
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNDERSTANDING REASONING IN CHAIN-OF-
THOUGHT FROM THE HOPFIELDIAN VIEW

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models have demonstrated remarkable abilities across various
tasks, with Chain-of-Thought (CoT) prompting emerging as a key technique to
enhance reasoning capabilities. However, existing research primarily focuses on
improving performance, lacking a comprehensive framework to explain and un-
derstand the fundamental factors behind CoT’s success. To bridge this gap, we
introduce a novel perspective grounded in the Hopfieldian view of cognition in
cognitive neuroscience. We establish a connection between CoT reasoning and
key cognitive elements such as stimuli, actions, neural populations, and represen-
tation spaces. From our view, we can understand the reasoning process as the
movement between these representation spaces. Building on this insight, we de-
velop a method for localizing reasoning errors in the response of CoTs. Moreover,
we propose the Representation-of-Thought (RoT) framework, which leverages the
robustness of low-dimensional representation spaces to enhance the robustness of
the reasoning process in CoTs. Experimental results demonstrate that RoT im-
proves the robustness and interpretability of CoT reasoning while offering fine-
grained control over the reasoning process.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional capabilities in following the natural
language instructions (Ouyang et al., 2022; Jin et al., 2024) and excelling across a variety of down-
stream tasks (Hu et al., 2023a; Zhang et al., 2023). As reasoning skills are crucial for tasks such as
commonsense and mathematical reasoning (Rae et al., 2021), there is a growing focus on enhancing
these capabilities. One prominent approach is Chain-of-Thought (CoT) prompting (Wei et al., 2022;
Kojima et al., 2022), a simple yet highly effective technique to unleash the reasoning capability of
LLMs. However, despite its success, a natural and fundamental research question remains: How
does the reasoning capability emerge through CoT prompting?

Numerous studies have sought to identify the key factors or elements that enable CoT to enhance the
reasoning capabilities of LLMs (Kojima et al., 2022; Wang et al., 2023a; Tang et al., 2023; Merrill &
Sabharwal, 2023). Some works focus on improving CoT reasoning through query-based corrections
(Kim et al., 2023), knowledge-enhanced frameworks (Zhao et al., 2023), and symbolic reasoning
chains for faithful CoT (Lyu et al., 2023; Lanham et al., 2023). Other research has examined how
the sequence of demonstrations, random labels (Min et al., 2022), or even meaningless tokens (Pfau
et al., 2024) can positively influence reasoning performance. However, these works primarily fo-
cus on improving the model’s reasoning performance, and they do not provide a comprehensive
framework to explain the underlying factors driving CoT’s success.

To understand the reasoning process in CoTs more deeply, we draw inspiration from cognitive neuro-
science, specifically the relationship between cognition and brain function. In this field, the Hopfiel-
dian view (Hopfield, 1982) and the Sherringtonian view (Sherrington, 1906) represent two different
ways of understanding neural computational models and cognitive mechanisms. While the Sherring-
tonian view of cognitive explanation focuses on specific connections between neurons in the brain,
the Hopfieldian view emphasizes distributed computation across neural populations, where informa-
tion is not encoded by a single neuron but rather by the cooperative activity of many neurons. This
perspective is particularly suited to explaining complex cognitive functions like memory storage,
pattern recognition, and reasoning. Thus, the Hopfieldian view is generally considered more ad-
vanced than the Sherringtonian view, especially in the context of explaining distributed computation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Action axis

Motion Strength

Action + Action -

Action +

Action -

Stimuli +

Stimuli -

Action axis

Motion axis

Input
Neuron Activations

Output

Output +

Output -

Instruction +

No Instruction -

Representation
Space

Representation
Space

Activated
Neurons

Cognitive Brain Chain-of-Thought

Motion axis

Neural
Populations

Figure 1: Illustration of the emergence of cognition in the brain and CoT reasoning from the Hop-
fieldian view.

and the dynamics of neural networks (Barack & Krakauer, 2021). Based on these, a natural question
is: whether we can understand the reasoning in CoTs from the Hopfieldian view of cognition?

