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ABSTRACT

Spiking neural networks (SNNs) are a promising paradigm for energy-efficient
computation, yet their theoretical foundations—especially regarding stability and
robustness—remain limited compared to artificial neural networks. In this work,
we study discrete-time leaky integrate-and-fire (LIF) SNNs through the lens of
Boolean function analysis. We focus on noise sensitivity and stability in classifi-
cation tasks, quantifying how input perturbations affect outputs. Our main result
shows that wide LIF-SNN classifiers are stable on average, a property explained
by the concentration of their Fourier spectrum on low-frequency components. Mo-
tivated by this, we introduce the notion of spectral simplicity, which formalizes
simplicity in terms of Fourier spectrum concentration and connects our analy-
sis to the simplicity bias observed in deep networks. Within this framework, we
show that random LIF-SNNs are biased toward simple functions. Experiments
on trained networks confirm that these stability properties persist in practice. To-
gether, these results provide new insights into the stability and robustness proper-
ties of SNNs.

1 INTRODUCTION

Artificial Neural Networks (ANNs) have become central to modern machine learning, but their rapid
growth in scale demands increasingly unsustainable computational and energy resources (Thomp-
son et al., 2021). This challenge is especially acute for low-power devices, where efficiency is
critical. Spiking Neural Networks (SNNs), inspired by biological neurons and operating through
event-driven spikes, offer a promising energy-efficient alternative (Roy et al., 2019; Davies et al.,
2018). Their sparse communication and compatibility with neuromorphic hardware position them
as strong candidates for sustainable machine learning (Mehonic et al., 2024; Fono et al., 2025).

Despite this potential, the theoretical understanding of SNNs remains limited compared to that
of classical ANNs. While substantial progress has been made on designing training algorithms
(Eshraghian et al., 2023) and hardware implementations (Davies et al., 2018; Indiveri & Liu, 2015),
core theoretical properties—such as stability, robustness, and generalization—are still largely un-
derexplored. This gap limits our ability to rigorously assess the strengths and limitations of SNNs
in practice.

Among these properties, stability is crucial for designing networks resilient to input perturbations
and adversarial attacks, yet no single definition exists. It can refer to algorithmic stability of learning
algorithms (Elisseeff et al., 2005), dynamical systems stability (naturally aligned with the temporal
dynamics of spiking neurons) (Ding et al., 2024), or—as we consider here—to sensitivity to input
changes. Intuitively, a stable network should be resilient to small perturbations in inputs or parame-
ters, which is critical for both reliable inference and efficient learning. Many SNN models, including
the discrete-time Leaky Integrate-and-Fire (LIF) neuron, can be viewed as iterative compositions of
Boolean functions, since neurons emit spikes only when their membrane potential crosses a thresh-
old (a binary event), motivating the study of stability via Boolean function analysis (O’Donnell,
2014). While prior work has examined SNN stability from dynamical systems (Ding et al., 2024)
or neuroscience perspectives (Calaim et al., 2022), to our knowledge this is the first study to apply
Boolean analysis to characterize and investigate stability in SNNs.

The Boolean perspective on SNNs suggests a natural link to the notion of simplicity in neural net-
works: if a network is stable, small input perturbations rarely change its output, hinting at a bias
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toward “simple” input-output mappings. In the SNN setting, this can be formalized via the pre-
dominance of low-frequency components in the Fourier–Walsh expansion of a classifier. Motivated
by this, we introduce spectral simplicity, which quantifies the concentration of the Fourier spec-
trum on low frequencies. This notion connects naturally with other notions of simplicity studied
in the context of simplicity bias, proposed as a lens to understand generalization in deep networks.
For example, prior work has shown that random deep ANNs tend to implement “simple” functions
(De Palma et al., 2019), formalized as a large average Hamming distance to the nearest input with
a different predicted class (Valle-Pérez et al., 2019). Spectral simplicity represents a weaker notion,
but one that arises intrinsically in spiking networks.

To make these questions precise, we focus on the discrete-time LIF model. This model combines
theoretical simplicity with widespread adoption in practice, serving as the foundation of software
frameworks such as SNN-Torch and being implemented in digital neuromorphic platforms includ-
ing Loihi 2 and SpiNNaker 2 (Orchard et al., 2021; Gonzalez et al., 2023). In this work, we restrict
attention to networks at initialization. This choice reflects the still-developing theory of SNN train-
ing and our goal of isolating stability properties intrinsic to the model, without confounding effects
from learning dynamics. Moreover, random networks have been shown to serve as useful priors
in PAC-Bayes generalization bounds (Valle-Pérez et al., 2019). Understanding the effect of training
dynamics is an exciting question; here, we explore it experimentally and leave a theoretical treatment
for future work.

Contributions. We summarize our main contributions as follows:

• We derive quantitative bounds on the stability of discrete-time LIF SNN classifiers, show-
ing that they are stable on average with respect to random parameter initialization. In par-
ticular, when input sequences lie in the binary cube {−1, 1}n, the classifier output remains
unchanged under perturbations of up to O(

√
n) coordinates, with high probability for n

large enough. The bounds depend explicitly on the model’s hyperparameters and reveal
that LIF SNNs exhibit stability properties comparable to other (time-independent) Boolean
networks (Jonasson et al., 2023).

• We introduce the notion of spectral simplicity, defined via the Fourier decomposition of
discrete-time LIF SNN classifiers for static data. We prove that random SNNs are biased
toward spectrally simple functions, i.e., those whose Fourier spectrum is predominantly
concentrated on low-frequency components.

• We complement these theoretical results with numerical experiments, investigating in par-
ticular the effect of training on stability. Our experiments reveal that both shallow and deep
SNNs are noise stable, and that training tends to increase their stability on average.

1.1 RELATED WORKS

Stability of ANNs and SNNs. As previously noted, stability in SNNs can be approached from
multiple perspectives. Each neuron follows a (typically non-linear) dynamical system, raising the
natural question of how input perturbations affect its output. In the ANN and Neural ODE litera-
ture, Lyapunov-based analyses (Jimenez-Rodriguez et al., 2022; Kang et al., 2021; Rahnama et al.,
2019) establish robustness via bounds on how perturbations propagate through the network. The
discrete-time LIF model’s robustness to input perturbations has been analyzed from a dynamical
systems perspective by Ding et al. (2024), who derived bounds on output spike sequence variations
under perturbed inputs. Our work differs in three key ways: (i) we study stability at the classifier
level, where predictions may remain unchanged even if spike trains differ; (ii) we consider the reset-
by-subtraction mechanism, which introduces additional complexity compared to the reset-to-zero
simplification in (Ding et al., 2024); and (iii) our analysis extends beyond single neurons to multi-
neuron networks. Methodologically, our approach is different building on Boolean function analysis
(O’Donnell, 2014), aligning more closely with Jonasson et al. (2023), but introduces new challenges
stemming from reset dynamics and temporal evolution, which create nontrivial probabilistic depen-
dencies.

Simplicity bias. Simplicity bias has been proposed as a mechanism underlying the generalization
of deep networks, both in trained models with SGD (Arpit et al., 2017; Nakkiran et al., 2019; Valle-
Pérez et al., 2019) and in random ANNs (De Palma et al., 2019). The central idea is that learning
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favors simple functions, though the precise definition of simplicity varies, and pitfalls have been
noted in (Shah et al., 2020). We introduce spectral simplicity, based on the Fourier–Walsh decom-
position of Boolean functions, as a complementary notion. While our focus on random networks
parallels (De Palma et al., 2019), the techniques differ substantially: their analysis relies on Gaussian
process arguments, whose extension to SNNs is unclear, whereas we draw on Boolean function anal-
ysis, which adapts naturally to our setting. While a weaker measure of simplicity, spectral simplicity
arises organically in spiking networks.

1.2 NOTATION

Give a positive integer a, we denote with [a] the sets {1, . . . , a}. Given x, y ∈ {−1, 1}n, we define
the Hamming distance between x and y as dH(x, y) :=

∣∣{i ∈ [n] : xi ̸= yi

}∣∣ = 1
2

∑n
i=1 |xi − yi|.

We use sign(x) ∈ {−1, 1} for the sign function, i.e. sign(x) = 1 if x ≥ 0 and −1 otherwise. We
write N (u,Σ) for the Gaussian distribution with mean u and covariance Σ, Unif({−1, 1}n) for the
uniform distribution on the hypercube, and Bin(n, p) for the Binomial distribution with parame-
ters (n, p). Similarly, Rad(κ) denotes a vector with i.i.d. Rademacher coordinates with parameter
κ(dimension clear from context). For asymptotics, we use the standard asymptotic notation: O(·),
o(·) and ω(·).

