] + \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) = \sum_{t=1}^{T-1} s_t(y) \right] \\
&\leq \sum_{t=1}^{T-1} \mathbb{P}[s_t(x) \neq s_t(y)] + \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) = \sum_{t=1}^{T-1} s_t(y) \right] \\
&\stackrel{(v)}{\leq} \sum_{t=1}^{T-1} C(1 + 5\theta) t \sqrt{\frac{\bar{h}_t}{n}} + \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) = \sum_{t=1}^{T-1} s_t(y) \right], \tag{12}
\end{aligned}$$

where in (v) we have used equation 11. It remains now to bound

$$\mathbb{P}[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1})] = \sum_{t=1}^T \mathbb{P}\left[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) = \frac{t}{T}\right].$$

First, let us define $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{y}_T = \frac{1}{T} \sum_{t=1}^T y_t$. Notice that $\|\bar{x}_T - \bar{y}_T\|^2 \leq \bar{h}_T$. Now, we have

$$\begin{aligned}
& \left\{ s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) \right\} = \frac{t}{T} \\
& = \left\{ \text{sign} \left(w^\top \bar{x}_T - \theta \frac{t}{T} \right) \neq \text{sign} \left(w^\top \bar{y}_T - \theta \frac{t}{T} \right) \right\} \\
& = \left\{ w^\top \bar{x}_T > \theta \frac{t}{T}, w^\top \bar{y}_T \leq \theta \frac{t}{T} \right\} \cup \left\{ w^\top \bar{x}_T \leq \theta \frac{t}{T}, w^\top \bar{y}_T > \theta \frac{t}{T} \right\} \\
& = \left\{ \sqrt{n} w^\top \frac{\bar{x}_T}{\|\bar{x}_T\|} > \sqrt{n} \theta \frac{t}{T \|\bar{x}_T\|}, \sqrt{n} w^\top \frac{\bar{y}_T}{\|\bar{y}_T\|} \leq \sqrt{n} \theta \frac{t}{T \|\bar{y}_T\|} \right\} \\
& \quad \cup \left\{ \sqrt{n} w^\top \frac{\bar{x}_T}{\|\bar{x}_T\|} \leq \sqrt{n} \theta \frac{t}{T \|\bar{x}_T\|}, \sqrt{n} w^\top \frac{\bar{y}_T}{\|\bar{y}_T\|} > \sqrt{n} \theta \frac{t}{T \|\bar{y}_T\|} \right\}. \tag{13}
\end{aligned}$$

Define $\bar{X} = \sqrt{n}w^\top \frac{\bar{x}_T}{\|\bar{x}_T\|}$ and $\bar{Y} = \sqrt{n}w^\top \frac{\bar{y}_T}{\|\bar{y}_T\|}$ and note that both are standard Gaussians. Their correlation is

$$\begin{aligned}
\rho &= \left\langle \frac{\bar{x}_T}{\|\bar{x}_T\|}, \frac{\bar{y}_T}{\|\bar{y}_T\|} \right\rangle \\
&= \frac{1}{2} \left(\frac{\|\bar{x}_T\|}{\|\bar{y}_T\|} + \frac{\|\bar{y}_T\|}{\|\bar{x}_T\|} - \frac{\|\bar{x}_T - \bar{y}_T\|^2}{\|\bar{x}_T\| \|\bar{y}_T\|} \right) \\
&\geq \frac{1}{2} \left(\frac{\|\bar{x}_T\|}{\|\bar{y}_T\|} + \frac{\|\bar{y}_T\|}{\|\bar{x}_T\|} - \frac{\bar{h}_T}{\|\bar{x}_T\| \|\bar{y}_T\|} \right) \\
&\geq \left(1 - \frac{\bar{h}_T}{2 \|\bar{x}_T\| \|\bar{y}_T\|} \right).
\end{aligned} \tag{14}$$

Using equation 13 we get that

$$\begin{aligned} & \mathbb{P} \left[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) = \frac{t}{T} \right] \quad (15) \\ & \leq \mathbb{P} \left[\bar{X} > \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} \leq \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] + \mathbb{P} \left[\bar{X} \leq \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} > \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right]. \end{aligned}$$

Using Lemma 5, we can distinguish two cases

1026 1. In the case $\|\bar{y}_T\| = \|\bar{x}_T\| = \mathcal{O}(\frac{\sqrt{n}}{\log n})$, we get
 1027

$$\begin{aligned}
 1028 \quad & \mathbb{P} \left[\bar{X} > \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} \leq \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] \leq \mathbb{P} \left[\bar{X} > \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|} \right] \quad (16) \\
 1029 \quad & \stackrel{(i)}{\leq} e^{-\theta^2 t^2 \frac{n}{T^2 \|\bar{x}_T\|^2}} = \mathcal{O} \left(e^{-\frac{\theta^2 t^2}{T^2} \log^2 n} \right) \\
 1030 \quad & \mathbb{P} \left[\bar{X} \leq \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} > \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] \leq \mathbb{P} \left[\bar{Y} > \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] \\
 1031 \quad & \stackrel{(ii)}{\leq} e^{-\theta^2 t^2 \frac{n}{T^2 \|\bar{y}_T\|^2}} = \mathcal{O} \left(e^{-\frac{\theta^2 t^2}{T^2} \log^2 n} \right),
 \end{aligned}$$