The Hopfieldian view explains the production of behavioral actions as emerging from transforma-
tions or movements within neural populations in response to stimuli in the brain (Barack & Krakauer,
2021) (cf. Figure 1). This perspective approaches cognition at the level of representations, disre-
garding the detailed roles of individual molecules, cells, and circuits, thus allowing the potential for
a more conceptual and semantic understanding of complex cognitive systems. Viewing the CoT-
triggered reasoning process in LLMs through this lens is intuitive: CoT prompting induces shifts in
the model’s trajectory in much the same way that external stimuli shape cognitive responses, driving
representation changes without altering the underlying system. Specifically, similar to the Hop-
fieldian mechanism, where the shift or movement in neural populations happens during cognition
itself, CoT influences reasoning during inference, controlling the logical steps without modifying
the model’s parameters.

Given the parallels between the CoT-triggered reasoning process and the Hopfieldian view of cogni-
tion in the brain, we first establish a connection between these two by aligning key elements: stim-
uli and actions, neural populations, and representation spaces. Particularly, we provide a general
framework for identifying the “representation spaces” of the “stimuli” given by CoTs. We conceptu-
alize the reasoning process elicited by CoT prompting as movement between representation spaces,
enabling us to improve and deepen our understanding of CoTs. Based on these connections, we then
leverage the strength of the Hopfieldian view to improve or further understand CoTs. Specifically,
by leveraging the “representation spaces” in CoTs, we develop a method for localizing the reasoning
error in the responses. Moreover, by leveraging the robustness of low-dimensional representation
spaces, we propose a new framework, namely Representation-of-Thought (RoT), which enhances
the robustness of CoTs. We summarize the key contributions of our work as follows:

1. We establish a connection between the reasoning process in CoTs and the Hopfieldian view
of cognition, grounded in cognitive neuroscience, to identify the key factors driving CoT’s
success in zero-shot and few-shot settings. To the best of our knowledge, this is the first
known attempt to leverage cognitive science for CoT interpretability by associating its core
elements with the Hopfieldian framework.

2. Based on these connections, we leverage the strength of the Hopfieldian view to understand
and further improve CoTs. We first consider how to localize the reasoning error based
on the low-dimensional representation spaces. Then, by leveraging the robustness of the
Hopfieldian view, we propose a new framework, RoT, to enhance the robustness of CoTs’
performance.

3. Comprehensive experiments on three tasks, including arithmetic reasoning, commonsense
reasoning, and symbolic reasoning, reveal that our framework can provide intuitive and
interpretable analysis, allowing error tracing and control for CoT reasoning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Chain-of-Thought (CoT). The CoT is a prompting technique that engages LLMs in step-by-step
reasoning rather than directly providing the answers (Nye et al., 2021). Studies have shown that
introducing intermediate steps or learning from demonstrations can significantly improve the rea-
soning performance of LLMs (Wei et al., 2022; Kojima et al., 2022). Given the success of CoT,
numerous studies have explored its application to a variety of complex problems, including arith-
metic, commonsense, symbolic reasoning (Wang et al., 2023c; Zhou et al., 2023; Wang & Zhou,
2024), and logic tasks (Creswell & Shanahan, 2022; Pan et al., 2023; Weng et al., 2023). Recently,
numerous endeavors have been made to enhance the reasoning capabilities in LLMs (Wang et al.,
2023a; Dutta et al., 2024). For example, Kim et al. (2023) proposed a query-based approach to cor-
rect erroneous reasoning steps within a CoT. Zhao et al. (2023) introduced a knowledge-enhanced
method to improve the factual correctness for multi-pole open-domain QA tasks. Lyu et al. (2023)
developed “faithful CoT”, i.e., a framework that first translates natural language queries into sym-
bolic reasoning chains and then solves the problem using CoT. Additionally, several studies have
also focused on the sequence and quantity of demonstrations within the context, investigating their
contributions to the final reasoning performance. For this, Min et al. (2022) discovered that even
random labels or ineffective reasoning steps can still improve the model’s reasoning performance.
Lanham et al. (2023) demonstrated the impact of intervening in the CoT process by adding mistakes
or paraphrases. Pfau et al. (2024) showed that using meaningless filler tokens in place of a chain-of-
thought can surprisingly boost reasoning performance. However, these studies primarily focused on
how to improve the CoT’s reasoning performance and do not provide a framework to analyze the fun-
damental reasons, i.e., how does the reasoning capability emerge through CoT? Dutta et al. (2024)
investigates the neural sub-structures within LLMs that manifest Chain-of-Thought (CoT) reasoning
on the Llama-2-7B model. Similarly, Rai & Yao (2024) explores neurons in the feed-forward layers
of LLMs to analyze their arithmetic reasoning capabilities on the Llama-2-7B model. Both studies
are grounded in the Sherringtonian view of neural activity. In contrast, we adopt the Hopfieldian
perspective to bridge this gap, focusing on representations rather than individual neurons. We apply
our approach across three different downstream tasks and can further extend our analysis to larger
models like Llama-2-70B.