2 THE DISCRETE-TIME LIF MODEL

We aim to study the stability of SNNs in classification tasks. Specifically, we consider SNN models
constructed as compositions of sign leaky integrate-and-fire (sLIF) neurons. Each neuron acts as an
information-processing unit that maps time series inputs1 (xt)t∈[T ] ∈ ({−1, 1}n)T to binary spike
sequences (st)t∈[T ] ∈ {−1, 1}T , based on a neuronal dynamic. The dynamics of a single neuron
are defined as follows.
Definition 1 (sLIF neuron). Let T ≥ 1 be an integer, β ∈ [0, 1], θ ∈ (0,∞). We define the
sign leaky integrate-and-fire (sLIF) neuron, with input (xt)t∈[T ] ∈ ({−1, 1}n)T and output

(st)t∈[T ] ∈
(
{−1, 1}

)T
, as a parametric computational unit that evolves over discrete time steps

t ∈ [T ] accordingly to the following recursive dynamic
ut = βut−1 + w⊤xt − θ

2

(
st−1 + 1

)
st = sign

(
ut − θ

)
u0 = 0

, (1)

where (ut)t∈[T ] ∈
(
[0,∞)

)T
is the sequence of membrane potentials and w ∈ Rn are the model’s

weights. Equivalently, this can be regarded as a function mapping (xt)t∈[T ] → (st)t∈[T ].
To make the dependence on inputs and parameters explicit, we occasionally use the notation
st
(
(xk)k∈[t], w

)
.

Each neuron processes an input sequence (xt)t∈[T ] through its membrane potentials (ut)t∈[T ], which
evolve according to an autoregressive decay dynamics over the time horizon T (referred to as the
latency of the model). The leak parameter β ∈ [0, 1] controls this decay, specifying the fraction of
potential retained per time step. Whenever the membrane potential exceeds the activation threshold
θ > 0 at some time t′, the neuron emits a spike, recorded as st′ = 1 in the spike train (st)t∈[T ],
and the potential is reduced by θ (reset by subtraction). Weights are initialized as w ∼ N (0, In/n),
ensuring w⊤x = O(1) with high probability for x ∈ {−1, 1}n, thereby avoiding degenerate regimes
of vanishing or overly frequent firing. For further background on the LIF model, see (Gerstner &
Kistler, 2002). In short, we use the term leaky integrate-and-fire (LIF) neuron for the variant with a
Heaviside step function and reset rule vt 7→ vt−θst−1, and integrate-and-fire (IF) when the leakage
is absent (β = 1); networks composed of such units are referred to as LIF and IF SNNs, respectively.

Networks of spiking neurons. In the sLIF SNNs considered here, multiple sLIF neurons are
interconnected through weighted synapses. The spike train generated by each neuron can serve

1While our theory focuses on binary data, the definition extends to real-valued inputs.
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as input to other neurons, and the overall network dynamics evolve over time, akin to a recurrent
network. In what follows, we focus on SNNs composed of fully connected sLIF neurons, arranged
in layers, as formalized in the next definition.
Definition 2 (sLIF SNN). Fix positive integers L, T, n0, . . . , nL ≥ 1, β ∈ [0, 1], θ ∈ [0,∞), and
let the input sequence be (xt)t∈[T ] ∈ ({−1, 1}n0)T . An L-layer sLIF neural network with latency
T and layer widths n1, . . . , nL is defined as the Boolean dynamical system

u
(l)
t = βu

(l)
t−1 +W (l)s

(j−1)
t − θ

2

(
s
(l)
t−1 + 1

)
,

s
(l)
t = sign

(
u
(l)
t − θ

)
,

u
(l)
0 = 0,

s
(0)
t = xt,

(2)

where, for each layer l ∈ [L], W (l) ∈ Rnl×nl−1 denotes the weight matrix, (u(l)
t )t∈[T ] the membrane

potential sequence, and (s
(l)
t )t∈[T ] is the (output) the spike sequence. We collect all parameters into

a single vector W = vec
(
W (1), . . . ,W (L)

)
∈ Rd, where d =

∑L
l=1 nlnl−1.

Given a L-layers sLIF SNN as in Definition 2, a widely used choice of classifier in SNNs (see e.g.,
(Diehl & Cook, 2015)) is based on spike counts at the output layer, namely

fL,T
(
(xt)t∈[T ],W

)
:= arg max

i∈[nL]

T∑
t=1

s
(L)
t,i

(
(xt)t∈[T ],W

)
, (3)

where the predicted class corresponds to the neuron in the final layer with the largest total spike
count. Here, s(L)

t,i is the i-th coordinate of the spiking sequence s
(L)
t .

Assumptions. Throughout this work, we assume n0 = · · · = nL−1 = n, with nL equal to the
number of classes. For simplicity, we focus on a variant of the sLIF model equation 2 with β = 1.
Our analysis allows dynamic input sequences (xt)t∈[T ], though some results only apply to static
inputs, interpreted as repeated presentations of the same sample over time. Such constant input
encoding is commonly used in practice for time-static datasets such as MNIST or CIFAR-10 (Rathi
& Roy, 2023; Rueckauer et al., 2017). Finally, the model parameters are initialized as

Wi
i.i.d.∼ N (0, 1/n), i ∈ [d].

3 NOISE SENSITIVITY OF BOOLEAN FUNCTIONS

Within this framework, sLIF neurons can be viewed as compositions of Boolean functions, allowing
stability analysis via Boolean function theory. We recall the basic definitions here and refer the
reader to (O’Donnell, 2014) for a comprehensive treatment. Additionally, we introduce spectral
simplicity, which is central to the statement of our main result.

Noise sensitivity and stability. The stability of a Boolean function is classically quantified by its
noise sensitivity. For f : {−1, 1}n → {−1, 1} and noise rate ν ∈ [0, 1], define

NSν(f) := IPx,ξ[f(x) ̸= f(x⊙ ξ)],

where x ∼ Unif({−1, 1}n) and ξ = (ξ1, . . . , ξn) has i.i.d. entries ξi ∼ Rad(1 − ν). Equivalently,
the noise stability is

Stab1−2ν(f) := Ex,ξ[f(x)f(x⊙ ξ)] = 1− 2NSν(f),

capturing the probability that f preserves its value under input perturbations. Given this equivalence,
we will use noise sensitivity in the sequel.
Definition 3 (Expected noise sensitivity). For a parametric family {fw}w∈W , a probability measure
µ on W , and x, ξ distributed as above, define

ENSν({fw}w∼µ) := IPw∼µ,x,ξ[fw(x) ̸= fw(x⊙ ξ)].

4
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Fourier analysis and spectral concentration. Every f : {−1, 1}n → R admits a unique
Fourier–Walsh expansion (O’Donnell, 2014, Thm. 1.1):

f(x) =
∑
S⊆[n]

f̂(S)χS(x), χS(x) =
∏
i∈S

xi.

Low-degree terms (|S| small) correspond to low frequencies, and high-degree terms to high fre-
quencies. A constant function, for instance, has spectrum supported on ∅. The notion of spectrum
concentration formalizes when a function is “simple”: most of its Fourier weight lies on low-degree
terms, i.e., subsets of size o(n). Formally (O’Donnell, 2014, Def. 3.1), f is ϵ-concentrated up to
degree k if ∑

S:|S|>k

f̂(S)2 ≤ ϵ.

Definition 4 (Expected spectrum concentration). Given a parametric family of functions
{fθ : {−1, 1}n → R}w∈W , and a probability measure µ in W , we say that {fw}w∈W has, in
expectation under µ, spectrum ϵ-concentrated up-to degree k if

Ew∼µ

 ∑
S⊆[n]
|S|>k

f̂2
w(S)

 ≤ ϵ.

A key connection between noise stability and spectral concentration is given by (O’Donnell, 2014,
Prop. 3.3), which states that for a Boolean function f , if we set ϵ = 3 NSν(f), then the spectrum
of f is ϵ-concentrated up to degree 1/ν. This result extends naturally to parametric families of func-
tions by linearity, replacing NSν(f) with ENSν(f) and spectral concentration with its expected
counterpart (see Lemma 6).