1032 where in (i) and (ii) we used Gaussian tail bounds. Combining equation 15 and equation 16,
 1033 it holds

$$\begin{aligned}
 1034 \quad & \mathbb{P} \left[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) = \frac{t}{T} \right] \\
 1035 \quad & = \mathcal{O} \left(e^{-\frac{\theta^2 t^2}{T^2} \log^2 n} \right).
 \end{aligned}$$

1036 2. In the case $\|\bar{y}_T\| = \|\bar{x}_T\| = \omega(\frac{\sqrt{n}}{\log n})$, combining equation 14 and equation 15, it holds
 1037

$$\begin{aligned}
 1038 \quad & \mathbb{P} \left[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) = \frac{t}{T} \right] \\
 1039 \quad & \leq \mathbb{P} \left[\bar{X} > \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} \leq \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] + \mathbb{P} \left[\bar{X} \leq \sqrt{n}\theta \frac{t}{T\|\bar{x}_T\|}, \bar{Y} > \sqrt{n}\theta \frac{t}{T\|\bar{y}_T\|} \right] \\
 1040 \quad & \stackrel{(iii)}{\leq} 2\sqrt{1-\rho^2} + 2\frac{\theta t}{T} \frac{\sqrt{n}}{\|\bar{x}_T\|} \frac{1-\rho}{\rho} + 2\frac{\theta t}{T} \sqrt{n} \frac{\|\bar{y}_T\| - \|\bar{x}_T\|}{\|\bar{x}_T\| \|\bar{y}_T\| \rho} \\
 1041 \quad & \stackrel{(iv)}{\leq} 2\sqrt{1+\rho} \sqrt{1-\rho} + 2\frac{\theta t}{T} \frac{\sqrt{n}}{\|\bar{x}_T\|} \frac{1-\rho}{\rho} + 4\frac{\theta t}{T} \sqrt{n} \frac{\sqrt{\bar{h}_T}}{\|\bar{x}_T\| \|\bar{y}_T\| \rho} \\
 1042 \quad & \leq 2\sqrt{\frac{\bar{h}_T}{\|\bar{x}_T\| \|\bar{y}_T\|}} + 2\theta \frac{\sqrt{n}}{\|\bar{x}_T\|} \frac{\bar{h}_T}{2\|\bar{x}_T\| \|\bar{y}_T\| - \bar{h}_T} + 4\frac{\theta t}{T} \frac{\sqrt{n}}{\|\bar{x}_T\|} \frac{\sqrt{n} \sqrt{\bar{h}_T}}{2\|\bar{x}_T\| \|\bar{y}_T\| - \bar{h}_T} \\
 1043 \quad & \leq C \sqrt{\frac{\bar{h}_T \log^2 n}{n}} + \frac{\theta t}{T} C \frac{\bar{h}_T \log^2 n}{n} + 4\frac{\theta t}{T} C \sqrt{\frac{\bar{h}_T \log^2 n}{n}} \\
 1044 \quad & \leq C \left(1 + 5\frac{\theta t}{T} \right) \sqrt{\frac{\bar{h}_T \log^2 n}{n}}
 \end{aligned} \quad (17)$$

1045 where in (iii) we have used Lemma 3 and in (iv) we applied the inverse triangular inequality.
 1046

1047 Combining equation 15, equation 16 and equation 17, we conclude that
 1048

$$\begin{aligned}
 1049 \quad & \mathbb{P}[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1})] \\
 1050 \quad & = \sum_{t=1}^T \mathbb{P} \left[s_T(x_1, \dots, x_T) \neq s_T(y_1, \dots, y_T), \bar{s}_{T-1}(x_1, \dots, x_{T-1}) = \bar{s}_{T-1}(y_1, \dots, y_{T-1}) = \frac{t}{T} \right] \\
 1051 \quad & \leq \sum_{t=0}^T C \left(1 + 5\frac{\theta t}{T} \right) \sqrt{\frac{\bar{h}_T \log^2 n}{n}} \\
 1052 \quad & \leq CT(1+5\theta) \sqrt{\frac{\bar{h}_T \log^2 n}{n}}
 \end{aligned}$$

1080 Finally, using equation 12, we conclude that
 1081

$$\begin{aligned}
 1082 \mathbb{P}[s_T(x) \neq s_T(y)] &\leq \sum_{t=1}^{T-1} C(1+5\theta) t \sqrt{\frac{\bar{h}_T}{n}} + \mathbb{P} \left[s_T(x) \neq s_T(y), \sum_{t=1}^{T-1} s_t(x) = \sum_{t=1}^{T-1} s_t(y) \right] \\
 1083 &\leq C(1+\theta) \left(T + \sum_{t=1}^{T-1} t \right) \sqrt{\frac{\bar{h}_T \log^2 n}{n}} \\
 1084 &\leq C(1+\theta) T^2 \sqrt{\frac{\bar{h}_T \log^2 n}{n}}.
 \end{aligned}$$

