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ABSTRACT

Recent advancements in multivariate time series forecasting have been pro-
pelled by Linear-based, Transformer-based, and Convolution-based models, with
Transformer-based architectures gaining prominence for their efficacy in tempo-
ral and cross-channel mixing. More recently, Mamba, a state space model, has
emerged with robust sequence and feature mixing capabilities. However, the suit-
ability of the vanilla Mamba design for time series forecasting remains an open
question, particularly due to its inadequate handling of cross-channel dependen-
cies. Capturing cross-channel dependencies is critical in enhancing the perfor-
mance of multivariate time series prediction. Recent findings show that self-
attention excels in capturing cross-channel dependencies, whereas other simpler
mechanisms, such as MLP, may degrade model performance. This is counterintu-
itive, as MLP, being a learnable architecture, should theoretically capture both cor-
relations and irrelevances, potentially leading to neutral or improved performance.
Diving into the self-attention mechanism, we attribute the observed degradation in
MLP performance to its lack of data dependence and global receptive field, which
result in MLP’s lack of generalization ability. Considering the powerful sequence
modeling capabilities of Mamba and the high efficiency of MLP, the combination
of the two is an effective strategy for solving multivariate time series prediction.
Based on the above insights, we introduce a refined Mamba variant tailored for
time series forecasting. Our proposed model, CMamba, incorporates a modified
Mamba (M-Mamba) module for temporal dependencies modeling, a global data-
dependent MLP (GDD-MLP) to effectively capture cross-channel dependencies,
and a Channel Mixup mechanism to mitigate overfitting. Comprehensive exper-
iments conducted on seven real-world datasets demonstrate the efficacy of our
model in improving forecasting performance.

1 INTRODUCTION

Multivariate (or Multichannel) time series forecasting (MTSF) plays a crucial role in diverse appli-
cations, such as weather prediction (Chen et al., 2023), traffic management (Liu et al., 2023b;c),
economics (Xu & Cohen, 2018), and event prediction (Xue et al., 2023). MTSF aims to predict
future values of temporal variations based on historical observations. Given its practical impor-
tance, numerous deep learning models have been developed in recent years, notably including,
Linear-based (Zeng et al., 2023; Li et al., 2023; Das et al., 2023; Wang et al., 2023), Transformer-
based (Zhou et al., 2022; Zhang & Yan, 2022; Wu et al., 2021; Nie et al., 2022; Liu et al., 2023a),
and Convolution-based (Liu et al., 2022; Wang et al., 2022; Wu et al., 2022; Luo & Wang, 2024)
models, which have demonstrated significant advancements.

Among these, Transformer-based models are particularly distinguished by their capacity to sepa-
rately mix temporal and channel embeddings using mechanisms such as MLP or self-attention. The
recently introduced Mamba model (Gu & Dao, 2023), which operates within a state space frame-
work, exhibits notable sequence and feature mixing capabilities. Mamba has shown progress not
only in natural language processing but also in other domains, including computer vision (Liu et al.,
2024; Zhu et al., 2024) and graph-based applications (Wang et al., 2024a). Nevertheless, recent
studies on Mamba in time series (Patro & Agneeswaran, 2024; Wang et al., 2024d) mostly focus on
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how to align the input format of time series with other fields so that the original Mamba architec-
ture can be migrated while ignoring the exploration of whether the components of Mamba itself are
suitable for time series. In addition, the vanilla Mamba lacks cross-channel dependency modeling
capabilities. S-Mamba (Wang et al., 2024d) solves this by treating different channels as a sequence
and modeling their dependencies with state space mechanisms. However, the strategy of treating
channels as sequences is not practical and also results in large complexity.

mean=0.50, std=0.05

Figure 1: An illustration of the rela-
tionship of variables in the ETT dataset.
HULL means High UseLess Load and
MULL means Middle UseLess Load.

Capturing cross-channel dependencies is critical in en-
hancing the performance of multivariate time series pre-
diction. Recent findings (Liu et al., 2023a) show that
self-attention excels in capturing cross-channel depen-
dencies. The resulting model, iTransformer, achieves ex-
cellent performance on multiple datasets. Whereas, as an-
other important component of the Transformer encoder
block, modeling cross-channel dependencies with MLP
(i.e., the FFN layer) degrades model performance (Liu
et al., 2023a; Nie et al., 2022). Being a lightweight and
learnable architecture, MLP should be an ideal structure
to capture cross-channel dependencies as it could theoret-
ically capture both correlations and irrelevances, leading
to neutral or improved performance.

In the design of iTransformer, cross-channel dependen-
cies are captured in a data-dependent and global manner.
That is, each channel is characterized by its historical sequence, and the self-attention mechanism
adaptively captures the dependencies between channels according to the data. In contrast, the pa-
rameters of channel mixing are the same for different inputs in the original MLP. Moreover, because
the data at each time point is mixed independently during training, the model focuses too much on
the local dependencies between channels while ignoring the global dependencies. The lack of data
dependence and global receptive field, which are crucial for the complex, long-term dependencies
observed in real-world data, results in the discrepancy between MLP and self-attention. To validate
our claims, we depict the curves of two variables (channels) over time in the ETT dataset in Fig. 1.
We find that: (i) Despite the fluctuations, the relationship between these two variables remains stable
over a long time, i.e., MULL (Middle UseLess Load) is roughly equivalent to half of HULL (High
UseLess Load). (ii) This relationship can vary across different time periods. The above observa-
tions indicate that multivariate time series have relatively stable long-term channel dependencies at
different periods. Hence, a data-dependent and global channel modeling approach is more suitable
for capturing cross-channel dependencies.

Based on the above motivations, we propose enhancements to Mamba for multivariate time series
prediction, incorporating a modified Mamba (M-Mamba) module for long-term temporal depen-
dencies modeling and a global data-dependent MLP (GDD-MLP) to model channel dependencies
more efficiently. GDD-MLP endows the original MLP with the advantages of data dependence and
a global receptive field. Additionally, to mitigate the overfitting and generalization issues associated
with Channel-Dependent (CD) models (Han et al., 2023), we introduce a Channel Mixup strategy.
This method combines channels linearly during training to create virtual channels that integrate
characteristics from multiple channels while preserving their shared temporal dependencies, which
is expected to improve the generalizability of models.

In summary, we adapt Mamba to multivariate time series forecasting by evaluating the effective-
ness of its components and equipping it with channel mixing capabilities. The resulting model,
CMamba, leveraging both cross-time and cross-channel dependencies, achieves consistent state-
of-the-art performance across seven real-world datasets. Technically, our main contributions are
summarized as follows:

• We tailor the vanilla Mamba module for long-term time series forecasting. A modified
Mamba (M-Mamba) module is proposed for better cross-time dependency modeling.

• We enable Mamba to capture multivariate correlations using the proposed global data-
dependent MLP (GDD-MLP) and Channel Mixup. Coupled with the M-Mamba module,
the proposed CMamba captures both cross-time and cross-channel dependencies to learn
better representations for multivariate time series forecasting.
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• Experiments on seven real-world benchmarks demonstrate that our proposed framework
achieves superior performance. We extensively apply the proposed GDD-MLP and Chan-
nel Mixup to other models. The improved forecasting performance indicates the broad
versatility of our framework.

2 RELATED WORK

2.1 STATE SPACE MODELS FOR SEQUENCE MODELING

Traditional state space models (SSMs), such as hidden Markov models and recurrent neural net-
works (RNNs), process sequences by storing messages in their hidden states and using these states
along with the current input to update the output. This recurrent mechanism limits their training ef-
ficiency and leads to problems like vanishing and exploding gradients (Hochreiter & Schmidhuber,
1997). Recently, several SSMs with linear-time complexity have been proposed, including S4 (Gu
et al., 2021), H3 (Fu et al., 2022), SpaceTime (Zhang et al., 2023), and Mamba (Gu & Dao, 2023).
Among these, Mamba further enhances S4 by introducing a data-dependent selection mechanism
that balances short-term and long-term dependencies. Mamba has demonstrated powerful long-
sequence modeling capabilities and has been successfully extended to the visual (Liu et al., 2024;
Zhu et al., 2024) and graph domains (Wang et al., 2024a).

In the time series domain, many recent works (Patro & Agneeswaran, 2024; Wang et al., 2024d) have
focused on aligning the input format of time series with other fields so that the original Mamba ar-
chitecture can be migrated. Specifically, S-Mamba (Wang et al., 2024d) modifies iTransformer (Liu
et al., 2023a) by replacing its self-attention layer with Mamba, thereby modeling inter-channel rela-
tionships by treating different channels as sequential data. Time-SSM (Hu et al., 2024) provides an
in-depth examination of various SSM kernel variants within the Mamba framework for time series
analysis. Bi-Mamba+ (Liang et al., 2024) explores the impact of sequence modeling direction and
proposes a bidirectional Mamba architecture for multivariate time series forecasting. Despite these
advancements, existing works overlook the critical evaluation of whether the internal components
of Mamba are inherently well-suited for time series data. Moreover, while addressing Mamba’s lim-
ited capacity for channel modeling, existing strategies are too direct (e.g., S-Mamba, which models
cross-channel dependencies in a sequential manner) and introduce large computational overhead. In
this paper, we explore the practicality of Mamba components and propose a more lightweight and
efficient strategy to model cross-channel dependencies.

2.2 CHANNEL STRATEGIES IN MTSF

Channel strategies are fundamental in determining how to handle relationships between variables
in multivariate time series forecasting (MTSF). Broadly, there are two primary approaches: the
Channel-Independent (CI) strategy, which disregards cross-channel dependencies, and the Channel-
Dependent (CD) strategy, which integrates channels according to specific mechanisms. Each strat-
egy has its respective strengths and weaknesses. CD methods offer greater representational capacity
but tend to be less robust when confronted with distributional shifts in time series data, while CI
methods sacrifice capacity for more stable, robust predictions (Han et al., 2023).