Other notions of simplicity. Alternative notions of simplicity have been proposed in the sim-
plicity bias literature (Valle-Pérez et al., 2019; De Palma et al., 2019). Closest to our setting is
the definition of De Palma et al. (2019), who study, for a classifier f : {−1, 1}n → {−1, 1} and
x ∈ {−1, 1}n, the quantity

Nh(x; f) :=
∣∣{ y : dH(x, y) = h, f(x) ̸= f(y) }

∣∣, (4)

which counts h-bit perturbations that flip the label. They show that its expected asymptotic behavior
of depends on the activation function; for ReLU networks Ex∼Unif({−1,1}n)[Nh(x, f)] → 0, imply-
ing that the average Hamming distance to the nearest input with a different class is O(

√
n

logn ). To
connect this notion with noise sensitivity, note that for any parametric family of Boolean functions
{fw}w∈W ,

ENSν ({fw}w∼µ) =

n∑
h=1

Ew∼µ,x∼Unif [Nh(x; fw)] ν
h(1− ν)n−h.

In principle, one could recover E[Nh(x; fw)] by inverting the previous relation, but this would re-
quire a precise characterization of ENSν . In practice, only bounds on this quantity are typically
attainable, as we show next.

4 NOISE STABILITY OF SNN CLASSIFIERS

In this section, we apply the Boolean function analysis framework from Section 3 to quantify the
stability of discrete-time LIF-SNN classifiers. Recalling the SNN classifier definition in equation 3
and our main assumptions from Section 2, we begin with the single neuron case.

Single neuron stability. Under Definition 1, each output st in the sequence (st)t∈[T ] defines a
Boolean function st : {−1, 1}n → {−1, 1}. For any t ∈ [T ] and input sequences (xt)t∈[T ] and
(yt)t∈[T ] with fixed Hamming distance, we bound the probability (over random initialization) that
st((xk)k∈[t], w) ̸= st((yk)k∈[t], w).

5
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Theorem 1. Consider a sLIF neuron, with latency T ∈ N+, threshold θ ∈ (0,∞), with random
parameter vector w∼N (0, In/n). We consider two input sequences x1, . . . , xT ∈ {−1, 1}n and
y1, . . . , yT ∈ {−1, 1}n. Denote νt = dH(xt, yt)/n and νt =

1
t

∑t
k=1 νt. If maxt∈[T ] νt = O( 1√

n
),

then for all t ∈ [T ], we have

IPw [st(x1, . . . , xt) ̸= st(y1, . . . , yt)] ≤ C(1 + θ)t2
√
νt log n ,

where C > 0 is an absolute constant independent of the θ, T , n, t, x1, . . . , xT and y1, . . . , yT .
Moreover, for static inputs the same bound applies without the logarithmic factor.

Below we present a proof sketch of Theorem 1 focusing on the primary technical challenges; the
full proof is deferred to Appendix C.1.

Proof sketch of Theorem 1. We argue by induction. Here, we illustrate the argument for t = 1. In
this case, the problem reduces to bounding the probability that a random linear threshold function
produces different outputs for two inputs x1, y1 at Hamming distance ⌊ν1n⌋:

IP
[
sign(w⊤x1 − θ) ̸= sign(w⊤y1 − θ)

]
.

Step 1: Decomposition. Define X = w⊤x1 and Y = w⊤y1, which are standard Gaussians. A classic
Gaussian decomposition property allow us to express Y = ρX +

√
1− ρ2Z, where ρ = 1− ν1.

Step 2: Event characterization. The disagreement event is equivalent to

{X > θ, Y ≤ θ} ∪ {X ≤ θ, Y > θ}.

Step 3: Probability estimate. The first event has probability

IP[X > θ, Y ≤ θ] = Φ2

(
−θ, θ; 2ν1 − 1

)
,

where Φ2 denotes the bivariate Gaussian CDF with unit variances and correlation 2ν1 − 1. The
second event yields a symmetric expression Φ2(θ,−θ; 2ν1 − 1). Combining both, and using tail
bounds and Lemma 3, one obtains

IP[sign(w⊤x− θ) ̸= sign(w⊤y − θ)] ≤ Cθ
√
ν1 ,

for a constant Cθ depending only on θ, see equation 10 for details.

For t ≥ 2, the argument extends but with added complexity: temporal dependencies require union
bounds, introducing the T factor in the constant. In the dynamic case, the sLIF neuron processes
input sums that lie outside the hypercube, creating technical challenges. In contrast, the static case
avoids these issues and the proof is simpler, with better rates.

Remarks. For T = 1, our result recovers (up to logarithmic factors) the known bounds on the
noise sensitivity of fixed linear threshold functions, i.e., classifiers of the form sign(w⊤x− θ). For
larger T , our bounds deteriorate. This may partly reflect proof artifacts—since handling dependen-
cies introduced by shared weights across time can loosen bounds—but it is also consistent with the
general behavior of Boolean function compositions, where sensitivity typically increases with depth.
A key obstacle to sharper time dependencies is the reset mechanism: thresholds adapt dynamically
as the process evolves, complicating tighter analysis.

By inspecting the proof, we note that the assumption β = 1 can be relaxed without significant
changes to the analysis, but we maintain it here for simplicity. The proof also applies, with minor
modifications, to the classical LIF model with Heaviside activations, but we adopt the signed variant
to enable a cleaner Fourier analysis. In contrast, the requirement of large network width is essen-
tial, as our concentration-based arguments rely on it. The influence of architectural parameters on
stability is explored empirically in Section 5.

6
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Multiple neurons. We now analyze the noise sensitivity of classifier outputs from L-layer sLIF
neural networks. Specifically, we study classifiers defined as in equation 3 and built from L-layer
sLIF networks (Definition 2).
Theorem 2. Let fL,T (· ,W ) be a nL-classes classifier, defined by a L-layer sLIF, according to
equation 3, with latency T ∈ N+, θ ∈ (0,∞), widths n1 = n2 = . . . = nL−1 = n and weights
W ∼ N (0, Id/n). Let x1, . . . , xT ∈ {−1, 1}n and y1, . . . , yT ∈ {−1, 1}n such that dH(xt, yt) =
⌊νtn⌋ with νt ∈ [0, 1]. Let us define ν := maxt∈[T ] νt and assume ν = O( 1√

n
). Then, for n large

enough, it holds that

IPW

(
fL,T ((xt)t∈[T ],W ) ̸= fL,T ((yt)t∈[T ],W )

)
≤ nLT

4C(1 + θ)ν
1

22L+1 log3/2 n+ (L− 1)e−cν
1

22L−1 n,

for some absolute constants c, C > 0 independent of θ, T , n, t, x1, . . . , xT and y1, . . . , yT .

Proof sketch of Theorem 2. We proceed by induction on l ∈ [L]. To illustrate, consider t = 1.
Following (Jonasson et al., 2023), we analyze the Markov chain

D
(l)
1 (x1, y1) :=

1
4∥s

(l)
1 (x1)− s

(l)
1 (y)∥2, l ∈ [L],

which has n+ 1 states and absorbing state 0. Conditioned on D
(l−1)
1 = ⌊ν1n⌋, we have

D
(l)
1 (x, y) ∼ Bin(n, pν1

), pν1
≤ Cθ

√
ν1,

where the bound on pν1
follows from Theorem 1. Hence D

(l)
1 (x, y) is stochastically dominated

by Bin(n,Cθ
√
ν1), which leads to the desired bound via Chernoff bounds (see Theorem 3) and

standard manipulations. For t ≥ 2, we repeat the previous argument which involves repeteadly
applying Chernoff bounds ; see Appendix C.2.

The following corollary links the probability that input perturbations change the output to a bound
on the expected noise sensitivity of binary sLIF-SNN classifiers. This, in turn, characterizes their
spectrum and quantifies the degree of spectral simplicity introduced in Section 3. The proof is
deferred to Appendix C.3.
Corollary 1. Let fL,T (·,W ) be a binary classifier (nL = 2) as in Theorem 2, and assume static
inputs. Then, for any ν′ ≤ 1√

n logn
, we have, for n large enough,

ENSν′
(
{fL,T (·,W )}W∼N (0,Id)

)
≤ CT,θν

′ 1

22L+1 log3/2 n+ (L− 1)e−cν′
1

22L−1 n + e−
1
4

√
n,

where CT,θ > 0 is a constant, as in Theorem 2. Moreover, for sufficiently large n, the family of
L-layer sLIF SNN binary classifiers has, in expectation under N (0, Id/n), spectrum ϵ-concentrated
(Definition 4) up to degree 1/ν′, with

ϵ = CT,θ ν
′

1
22L+1 log3/2 n.