1092 The proof concludes by noticing that $\bar{h}_T = \lfloor \bar{\nu}_T \rfloor$. For static inputs, the same argument applies,
 1093 but notice that there the use of Lemma 5 is no longer necessary, since $x_1 = x_2 = \dots = x_t = x$,
 1094 which implies that $\bar{x}_t = x$ and, since $x \in \{-1, 1\}^n$, we have $\|x\| = \sqrt{n}$ (the same is true for
 1095 $y \in \{-1, 1\}^n$).
 1096

1097 C.2 PROOF OF THEOREM 2

1100 Let us denote $\bar{x}_T = \frac{1}{T} \sum_{k=1}^T x_k$, $\bar{y}_T = \frac{1}{T} \sum_{k=1}^T y_k$ and $d_H(x_t, y_t) = \lfloor \nu_t n \rfloor$ with $\nu_t \in [0, 1]$.
 1101 Let us define $\nu := \max_{t \in [T]} \nu_t$ and assume $\nu = \mathcal{O}(\frac{1}{\sqrt{n}})$. We follow a similar strategy to that
 1102 of Jonasson et al. (2023). Notice that, for all $l \in [L]$, the probability that $s_{T,i}^{(l)}(x_1, \dots, x_T, W)$
 1103 and $s_{T,i}^{(l)}(y_1, \dots, y_T, W)$ differs depends only on the number of neurons that have at least one
 1104 disagreement at any time at layer $l-1$ and not on where they disagree. We define $D_T^{(l)}$ as the
 1105 number of neurons at layer l that have at least one disagreement at any time, that is $D_T^{(l)} :=$
 1106 $\frac{1}{2} \sum_{i=1}^n \max_{k \in [T]} |s_{k,i}^{(l)}(x_1, \dots, x_k, W) - s_{k,i}^{(l)}(y_1, \dots, y_k, W)|$. With this, $D_T^{(l)}$ is a Markov chain
 1107 with $n+1$ states, where $D_T^{(l)} = 0$ is an absorbing state. More precisely, let us denote with
 1108 $M_i := \frac{1}{2} \max_{k \in [T]} |s_{k,i}^{(l)}(x_1, \dots, x_k, W) - s_{k,i}^{(l)}(y_1, \dots, y_k, W)|$. Notice that M_1, \dots, M_n are
 1109 independent random variables with value in $\{0, 1\}$. In particular, exploiting Theorem 1, it holds that
 1110

$$\begin{aligned}
 1111 \mathbb{P}[M_i = 1] &= \mathbb{P} \left[\max_{k \in [T]} |s_{k,i}^{(l)}(x_1, \dots, x_k, W) - s_{k,i}^{(l)}(y_1, \dots, y_k, W)| = 2 \right] \\
 1112 &\leq T^3 C(1+\theta) \sqrt{\frac{\bar{h}_T^{(l-1)} \log^2 n}{n}} \\
 1113 &\leq T^3 C(1+\theta) \sqrt{\frac{D_T^{(l-1)} \log^2 n}{n}}
 \end{aligned}$$

1122 for all $i \in [n]$. Therefore, $D_T^{(l)} | D_T^{(l-1)} = k$ is a Binomial random variable upper bounded in the
 1123 stochastic sense by
 1124

$$\tilde{D}_T^{(l)} | D_T^{(l-1)} = k \sim \text{Bin} \left(n, T^3 C(1+\theta) \sqrt{\frac{k \log^2 n}{n}} \right), \quad (18)$$

1130 thanks to Lemma 2. We invite the reader to see Definition 5 for a rigorous definition of *smaller in the*
 1131 *usual stochastic order*. We write now $h_t = \lfloor \nu_t n \rfloor$ for some $\nu_t \in [0, 1]$ and define $\nu = \max_{k \in [T]} \nu_t$
 1132 the maximum number of input disagreements.
 1133

We proceed by induction over the depth dimension $l \in [L]$.

1134 • Let us start from the base case $l = 1$. We want to estimate
 1135

$$\begin{aligned} 1136 \quad \mathbb{P}_W\left(D_T^{(1)} \geq \nu^{1/4} n \log n\right) &= \sum_{k=1}^n \mathbb{P}_W\left(D_T^{(1)} \geq \nu^{1/4} n \log n \mid D_T^{(0)} = k\right) \mathbb{P}_W\left(D_T^{(0)} = k\right) \\ 1138 \quad &\leq \sum_{k=1}^{\lfloor \nu n \rfloor} \mathbb{P}_W\left(D_T^{(1)} \geq \nu^{1/4} n \log n \mid D_T^{(0)} = k\right) \mathbb{P}_W\left(D_T^{(0)} = k\right) + \mathbb{P}_W\left(D_T^{(0)} > \lfloor \nu n \rfloor\right) \\ 1139 \quad &\stackrel{(i)}{\leq} \mathbb{P}_W\left(\tilde{D}_T^{(1)} \geq \nu^{1/4} n \log n \mid D_T^{(0)} = \lfloor \nu n \rfloor\right), \\ 1140 \end{aligned}$$