A significant number of state-of-the-art models adhere to the CI strategy. These models (Zeng
et al., 2023; Nie et al., 2022; Wang et al., 2023) treat multivariate time series as a collection of
independent univariate time series and simply treat different channels as different training samples.
However, recent work has demonstrated the efficacy of explicitly capturing multivariate correlations
through mechanisms such as self-attention (Liu et al., 2023a) and convolution (Luo & Wang, 2024).
These methods have achieved strong empirical results, underscoring the importance of cross-channel
dependency modeling in MTSF. Despite these advances, there remains a need for more effective and
efficient mechanisms to capture and model cross-channel dependencies.

2.3 MIXUP FOR GENERALIZABILITY

Mixup is an effective data augmentation technique widely used in vision (Zhang et al., 2017; Yun
et al., 2019; Verma et al., 2019), natural language processing (Guo et al., 2019; Sun et al., 2020),
and more recently, time series analysis (Zhou et al., 2023; Ansari et al., 2024). The vanilla mixup
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technique randomly mixes two input data samples via linear interpolation. Its variants extend this
by mixing either input samples or hidden embeddings to gain better generalization. In multivariate
time series, each sample contains multiple time series. Hence, rather than mixing two samples, our
proposed Channel Mixup mixes the time series of the same sample. This strategy not only enhances
the generalization of models but also facilitates the CD approach.

3 PRELIMINARY

3.1 MULTIVARIATE TIME SERIES FORECASTING

In multivariate time series forecasting, we are given a historical time series X = {x1, ...,xL} ∈
RL×V with a look-back window L and the number of channels V . The objective is to predict the
T future values Y = {xL+1, ...,xL+T } ∈ RT×V . In the following sections, we denote Xt,: as
the value of all channels at time step t, and X:,v as the entire sequence of the channel indexed by
v. The same annotation is also applied to Y. In this paper, we focus on the long-term time series
forecasting task, where the prediction length is greater than or equal to 96.

3.2 MAMBA

Given an input x(t) ∈ R, the continuous state space model (SSM) produces a response y(t) ∈ R
based on the observation of hidden state h(t) ∈ RS and the input x(t), which can be formulated as:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t) +D · x(t),
(1)

where A ∈ RS×S is the state transition matrix, B ∈ RS×1 and C ∈ R1×S are projection matrices,
and D ∈ R is the skip connection parameter. When both input and response contain E features,
i.e., x(t) ∈ RE and y(t) ∈ RE , the SSM is applied independently to each feature, that is, A ∈
RE×S×S , B ∈ RE×S , C ∈ RE×S , and D ∈ RE . For efficient memory utilization, A can be
compressed to RE×S . Hereafter, unless otherwise stated, we only consider multi-feature systems
and the compressed form of A. For the discrete system, Eq. 1 could be discretized as:

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I)∆B,

ht = Aht−1 +Bxt,

yt = Cht +D · xt,

(2)

where ∆ ∈ RE is the sampling time interval. These operations can be efficiently computed through
global convolution:

K = (CB,CAB, ...,CA
L−1

B),

Y = X ∗K+D ·X,
(3)

where L is the sequence length, and X, Y ∈ RL×E .

Selective Scan Mechanism Traditional approaches (Gu et al., 2021) keep transfer parameters
(e.g., B and C) unchanged during sequence processing, ignoring their relationships with the input.
Mamba (Gu & Dao, 2023) adopts a selective scan strategy where B ∈ RL×S , C ∈ RL×S , and
∆ ∈ RL×E are dynamically derived from the input X ∈ RL×E . As a result, A and B ∈ RL×E×S

are dependent on both time steps and features. This data-dependent mechanism allows Mamba to
incorporate contextual information and selectively execute state transitions.

4 METHODOLOGY

The overall structure of CMamba is illustrated in Fig. 2. Before training, the Channel Mixup module
mixes the input multivariate time series along the channel dimension. This is followed by the core
architecture comprising the modified Mamba (M-Mamba) module and the global data-dependent
MLP (GDD-MLP) module, designed to capture both cross-time and cross-channel dependencies.
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Figure 2: The overall framework of CMamba. (a) The Channel Mixup module, active during train-
ing, fuses different channels of a sample to create a virtual sample. New samples are normalized via
instance norm and segmented into patches before being fed into the model. (b) The CMamba block
consists of two parts: the M-Mamba module and GDD-MLP before residual connection. (c) The
M-Mamba module captures cross-time dependencies. (d) The GDD-MLP module captures cross-
channel dependencies.

These two modules form the CMamba block together. CMamba takes patch-wise sequences as
input and makes predictions using a single linear layer. The following sections provide detailed
explanations of these components.

4.1 CMAMBA BLOCK

The CMamba block consists of two key components: the M-Mamba module and the GDD-MLP
module, each responsible for modeling cross-time and cross-channel dependencies, respectively.

4.1.1 M-MAMBA

Mamba has demonstrated significant potential in NLP (Gu & Dao, 2023), CV (Zhu et al., 2024; Liu
et al., 2024), and stock prediction (Shi, 2024). In these fields, the semantic consistency of features
allows elements like words, image patches, or financial indicators to be treated as tokens. In contrast,
in multivariate time series, different channels often represent disparate physical quantities (Liu et al.,
2023a), making it unsuitable to treat channels at the same time point as a token. While a single time
step of each channel lacks semantic meaning, patching (Dosovitskiy et al., 2020; Nie et al., 2022)
aggregates time points into subseries-level patches, enriching the semantic information and local
receptive fields of tokens. Hence, we divide the input time series into patches to serve as the input
of our model.

Patching Given multivariate time series X, for each univariate series X:v ∈ RL, we segment it
into patches through moving window with patch length P and stride S:

X̂:v = Patching(X:v), (4)

where X̂:v ∈ RN×P is a sequence of patches and N = ⌊ (L−P )
S ⌋+ 2 is the number of patches.

In addition to modifying the input structure, the model architecture of Mamba also needs to be
adapted to suit the characteristics of multivariate time series data. Our Mamba variant is called M-
Mamba, as shown in Fig. 3 (b). Compared with the vanilla Mamba module, our module has the
following differences: (1) We remove the x-branch convolution operation. (2) We no longer learn
a transition matrix A for each feature, i.e., A ∈ RS in M-Mamba. (3) The skip connection matrix
D is derived from the input time series, meaning that D is also data-dependent. The reasons for our
design will be discussed in detail in Section 5.2.
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Figure 3: Architectures of the vanilla Mamba module and M-Mamba module.

4.1.2 GDD-MLP

To model cross-channel dependencies as simply and effectively as possible, we propose the global
data-dependent MLP (GDD-MLP) module. Fig. 2 (b) and (d) illustrate its structure and pipeline.
For the patch-wise multivariate time series embeddings generated after the lth M-Mamba module,
denoted as Hl ∈ RV×N×E , the data-dependent weight and bias of GDD-MLP could be formulated
as:

Weightl = sigmoid(MLP1(Pooling(Hl))),

Biasl = sigmoid(MLP2(Pooling(Hl))).
(5)

Here, Pooling is applied along the embedding dimension, generating descriptors Fl ∈ RV×N that
encapsulate the overall characteristics of each patch for every channel. To improve the extraction
of global information for each channel, we employ both Average Pooling and Max Pooling. The
average and max descriptors share the same MLP, whose outputs are added up to produce the final
channel representations in the latent space. The weight and bias are then applied to the input features
to embed cross-channel dependencies:

H′
l = Weightl ⊙Hl +Biasl. (6)

4.2 CHANNEL MIXUP

Previous mixup strategies (Zhang et al., 2017) generate new training samples through linear inter-
polation between two existing samples. For two feature-target pairs (xi, yi) and (xj , yj) randomly
drawn from the training set, the process is described as:

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj ,
(7)

where (x̃, ỹ) is the synthesized virtual sample, and λ ∈ [0, 1] is a mixing coefficient. In the context
of multivariate time series, directly applying this mixup approach can yield suboptimal results and
even degrade model performance (Zhou et al., 2023), as mixing samples from distinct time intervals
may disrupt temporal features such as periodicity. In contrast, different channels within a multivari-
ate time series often exhibit similar temporal characteristics, which explains the effectiveness of the
CI strategy (Han et al., 2023). Mixing different channels could introduce new variables while pre-
serving their shared temporal features. Considering that the CD strategy tends to cause overfitting
due to its lack of robustness to distributionally drifted time series (Han et al., 2023), training with
unseen channels should mitigate this issue. Generally, the Channel Mixup could be formulated as
follows:

X′ = X:,i + λX:,j , i, j = 0, ..., V − 1,

Y′ = Y:,i + λY:,j , i, j = 0, ..., V − 1,
(8)

where X′ ∈ RL×1 and Y′ ∈ RT×1 are hybrid channels resulting from the linear combination of
channel i and channel j. λ ∼ N(0, σ2) is the linear combination coefficient with σ as the standard
deviation. We use a normal distribution with a mean of 0, ensuring that the overall characteristics
of each channel remain unchanged. In practice, as shown in Alg. 1, we mix the channels of each
sample and replace the original sample with the constructed virtual sample, where randperm(V )
generates a randomly arranged array of 0 ∼ V − 1.
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Algorithm 1: Channel Mixup for multivariate time series forecasting

Input: training data X ∈ RL×V ,Y ∈ RT×V ; standard deviation σ; the number of channels V
1: perm = randperm(V ) # perm∈ RV

2: λ = normal(mean = 0, std = σ, size = (V ,))
3: X′ = X + λ * X[:, perm]
4: Y′ = Y + λ * Y[:, perm]

Output: (X′,Y′)

4.3 OVERALL PIPELINE

In this section, we summarize the aforementioned procedures and outline the process of training and
testing our model.