Remarks. To illustrate, take ν′ = 1√
n logn

. In this case, an L-layer binary SNN classifier is

O
(
n1/22(L+1))

-concentrated up to degree O(
√
n log n). Thus, only a vanishing fraction of degrees

contribute meaningfully to the spectrum, making these classifiers spectrally simple. Interestingly,
the bound on the maximal degree of concentration is independent of architectural parameters, while
the concentration level deteriorates with larger L, T , and θ (the log3/2 n seems an artifact of the
proof). The increase with L is not surprising, since compositions of Boolean networks typically
behave similarly, and analogous results are known for threshold ANNs (Jonasson et al., 2023). The
θ-dependence appears to be a proof artifact. Whether the T - and L-dependencies are intrinsic re-
mains an open question, which we investigate experimentally in the next section.

5 NUMERICAL EXPERIMENTS

We empirically evaluate the noise sensitivity, ENSν , of various spiking neural networks to inves-
tigate how our proposed simplicity measure relates to the model dimension n and the tightness of
the bounds established in Theorems 1 and 2 in the case of static inputs. In addition, we study how
training (signed) SNNs influences their sensitivity to random perturbations of the input.
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Single LIF experiments. We approximate the noise sensitivity ENS1/
√
n for different IF and sIF

spiking neurons with input dimensions n = 100, 1000, 10000, threshold θ = 0.5 and T = 10.
Specifically, we compute a Monte Carlo approximation by uniformly sampling 10 model’s weights,
100 data points, and 100 random perturbations. The results are shown in Figure 1a and 1b. We
observe that, for all considered t, the neurons exhibit low sensitivity for both sIF and IF models.
In conclusion, we stress that even though for our result we need the signed neuron versions, the
sensitivity seems to be similar for the IF neuron. Moreover, the theoretical bound proved in Theorem
1 is satisfied both for the sIF and the IF neuron.

Additional experiments for different values of ν, β = 0.5, and θ = 0 can be found in Appendix D,
see Figure 5, Figure 6, and Figure 7 respectively.

(a) (b)

Figure 1: Noise sensitivity ENS1/
√
n for different input dimensions n for sIF and IF neurons with

θ = 0.5 and T = 10. (a) sIF neuron (log-scale x-axis); dashed line: scaled bound from Theorem 1.
(b) IF neuron (log-scale x-axis); dashed line: scaled bound from Theorem 1.

IF SNN with 5 layers. We extend the experiments to the deep setting by considering IF and sIF
spiking neural networks with five layers, using the same Monte Carlo approximation procedure as
in the shallow case. We evaluate ENS1/

√
n for input dimensions n = 100, 1000, 10000, with each

layer having width equal to the input dimension, θ = 0.5 and T = 10. The results are shown in
Figure 2a and 2b. Although depth appears to have a stronger impact on sensitivity than latency, the
bound presented in Theorem 2 tends to overestimate the effect. Additional experiments for different
values of ν and β = 0.5 can be found in Appendix D.

(a) (b)

Figure 2: Noise sensitivity ENS1/
√
n for different input dimensions n for 5-layers sIF and IF neural

networks with θ = 0.5 and T = 10. (a) sIF neuron (log-scale x-axis); (b) IF neuron (log-scale x-
axis).

Noise sensitivity after training. We evaluate the noise sensitivity of trained sIF and IF SNNs in
static data. In particular, we train three-layer sLIF and IF SNN on MNIST (i.e., n = 784) using

8
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the ADAM optimizer with surrogate gradients (Eshraghian et al., 2023) until reaching 98% training
accuracy. After training, we estimate the output sensitivity by perturbing each test sample 100

times, flipping each component with probability ν ∈
[
1
n ,

2
n . . . , 1√

n

]
and measuring the fraction of

perturbations that change the network’s output. For comparison with a random network, the noise
sensitivity is estimated using the same procedure, averaged over 10 independent random weight
initializations. As expected, training significantly reduces the sensitivity of the model whenever
the final test accuracy is sufficiently high. Figure 3a shows show the results for MNIST. Figure 3
shows the same experiment on CIFAR-10 (n = 3072). Notice that training reduces the model’s
sensitivity, but less strongly compared to MNIST. This aligns with the fact that both the training and
test accuracies are larger for CIFAR-10 (which achieves 84.38% training accuracy).

(a) (b)

Figure 3: Sensitivity to input perturbations in sLIF-SNNs (T = 100, θ = 0.5, β = 1, L = 3), shown
at initialization and after training on (a) MNIST and (b) CIFAR-10.

Noise sensitivity on neuromorphic dataset. We evaluate the noise sensitivity of a spiking con-
volutional network on NMNIST Orchard et al. (2015). NMNIST is an event-based version of
MNIST recorded with a dynamic vision sensor. Each data point is a tensor in {0, 1}T×2×34×34

where T ≈ 30 is the time, 2 is the polarity and 34 are the width and the height. We perturb
the input sequence by replacing each time frame by flipping each component with probability
ν ∈

[
1
n ,

2
n . . . , 1√

n

]
where n = 2312(= 34 × 34 × 2). The results are displayed in Figure 4.

Notice that the model has small ENS both before and after training. Moreover, the training does not
affect the ENS as much as for static data.

Figure 4: Sensitivity to input perturbations of a convolutional SNN with T = 100, θ = 0.5 and
β = 0.5, shown at initialization and after training on NMNIST

9
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Dropping 5% of the input. We evaluate the noise sensitivity when the 5% of the input component
are randomly dropped. In detail, we evaluate the noise sensitivity for a 5-layers (s)SNN with input
dimension n = 1000, and we compare the probability of observing different output with respect to
this input perturbation. The results are reported in Table 1. We notice that, both for the LIF and the
sLIF model, dropout leads to smaller output sensitivity than random flipping. This is indeed expected
since dropout does not affect zero components in the case of inputs in the {0, 1}n hypercube.

Table 1: Sensitivity of 5-layer (s)LIF neural networks with β = 0.5 and θ = 1 under two types
of input perturbations: random flipping and dropout. For each model, the lowest (i.e., most robust)
sensitivity value is highlighted in bold.

Model / Perturbation Random Flipping Dropout

sLIF 0.19 0.16
LIF 0.28 0.16

6 CONCLUSION

In this paper, we study the stability of wide SNN classifiers through the lens of Boolean function
analysis. We provide quantitative bounds on their expected noise sensitivity and show how these
stability guarantees connect to simplicity bias, motivating a new notion of simplicity. We empirically
validate Theorem 1 in the case of single sIF and IF neuron. We show that both shallow and deep
(s)IF neural networks exhibit a small noise sensitivity in practice, and this property extends also to
random dropout perturbation of the input signal. Furthermore, we empirically suggest that training
tends to preserve or even improve the ESN of SNNs.

The classifiers we analyze are widely used in practice, and most of our assumptions can be relaxed.
The main restriction is the requirement of sufficiently large widths, needed to apply concentration of
measure; whether this condition can be weakened remains an open question. On the other hand, the
uniform input distribution assumed in Definition 3 does not affect Corollary 1, making extensions
to other input distributions straightforward.

Future directions. Several avenues merit further investigation:

• Extending our results to feedforward RNNs, where the dynamics are simpler, as well as to
more general non-feedforward SNNs.

• Studying stability under alternative perturbation distributions, a step toward understanding
adversarial robustness.

• Investigating the average distance to the nearest input with a different label (see equation 4),
as in (De Palma et al., 2019). Unlike their setting, a simple union bound fails here, since our
O(1/

√
n) bound is insufficient given the exponentially many inputs at distance O(

√
n).

• Understanding how initialization impacts stability in SNNs, and whether classical ANN
initialization schemes are optimal in this context.

10
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A KNOWN RESULTS IN STATISTICS

In this appendix, we recall some standard results from probability and statistics that are used
throughout our proofs
Lemma 1 (Linear Combination of Gaussians). Let X1, . . . , Xn be independent Gaussian random
variables with Xi ∼ N (µi, σ

2
i ), and let a1, . . . , an ∈ R. Then the linear combination

Y =

n∑
i=1

aiXi

is also a Gaussian random variable with mean and variance given by:

E[Y ] =

n∑
i=1

aiµi, Var(Y ) =

n∑
i=1

a2iσ
2
i .