1141 where in (i) we used the stochastic dominance and the monotonicity of the probability
 1142 appearing in equation 18. Now, combining Theorem 3 with $\varepsilon = 1$, which is admissible
 1143 given that $\frac{\nu^{-1/4}}{CT^3(1+\theta)} > 2$ and $\nu \leq \frac{1}{\sqrt{n}}$ for n large enough, we conclude
 1144

$$1145 \quad \mathbb{P}_W\left(\tilde{D}_T^{(1)}(x, y) \geq \nu^{1/4} n \log n \mid D_T^{(0)}(x, y) = \lfloor \nu n \rfloor\right) \leq e^{-\frac{1}{3}\sqrt{\nu}n}, \\ 1146$$

1147 • Let us now assume by induction that
 1148

$$1149 \quad \mathbb{P}_W\left(D_T^{(l)} \geq \nu^{\frac{1}{2^{2l}}} n \log n\right) \leq le^{-\frac{1}{3}\nu^{\frac{1}{2^{2l-1}}}n}. \quad (19)$$

1150 Then, we have
 1151

$$\begin{aligned} 1152 \quad \mathbb{P}_W\left(D_T^{(l+1)} \geq \nu^{1/2^{2(l+1)}} n \log n\right) \\ 1153 \quad &= \sum_{k=1}^n \mathbb{P}_W\left(D_T^{(l+1)} \geq \nu^{1/2^{2(l+1)}} n \log n \mid D_T^{(l)} = k\right) \mathbb{P}_W\left(D_T^{(l)} = k\right) \\ 1154 \quad &\leq \sum_{k=1}^{\lfloor \nu^{\frac{1}{2^{2l}}} n \log n \rfloor} \mathbb{P}_W\left(D_T^{(l+1)} \geq \nu^{1/2^{2(l+1)}} n \log n \mid D_T^{(l)} = k\right) \mathbb{P}_W\left(D_T^{(l)} = k\right) + \\ 1155 \quad &\quad + \mathbb{P}_W\left(D_T^{(l)} > \lfloor \nu^{\frac{1}{2^{2l}}} n \log n \rfloor\right) \\ 1156 \quad &\leq \sum_{k=1}^{\lfloor \nu^{\frac{1}{2^{2l}}} n \log n \rfloor} \mathbb{P}_W\left(\tilde{D}_T^{(l+1)} \geq \nu^{\frac{1}{2^{2(l+1)}}} n \log n \mid D_T^{(l)} = k\right) \mathbb{P}_W\left(D_T^{(l)} = k\right) + le^{-\frac{1}{3}\nu^{\frac{1}{2^{2l-1}}}n} \\ 1157 \quad &\leq \mathbb{P}_W\left(\tilde{D}_T^{(l+1)} \geq \nu^{\frac{1}{2^{2(l+1)}}} n \log n \mid D_T^{(l)} = \lfloor \nu^{\frac{1}{2^{2l}}} n \log n \rfloor\right) + le^{-\frac{1}{3}\nu^{\frac{1}{2^{2l-1}}}n}. \\ 1158 \quad & \quad (20) \\ 1159 \end{aligned}$$

1160 Now, using Theorem 3 with $\varepsilon = 1$, which is admissible because $\frac{\nu^{-\frac{1}{2^{2(l+1)}}}}{\sqrt{\log n} T^3 C(1+\theta)} > 2$, and
 1161 $\nu \leq \frac{1}{\sqrt{n}}$, for n large enough, we conclude that
 1162

$$1163 \quad \mathbb{P}_W\left(\tilde{D}_T^{(l+1)}(x, y) \geq \nu^{\frac{1}{2^{2(l+1)}}} n \log n \mid D_T^{(l-1)}(x, y) = \lfloor \nu^{\frac{1}{2^{2l}}} n \log n \rfloor\right) \leq le^{-c\nu^{\frac{1}{2^{2l+1}}}n}. \\ 1164 \quad (21)$$

1165 Hence, combining equation 20 and equation 21, we conclude that
 1166

$$1167 \quad \mathbb{P}_W\left(\tilde{D}_T^{(l)}(x, y) \geq \nu^{\frac{1}{2^{2(l+1)}}} n \log n\right) \leq le^{-c\nu^{\frac{1}{2^{2l+1}}}n}.$$

1168 Now, if $L = 1$, we can apply directly Theorem 1 obtaining that
 1169

$$\begin{aligned} 1170 \quad \mathbb{P}_W\left(f^{1,T}(x, W) \neq f^{1,T}(y, W)\right) \\ 1171 \quad &= \mathbb{P}_W\left(\arg \max \sum_{t=1}^T s_{t,i}^{(1)}((x_t)_{t \in [T]}, W) \neq \arg \max \sum_{t=1}^T s_{t,i}^{(1)}((y_t)_{t \in [T]}, W)\right) \\ 1172 \quad &\leq \mathbb{P}_W\left(\max_{k \in [T], i \in [n_L]} |s_{k,i}^{(1)}((x_t)_{t \in [T]}, W) - s_{k,i}^{(1)}((y_t)_{t \in [T]}, W)| > 0\right) \\ 1173 \quad &\leq n_L T^3 C(1+\theta) \log n \sqrt{\nu}. \\ 1174 \end{aligned}$$