In the training stage, given a sample {X,Y}, it is first transformed into a virtual sample using
the Channel Mixup technique, followed by instance normalization that mitigates the distributional
shifts:

X′,Y′ = ChannelMixup(X,Y),

X′
norm = InstanceNorm(X′).

(9)

Subsequently, each channel is partitioned into patches of equal patch length P and patch number N .
These patch-wise tokens are then linearly projected into vectors of size E followed by the addition
of a position encoding Wpos. This process could be described as:

X̂ = Patching(X′
norm),

Z0 = X̂Wp +Wpos,
(10)

where X̂ ∈ RV×N×P , Wp ∈ RP×E , Wpos ∈ RN×E , and Z0 ∈ RV×N×E . Z0 is then fed into the
CMamba encoder, consisting of k CMamba blocks:

Hl = M-Mamba(Zl−1),

Zl = GDD-MLP(Hl) + Zl−1,
(11)

where l = 1, ..., k. The final prediction is generated through a linear projection of the output from
the last CMamba block:

Ŷ = DeNorm(Flatten(Silu(Zk))Wproj), (12)

where Wproj ∈ R(N∗E)×T and Ŷ ∈ RV×T . In the testing stage, the Channel Mixup module is
excluded, and the model is evaluated directly on the original testing set.

5 EXPERIMENTS

Datasets We evaluate the performance of CMamba on seven well-established datasets: ETTm1,
ETTm2, ETTh1, ETTh2, Electricity, Weather, and Traffic. All of these datasets are publicly avail-
able (Wu et al., 2021). We follow the public splits and apply zero-mean normalization to each
dataset. More details about datasets are provided in Appendix A.1.

Baselines We select ten advanced models as our baselines, including (i) Linear-based models:
DLinear (Zeng et al., 2023), RLinear (Li et al., 2023), TiDE (Das et al., 2023), TimeMixer (Wang
et al., 2023); (ii) Transformer-based models: Crossformer (Zhang & Yan, 2022), PatchTST (Nie
et al., 2022), iTransformer (Liu et al., 2023a); and (iii) Convolution-based models: MICN (Wang
et al., 2022), TimesNet (Wu et al., 2022), ModernTCN (Luo & Wang, 2024).

Implementation We set the look-back window to L = 96 and report the Mean Squared
Error (MSE) as well as the Mean Absolute Error (MAE) for four prediction lengths T ∈
{96, 192, 336, 720}. We reuse most of the baseline results from iTransformer (Liu et al., 2023a)
but we rerun MICN (Wang et al., 2022), TimeMixer (Wang et al., 2023), and ModernTCN (Luo &
Wang, 2024) due to their different experimental settings. All experiments are repeated three times,
and we report the mean. More details about hyperparameters can be found in Appendix A.2.
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Table 1: Average results of the long-term forecasting task with prediction lengths T ∈
{96, 192, 336, 720}. We fix the look-back window L = 96 and report the average performance
of all prediction lengths. The best is highlighted in red and the runner-up in blue.

Models CMamba
(Ours)

ModernTCN
(2024)

iTransformer
(2023a)

TimeMixer
(2023)

RLinear
(2023)

PatchTST
(2022)

Crossformer
(2022)

TiDE
(2023)

TimesNet
(2022)

MICN
(2022)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.376 0.379 0.386 0.401 0.407 0.410 0.384 0.397 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.407 0.432 0.403 0.407

ETTm2 0.273 0.316 0.278 0.322 0.288 0.332 0.279 0.325 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.339 0.386 0.350 0.401

ETTh1 0.433 0.425 0.445 0.432 0.454 0.447 0.470 0.451 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.559 0.524 0.456 0.452

ETTh2 0.368 0.391 0.381 0.404 0.383 0.407 0.389 0.409 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.580 0.526 0.559 0.515

Electricity 0.169 0.258 0.197 0.282 0.178 0.270 0.183 0.272 0.219 0.298 0.216 0.304 0.244 0.334 0.251 0.344 0.192 0.295 0.185 0.296 0.212 0.300

Weather 0.237 0.259 0.240 0.271 0.258 0.279 0.245 0.274 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.267 0.318 0.265 0.317

Traffic 0.444 0.265 0.546 0.348 0.428 0.282 0.496 0.298 0.626 0.378 0.555 0.362 0.550 0.304 0.760 0.473 0.620 0.336 0.544 0.319 0.625 0.383

5.1 MAIN RESULTS

The comprehensive results for multivariate long-term time series forecasting are presented in Ta-
ble 1. We report the average performance across four prediction horizons T ∈ {96, 192, 336, 720}
in the main text, with full results available in Appendix D.1. Compared to other state-of-the-art
methods, CMamba ranks top 1 in 13 out of the 14 settings of varying metrics and top 2 in all set-
tings. Actually, across all prediction lengths and metrics, encompassing 70 settings, CMamba ranks
top 1 in 65 settings and top 2 in all settings (detailed in Appendix D.1). Notably, for datasets with
numerous time series, such as Electricity, Weather, and Traffic, CMamba performs as well as or
better than iTransformer. iTransformer captures cross-channel dependencies via the self-attention
mechanism, incurring high computational costs. Our GDD-MLP module achieves comparable data
dependencies and global receptive field, but the computational cost is significantly reduced. These
results demonstrate our method’s effectiveness. For experiments with the optimal look-back length,
we provide the results in Appendix C.4.

5.2 ABLATION STUDY

Table 2: Ablation of M-Mamba on Weather. FS:
feature-specific, FI: feature-independent, F: free
variables, DD: data-dependent variables.

Case Conv z-branch A D MSE MAE
Vanilla ✓ ✓ FS F 0.240 0.261

① - ✓ FS F 0.238 0.260

② ✓ - FS F 0.239 0.261

③ - - FS F 0.239 0.261

④ ✓ ✓ FI F 0.240 0.261

⑤ ✓ ✓ FI DD 0.239 0.260

CMamba - ✓ FI DD 0.237 0.259

Ablation of M-Mamba Design In Sec-
tion 4.1.1, we describe the differences between
the M-Mamba and vanilla Mamba modules, in-
cluding the removal of convolution, feature-
independent A, and data-dependent D. Here,
we provide quantitative evidence to justify our
design choices. As shown in Table 2, we con-
duct experiments on the Weather dataset with
the same settings as before. Case Vanilla, ①, ②,
and ③ indicate that the convolution operation
and the gated z-branch are redundant for time
series forecasting. However, removing both the
convolution operation and the z-branch does
not provide further improvement, suggesting that retaining the z-branch is beneficial. Moreover,
Case Vanilla and Case ④ demonstrate that learning a feature-specific transfer matrix A is unnec-
essary, given the similar temporal characteristics within each patch. On the other hand, due to the
differences between channels and patches, making the skip connection matrix D data-dependent is
justified, as indicated by the comparison between Case ④ and Case ⑤.

Ablation of GDD-MLP and Channel Mixup To assess the contributions of each module in
CMamba, we conduct ablation studies on the GDD-MLP and Channel Mixup modules. The results,
summarized in Table 3, present the average performance across four prediction horizons, with full
results available in Appendix D.2. Overall, the combination of both modules leads to state-of-the-
art performance, demonstrating the efficacy of their integration. In most cases, both modules could
function independently, yielding significant improvements over baseline models. However, for the
Traffic dataset, using GDD-MLP in isolation results in substantial performance degradation. This
supports our hypothesis that the Channel-Dependent (CD) strategy, when applied without Channel
Mixup, is vulnerable to distributional shifts and prone to overfitting.
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Table 3: Ablation of GDD-MLP and Channel Mixup. We list the average MSE and MAE of different
prediction lengths.

GDD
MLP

Channel
Mixup

ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Traffic

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
- - 0.387 0.387 0.282 0.322 0.431 0.428 0.367 0.391 0.190 0.268 0.255 0.271 0.479 0.264
- ✓ 0.383 0.382 0.280 0.321 0.430 0.426 0.373 0.393 0.189 0.267 0.254 0.270 0.483 0.267
✓ - 0.388 0.387 0.275 0.317 0.437 0.428 0.372 0.394 0.175 0.266 0.241 0.262 0.525 0.285
✓ ✓ 0.376 0.379 0.273 0.316 0.433 0.425 0.368 0.391 0.169 0.258 0.237 0.259 0.444 0.265

5.3 MODEL ANALYSIS

Effectiveness of GDD-MLP and Channel Mixup Here, we further demonstrate the advantages
of our proposed GDD-MLP and Channel Mixup over traditional mixup and MLP by visualizing the
optimization process, with the patch-wise M-Mamba as our base model. (1) As shown in Fig. 4 (a)
and (b), compared to the vanilla mixup, Channel Mixup successfully suppresses the oversmoothing
caused by the CD strategy and brings significantly excellent generalization capabilities. (2) As
depicted in Fig. 4 (c) and (d), the traditional MLP does show a stronger fitting ability, but because
it is position-dependent rather than data-dependent, its generalization ability is weaker than that of
GDD-MLP. Moreover, due to the data-dependent mechanism, GDD-MLP is more compatible with
Channel Mixup than traditional MLP.

(d) Validation loss(c) Training loss(b) Validation loss(a) Training loss

Figure 4: Loss curves for the Traffic dataset with look-back length and prediction length fixed at
96. All curves are generated by models that combine the specified module with M-Mamba. For
example, GDD-MLP + Channel Mixup corresponds to CMamba.