Interpretability of LLMs. Interpretability plays a key role in a deeper understanding of LLMs
to identify potential risks and better meet human requirements (Zou et al., 2023). Common inter-
pretability strategies include (i) Salience maps, which rely on highlighting the regions in the input
that are attended by the model (Simonyan et al., 2014; Smilkov et al., 2017; Clark et al., 2019;
Hu et al., 2023c;b; Lai et al., 2024); (ii) Feature visualization, which creates representative inputs
indicative of particular neurons’ activations (Szegedy et al., 2014; Nguyen et al., 2016; Fong &
Vedaldi, 2018; Nguyen et al., 2019); and (iii) Mechanistic interpretability, which employs reverse-
engineering tools to explain networks based on circuits and node-to-node connections (Olah et al.,
2020; Olsson et al., 2022; Wang et al., 2023b). However, these methods often require substantial
human intervention and are limited in terms of scalability or interpretability, especially for the large
language models (Fong & Vedaldi, 2018; Jain & Wallace, 2019; Hu et al., 2024). Thus, these meth-
ods cannot be directly used to interpret CoT reasoning. Additionally, most current approaches focus
on representation-level analysis without considering how these representations connect to concepts
learned during pre-training (Bricken et al., 2023; Templeton et al., 2024). Other works investigate
the localization and representation of concepts in the network (Kim et al., 2018; Li et al., 2024),
linear classifier probing to uncover input properties (Belinkov, 2022), fact localization and edit-
ing (Meng et al., 2022; Zhong et al., 2023; Cheng et al., 2024a;b), concept erasure (Shao et al.,
2023; Gandikota et al., 2023), and corrective analysis (Burns et al., 2023), etc. These observations
are aligned with RepE (Zou et al., 2023), which emphasized the nearly linear nature of LLM repre-
sentations (Park et al., 2024). However, none of these approaches directly address the inner workings
of CoT reasoning. While recent work has begun exploring connections between LLM interpretabil-
ity and cognitive neuroscience (Vilas et al., 2024). However, it does not discuss the Hopfieldian view
and also does not discuss how to explain the reasoning process in CoTs via cognitive neuroscience.
Our work provides the first attempt to interpret CoT reasoning from the Hopfieldian perspective.

3 PRELIMINARIES

Large Language Models and Prompting. Prompts can take various forms, such as a single sen-
tence or longer paragraphs, and may include additional information or constraints to guide the
model’s behavior. Let M : X 7→ Y be an LLM that takes an input sequence x = (x1, x2, . . . , xq) ∈

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

X and produces an output sequence y = (y1, y2, . . . , ym) ∈ Y . The model is typically trained to op-
timize the conditional probability distribution pr(y|x), which assigns a probability to each possible
output sequence y given x. To incorporate a prompt w with the input sequence x, we can concate-
nate them into a new sequence x̂ = (w, x1, x2, . . . , xq). The conditional probability distribution
pr(ŷ|x̂) is then computed using x̂. Formally, the probability of the output sequence ŷ given x̂ is:

pr(ŷ|x̂) =
m∏
i=1

pr(yi|y<i, x̂),

where y<i represents the prefix of the sequence y up to position i− 1, and pr(yi|y<i, x̂) denotes the
probability of generating yi given y<i and x̂.

The Hopfieldian View. In cognitive neuroscience, two prominent perspectives aim to explain cog-
nition: the Sherringtonian view and the Hopfieldian view.1 The Hopfieldian view focuses on un-
derstanding behavior through computation and representation within neural spaces, rather than the
specific biological details of neurons, ion flows, or molecular interactions (Hopfield, 1982; 1984;
Hopfield & Tank, 1986). It operates at a higher level of abstraction, emphasizing the role of repre-
sentations and the computations performed on them.