Theorem 3 (Chernoof Bound). Let {Xi}ni=1 a sequence of independent random variables such that
Xi = 1 with probability pi and Xi = 0 with probability 1 − pi. Let us consider X =

∑n
i=1 Xi.

Then µ := E[X] =
∑n

i=1 pi and for all ε > 0:

IP(X ≥ (1 + ε)µ) ≤ e−
ε2

2+εµ

Definition 5. Let X and Y be two random variables such that

P{X > x} ≤ P{Y > x} for all x ∈ (−∞,∞)

then X is said to be smaller than Y in the usual stochastic order (denoted by X <st Y ).

We have the following result for the stochastic domination in Binomial variables. We include its
proof for completeness.
Lemma 2. If X ∼ Bin(n, p) and Y ∼ Bin(n, q) for some 0 < p < q < 1. Then, for all k ∈ [0, n],
we have that X <st Y .

Proof. Let us recall that the probability mass functions:

fX(k) =

(
n

k

)
pk(1− p)n−k, fY (k) =

(
n

k

)
qk(1− q)n−k ,

and, hence, we have
fY (k)

fX(k)
=

(
q

p

)k (
1− q

1− p

)n−k

=: Φ(k) .

Let h(k) := fX(k) − fY (k). Since fX and fY are both probability mass functions, it holds∑
k h(k) =

∑
k (fX(k)− fY (k)) = 0 and, hence, h is a signed measure with total mass zero.

Since the Φ is increasing in k, Φ(0) < 1 and Φ(n) > 1, by continuity of Φ, there exists a (unique)
k∗ ∈ (0, n) such that:

1. 0 < Φ(k) < 1 for all k ∈ (0, k∗);

2. Φ(k) > 1 for all k ∈ (k∗, n].

Therefore, we have that:
h(k) > 0 for k ∈ (0, k∗) and h(k) < 0 for k ∈ (k∗, n] (5)

Combining equation 5 and
∑n

k=0 h(k) = 0, we notice that
∑k

j=0 h(j) ≥ 0 for all k ∈ [n]. There-
fore, for all k ∈ [0, n], we obtain that

IP(X > k) = 1−
k∑

j=0

fX(j) = 1−
k∑

j=0

fY (j)−
k∑

j=0

(
fX(j)− fY (j)

)
= 1−

k∑
j=0

fY (j)−
k∑

j=0

h(j)

≤ 1−
k∑

j=0

fY (j) = IP(Y > k) ,

which concludes the proof.
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The following result may already be established; however, since we were unable to find a reference,
we provide a proof here.

Lemma 3. Let ρ ∈ (0, 1], a, b > R and X,Z
i.i.d.∼ N (0, 1), it holds

IP[X ≤ a, ρX +
√
1− ρ2Z > b] ≤

√
1− ρ2 + |a|1− ρ

ρ
+

∣∣∣∣ (b− a)

ρ

∣∣∣∣
IP[X > a, ρX +

√
1− ρ2Z ≤ b] ≤

√
1− ρ2 + |a|1− ρ

ρ
+

∣∣∣∣ (b− a)

ρ

∣∣∣∣ .
Proof. Let φ(x) := 1√

2π
e−x2/2 be the density of a normal random variable and Φ(x) the corre-

sponding CDF, then

IP[X > a, ρX +
√

1− ρ2Z ≤ b] =

∫ ∞

a

Φ

(
b− ρx√
1− ρ2

)
φ(x)dx

=

∫ b−ρa√
1−ρ2

−∞
Φ(η)φ

(√
1− ρ2η − b

ρ

) √
1− ρ2

ρ
dη

≤
∫ 0

−∞
Φ(η)φ

(√
1− ρ2η − b

ρ

) √
1− ρ2

ρ
dη +

∣∣∣∣∣
∫ b−ρa√

1−ρ2

0

Φ(η)φ

(√
1− ρ2η − b

ρ

) √
1− ρ2

ρ
dη

∣∣∣∣∣
The first term can be bounded by∫ 0

−∞
Φ(η)φ

(√
1− ρ2η − b

ρ

) √
1− ρ2

ρ
dη ≤

∫ 0

−∞

1√
2π

e
− η2

2 − (
√

1−ρ2η−b)2

2ρ2

√
1− ρ2

ρ
dη

=

√
1− ρ2√
2πρ

∫ 0

−∞
e
− η2ρ2+(1−ρ2)η2−2

√
1−ρ2ηb+b2

2ρ2 dη

=

√
1− ρ2√
2πρ

∫ 0

−∞
e
− η2−2

√
1−ρ2ηb+b2

2ρ2 dη

=

√
1− ρ2√
2πρ

e−ρ2b2
∫ 0

−∞
e
− (η−

√
1−ρ2b)2

2ρ2 dη

≤
√
1− ρ2

We control now the second term, obtaining that∣∣∣∣∣
∫ b−ρa√

1−ρ2

0

Φ(η)φ

(√
1− ρ2η − b

ρ

) √
1− ρ2

ρ
dη

∣∣∣∣∣
≤

∣∣∣∣∣ b− ρa√
1− ρ2

∣∣∣∣∣
√
1− ρ2

ρ

=

∣∣∣∣∣
√

1− ρ

1 + ρ
a+

(b− a)√
1− ρ2

∣∣∣∣∣
√
1− ρ2

ρ

≤ |a|

∣∣∣∣∣
√
(1− ρ)(1− ρ2)√

(1 + ρ) ρ

∣∣∣∣∣+
∣∣∣∣∣ (b− a)√

1− ρ2

∣∣∣∣∣
√
1− ρ2

ρ

≤ |a|1− ρ

ρ
+

∣∣∣∣ (b− a)

ρ

∣∣∣∣
Combining the previous equations, we conclude the proof by noticing that

IP[X > a, ρX +
√
1− ρ2Z ≤ b] = IP[−X ≤ −a, −ρX −

√
1− ρ2Z > −b]

and −X and −ρX −
√
1− ρ2Z are ρ-correlated.
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B TECHNICAL LEMMAS

We now provide a more explicit expression for the output of a sLIF neuron with threshold θ at time
t. We give the result with β = 1, but it clearly generalizes to β ∈ [0, 1] by considering a weighted
sum of the input sequence, instead of the sum itself.
Lemma 4. Let θ > 0, T ∈ N+, and w ∈ Rn. Let us consider a (discrete) sLIF neuron, according
to equation 1, with parameters w, θ, T and β = 1, and input signal (xt)t∈[T ]. Then, for all t ∈ [T ],
the output of the sLIF neuron at time t can be computed recursively as described below{

st = sign
(
w⊤(

∑t
k=1 xk)− θ

(
1 + 1

2

∑t−1
k=0(sk + 1)

))
s0 = −1

.

Proof. For k ∈ [T ], we notice that

uk − uk−1 = w⊤xk − θ

2

(
sk−1 + 1

)
,

then, summing over k ∈ [t], we get

ut = w⊤

(
t∑

k=1

xk

)
− θ

2

t∑
i=1

(
si−1 + 1

)
,

from which, together with equation 1, the result follows.

In the next lemma, we address a key challenge for dynamic inputs: although each element of an
input sequence x1, . . . , xT lies in the hypercube {−1, 1}n, their partial sums—processed by the
neuron at each time step (cf. Lemma 4)—do not. This technical issue is absent in the static case,
where the lemma is unnecessary.
Lemma 5. Let T ≥ 1, x1, . . . , xT ∈ {−1, 1}n, y1, . . . , yT ∈ {−1, 1}n and define ht = dH(xt, yt),
h = 1

T

∑T
t=1 ht, xT := 1

T

∑T
t=1 xt and yT := 1

T

∑T
t=1 yt. Let us assume that h = O(

√
n), then, it

holds that either ∥yT ∥ = ∥xT ∥ = ω
( √

n
logn

)
or ∥yT ∥ = ∥xT ∥ = O(

√
n

logn ).

Proof. Let It := {i ∈ [n] : xt,i ̸= yt,i} and I =
⋃T

t=1 It. We notice that ht = |It| since
xt, yt ∈ {−1, 1}n, and therefore

|I| ≤
T∑

t=1

|It| =
T∑

t=1

ht = hT . (6)

We observe that

(i) xIc

T = yI
c

T by definition of I;

(ii) ∥xT ∥ = ∥xI
T ∥+ ∥xIc

T ∥ and ∥yT ∥ = ∥yIT ∥+ ∥yI
c

T ∥ since I ∩ Ic = ∅.