1188 If $L \geq 2$, using Theorem 1, we conclude that
 1189

$$\begin{aligned}
 1190 \mathbb{P}_W & \left(f^{L,T}(x, W) \neq f^{L,T}(y, W) \right) \\
 1191 & \leq \mathbb{P}_W \left(\max_{k \in [T], i \in [n_L]} |s_{k,i}^{(L)}((x_t)_{t \in [T]}, W) - s_{k,i}^{(L)}((y_t)_{t \in [T]}, W)| > 0 \right) \\
 1192 & \leq \mathbb{P}_W \left(\max_{k \in [T], i \in [n_L]} |s_{k,i}^{(L)}((x_t)_{t \in [T]}, W) - s_{k,i}^{(L)}((y_t)_{t \in [T]}, W)| \mid D^{(L-1)} \leq \lfloor \nu^{\frac{1}{2^{2L}}} n \log n \rfloor \right) \\
 1193 & \quad + (L-1)e^{-c\nu^{\frac{1}{2^{2L-1}}} n} \\
 1194 & \leq n_L T^4 C (1 + \theta) \nu^{\frac{1}{2^{2L+1}}} \log^{3/2} n + (L-1)e^{-c\nu^{\frac{1}{2^{2L-1}}} n},
 \end{aligned}$$

1200 which concludes the proof.
 1201

1202 C.3 PROOF OF COROLLARY 1

1204 Let $x, y \in \{-1, 1\}^n$ be static inputs. Define $N(\xi) = \frac{1}{2} \sum_{i=1}^n (\xi_i + 1)$. Then, we have for $x \sim$
 1205 $\text{Unif}(\{-1, 1\}^n)$ and $\xi \sim \text{Rad}(1 - \nu)$

$$\begin{aligned}
 1206 \text{ENS}_\nu & \left(\{f^{L,T}(\cdot, W)\}_{W \sim \mathcal{N}(0, I_d)} \right) \\
 1207 & = \mathbb{E}_{x, \xi} [\mathbb{P}_W (f^{L,T}(x, W) \neq f^{L,T}(x \odot \xi, W))] \\
 1208 & = \mathbb{E}_x [\mathbb{P}_W (f^{L,T}(x, W) \neq f^{L,T}(x \odot \xi, W) \mid N(\xi) \leq \sqrt{n}) \mathbb{P}_\xi(N(\xi) \leq \sqrt{n})] \\
 1209 & \quad + \mathbb{E}_x [\mathbb{P}_W (f^{L,T}(x, W) \neq f^{L,T}(x \odot \xi, W) \mid N(\xi) > \sqrt{n}) \mathbb{P}_\xi(N(\xi) > \sqrt{n})] \\
 1210 & \leq C_{T, \theta} \nu^{\frac{1}{2^{2L+1}}} \log^{3/2} n + (L-1)e^{-c\nu^{\frac{1}{2^{2L-1}}} n} + e^{-\frac{1}{4}\sqrt{n}}.
 \end{aligned}$$

1214 In the last line we used Theorem 2 with $\nu = \nu'$, which applies because $N(\xi) \leq \lfloor \sqrt{n} \rfloor$ is equivalent
 1215 with $d_H(x, x \odot \xi) = \lfloor \sqrt{n} \rfloor$, and $\nu' \leq \frac{1}{\sqrt{n}}$ (by assumption). We also used that

$$\mathbb{P}_\xi(N(\xi) > \lfloor \sqrt{n} \rfloor) \leq e^{-\frac{1}{4}\sqrt{n}},$$

1217 which follows from applying the Chernoff bound (in Theorem 3) to the random variable $N(\xi) \sim$
 1218 $\text{Bin}(n, \nu')$. The statement about the expected degree concentration follows applying Lemma 6,
 1219 using the bound on the expected noise sensitivity above.
 1220

1223 D ADDITIONAL EXPERIMENTS

1225 In this appendix, we report additional experiments that complement the results presented in the
 1226 main text. These include further evaluations of noise sensitivity and analyses of (s)LIF spiking neural
 1227 networks under different settings.
 1228

1229 **Single (s)LIF Neuron.** We present additional experiments on (s)LIF spiking neuron. These results
 1230 complement the main text by providing additional empirical support for the claims made in the
 1231 experiment section. In Figure 7, we report results for the neuron with threshold $\theta = 0$. In this case,
 1232 we observe that the neuron either fires at all times or does not fire at all. This is consistent with the
 1233 experiments, as the sensitivity remains constant over time.
 1234

1235 **Deep (s)IF SNN.** We present additional experiments on deep (s)IF spiking neural networks.
 1236 These results complement the main text by extending the analysis of noise sensitivity to multi-layer
 1237 architectures.
 1238