Generalizability of GDD-MLP and Channel Mixup We evaluate the effectiveness and versa-
tility of GDD-MLP and Channel Mixup on four recent models: iTransformer (Liu et al., 2023a)
and PatchTST (Nie et al., 2022) (Transformer-based), RLinear (Li et al., 2023) (Linear-based), and
TimesNet (Wu et al., 2022) (Convolution-based). Among them, iTransformer and TimesNet adopt
CD strategies, while PatchTST and RLinear utilize CI approaches. We retain the original architec-
tures of these models but process the input via Channel Mixup during training and insert the GDD-
MLP module into the original frameworks. The modified architectures are detailed in Appendix B.2.
As shown in Table 4, our pipeline consistently enhances performance over various models, yielding
an average improvement of 5% across all metrics. For iTransformer and TimesNet, which have al-
ready taken cross-channel dependencies into account, the proposed modules do not result in major

Table 4: Performance promotion obtained by our proposed GDD-MLP and Channel Mixup when
applying them to other frameworks. We fix the look-back window L = 96 and report the average
performance of four prediction lengths T ∈ {96, 192, 336, 720}.

Method iTransformer PatchTST RLinear TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity
Original 0.178 0.270 0.216 0.304 0.219 0.298 0.192 0.295

w/ GDD-MLP and Channel Mixup 0.170 0.264 0.178 0.273 0.203 0.290 0.182 0.284
Promotion 4.6% 2.1% 17.8% 10.2% 7.5% 2.6% 5.2% 3.7%

Weather
Original 0.258 0.279 0.259 0.281 0.272 0.291 0.259 0.287

w/ GDD-MLP and Channel Mixup 0.250 0.274 0.248 0.272 0.258 0.285 0.257 0.282
Promotion 3.1% 1.9% 4.4% 3.3% 5.1% 2.1% 0.9% 1.6%
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improvements. However, for PatchTST and RLinear, which adopt CI strategies, the integration of
our modules effectively mitigates oversmoothing, leading to substantial performance gains.

Computational Cost of GDD-MLP We report the computational cost introduced by the GDD-
MLP module in Table 5, quantified by FLOPs (G). To ensure a fair comparison, we conduct ex-
periments on our CMamba with a fixed hidden size of 128, three layers, and a batch size of 64 for
the ETT, Weather, and Electricity datasets. Due to memory limitations, the batch size of the Traffic
dataset is set to 32. As shown in Table 5, the GDD-MLP module contributes minimally to the overall
computational cost. Notably, even for the Traffic dataset, which includes 862 channels, the increase
in FLOPs is only 1.35%, indicating the module’s efficiency.

Table 5: Computational cost of GDD-MLP. We use FLOPs (G) to measure the computational com-
plexity.

Dataset ETT Weather Electricity Traffic
Channel 7 21 321 862

w/o GDD-MLP 1.3322 3.9966 61.0916 82.0264
w/ GDD-MLP 1.3368 4.0130 61.7558 83.1327

FLOPs increment 0.35% 0.41% 1.09% 1.35%

Longer Look-back Length The look-back length determines the extent of temporal information
available within time series data. A model’s ability to deliver improved forecasting performance with
an extended historical window indicates its proficiency in capturing long-range temporal dependen-
cies. Fig. 5 illustrates the performance trajectories of CMamba across varying look-back lengths.
Consistent with other state-of-the-art models (Nie et al., 2022; Liu et al., 2023a), CMamba’s perfor-
mance improves as the look-back window lengthens, aligning with the hypothesis that an expanded
receptive field contributes to more accurate predictions.

Figure 5: Performance promotion with longer look-back lengths. We vary the look-back length
L in {96, 192, 336, 512} and report the performance curves of four prediction lengths T ∈
{96, 192, 336, 720} under the Weather and Electricity dataset.

6 CONCLUSION

We propose CMamba, a novel state space model for multivariate time series forecasting. To bal-
ance cross-time and cross-channel dependencies, CMamba consists of three key components: a M-
Mamba module that facilitates Mamba for cross-time dependencies modeling, a GDD-MLP mod-
ule that captures cross-channel dependencies, and a Channel Mixup training strategy that enhances
generalization and facilitates the CD approach. Extensive experiments demonstrate that CMamba
achieves state-of-the-art performance on seven real-world datasets. Notably, the GDD-MLP and
Channel Mixup modules could be seamlessly inserted into other models with minimal cost, show-
casing remarkable framework versatility. In the future, we aim to explore more effective techniques
to capture cross-time and cross-channel dependencies.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Shengchao Chen, Guodong Long, Tao Shen, Tianyi Zhou, and Jing Jiang. Spatial-temporal prompt
learning for federated weather forecasting. arXiv preprint arXiv:2305.14244, 2023.

Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
forecasting with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré.
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A IMPLEMENTATION DETAILS

A.1 DATASET DESCRIPTIONS

We conduct experiments on seven real-world datasets following the setups in previous works (Liu
et al., 2023a; Nie et al., 2022). (1) Four ETT (Electricity Transformer Temperature) datasets con-
tain seven indicators from two different electric transformers in two years, each of which includes
two different resolutions: 15 minutes (ETTm1 and ETTm2) and 1 hour (ETTh1 and ETTh2). (2)
Electricity comprises the hourly electricity consumption of 321 customers in two years. (3) Weather
contains 21 meteorological factors recorded every 10 minutes in Germany in 2020. (4) Traffic col-
lects the hourly road occupancy rates from 862 different sensors on San Francisco freeways in two
years. More details are provided in Table 6.

Table 6: Detailed dataset descriptions. Channel indicates the number of variates. Frequency
denotes the sampling intervals of time steps. Domain indicates the physical realm of each dataset.
Prediction Length denotes the future time points to be predicted. The last row indicates the ratio
of training, validation, and testing sets.

Dataset Channel Frequency Domain Prediction Length Training:Validation:Testing
ETTm1 7 15 minutes Electricity {96, 192, 336, 720} 6:2:2
ETTm2 7 15 minutes Electricity {96, 192, 336, 720} 6:2:2
ETTh1 7 1 hour Electricity {96, 192, 336, 720} 6:2:2
ETTh2 7 1 hour Electricity {96, 192, 336, 720} 6:2:2

Electricity 321 1 hour Electricity {96, 192, 336, 720} 7:1:2
Weather 21 10 minutes Weather {96, 192, 336, 720} 7:1:2
Traffic 862 1 hour Transportation {96, 192, 336, 720} 7:1:2

A.2 HYPERPARAMETERS

We conduct experiments on a single NVIDIA A100 40GB GPU. We utilize Adam (Kingma & Ba,
2014) optimizer with L1 loss and tune the initial learning rate in {0.0001, 0.0005, 0.001}. We fix the
patch length at 16 and the patch stride at 8. The embedding of patches is selected from {128, 256}.
The number of CMamba blocks is searched in {2, 3, 4, 5}. The standard deviation (σ) of Channel
Mixup is tuned from 0.1 to 5. The dropout rate is searched in {0, 0.1}. For the M-Mamba module,
we fix the dimension of the hidden state at 16 and the expansion rate of the linear layer at 1. To
ensure robustness, we run our model three times under three random seeds (2020, 2021, 2022) in
each setting. The average performance along with the standard deviation is presented in Table 7.

Table 7: Robustness of the proposed CMamba performance. The results are generated from three
random seeds.

Horizon
Dataset ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Traffic

96 MSE 0.308±0.004 0.171±0.001 0.372±0.001 0.281±0.001 0.141±0.000 0.150±0.001 0.414±0.003
MAE 0.338±0.003 0.248±0.001 0.386±0.000 0.329±0.001 0.231±0.001 0.187±0.000 0.251±0.001

192 MSE 0.359±0.001 0.235±0.001 0.422±0.003 0.361±0.000 0.157±0.002 0.200±0.001 0.432±0.001
MAE 0.364±0.001 0.292±0.000 0.416±0.001 0.381±0.000 0.245±0.002 0.236±0.001 0.257±0.001

336 MSE 0.390±0.005 0.296±0.000 0.466±0.003 0.413±0.001 0.175±0.001 0.260±0.000 0.446±0.002
MAE 0.389±0.001 0.334±0.001 0.438±0.001 0.419±0.001 0.265±0.001 0.281±0.000 0.265±0.002

720 MSE 0.447±0.003 0.392±0.002 0.470±0.003 0.419±0.001 0.203±0.002 0.339±0.002 0.485±0.003
MAE 0.425±0.001 0.391±0.001 0.461±0.000 0.435±0.000 0.289±0.001 0.334±0.001 0.286±0.003

B BASELINES

B.1 BASELINE DESCRIPTIONS

We carefully selected 10 state-of-the-art models for our study. Their details are as follows:
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1) DLinear (Zeng et al., 2023) is a Linear-based model utilizing decomposition and a Channel-
Independent strategy. The source code is available at https://github.com/cure-lab/
LTSF-Linear.

2) MICN (Wang et al., 2022) is a Convolution-based model featuring multi-scale hybrid decom-
position and multi-scale convolution. The source code is available at https://github.com/
wanghq21/MICN.

3) TimesNet (Wu et al., 2022) decomposes 1D time series into 2D time series based on multi-
periodicity and captures intra-period and inter-period correlations via convolution. The source code
is available at https://github.com/thuml/Time-Series-Library.

4) TiDE (Das et al., 2023) adopts a pure MLP structure and a Channel-Independent strat-
egy. The source code is available at https://github.com/google-research/
google-research/tree/master/tide.

5) Crossformer (Zhang & Yan, 2022) is a patch-wise Transformer-based model with two-stage at-
tention that captures cross-time and cross-channel dependencies, respectively. The source code is
available at https://github.com/Thinklab-SJTU/Crossformer.

6) PatchTST (Nie et al., 2022) is a patch-wise Transformer-based model that adopts a Channel-
Independent strategy. The source code is available at https://github.com/yuqinie98/
PatchTST.