Let us assume that ∥yT ∥ = ω
( √

n
logn

)
. Then, we have two possibilities:

1. If ∥yI
c

T ∥ = ω
( √

n
logn

)
, then ∥xIc

T ∥ (i)
= ∥yI

c

T ∥ = ω
( √

n
logn

)
and, using (ii), we conclude that

∥xT ∥ = ω
( √

n
logn

)
;

2. If ∥yIT ∥ = ω
( √

n
logn

)
, combining equation 6 and the fact |yIT,i| ≤ 1 for i ∈ I and yIT,i = 0

for i ∈ IC , we obtain that

hT > |I| ≥ ∥yIT ∥2 = ω

(
n

log2 n

)
.

We note that, since h = O(
√
n), this scenario cannot occur for n large enough.
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Finally, we conclude that either ∥yT ∥ = ∥xT ∥ = ω
( √

n
logn

)
or ∥yT ∥ = ∥xT ∥ = O(

√
n

logn )

We now give a straightforward generalization of (O’Donnell, 2014, Prop.3.3.) to the case of expected
spectrum concentration (Definition 4).

Lemma 6. For a parametric family {fw}w∈W , a probability measure µ on W , and x ∼
Unif({−1, 1}n), ξ ∼ Rad(1− ν). Then, for ν ∈ (0, 1/2],

Ew∼µ

 ∑
S⊆[n]

|S|>1/ν

f̂2
w(S)

 ≤ 4ENSν ({fw}w∼µ) .

Proof. Following (O’Donnell, 2014), for a fixed fw,∑
S⊆[n]

|S|>1/ν

f̂2
w(S) = IPS∼Sfw

[|S| > 1/ν] ,

where the Sfw denotes the probability distribution over the subsets of [n], which assigns probability
f̂2
w(S) to the subset S (recall that the Fourier coefficients sum to 1). Then, using (O’Donnell, 2014,

Thm.2.49)

2NSν(fw) = ES∼Sfw

[
1− (1− 2ν)|S|

]
≥
(
1− (1− 2ν)1/ν

)
IPS∼Sfw

[|S| > 1/ν]

≥ 1

2

∑
S⊆[n]

|S|>1/ν

f̂2
w(S).

In the first inequality, the fact that 1 − (1 − 2ν)k is non-decreasing in k is used. Then the result
follows by taking expectation with respect to w ∼ µ.

C PROOFS OF THE MAIN RESULTS

C.1 PROOF OF THEOREM 1

Consider x1, . . . , xT ∈ {−1, 1}n and y1, . . . , yT ∈ {−1, 1}n with dH(xt, yt) = ht for t ∈ [T ] and
define ht = 1

t

∑t
k=1 ht. Notice that ht = ⌊νtn⌋ and ht = ⌊νtn⌋. We proceed by induction over

t ∈ [T ].

The base case t = 1 requires to control IP
[
s1(x1, w) ̸= s1(y1, w)

]
. We note that h1 = h1. Let us

define X =
√
nw⊤ x1

∥x1∥ and Y =
√
nw⊤ y1

∥y1∥ , then X and Y are ρ-correlated with

ρ =

〈√
nw⊤ x1

∥x1∥
,
√
nw⊤ y1

∥y1∥

〉
=

n

∥x1∥∥y1∥

n∑
j=1

w2
jxiyi

≥ 1

2

(
∥x1∥
∥y1∥

+
∥y1∥
∥x1∥

− h1

∥x1∥∥y1∥

)
(7)

=
1

2

(
∥x1∥2 + ∥y1∥2 − h1

∥x1∥∥y1∥

)
≥
(
1− h1

2∥x1∥∥y1∥

)
.
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Hence, it holds that

IP
[
s1(x1, w) ̸= s1(y1, w)

]
= IP

[
sign(w⊤x1 − θ) ̸= sign(w⊤y1 − θ)

]
= IP

[
X > θ

√
n

∥x1∥
, Y ≤ θ

√
n

∥y1∥

]
+ IP

[
X ≤ θ

√
n

∥x1∥
, Y > θ

√
n

∥y1∥

]
. (8)

Using Lemma 5, we can distinguish two cases

1. In the case ∥x1∥ = ∥y1∥ = O(
√
n

logn ), we get

IP
[
X > θ

√
n

∥x1∥
, Y ≤ θ

√
n

∥y1∥

]
≤ IP

[
X > θ

√
n

∥x1∥

]
(i)

≤ e
−θ2 n

∥x1∥2 = O(e−θ2 log2 n) (9)

IP
[
X ≤ θ

√
n

∥x1∥
, Y > θ

√
n

∥y1∥

]
≤ IP

[
Y > θ

√
n

∥y1∥

]
(ii)

≤ e
−θ2 n

∥y1∥2 = O(e−θ2 log2 n) ,

where in (i) and (ii) we used Gaussian tail bounds. Combining equation 9 and equation 8,
it holds

IP
[
s1(x1, w) ̸= s1(y1, w)

]
= O(e−θ2 log2 n) .

2. In the case ∥x1∥ = ∥y1∥ = ω(
√
n

logn ), combining equation 7 and equation 8, it holds

IP
[
s1(x1, w) ̸= s1(y1, w)

]
= IP

[
X > θ

√
n

∥x1∥
, Y ≤ θ

√
n

∥y1∥

]
+ IP

[
X ≤ θ

√
n

∥x1∥
, Y > θ

√
n

∥y1∥

]
(iii)

≤ 2
√
1− ρ2 + 2θ

√
n

∥x1∥
1− ρ

ρ
+ 2θ

√
n
|∥y1∥ − ∥x1∥|
∥x1∥∥y1∥ρ

= 2
√
1 + ρ

√
1− ρ+ 2θ

√
n

∥x1∥
1− ρ

ρ
+ 2θ

√
n
|∥y1∥ − ∥x1∥|
∥x1∥∥y1∥ρ

(10)

(iv)

≤ 2

√
h1

∥x1∥∥y1∥
+ 2θ

√
n

∥x1∥
h1

2∥x1∥∥y1∥ − h1
+ 4θ

√
n
√
h1

2∥x1∥∥y1∥ − h1

≤ C

√
h1 log

2 n

n
+ Cθ

h1 log
2 n

n
+ 4θC

√
h1 log

2 n

n

≤ C(1 + 5θ)

√
h1 log

2 n

n
,

where C > 0 denotes a positive absolute constant independent by the model but dependent
on the data, in (iii) we have used Lemma 3 and in (iv) we applied the inverse triangular
inequality and the fact that 0 ≤ ρ ≤ 1 since h1 = O( n

log2 n
).

Combining equation 9 and equation 10, we conclude the proof of the base case, that is

IP
[
s1(x1, w) ̸= s1(y1, w)

]
≤ C(1 + 5θ)

√
h1 log

2 n

n
,

for n large enough such that

e−θ2 log2 n <

√
h1 log

2 n

n
.

Let us now inductively assume that, for all t ≤ T − 1, the following probability estimate holds

IP[st(x) ̸= st(y)] ≤ C(1 + 5θ) t

√
ht log

2 n

n
. (11)
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Then, we have

IP[sT (x) ̸= sT (y)]

= IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) ̸=
T−1∑
t=1

st(y)

]
+ IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) =

T−1∑
t=1

st(y)

]

≤ IP

[
T−1∑
t=1

st(x) ̸=
T−1∑
t=1

st(y)

]
+ IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) =

T−1∑
t=1

st(y)

]

≤
T−1∑
t=1

IP [st(x) ̸= st(y)] + IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) =

T−1∑
t=1

st(y)

]
(12)

(v)

≤
T−1∑
t=1

C(1 + 5θ) t

√
ht

n
+ IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) =

T−1∑
t=1

st(y)

]
,

where in (v) we have used equation 11. It remains now to bound

IP[sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1)]

=

T∑
t=1

IP
[
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1) =

t

T

]
.