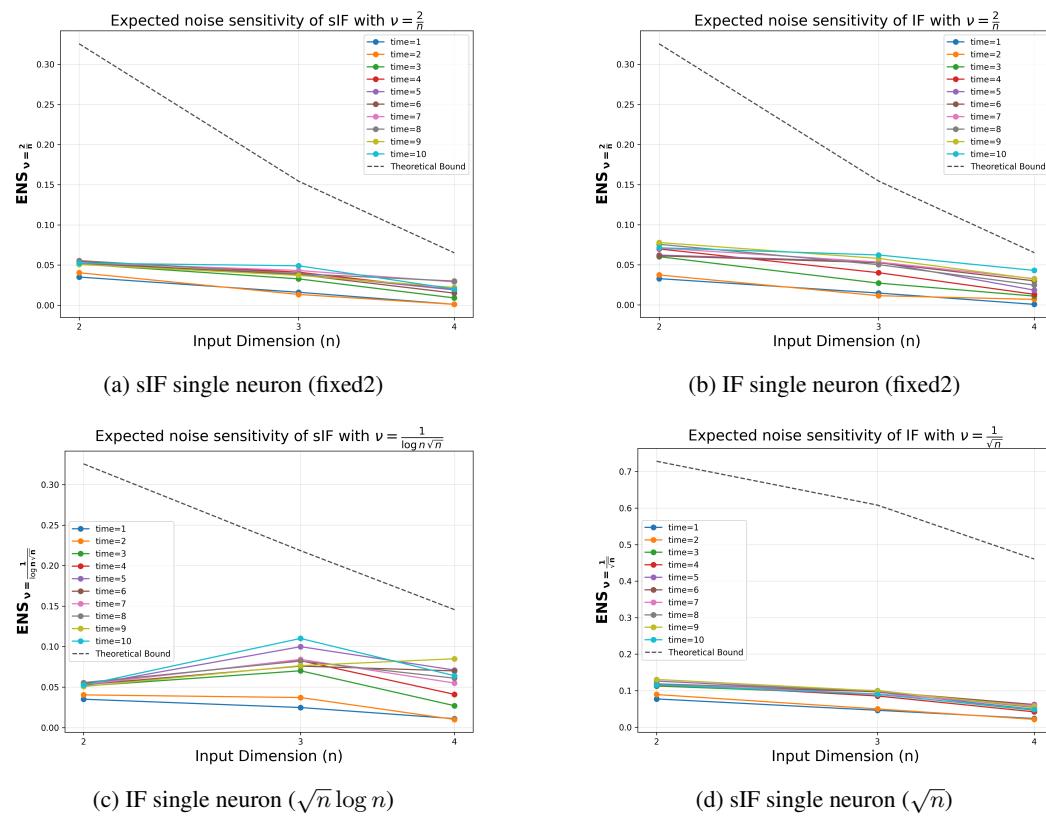


Figure 5: Noise sensitivity $\text{ENS}_{2/n}$ and $\text{ENS}_{1/(\sqrt{n} \log n)}$ for different input dimensions n for sIF and IF neurons with $\theta = 0.5$ and $T = 10$. **(a)** $\text{ENS}_{2/n}$ for sIF neuron. **(b)** $\text{ENS}_{2/n}$ for IF neuron; **(c)** $\text{ENS}_{1/(\sqrt{n} \log n)}$ for sIF neuron. **(d)** $\text{ENS}_{1/(\sqrt{n} \log n)}$ for IF neuron.