This approach conceptualizes cognition as transformations between representation spaces. At the
implementation level, the collective activity of neurons is mapped onto a representation space, which
contains a low-dimensional representational manifold. Algorithmically, Hopfieldian computation
views these representation spaces as fundamental entities, with movements within or transformations
between them as the central operations. The representations themselves are structured as basins
of attraction within a state space, and while they are implemented by neural structures (whether
individual neurons, neural populations, or other components), the focus is on the dynamics of the
system rather than its specific biological mechanisms. Most Hopfieldian models, in practice, center
on the activity of neural populations.

A parameter space defines the dimensions of variation within these representational spaces, aligning
with quality-space approaches from philosophy, where content is similarly structured. Computa-
tions over these representations are understood as dynamic transformations between spaces or shifts
within them, characterized by features like attractors, bifurcations, limit cycles, and trajectories.
Ultimately, cognitive functions are realized through these dynamic movements within or between
representational spaces.

Linear Representations in Language Models. Recent investigations into the internal mechanics
of LLMs have revealed intriguing properties of their learned representations. Park et al. (2024)
posited that high-level semantic features such as gender or honesty could be linearly represented
as directions within the model’s representation space. This can be illustrated by the well-known
word analogy task using a word embedding model (Mikolov et al., 2013). By defining M(·) as a
function of extracting the representations of a given word by a word embedding model, the oper-
ation M(Spain) −M(Madrid) +M(Paris) often results in an output close to M(France), where
M(Spain)−M(Madrid) can be considered as the representation vector of the abstract “capital of”
feature in the embedding space. Concurrently, research on interpretable neurons (Dale et al., 2023;
Ortiz-Jiménez et al., 2023; Voita et al., 2024) has identified neurons that consistently activate for
specific input features or tasks, suggesting that these features may also be represented as directions
in the LLMs’ neuron space. For instance, Tigges et al. (2023) use the PCA vector between LLMs’
hidden states on instructions “positive” and “negative” to find the sentiment direction in LLMs. Ad-
ditionally, recent works (Zou et al., 2023; Arditi et al., 2024) show the effectiveness of engineering
on language models using these directions. For example, adding multiples of the “honesty” direction
to some hidden states has been sufficient to make the model more honest and reduce hallucinations.

4 BRIDGING REASONING IN COTS AND THE HOPFIELDIAN VIEW

In this section, we aim to build a bridge between the reasoning process in CoTs and the cogni-
tive brain from the Hopfieldian view. We will particularly associate the main elements (stimuli,
neural populations, and representation spaces) in the Hopfieldian view. After understanding these
elements, we can leverage the strength of the Hopfieldian view to deepen our understanding of the

1See Appendix A for an introduction to the Sherringtonian view. For a detailed comparison between these
two views, refer to (Barack & Krakauer, 2021) and (Bechtel, 2007).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

reasoning process in current CoTs and further improve it. Note that we will leave other elements in
the Hopfieldian view, such as attractors and state space, as future work.

Stimuli and Actions. Stimuli and actions are key components of how the brain processes informa-
tion and interacts with the environment. Actions refer to the motor responses or behaviors that result
from cognitive processing, which are responses given by LLMs through CoTs.

Stimuli refer to external or internal events, objects, or changes in the environment that are detected
by the sensory systems and can influence cognitive processes and behavior. Based on this, we can
adopt the term “stimuli” from cognitive science in the context of CoTs to refer to specific prompt
text or instructions that trigger CoT reasoning. Specifically, in the zero-shot setting, we define the
stimulus as szero to represent a set of supplementary instructions in the prompt that encourage the
model to provide more intermediate reasoning steps before arriving at a final answer. For example,
it can be “let’s think step by step” or “make sure to give steps before your answer”. In the few-shot
setting, the stimulus sfew is defined as the sequence of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . }
in the prompt, where q̃i represents the query and ãi is the corresponding response. In the following
discussion, we use s+ to indicate that stimuli are included in the model’s input and s− to indicate
that no stimuli are added. Note that we avoid using explicitly negative stimuli, such as “please be
careless and answer the following question”, because a well-aligned model would likely refuse to
behave in such a manner (Ouyang et al., 2022).

Neural Populations. As we mentioned, in the Hopfieldian view, representations are realized by
various forms of neural organization, especially populations. Identifying these “neural populations”
in CoTs is especially important. In our framework, there are two steps for finding them.