7) RLinear (Li et al., 2023) is a Linear-based model with RevIN and a Channel-Independent strategy.
The source code is available at https://github.com/plumprc/RTSF.

8) TimeMixer (Wang et al., 2023) is a fully MLP-based model that leverages multiscale time series.
It makes predictions based on the multiscale seasonal and trend information of time series. The
source code is available at https://github.com/kwuking/TimeMixer.

9) iTransformer (Liu et al., 2023a) is an inverted Transformer-based model that captures cross-
channel dependencies via the self-attention mechanism and cross-time dependencies via linear pro-
jection. The source code is available at https://github.com/thuml/iTransformer.

10) ModernTCN (Luo & Wang, 2024) is a Convolution-based model with larger receptive fields.
It utilizes depth-wise convolution to learn the patch-wise temporal information and two point-wise
convolution layers to capture cross-time and cross-channel dependencies respectively. The source
code is available at https://github.com/luodhhh/ModernTCN.

Notably, the source code of most of these models is available at https://github.com/
thuml/Time-Series-Library (Wang et al., 2024b).

(a) RLinear (b) iTransformer
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Figure 6: Modifications of the four chosen baselines. We retain the original architecture unchanged
but apply Channel Mixup during training and insert the GDD-MLP module into the original model.
The ∗ modules represent GDD-MLP and Channel Mixup.
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Table 8: Performance promotion obtained by our proposed GDD-MLP and Channel Mixup when
applying them to other frameworks. We fix the look-back window L = 96 and report the perfor-
mance of four prediction lengths T ∈ {96, 192, 336, 720}. Avg means the average metrics for four
prediction lengths. ↑ indicates improved performance and ↓ denotes decreasing performance.

Method iTransformer PatchTST RLinear TimesNet

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

Original

96 0.148 0.240 0.195 0.285 0.201 0.281 0.168 0.272
192 0.162 0.253 0.199 0.289 0.201 0.283 0.184 0.289
336 0.178 0.269 0.215 0.305 0.215 0.298 0.198 0.300
720 0.225 0.317 0.256 0.337 0.257 0.331 0.220 0.320
Avg 0.178 0.270 0.216 0.304 0.219 0.298 0.192 0.295

w/ GDD-MLP and Channel Mixup

96 0.142↑ 0.238↑ 0.151↑ 0.250↑ 0.182↑ 0.274↑ 0.163↑ 0.268↑
192 0.161↑ 0.255↓ 0.165↑ 0.259↑ 0.187↑ 0.276↑ 0.172↑ 0.274↑
336 0.179↓ 0.274↓ 0.178↑ 0.276↑ 0.202↑ 0.291↑ 0.183↑ 0.286↑
720 0.196↑ 0.290↑ 0.217↑ 0.306↑ 0.239↑ 0.321↑ 0.211↑ 0.308↑
Avg 0.170↑ 0.264↑ 0.178↑ 0.273↑ 0.203↑ 0.290↑ 0.182↑ 0.284↑

Promotion Count (Promotion / Total) - 4 / 5 3 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5

Weather

Original

96 0.174 0.214 0.177 0.218 0.192 0.232 0.172 0.220
192 0.221 0.254 0.225 0.256 0.240 0.271 0.219 0.261
336 0.278 0.296 0.278 0.297 0.292 0.307 0.280 0.306
720 0.358 0.349 0.354 0.348 0.364 0.353 0.365 0.359
Avg 0.258 0.279 0.259 0.281 0.272 0.291 0.259 0.287

w/ GDD-MLP and Channel Mixup

96 0.164↑ 0.207↑ 0.164↑ 0.207↑ 0.181↑ 0.228↑ 0.166↑ 0.213↑
192 0.214↑ 0.250↑ 0.211↑ 0.249↑ 0.223↑ 0.264↑ 0.221↓ 0.259↑
336 0.272↑ 0.292↑ 0.269↑ 0.289↑ 0.277↑ 0.301↑ 0.282↓ 0.305↑
720 0.350↑ 0.345↑ 0.346↑ 0.342↑ 0.352↑ 0.347↑ 0.357↑ 0.353↑
Avg 0.250↑ 0.274↑ 0.248↑ 0.272↑ 0.258↑ 0.285↑ 0.257↑ 0.282↑

Promotion Count (Promotion / Total) - 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 3 / 5 5 / 5

B.2 BASELINE MODIFICATION

In Section 5.3, we evaluate the effects of GDD-MLP and Channel Mixup modules on four state-
of-the-art models: iTransformer (Liu et al., 2023a) and PatchTST (Nie et al., 2022) (Transformer-
based), RLinear (Li et al., 2023) (Linear-based), and TimesNet (Wu et al., 2022) (Convolution-
based). During experiments, we retain the original architecture unchanged but process the input
via Channel Mixup during training and insert the GDD-MLP module into the original model. The
modified frameworks of these models are shown in Fig. 6. All models adopt instance norm or
RevIN (Kim et al., 2021) based on their original settings. We only tune the standard deviation σ,
and learning rate lr for optimal performance. The full results are shown in Table 8.

C MORE EVALUATION

C.1 FULL ABLATION OF MAMBA DESIGN

In the main text, we assess the effectiveness of M-Mamba on the Weather dataset. Here, we present
a more comprehensive evaluation across all datasets and prediction lengths. As detailed in Table 9,
M-Mamba achieves performance gains in 58 out of 70 scenarios, with improvements becoming in-
creasingly prominent at longer prediction horizons. This phenomenon is consistent with our archi-
tectural adjustments: removing the convolution operation and adopting a feature-independent matrix
A, which deemphasizes local temporal dependencies, allowing Mamba to better capture long-term
dependencies. Recent studies, including iTransformer (Liu et al., 2023a) and ModernTCN (Luo
& Wang, 2024), underscore the importance of a global receptive field and long-term dependency
modeling for effective long-term time series forecasting. Specifically, iTransformer utilizes self-
attention to achieve this, while ModernTCN leverages large convolution kernels. By removing
modules emphasizing local dependencies, we enable Mamba to prioritize global dependency cap-
ture, as evidenced by the significant improvements in experimental results. These findings validate
the effectiveness of our modifications in enhancing Mamba’s capacity for long-term forecasting.
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Table 9: Comparisons of the vanilla Mamba and M-Mamba under all datasets and prediction lengths.
Avg means the average metrics for four prediction lengths. ↑ indicates improved performance and ↓
denotes decreasing performance.

Dataset ETTm1 ETTm2 ETTh1 ETTh2 Electricity Weather Traffic

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

M
am

ba

96 0.312 0.341 0.173 0.251 0.376 0.390 0.283 0.331 0.140 0.231 0.152 0.189 0.404 0.250
192 0.365 0.367 0.239 0.296 0.423 0.417 0.360 0.381 0.159 0.247 0.201 0.236 0.429 0.255
336 0.398 0.392 0.300 0.336 0.468 0.439 0.416 0.422 0.177 0.265 0.264 0.283 0.455 0.265
720 0.455 0.427 0.398 0.393 0.474 0.466 0.419 0.437 0.214 0.298 0.344 0.337 0.483 0.286

Avg 0.383 0.381 0.277 0.319 0.435 0.428 0.370 0.393 0.173 0.260 0.240 0.261 0.443 0.264

M
-M

am
ba 96 0.308↑ 0.338↑ 0.171↑ 0.248↑ 0.372↑ 0.386↑ 0.281↑ 0.329↑ 0.141↓ 0.231↓ 0.150↑ 0.187↑ 0.414↓ 0.251↓

192 0.359↑ 0.364↑ 0.235↑ 0.292↑ 0.422↑ 0.416↑ 0.361↓ 0.381↓ 0.157↑ 0.245↑ 0.200↑ 0.236↑ 0.432↓ 0.257↓
336 0.390↑ 0.389↑ 0.296↑ 0.334↑ 0.466↑ 0.438↑ 0.413↑ 0.419↑ 0.175↑ 0.265↑ 0.260↑ 0.281↑ 0.446↑ 0.265↑
720 0.447↑ 0.425↑ 0.392↑ 0.391↑ 0.470↑ 0.461↑ 0.419↑ 0.435↑ 0.203↑ 0.289↑ 0.339↑ 0.334↑ 0.485↓ 0.286↓
Avg 0.376↑ 0.379↑ 0.273↑ 0.316↑ 0.433↑ 0.425↑ 0.368↑ 0.391↑ 0.169↑ 0.258↑ 0.237↑ 0.259↑ 0.444↓ 0.265↓

Promotion Count 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 4 / 5 4 / 5 4 / 5 4 / 5 5 / 5 5 / 5 1 / 5 1 / 5

C.2 EFFICIENCY ANALYSIS

In this section, we evaluate the efficiency of CMamba on the Weather and Electricity datasets, each
with 21 and 321 channels, respectively. Both training time and model size are taken into account,
as shown in Fig. 7. We can find that CMamba is the most lightweight model on average except
for the Linear-based model (e.g., RLinear and TimeMixer). This indicates that CMamba’s excellent
performance stems more from its capacity to capture historical time series patterns than from an
increase in parameters. However, CMamba’s running speed is not outstanding, which is primarily
due to the suboptimal parallelism inherent to state space models (SSMs) compared to attention-
based architectures. Nevertheless, CMamba’s strong performance and lightweight model size still
make it a highly efficient model, effectively balancing accuracy and computational efficiency.

PatchTST

10.74M, 33ms

ModernTCN

3.09M, 29ms

RLinear

69.84k, 13ms

iTransformer

5.15M, 28ms

TimesNet

1.25M, 325ms

TimeMixer

0.22M, 43ms

CMamba

1.35M, 29ms

ModernTCN

129M, 180ms

CMamba

1.65M, 442ms

TimeMixer

0.22M, 173ms
iTransformer

5.15M, 71ms

RLinear

69.84k, 65ms

PatchTST

10.74M, 473ms

TimesNet

150M, 3883ms

(b) Electricity(a) Weather

Figure 7: Efficiency comparison on the (a) Weather and (b) Electricity dataset. The look-back
window is 96 and the horizon is 720.