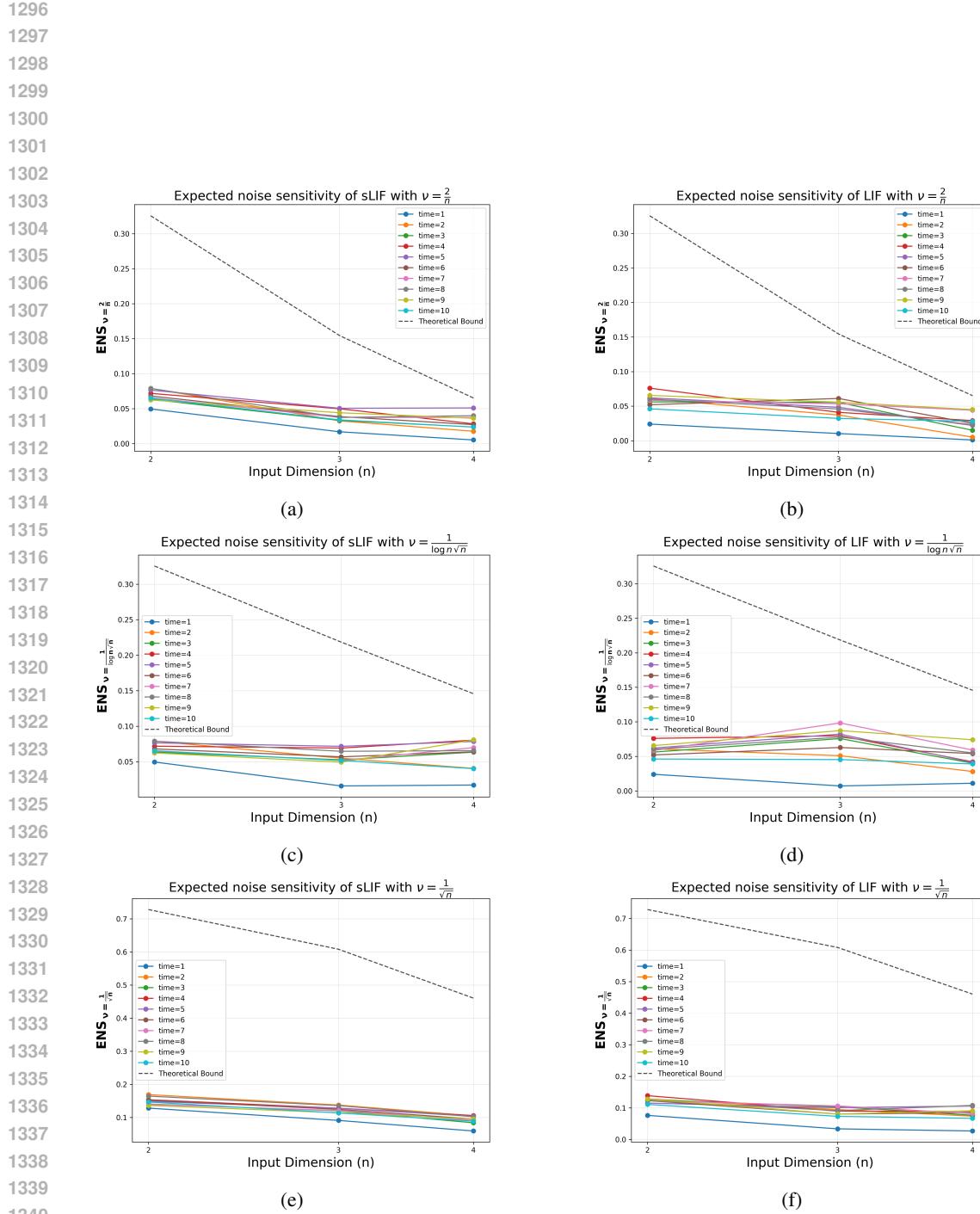


Figure 6: Noise sensitivity $\text{ENS}_{2/n}$ and $\text{ENS}_{1/(\sqrt{n} \log n)}$ for different input dimensions n for sLIF and LIF neurons with $\theta = 0.5$, $T = 10$ and $\beta = 0.5$. (a) $\text{ENS}_{2/n}$ for sLIF neuron. (b) $\text{ENS}_{2/n}$ for LIF neuron; (c) $\text{ENS}_{1/(\sqrt{n} \log n)}$ for sLIF neuron. (d) $\text{ENS}_{1/(\sqrt{n} \log n)}$ for LIF neuron.