(i) Stimulus Set Designing. Here our goal is to elucidate the sensitivity of LLMs to different CoT
prompts with stimuli. Understanding such sensitivity could help us know the neural populations
raised from the stimuli. In detail, we construct a prompt set. For each query q, we consider
two forms of prompts: positive one (with stimuli) as p+ = T (s+, q) and negative one (with-
out stimuli) as p− = T (s−, q), where T is the prompt template. Specifically, for each query qi,
we construct M number of prompts for both of them with different stimuli, which is denoted as
Pi = {pi,−1 , pi,+1 , pi,−2 , pi,+2 , . . . , pi,−M , pi,+M }. Such construction is to make our following neural
populations less dependent on the specific template form. Thus, in total, we have a stimulus set
P ∗ = {P1, P2, · · · , PN}, where N is the number of queries. These contrastive pairs of prompts
will be used to identify neural populations given by these stimuli.

(ii) Identifying Neural Populations. Intuitively, the neural populations should be the most influ-
ential activation vectors of these prompts or stimuli. In detail, for each prompt in P ∗, the next
step is capturing the network architecture’s corresponding neural populations. Since LLMs rely on
transformer-based architecture to store distinct representations intended for different purposes, it
is crucial to design the extraction process to capture task-specific representations carefully. For a
given prompt p+ or p−, we will find the “most representative token”, which encapsulates rich and
highly generalizable representations of the stimuli. Here we select the last token after tokenizing the
prompt, which is based on the observation in Zou et al. (2023) that it is the most informative token
for decoder-only or auto-regressive architecture models.

Once the last token position is identified, we can naturally select some of its activations (hidden
state) in hidden layers. Previous studies (Fan et al., 2024; Cosentino & Shekkizhar, 2024) have
shown that not all layers store important information about reasoning; thus we focus on a subset of
them to reduce the computation cost, whose indices are denoted as a set K (in practice, K is always
the last several layers). Thus, we have a collection of activation vectors. However, since we are
focusing on the reasoning of CoT, studying the neural populations raised from the stimuli rather
than the whole prompt is more important. Thus, we consider the difference in the activations of
pairs of prompts. Specifically, for a pair (p+, p−), we can get their activations for all selected layers
K: {hk(p

+)}k∈K and {hk(p
−)}k∈K, where hk(p) refers to the activation vector of the k-th layer for

a given input prompt p. Then the differences of activations {h̃k(p)}k∈K are the neural populations
for such stimuli, where h̃k(p) = hk(p

+) − hk(p
−) represents the most influential information we

get from the stimuli for the query. Based on this, for each hidden layer in K, we have the neural
population for all queries, which is denoted as

h∗
k = {h̃k(P1), h̃k(P2), . . . , h̃k(PN)}. (1)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Representation Spaces. After we have the neural populations for each selected hidden layers,
our final goal is to find the representation space. In the Hopfieldian view, the representation of
information is thought to occur within low-dimensional space embedded within higher-dimensional
neural spaces. Thus, these representation spaces will be the most informative subspaces of the neural
populations. Here we adopt the s-PCA to find such an s dimensional subspace. Specifically, for the
k-th layer where k ∈ K, we perform PCA analysis on h∗

k:

Rk = PCA(h∗
k). (2)

Then, the space spanned by this eigenvector will be the representation space for this layer. Motivated
by the previous linear representation introduced in Section 3, here we set s = 1, i.e., we only
consider the principal component. Intuitively, this means each representation space will focus on
one “concept”.

5 APPLICATIONS OF HOPFIELDIAN VIEW TO COTS

In the previous section, we mainly discussed how each element in the Hopfieldian view corresponds
to the reasoning in CoTs. From our previous view, we can understand the reasoning process as the
movement between these representation spaces. Based on these connections, we can leverage the
strength of the Hopfieldian view to improve or further understand CoTs. In this section, we first
consider how to localize the reasoning error based on the low dimensional representation spaces.
Then, by leveraging the robustness of the Hopfieldian view, we propose a new framework, namely
Representation of Thought, that enhances the performance robustness of CoTs.