C.3 HYPERPARAMETER SENSITIVITY

We conduct a thorough evaluation of the hyperparameters influencing CMamba’s performance, fo-
cusing on two critical factors: the standard deviation (σ) in the Channel Mixup mechanism and
the expansion rate (r) for the GDD-MLP. Experiments are performed on the ETTh1 and ETTm1
datasets, maintaining a fixed look-back window and forecasting horizon of 96. All other hyperpa-
rameters remain consistent with those reported in Table 1. The results, visualized in Fig. 8, highlight
the following: (1) The standard deviation (σ) controls the extent of perturbation and mixing across
channels, directly influencing the robustness of the model. Proper tuning is essential, as it governs
the balance between stability and generalization. A standard normal distribution tends to yield sta-
ble performance across various scenarios, likely due to its balance in perturbation magnitude. (2)
The expansion rate (r) controls the dimensionality of the hidden layers in the GDD-MLP. While
larger hidden layers increase computational demands, they may also detrimentally affect model per-
formance. This suggests that excessive emphasis on cross-channel dependencies can diminish the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

model’s ability to capture cross-temporal dynamics, which are more critical for multivariate time
series forecasting. Conversely, an expansion rate that is too small can result in underfitting, as the
model may lack sufficient capacity to capture the necessary dependencies across channels.

Figure 8: Hyperparameter sensitivity of the standard deviation σ for Channel Mixup (left) and the
expansion rate r for GDD-MLP (right).

C.4 UPPER BOUND EVALUATION

Considering that the performance of different models is influenced by the look-back length, we
further compare our model with state-of-the-art frameworks under the optimal look-back length. As
shown in Table 10, we compare the performance of each model using their best look-back window.
For CMamba, we search the look-back length in {96, 192, 336, 512}. For other benchmarks, we
rerun iTransformer since its look-back length is fixed at 96 in the original paper, and we collect
results for other models from tables in ModernTCN (Luo & Wang, 2024), TimeMixer (Wang et al.,
2023), and TiDE (Das et al., 2023). The results indicate that our model still achieves state-of-the-art
performance.

Table 10: Full results of the long-term forecasting task under the optimal look-back window. We
search the look-back window of CMamba in {96, 192, 336, 512}. We report the performance of
four prediction lengths T ∈ {96, 192, 336, 720}. Avg means the average metrics for four prediction
lengths. The best is highlighted in red and the runner-up in blue.

Models CMamba
(Ours)

ModernTCN
(2024)

iTransformer
(2023a)

TimeMixer
(2023)

RLinear
(2023)

PatchTST
(2022)

Crossformer
(2022)

TiDE
(2023)

TimesNet
(2022)

MICN
(2022)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.283 0.329 0.292 0.346 0.295 0.344 0.291 0.340 0.301 0.342 0.290 0.342 0.316 0.373 0.306 0.349 0.338 0.375 0.314 0.360 0.299 0.343
192 0.332 0.357 0.332 0.368 0.336 0.370 0.327 0.365 0.335 0.363 0.332 0.369 0.377 0.411 0.335 0.366 0.371 0.387 0.359 0.387 0.335 0.365
336 0.357 0.378 0.365 0.391 0.373 0.391 0.360 0.381 0.370 0.383 0.366 0.392 0.431 0.442 0.364 0.384 0.410 0.411 0.398 0.413 0.369 0.386
720 0.414 0.410 0.416 0.417 0.432 0.427 0.415 0.417 0.425 0.414 0.416 0.420 0.600 0.547 0.413 0.413 0.478 0.450 0.459 0.464 0.425 0.421

Avg 0.347 0.368 0.351 0.381 0.359 0.383 0.348 0.375 0.358 0.376 0.351 0.381 0.431 0.443 0.355 0.378 0.400 0.406 0.383 0.406 0.357 0.379

E
T

T
h1

96 0.358 0.387 0.368 0.394 0.386 0.405 0.361 0.390 0.366 0.391 0.370 0.399 0.386 0.429 0.375 0.398 0.384 0.402 0.396 0.427 0.375 0.399
192 0.399 0.415 0.405 0.413 0.441 0.436 0.409 0.414 0.404 0.412 0.413 0.421 0.419 0.444 0.412 0.422 0.436 0.429 0.430 0.453 0.405 0.416
336 0.427 0.437 0.391 0.412 0.461 0.452 0.430 0.429 0.420 0.423 0.422 0.436 0.440 0.461 0.435 0.433 0.491 0.469 0.433 0.458 0.439 0.443
720 0.428 0.451 0.450 0.461 0.503 0.491 0.445 0.460 0.442 0.456 0.447 0.466 0.519 0.524 0.454 0.465 0.521 0.500 0.474 0.508 0.472 0.490

Avg 0.403 0.422 0.404 0.420 0.448 0.446 0.411 0.423 0.408 0.421 0.413 0.431 0.441 0.465 0.419 0.430 0.458 0.450 0.433 0.462 0.423 0.437

E
le

ct
ri

ci
ty 96 0.128 0.220 0.129 0.226 0.132 0.228 0.129 0.224 0.140 0.235 0.129 0.222 0.219 0.314 0.132 0.229 0.168 0.272 0.159 0.267 0.153 0.237

192 0.146 0.239 0.143 0.239 0.154 0.247 0.140 0.220 0.154 0.248 0.147 0.240 0.231 0.322 0.147 0.243 0.184 0.289 0.168 0.279 0.152 0.249
336 0.162 0.258 0.161 0.259 0.172 0.266 0.161 0.255 0.171 0.264 0.163 0.259 0.246 0.337 0.161 0.261 0.198 0.300 0.196 0.308 0.169 0.267
720 0.186 0.278 0.191 0.286 0.210 0.303 0.194 0.287 0.209 0.297 0.197 0.290 0.280 0.363 0.196 0.294 0.220 0.320 0.203 0.312 0.233 0.344

Avg 0.156 0.249 0.156 0.253 0.167 0.261 0.156 0.246 0.169 0.261 0.159 0.253 0.244 0.334 0.159 0.257 0.192 0.295 0.182 0.292 0.177 0.274

W
ea

th
er 96 0.141 0.180 0.149 0.200 0.162 0.212 0.147 0.197 0.175 0.225 0.149 0.198 0.153 0.217 0.166 0.222 0.172 0.220 0.161 0.226 0.152 0.237

192 0.187 0.229 0.196 0.245 0.204 0.252 0.189 0.239 0.218 0.260 0.194 0.241 0.197 0.269 0.209 0.263 0.219 0.261 0.220 0.283 0.220 0.282
336 0.238 0.267 0.238 0.277 0.256 0.290 0.241 0.280 0.265 0.294 0.245 0.282 0.252 0.311 0.254 0.301 0.280 0.306 0.275 0.328 0.265 0.319
720 0.310 0.321 0.314 0.334 0.326 0.338 0.310 0.330 0.329 0.339 0.314 0.334 0.318 0.363 0.313 0.340 0.365 0.359 0.311 0.356 0.323 0.362

Avg 0.219 0.249 0.224 0.264 0.237 0.273 0.222 0.262 0.247 0.279 0.226 0.264 0.230 0.290 0.236 0.282 0.259 0.287 0.242 0.298 0.240 0.300

C.5 EFFECTIVENESS OF MAE LOSS

The choice of the loss function plays a pivotal role in both the optimization process and the conver-
gence behavior of time series forecasting models. While many prior models predominantly employ
L2 loss, also known as Mean Squared Error (MSE), our proposed model adopts L1 loss, also re-
ferred to as Mean Absolute Error (MAE). The rationale behind this choice stems from empirical
observations across various datasets, where the mean absolute error is typically small. In such cases,
the gradients produced by L2 loss tend to be small, which can impede the model’s ability to escape
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local minima during training, as depicted in Fig. 9. Moreover, time series data often exhibit outliers,
and L2 loss is known to be more sensitive to these outliers, which can lead to instability during
training. In contrast, L1 loss is more robust to outliers, promoting greater stability in model training
and convergence.
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w

1

1-1

dL1/dw

w

1

-1

L2

w

1

1-1

dL2 /dw

w

1

0.5-0.5

-1

(a) L1 Loss (b) L2 Loss

Figure 9: Visualization of L1 and L2 loss.

To substantiate this choice, we evaluate the performance of five state-of-the-art models from differ-
ent architectural families: CMamba (our proposed model, SSM-based), ModernTCN (Convolution-
based), iTransformer (Transformer-based), TimeMixer (Linear-based), and PatchTST (Transformer-
based). We assess the performance of these models using both MSE and MAE loss functions. The
results are exhibited in Table 11, where 37 out of 40 cases have improved performance after switch-
ing from MSE loss to MAE loss. Even when considering different loss functions, our model consis-
tently outperforms the alternatives, achieving the best average performance, which underscores the
effectiveness and robustness of CMamba under various training conditions.

Table 11: Performance promotion obtained by changing MSE loss to MAE loss. We fix the
look-back window L = 96 and report the average performance of four prediction lengths T ∈
{96, 192, 336, 720}. The best under each loss is highlighted in red. ↑ indicates improved perfor-
mance and ↓ denotes decreasing performance.