First, let us define xT = 1
T

∑T
t=1 xt and yT = 1

T

∑T
t=1 yt. Notice that ∥xT − yT ∥2 ≤ hT . Now,

we have{
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1)) =

t

T

}
=

{
sign

(
w⊤xT − θ

t

T

)
̸= sign

(
w⊤yT − θ

t

T

)}
=

{
w⊤xT > θ

t

T
, w⊤yT ≤ θ

t

T

}
∪
{
w⊤xT ≤ θ

t

T
, w⊤yT > θ

t

T

}
=

{√
nw⊤ xT

∥xT ∥
>

√
nθ

t

T∥xT ∥
,
√
nw⊤ yT

∥yT ∥
≤

√
nθ

t

T∥yT ∥

}
(13)

∪
{√

nw⊤ xT

∥xT ∥
≤

√
nθ

t

T∥xT ∥
,
√
nw⊤ yT

∥yT ∥
>

√
nθ

t

T∥yT ∥

}
.

Define X =
√
nw⊤ xT

∥xT ∥ and Y =
√
nw⊤ yT

∥yT ∥ and note that both are standard Gaussians. Their
correlation is

ρ =

〈
xT

∥xT ∥
,

yT
∥yT ∥

〉
=

1

2

(
∥xT ∥
∥yT ∥

+
∥yT ∥
∥xT ∥

− ∥xT − yT ∥2

∥xT ∥∥yT ∥

)
(14)

≥ 1

2

(
∥xT ∥
∥yT ∥

+
∥yT ∥
∥xT ∥

− hT

∥xT ∥∥yT ∥

)
≥
(
1− hT

2∥xT ∥∥yT ∥

)
.

Using equation 13, we get that

IP
[
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1) =

t

T

]
(15)

≤ IP
[
X >

√
nθ

t

T∥xT ∥
, Y ≤

√
nθ

t

T∥yT ∥

]
+ IP

[
X ≤

√
nθ

t

T∥xT ∥
, Y >

√
nθ

t

T∥yT ∥

]
.

Using Lemma 5, we can distinguish two cases
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1. In the case ∥yT ∥ = ∥xT ∥ = O(
√
n

logn ), we get

IP
[
X >

√
nθ

t

T∥xT ∥
, Y ≤

√
nθ

t

T∥yT ∥

]
≤ IP

[
X >

√
nθ

t

T∥xT ∥

]
(16)

(i)

≤ e
−θ2t2 n

T2∥xT ∥2 = O
(
e−

θ2t2

T2 log2 n
)

IP
[
X ≤

√
nθ

t

T∥xT ∥
, Y >

√
nθ

t

T∥yT ∥

]
≤ IP

[
Y >

√
nθ

t

T∥yT ∥

]
(ii)

≤ e
−θ2t2 n

T2∥yT ∥2 = O
(
e−

θ2t2

T2 log2 n
)
,

where in (i) and (ii) we used Gaussian tail bounds. Combining equation 15 and equation 16,
it holds

IP
[
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1) =

t

T

]
= O

(
e−

θ2t2

T2 log2 n
)
.

2. In the case ∥yT ∥ = ∥xT ∥ = ω(
√
n

logn ), combining equation 14 and equation 15, it holds

IP
[
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1) =

t

T

]
≤ IP

[
X >

√
nθ

t

T∥xT ∥
, Y ≤

√
nθ

t

T∥yT ∥

]
+ IP

[
X ≤

√
nθ

t

T∥xT ∥
, Y >

√
nθ

t

T∥yT ∥

]
(iii)

≤ 2
√

1− ρ2 + 2
θt

T

√
n

∥xT ∥
1− ρ

ρ
+ 2

θ t

T

√
n
|∥yT ∥ − ∥xT ∥|
∥xT ∥∥yT ∥ρ

(iv)

≤ 2
√
1 + ρ

√
1− ρ+ 2

θt

T

√
n

∥xT ∥
1− ρ

ρ
+ 4

θ t

T

√
n

√
hT

∥xT ∥∥yT ∥ρ
(17)

≤ 2

√
hT

∥xT ∥∥yT ∥
+ 2θ

√
n

∥xT ∥
hT

2∥xT ∥∥yT ∥ − hT

+ 4
θ t

T

√
n

∥xT ∥

√
n
√
hT

2∥xT ∥∥yT ∥ − hT

≤ C

√
hT log2 n

n
+

θt

T
C
hT log2 n

n
+ 4

θ t

T
C

√
hT log2 n

n

≤ C

(
1 + 5

θ t

T

)√
hT log2 n

n

where in (iii) we have used Lemma 3 and in (iv) we applied the inverse triangular inequality.

Combining equation 15, equation 16 and equation 17, we conclude that

IP[sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1)]

=

T∑
t=1

IP
[
sT (x1, . . . , xT ) ̸= sT (y1, . . . , yT ), sT−1(x1, . . . , xT−1) = sT−1(y1, . . . , yT−1) =

t

T

]

≤
T∑

t=0

C

(
1 + 5

θ t

T

)√
hT log2 n

n

≤ CT (1 + 5θ)

√
hT log2 n

n
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Finally, using equation 12, we conclude that

IP[sT (x) ̸= sT (y)] ≤
T−1∑
t=1

C(1 + 5θ) t

√
hT

n
+ IP

[
sT (x) ̸= sT (y),

T−1∑
t=1

st(x) =

T−1∑
t=1

st(y)

]

≤ C(1 + θ)

(
T +

T−1∑
t=1

t

) √
hT log2 n

n

≤ C(1 + θ)T 2

√
hT log2 n

n
.

The proof concludes by noticing that hT = ⌊νT ⌋. For static inputs, the same argument applies,
but notice that there the use of Lemma 5 is no longer necessary, since x1 = x2 = . . . = xt = x,
which implies that xt = x and, since x ∈ {−1, 1}n, we have ∥x∥ =

√
n (the same is true for

y ∈ {−1, 1}n).

C.2 PROOF OF THEOREM 2

Let us denote xT = 1
T

∑T
k=1 xk, yT = 1

T

∑T
k=1 yk and dH(xt, yt) = ⌊νtn⌋ with νt ∈ [0, 1].

Let us define ν := maxt∈[T ] νt and assume ν = O( 1√
n
). We follow a similar strategy to that

of Jonasson et al. (2023). Notice that, for all l ∈ [L], the probability that s(l)T,i(x1, . . . , xT ,W )

and s
(l)
T,i(y1, . . . , yT ,W ) differs depends only on the number of neurons that have at least one

disagreement at any time at layer l − 1 and not on where they disagree. We define D
(l)
T as the

number of neurons at layer l that have at least one disagreement at any time, that is D
(l)
T :=

1
2

∑n
i=1 maxk∈[T ] |s

(l)
k,i(x1, . . . , xk,W ) − s

(l)
k,i(y1, . . . , yk,W )|. With this, D(l)

T is a Markov chain

with n + 1 states, where D
(l)
T = 0 is an absorbing state. More precisely, let us denote with

Mi := 1
2 maxk∈[T ] |s

(l)
k,i(x1, . . . , xk,W ) − s

(l)
k,i(y1, . . . , yk,W )|. Notice that M1, . . . ,Mn are in-

dependent random variables with value in {0, 1}. In particular, exploiting Theorem 1, it holds that

IP[Mi = 1] = IP
[
max
k∈[T ]

|s(l)k,i(x1, . . . , xk,W )− s
(l)
k,i(y1, . . . , yk,W )| = 2

]

≤ T 3C(1 + θ)

√
h
(l−1)

T log2 n

n

≤ T 3C(1 + θ)

√
D

(l−1)
T log2 n

n

for all i ∈ [n]. Therefore, D(l)
T |D(l−1)

T = k is a Binomial random variable upper bounded in the
stochastic sense by

D̃
(l)
T |D(l−1)

T = k ∼ Bin

n, T 3C(1 + θ)

√
k log2 n

n

 , (18)

thanks to Lemma 2. We invite the reader to see Definition 5 for a rigorous definition of smaller in the
usual stochastic order. We write now ht = ⌊νtn⌋ for some νt ∈ [0, 1] and define ν = maxk∈[T ] νt
the maximum number of input disagreements.