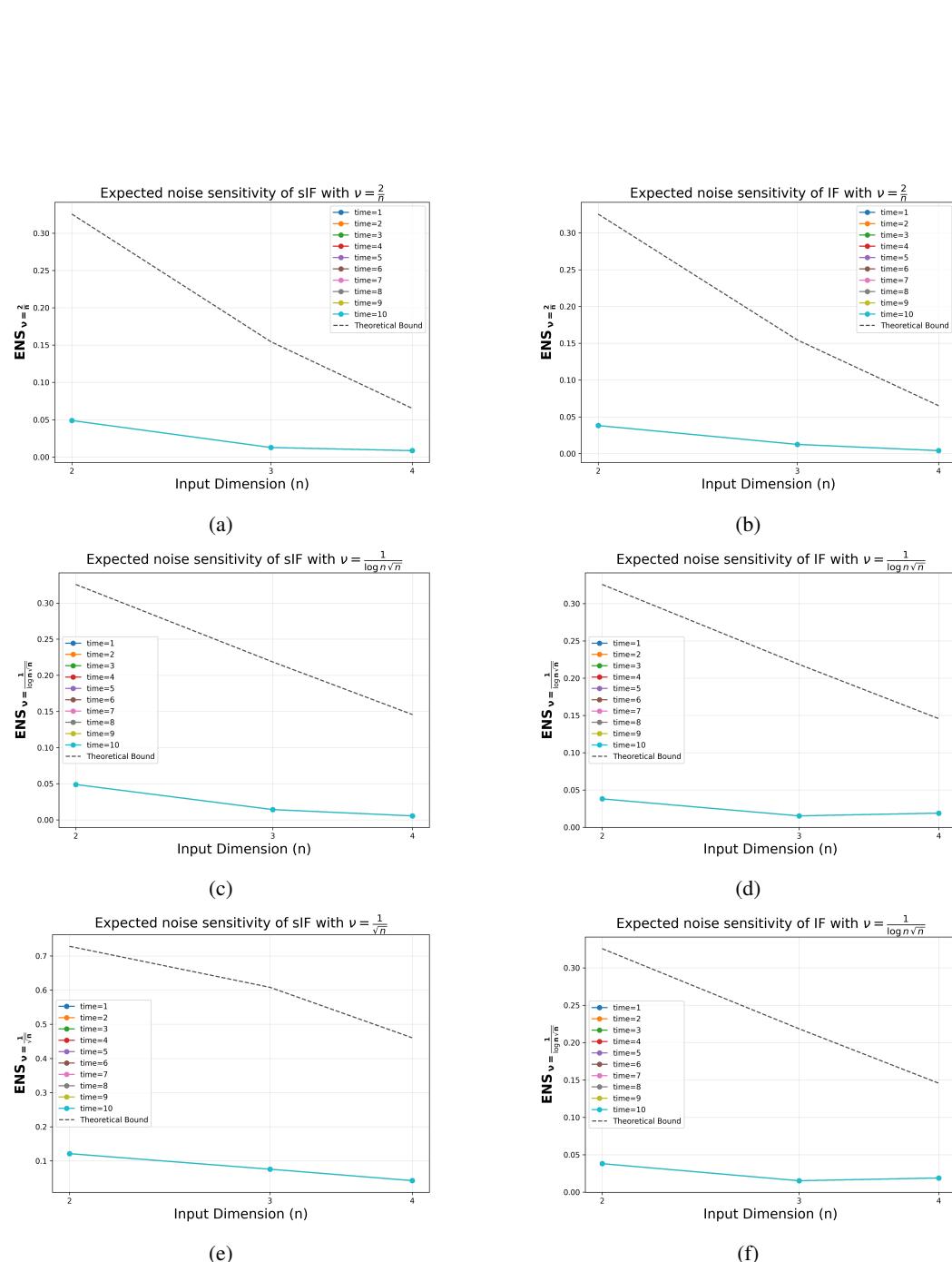


Figure 7: Noise sensitivity $\text{ENS}_{2/n}$ and $\text{ENS}_{1/(\sqrt{n} \log n)}$ for different input dimensions n for sIF and IF neurons with $\theta = 0$ and $T = 10$. **(a)** $\text{ENS}_{2/n}$ for sIF neuron. **(b)** $\text{ENS}_{2/n}$ for IF neuron; **(c)** $\text{ENS}_{1/(\sqrt{n} \log n)}$ for sIF neuron. **(d)** $\text{ENS}_{1/(\sqrt{n} \log n)}$ for IF neuron; **(e)** $\text{ENS}_{1/(\sqrt{n})}$ for sIF neuron. **(d)** $\text{ENS}_{1/(\sqrt{n})}$ for IF neuron.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

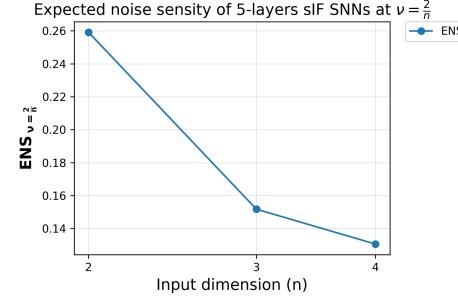
1414

1415

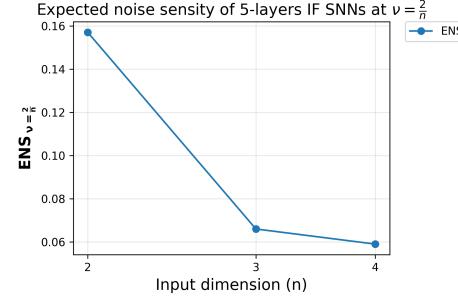
1416

1417

1418



(a) sIF single neuron (fixed2)



(b) IF single neuron (fixed2)

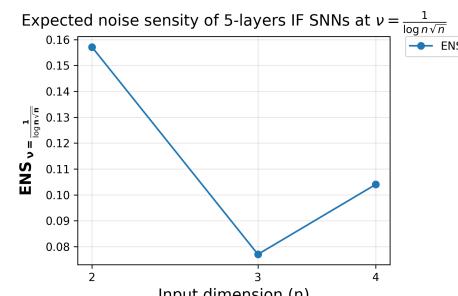
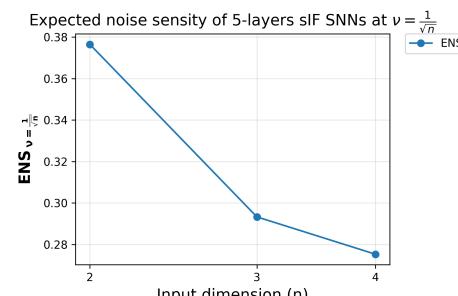
(c) IF single neuron ($\sqrt{n} \log n$)(d) sIF single neuron (\sqrt{n})

Figure 8: Noise sensitivity $\text{ENS}_{1/\sqrt{n}}$ for different input dimensions n for 5-layers sIF and IF neural networks with $\theta = 0.5$ and $T = 10$. (a) $\text{ENS}_{2/n}$ for 5-layers sIF neural network (log-scale x-axis); (b) $\text{ENS}_{1/(\sqrt{n} \log n)}$ for 5-layers sIF neural network (log-scale x-axis).

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457