Method CMamba ModernTCN iTransformer TimeMixer PatchTST

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm2 MSE Loss 0.278 0.324 0.278 0.322 0.288 0.332 0.279 0.325 0.281 0.326
MAE Loss 0.273↑ 0.316↑ 0.276↑ 0.317↑ 0.283↑ 0.322↑ 0.274↑ 0.317↑ 0.279↑ 0.318↑

ETTh2 MSE Loss 0.380 0.403 0.381 0.404 0.383 0.407 0.389 0.409 0.387 0.407
MAE Loss 0.368↑ 0.391↑ 0.379↑ 0.398↑ 0.379↑ 0.400↑ 0.377↑ 0.396↑ 0.363↑ 0.391↑

Electricity MSE Loss 0.172 0.265 0.197 0.282 0.178 0.270 0.183 0.272 0.216 0.304
MAE Loss 0.169↑ 0.258↑ 0.211↓ 0.290↓ 0.175↑ 0.259↑ 0.185↓ 0.271↑ 0.206↑ 0.285↑

Weather MSE Loss 0.240 0.270 0.240 0.271 0.258 0.279 0.245 0.274 0.259 0.281
MAE Loss 0.237↑ 0.259↑ 0.236↑ 0.263↑ 0.255↑ 0.271↑ 0.245↑ 0.265↑ 0.255↑ 0.270↑

C.6 LIMITATIONS

In this work, we mainly focus on the multivariate time series forecasting task with endogenous vari-
ables, meaning that the values we aim to predict and the values treated as features only differ in
terms of time steps. However, real-world scenarios often involve the influence of exogenous vari-
ables on the variables we seek to predict, a topic extensively discussed in prior research (Wang
et al., 2024c). In addition, the experimental results show that our model exhibits significant im-
provements on some datasets with large-scale channels, such as Weather and Electricity. However,
the improvements in MAE are relatively limited on the Traffic dataset, which contains 862 channels.
This discrepancy could be attributed to the pronounced periodicity observed in traffic data compared
to other domains. These periodic patterns are highly time-dependent, causing different channels to
exhibit similar characteristics and obscuring their physical interconnections. Therefore, incorporat-
ing external variables and utilizing prior knowledge about the relationships between channels, such
as the connectivity of traffic roads, might further enhance the prediction accuracy.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 12: Full results of the long-term forecasting task. We fix the look-back window L = 96 and
make predictions for T = {96, 192, 336, 720}. Avg means the average metrics for four prediction
lengths. The best is highlighted in red and the runner-up in blue. We report the average results of
three random seeds.

Models CMamba
(Ours)

ModernTCN
(2024)

iTransformer
(2023a)

TimeMixer
(2023)

RLinear
(2023)

PatchTST
(2022)

Crossformer
(2022)

TiDE
(2023)

TimesNet
(2022)

MICN
(2022)

DLinear
(2023)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.308 0.338 0.317 0.362 0.334 0.368 0.320 0.355 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.317 0.367 0.345 0.372
192 0.359 0.364 0.363 0.389 0.377 0.391 0.362 0.382 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.382 0.413 0.380 0.389
336 0.390 0.389 0.403 0.412 0.426 0.420 0.396 0.406 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.417 0.443 0.413 0.413
720 0.447 0.425 0.461 0.443 0.491 0.459 0.458 0.445 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.511 0.505 0.474 0.453

Avg 0.376 0.379 0.386 0.401 0.407 0.410 0.384 0.397 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.407 0.432 0.403 0.407

E
T

T
m

2 96 0.171 0.248 0.173 0.255 0.180 0.264 0.176 0.259 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.182 0.278 0.193 0.292
192 0.235 0.292 0.235 0.296 0.250 0.309 0.242 0.303 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.288 0.357 0.284 0.362
336 0.296 0.334 0.308 0.344 0.311 0.348 0.303 0.339 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.370 0.413 0.369 0.427
720 0.392 0.391 0.398 0.394 0.412 0.407 0.396 0.399 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.519 0.495 0.554 0.522

Avg 0.273 0.316 0.278 0.322 0.288 0.332 0.279 0.325 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.339 0.386 0.350 0.401

E
T

T
h1

96 0.372 0.386 0.386 0.394 0.386 0.405 0.384 0.400 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.417 0.436 0.386 0.400
192 0.422 0.416 0.436 0.423 0.441 0.436 0.437 0.429 0.439 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.488 0.476 0.437 0.432
336 0.466 0.438 0.479 0.445 0.487 0.458 0.472 0.446 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.599 0.549 0.481 0.459
720 0.470 0.461 0.481 0.469 0.503 0.491 0.586 0.531 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.730 0.634 0.519 0.516

Avg 0.433 0.425 0.445 0.432 0.454 0.447 0.470 0.451 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.559 0.524 0.456 0.452

E
T

T
h2

96 0.281 0.329 0.292 0.340 0.297 0.349 0.297 0.348 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.355 0.402 0.333 0.387
192 0.361 0.381 0.377 0.395 0.380 0.400 0.369 0.392 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.511 0.491 0.477 0.476
336 0.413 0.419 0.424 0.434 0.428 0.432 0.427 0.435 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.618 0.551 0.594 0.541
720 0.419 0.435 0.433 0.448 0.427 0.445 0.462 0.463 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.835 0.660 0.831 0.657

Avg 0.368 0.391 0.381 0.404 0.383 0.407 0.389 0.409 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.580 0.526 0.559 0.515

E
le

ct
ri

ci
ty 96 0.141 0.231 0.173 0.260 0.148 0.240 0.153 0.244 0.201 0.281 0.195 0.285 0.219 0.314 0.237 0.329 0.168 0.272 0.172 0.285 0.197 0.282

192 0.157 0.245 0.181 0.267 0.162 0.253 0.168 0.259 0.201 0.283 0.199 0.289 0.231 0.322 0.236 0.330 0.184 0.289 0.177 0.287 0.196 0.285
336 0.175 0.265 0.196 0.283 0.178 0.269 0.185 0.275 0.215 0.298 0.215 0.305 0.246 0.337 0.249 0.344 0.198 0.300 0.186 0.297 0.209 0.301
720 0.203 0.289 0.238 0.316 0.225 0.319 0.227 0.312 0.257 0.331 0.256 0.337 0.280 0.363 0.284 0.373 0.220 0.320 0.204 0.314 0.245 0.333

Avg 0.169 0.258 0.197 0.282 0.178 0.270 0.183 0.272 0.219 0.298 0.216 0.304 0.244 0.334 0.251 0.344 0.192 0.295 0.185 0.296 0.212 0.300

W
ea

th
er 96 0.150 0.187 0.155 0.203 0.174 0.214 0.162 0.208 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.194 0.253 0.196 0.255

192 0.200 0.236 0.202 0.247 0.221 0.254 0.208 0.252 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.240 0.301 0.237 0.296
336 0.260 0.281 0.263 0.293 0.278 0.296 0.263 0.293 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.284 0.334 0.283 0.335
720 0.339 0.334 0.341 0.343 0.358 0.349 0.345 0.345 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.351 0.387 0.345 0.381

Avg 0.237 0.259 0.240 0.271 0.258 0.279 0.245 0.274 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.267 0.318 0.265 0.317

Tr
af

fic

96 0.414 0.251 0.550 0.355 0.395 0.268 0.473 0.287 0.649 0.389 0.544 0.359 0.522 0.290 0.805 0.493 0.593 0.321 0.521 0.310 0.650 0.396
192 0.432 0.257 0.527 0.337 0.417 0.276 0.486 0.294 0.601 0.366 0.540 0.354 0.530 0.293 0.756 0.474 0.617 0.336 0.536 0.314 0.598 0.370
336 0.446 0.265 0.537 0.342 0.433 0.283 0.488 0.298 0.609 0.369 0.551 0.358 0.558 0.305 0.762 0.477 0.629 0.336 0.550 0.321 0.605 0.373
720 0.485 0.286 0.570 0.359 0.467 0.302 0.536 0.314 0.647 0.387 0.586 0.375 0.589 0.328 0.719 0.449 0.640 0.350 0.571 0.329 0.645 0.394

Avg 0.444 0.265 0.546 0.348 0.428 0.282 0.496 0.298 0.626 0.378 0.555 0.362 0.550 0.304 0.760 0.473 0.620 0.336 0.544 0.319 0.625 0.383

1stCount 30 35 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 13: Full results of ablation studies for ETTm1, ETTm2, ETTh1, and ETTh2. We fix the look-
back window L = 96 and make predictions for T = {96, 192, 336, 720}. The best is highlighted in
red and the runner-up in blue.

GDD
MLP

Channel
Mixup Metric ETTm1 ETTm2 ETTh1 ETTh2

96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

- - MSE 0.320 0.373 0.401 0.455 0.175 0.244 0.304 0.404 0.374 0.422 0.458 0.471 0.284 0.361 0.410 0.415
MAE 0.345 0.373 0.398 0.434 0.254 0.300 0.339 0.397 0.390 0.418 0.439 0.463 0.331 0.380 0.419 0.435

- ✓ MSE 0.312 0.370 0.399 0.453 0.177 0.242 0.301 0.402 0.372 0.423 0.462 0.462 0.284 0.363 0.428 0.419
MAE 0.339 0.369 0.390 0.429 0.255 0.297 0.337 0.396 0.390 0.419 0.437 0.459 0.331 0.380 0.427 0.435

✓ - MSE 0.317 0.363 0.391 0.481 0.172 0.238 0.293 0.397 0.382 0.430 0.470 0.465 0.285 0.364 0.417 0.423
MAE 0.341 0.372 0.394 0.441 0.250 0.294 0.333 0.393 0.394 0.420 0.440 0.457 0.332 0.382 0.422 0.439

✓ ✓
MSE 0.308 0.359 0.390 0.447 0.171 0.235 0.296 0.392 0.372 0.422 0.466 0.470 0.281 0.361 0.413 0.419
MAE 0.338 0.364 0.389 0.425 0.248 0.292 0.334 0.391 0.386 0.416 0.438 0.461 0.329 0.381 0.419 0.435

Table 14: Full results of ablation studies for Electricity, Weather, and Traffic. We fix the look-back
window L = 96 and make predictions for T = {96, 192, 336, 720}. The best is highlighted in red
and the runner-up in blue.