We proceed by induction over the depth dimension l ∈ [L].
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• Let us start from the base case l = 1. We want to estimate

IPW

(
D

(1)
T ≥ ν1/4n log n

)
=

n∑
k=1

IPW

(
D

(1)
T ≥ ν1/4n log n

∣∣∣ D(0)
T = k

)
IPW

(
D

(0)
T = k

)

≤
⌊νn⌋∑
k=1

IPW

(
D

(1)
T ≥ ν1/4n log n

∣∣∣ D(0)
T = k

)
IPW

(
D

(0)
T = k

)
+ IPW

(
D

(0)
T > ⌊νn⌋

)
(i)

≤ IPW

(
D̃

(1)
T ≥ ν1/4n log n

∣∣∣ D(0)
T = ⌊νn⌋

)
,

where in (i) we used the stochastic dominance and the monotonicity of the probability
appearing in equation 18. Now, combining Theorem 3 with ε = 1, which is admissible
given that ν−1/4

CT 3(1+θ) > 2 and ν ≤ 1√
n

for n large enough, we conclude

IPW

(
D̃

(1)
T (x, y) ≥ ν1/4n log n

∣∣∣ D(0)
T (x, y) = ⌊νn⌋

)
≤ e−

1
3

√
νn ,

• Let us now assume by induction that

IPW

(
D

(l)
T ≥ ν

1

22l n log n
)
≤ le−

1
3ν

1
22l−1 n . (19)

Then, we have

IPW

(
D

(l+1)
T ≥ ν1/2

2(l+1)

n log n
)

=

n∑
k=1

IPW

(
D

(l+1)
T ≥ ν1/2

2(l+1)

n log n | D(l)
T = k

)
IPW

(
D

(l)
T = k

)

≤

⌊
ν

1
22l n logn

⌋∑
k=1

IPW

(
D

(l+1)
T ≥ ν1/2

2(l+1)

n log n | D(l)
T = k

)
IPW

(
D

(l)
T = k

)
+

+ IPW

(
D

(l)
T >

⌊
ν

1

22l n log n
⌋)

(20)

≤

⌊
ν

1
22l n logn

⌋∑
k=1

IPW

(
D̃

(l+1)
T ≥ ν

1

22(l+1) n log n | D(l)
T = k

)
IPW

(
D

(l)
T = k

)
+ le−

1
3ν

1
22l−1 n

≤ IPW

(
D̃

(l+1)
T ≥ ν

1

22(l+1) n log n | D(l)
T =

⌊
ν

1

22l n log n
⌋)

+ le−
1
3ν

1
22l−1 n .

Now, using Theorem 3 with ε = 1, which is admissible because ν
− 1

22(l+1)
√
lognT 3C(1+θ)

> 2, and

ν ≤ 1√
n

, for n large enough, we conclude that

IPW

(
D̃

(l+1)
T (x, y) ≥ ν

1

22(l+1) n log n | D(l−1)
T (x, y) =

⌊
ν

1

22l n log n
⌋)

≤ le−cν
1

22l+1 n .

(21)
Hence, combining equation 20 and equation 21, we conclude that

IPW

(
D̃

(l)
T (x, y) ≥ ν

1

22(l+1) n log n
)
≤ le−cν

1
22l+1 n .

Now, if L = 1, we can apply directly Theorem 1 obtaining that

IPW

(
f1,T (x,W ) ̸= f1,T (y,W )

)
= IPW

(
argmax

T∑
t=1

s
(1)
t,i

(
(xt)t∈[T ],W

)
̸= argmax

T∑
t=1

s
(1)
t,i

(
(yt)t∈[T ],W

))

≤ IPW

(
max

k∈[T ],i∈[nL]
|s(1)k,i

(
(xt)t∈[T ],W

)
− s

(1)
k,i

(
(yt)t∈[T ],W

)
| > 0

)
≤ nLT

3C(1 + θ) log n
√
ν.
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If L ≥ 2, using Theorem 1, we conclude that

IPW

(
fL,T (x,W ) ̸= fL,T (y,W )

)
≤ IPW

(
max

k∈[T ],i∈[nL]
|s(L)

k,i

(
(xt)t∈[T ],W

)
− s

(L)
k,i

(
(yt)t∈[T ],W

)
| > 0

)
≤ IPW

(
max

k∈[T ],i∈[nL]
|s(L)

k,i

(
(xt)t∈[T ],W

)
− s

(L)
k,i

(
(yt)t∈[T ],W

)
|
∣∣∣ D(L−1) ≤ ⌊ν

1

22L n log n⌋
)

+ (L− 1)e−cν
1

22L−1 n

≤ nLT
4C(1 + θ)ν

1

22L+1 log3/2 n+ (L− 1)e−cν
1

22L−1 n,

which concludes the proof.

C.3 PROOF OF COROLLARY 1

Let x, y ∈ {−1, 1}n be static inputs. Define N(ξ) = 1
2

∑n
i=1(ξi + 1). Then, we have for x ∼

Unif({−1, 1}n) and ξ ∼ Rad(1− ν)

ENSν

(
{fL,T (·,W )}W∼N (0,Id)

)
= Ex,ξ

[
IPW

(
fL,T (x,W ) ̸= fL,T (x⊙ ξ,W )

)]
= Ex

[
IPW

(
fL,T (x,W ) ̸= fL,T (x⊙ ξ,W )

∣∣∣N(ξ) ≤
√
n
)

IPξ(N(ξ) ≤
√
n)
]

+ Ex

[
IPW

(
fL,T (x,W ) ̸= fL,T (x⊙ ξ,W )

∣∣∣N(ξ) >
√
n
)

IPξ(N(ξ) >
√
n)
]

≤ CT,θν
′

1
22L+1 log3/2 n+ (L− 1)e−cν′

1
22L−1 n + e−

1
4

√
n.

In the last line we used Theorem 2 with ν = ν′, which applies because N(ξ) ≤ ⌊
√
n⌋ is equivalent

with dH(x, x⊙ ξ) = ⌊
√
n⌋, and ν′ ≤ 1√

n
(by assumption). We also used that

IPξ(N(ξ) > ⌊
√
n⌋) ≤ e−

1
4

√
n,

which follows from applying the Chernoff bound (in Theorem 3) to the random variable N(ξ) ∼
Bin(n, ν′). The statement about the expected degree concentration follows applying Lemma 6,
using the bound on the expected noise sensitivity above.

D ADDITIONAL EXPERIMENTS

In this appendix, we report additional experiments that complement the results presented in the
main text. These include further evaluations of noise sensitivity and analyses of (s)IF spiking neural
networks under different settings.

Single (s)LIF Neuron. We present additional experiments on (s)LIF spiking neuron. These results
complement the main text by providing additional empirical support for the claims made in the
experiment section. In Figure 7, we report results for the neuron with threshold θ = 0. In this case,
we observe that the neuron either fires at all times or does not fire at all. This is consistent with the
experiments, as the sensitivity remains constant over time.

Deep (s)IF SNN. We present additional experiments on deep (s)IF spiking neural networks.
These results complement the main text by extending the analysis of noise sensitivity to multi-layer
architectures.
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(a) sIF single neuron (fixed2) (b) IF single neuron (fixed2)

(c) IF single neuron (
√
n logn) (d) sIF single neuron (

√
n)

Figure 5: Noise sensitivity ENS2/nand ENS1/(
√
n logn) for different input dimensions n for sIF

and IF neurons with θ = 0.5 and T = 10. (a) ENS2/n for sIF neuron. (b) ENS2/n for IF neuron;
(c) ENS1/(

√
n logn) for sIF neuron. (d) ENS1/(

√
n logn) for IF neuron.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

(e) (f)

Figure 6: Noise sensitivity ENS2/nand ENS1/(
√
n logn) for different input dimensions n for sLIF

and LIF neurons with θ = 0.5, T = 10 and β = 0.5. (a) ENS2/n for sLIF neuron. (b) ENS2/n for
LIF neuron; (c) ENS1/(

√
n logn) for sLIF neuron. (d) ENS1/(

√
n logn) for LIF neuron.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Noise sensitivity ENS2/nand ENS1/(
√
n logn) for different input dimensions n for sIF

and IF neurons with θ = 0 and T = 10. (a) ENS2/n for sIF neuron. (b) ENS2/n for IF neuron; (c)
ENS1/(

√
n logn) for sIF neuron. (d) ENS1/(

√
n logn) for IF neuron; (e) ENS1/(

√
n) for sIF neuron.

(d) ENS1/(
√
n) for IF neuron.
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(a) sIF single neuron (fixed2) (b) IF single neuron (fixed2)

(c) IF single neuron (
√
n logn) (d) sIF single neuron (

√
n)

Figure 8: Noise sensitivity ENS1/
√
n for different input dimensions n for 5-layers sIF and IF neural

networks with θ = 0.5 and T = 10. (a) ENS2/n for 5-layers sIF neural network (log-scale x-axis);
(b) ENS1/(

√
n logn) for 5-layers sIF neural network (log-scale x-axis).
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