GDD
MLP

Channel
Mixup Metric Electricity Weather Traffic

96 192 336 720 96 192 336 720 96 192 336 720

- - MSE 0.163 0.173 0.190 0.233 0.173 0.219 0.276 0.352 0.454 0.467 0.479 0.514
MAE 0.243 0.253 0.270 0.306 0.207 0.247 0.289 0.339 0.251 0.257 0.264 0.284

- ✓ MSE 0.164 0.173 0.190 0.229 0.173 0.218 0.273 0.352 0.467 0.463 0.483 0.518
MAE 0.243 0.252 0.270 0.302 0.206 0.246 0.287 0.339 0.257 0.259 0.268 0.285

✓ - MSE 0.147 0.166 0.174 0.212 0.150 0.199 0.269 0.345 0.471 0.499 0.546 0.585
MAE 0.240 0.258 0.265 0.299 0.186 0.236 0.287 0.337 0.272 0.281 0.289 0.300

✓ ✓ MSE 0.141 0.157 0.175 0.203 0.150 0.200 0.260 0.339 0.414 0.432 0.446 0.485
MAE 0.231 0.245 0.265 0.289 0.187 0.236 0.281 0.334 0.251 0.257 0.265 0.286
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Table 15: Full results of the long-term forecasting task with SSM variants. We fix the look-back
window L = 96 and make predictions for T = {96, 192, 336, 720}. Avg means the average metrics
for four prediction lengths. The best is highlighted in red and the runner-up in blue.

Models CMamba
(Ours)

Bi-Mamba+
(2024)

SiMBA
(2024)

Time-SSM
(2024)

SAMBA
(2024)

S-Mamba
(2024d)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.308 0.338 0.320 0.360 0.324 0.360 0.329 0.365 0.315 0.357 0.331 0.368
192 0.359 0.364 0.361 0.383 0.363 0.382 0.370 0.379 0.360 0.383 0.371 0.387
336 0.390 0.389 0.386 0.402 0.395 0.405 0.396 0.402 0.389 0.405 0.417 0.418
720 0.447 0.425 0.445 0.437 0.451 0.437 0.449 0.440 0.448 0.440 0.471 0.448

Avg 0.376 0.379 0.378 0.396 0.383 0.396 0.386 0.397 0.378 0.396 0.398 0.405

E
T

T
m

2 96 0.171 0.248 0.176 0.263 0.177 0.263 0.176 0.260 0.172 0.259 0.179 0.263
192 0.235 0.292 0.242 0.304 0.245 0.306 0.246 0.305 0.238 0.301 0.253 0.310
336 0.296 0.334 0.304 0.344 0.304 0.343 0.305 0.344 0.300 0.340 0.312 0.348
720 0.392 0.391 0.402 0.402 0.400 0.399 0.406 0.405 0.394 0.394 0.412 0.408

Avg 0.273 0.316 0.281 0.328 0.282 0.328 0.283 0.329 0.276 0.324 0.289 0.332

E
T

T
h1

96 0.372 0.386 0.378 0.395 0.379 0.395 0.377 0.394 0.376 0.400 0.386 0.406
192 0.422 0.416 0.427 0.428 0.432 0.424 0.423 0.424 0.432 0.429 0.448 0.444
336 0.466 0.438 0.471 0.445 0.473 0.443 0.466 0.437 0.477 0.437 0.494 0.468
720 0.470 0.461 0.470 0.457 0.483 0.469 0.452 0.448 0.488 0.471 0.493 0.488

Avg 0.433 0.425 0.437 0.431 0.442 0.433 0.430 0.426 0.443 0.434 0.455 0.452

E
T

T
h2

96 0.281 0.329 0.291 0.342 0.290 0.339 0.290 0.341 0.288 0.340 0.298 0.349
192 0.361 0.381 0.368 0.392 0.373 0.390 0.368 0.387 0.373 0.390 0.379 0.398
336 0.413 0.419 0.407 0.424 0.376 0.406 0.416 0.430 0.380 0.406 0.417 0.432
720 0.419 0.435 0.421 0.439 0.407 0.431 0.424 0.439 0.412 0.432 0.431 0.449

Avg 0.368 0.391 0.372 0.399 0.362 0.392 0.375 0.399 0.363 0.392 0.381 0.407

E
le

ct
ri

ci
ty 96 0.141 0.231 0.140 0.238 0.165 0.253 - - 0.146 0.244 0.142 0.238

192 0.157 0.245 0.155 0.253 0.173 0.262 - - 0.164 0.260 0.169 0.267
336 0.175 0.265 0.170 0.269 0.188 0.277 - - 0.179 0.274 0.178 0.275
720 0.203 0.289 0.197 0.293 0.214 0.305 - - 0.206 0.300 0.207 0.303

Avg 0.169 0.258 0.166 0.263 0.185 0.274 - - 0.174 0.270 0.174 0.271

W
ea

th
er 96 0.150 0.187 0.159 0.205 0.176 0.219 0.167 0.212 0.165 0.211 0.166 0.210

192 0.200 0.236 0.205 0.249 0.222 0.260 0.217 0.255 0.214 0.255 0.215 0.253
336 0.260 0.281 0.264 0.291 0.275 0.297 0.274 0.291 0.271 0.297 0.276 0.298
720 0.339 0.334 0.343 0.344 0.350 0.349 0.351 0.345 0.346 0.347 0.353 0.349

Avg 0.237 0.259 0.243 0.272 0.256 0.281 0.252 0.277 0.249 0.278 0.253 0.278

Tr
af

fic

96 0.414 0.251 0.375 0.258 0.468 0.268 - - 0.403 0.270 0.381 0.261
192 0.432 0.257 0.394 0.269 0.413 0.317 - - 0.427 0.278 0.397 0.267
336 0.446 0.265 0.406 0.274 0.529 0.284 - - 0.440 0.284 0.423 0.276
720 0.485 0.286 0.440 0.288 0.564 0.297 - - 0.470 0.302 0.458 0.300

Avg 0.444 0.265 0.404 0.272 0.494 0.292 - - 0.435 0.284 0.415 0.276

1stCount 18 31 12 0 3 2 3 2 0 2 0 0
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D FULL RESULTS

D.1 FULL MAIN RESULTS

Here, we present the complete results of all chosen models and our CMamba under four differ-
ent prediction lengths in Table 12. Generally, the proposed CMamba demonstrates stable perfor-
mance across various datasets and prediction lengths, consistently ranking among the top perform-
ers. Specifically, our model ranks top 1 in 65 out of 70 settings and ranks top 2 in all settings, while
the runner-up, iTransformer (Liu et al., 2023a) ranks top 1 in only 5 settings and top 2 in 18 settings.

D.2 FULL ABLATION RESULTS OF GDD-MLP AND CHANNEL MIXUP

In the main text, we only present the improvements brought by the proposed modules in the average
case. To validate the effectiveness of our design, we provide the complete results in Table 13 and
Table 14. Consistent with our claims, GDD-MLP alone can easily lead to oversmoothing. However,
when combined with the Channel Mixup, our model consistently achieves state-of-the-art perfor-
mance.

D.3 COMPARISON WITH OTHER SSMS

Since Mamba (Gu & Dao, 2023) was proposed, there have been many remarkable works trying to
apply it to multivariate time series prediction, e.g., Bi-Mamba+ (Liang et al., 2024), SiMBA (Pa-
tro & Agneeswaran, 2024), Time-SSM (Hu et al., 2024), SAMBA (Weng et al., 2024), and S-
Mamba (Wang et al., 2024d). In Table 15, we compare our CMamba with these methods on the
same 7 real-world datasets. It is worth noting that since some methods are tested on other datasets
in the original paper, there will be missing results on some of the datasets we use. Among all these
Mamba variants, our model achieves the best average performance. Specifically, our model ranks
top 1 in 49 out of 70 settings and ranks top 2 in 59 settings, while the runner-up, Bi-Mamba+ ranks
top 1 in only 12 settings and top 2 in 39 settings. The results demonstrate the superiority of our
model.

E SHOWCASES

E.1 COMPARISON WITH BASELINES

As depicted in Fig. 10, Fig. 11, Fig. 12, and Fig. 13, Fig. 14, Fig. 15, we visualize the forecasting
results on the Electricity and Traffic dataset of our model, ModernTCN (Luo & Wang, 2024), and
TimeMixer (Wang et al., 2023). Overall, our model fits the data better. Especially when dealing with
non-periodic changes. For instance, in Prediction-96 of the Electricity dataset, our model exhibits
significantly better performance compared to the others.

E.2 MORE SHOWCASES

As shown in Fig. 16, Fig. 17, Fig. 18, Fig. 19, and Fig. 20, we visualize the forecasting results of
other datasets under CMamba. The results demonstrate that CMamba achieves consistently stable
performance under various datasets.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 10: Prediction cases for Electricity under CMamba.
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Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 11: Prediction cases for Electricity under ModernTCN.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 12: Prediction cases for Electricity under TimeMixer.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 13: Prediction cases for Traffic under CMamba.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 14: Prediction cases for Traffic under ModernTCN.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 15: Prediction cases for Traffic under TimeMixer.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 16: Prediction cases for ETTm1 under CMamba.
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Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 17: Prediction cases for ETTm2 under CMamba.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 18: Prediction cases for ETTh1 under CMamba.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 19: Prediction cases for ETTh2 under CMamba.

Prediction-96 Prediction-192 Prediction-336 Prediction-720

Figure 20: Prediction cases for Weather under CMamba.
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