5.1 REASONING ERROR LOCALIZATION

In this task, for a given query, we want to check if there are some reasoning errors in the response
by CoTs. If so, we aim to localize these errors. As in the Hopfieldian view, cognition occurs
within low-dimensional representation spaces. Reasoning errors can be identified by analyzing the
structure of these spaces, such as when certain directions Rk (representing specific cognitive factors)
are disproportionately activated or suppressed. This can help localize the source of the error within
the cognitive process. Motivated by this, we can leverage the internal structure of spaces we have
learned via PCA to locate the reasoning error for a given query in CoTs.

Intuitively, since the reasoning occurs within these representation spaces, if there is a reasoning error
in the response, then during the reasoning process, some tokens make the activations (hidden states)
of the response far from the corresponding representation spaces. This is because if these activations
are far from the spaces, CoTs do not reason the corresponding “concepts” in the response. Motivated
by this, our idea is to iteratively check the tokens in the response to see whether they are far from
the representation spaces.

Mathematically, for a given prompt T via CoT of query x with its response y = (y1, y2, · · · , ym),
we will iteratively feed the prompt with a part of the response, i.e., Ti = T ⊕ y≤i, where ⊕ is the
string concatenation. If the activations of Ti−1 are close to while those of Ti are very far from the
representation spaces {Rk}k∈K in (2), then we can think the i-th token yi makes an reasoning error.
We use the following criterion to access and/or evaluate the quality of the rationale for Ti:

scores(Ti) = Mean({scoresk(Ti)}k∈K),where scoresk(Ti) = hk(Ti)
⊤Rk − δ. (3)

Here δ is the threshold, scoresk(Ti) is the rationale for the k-th representation space, and scores(Ti)
is the average score across all layers in K. When the score is less than 0, it indicates that the
activations of prompt Ti are far from the representation spaces. See Algorithm 1 for details.

5.2 REPRESENTATION OF THOUGHT

The Hopfieldian view of cognition offers a framework that can potentially be used to control or
influence cognitive processes. Specifically, influencing neural populations directly offers a more
robust way to control cognition compared to simply providing different stimuli. Firstly, influenc-
ing neural populations directly allows the manipulation of the core dynamics of neural state spaces,
including attractor states, bifurcations, and transitions between cognitive states. This direct inter-
vention bypasses the variability and unpredictability associated with external stimuli, which depend
on the individual’s perception, attention, and prior experiences. Moreover, external stimuli are sub-
ject to various forms of noise and variability, including sensory processing errors, environmental
distractions, and individual differences in interpretation. Direct manipulation of neural populations

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Reasoning Error Localization

Require: Prompt T for query x; response y = (y1, · · · , ym) of the prompt T via a CoT; threshold
δ > 0; representation vectors {Rk}k∈K in (2) with layer set K.

1: for i = 1, · · · ,m do
2: Denote a new prompt Ti = T ⊕ y≤i. Using the same process as in Section 4 to get the

activations of Ti in layers in the set K, which are denoted as hk(Ti), k ∈ K.
3: Calculate scores(Ti) = Mean({scoresk(Ti)}k∈K) in (3).
4: if scores(Ti) < 0 and scores(qT−1) ≥ 0 then
5: Mark token yi as a “reasoning error”.
6: end if
7: end for

can reduce these sources of noise, providing a cleaner and more consistent pathway to controlling
cognitive states.

Our RoT leverages representation spaces’ structure to enhance the robustness of reasoning in CoTs.
Intuitively, we can manipulate a given query’s activations to be closer to the representation spaces
to enhance robustness since these spaces are the inherent entities in the reasoning process. After the
manipulation, the hidden states will be less dependent on the specific form of the prompt, query, and
stimuli but will be more dependent on the intrinsic entities of the reasoning task.

Mathematically, for a given prompt T via CoTs of query x. By using a similar procedure as in the
Neural Populations section, we can get its neural populations {hk(T)}k∈K. In RoT, motivated by
(Zou et al., 2023; Arditi et al., 2024), we can manipulate them by injecting the directions of their
corresponding representation spaces to make them closer to these spaces:

h′
k(T) =

{
hk(T) + αRk if k ∈ K
hk(p) otherwise ,

(4)

where h′
k(T) denotes the manipulated hidden state, α is a scaling factor controlling the manipulation

strength. Its sign should follow the sign of hk(T)
⊤Rk.

By directly manipulating neural populations, RoT offers a more precise and interpretable method
for influencing the model’s output compared to traditional prompt engineering techniques. This
approach not only enhances control over the model’s behavior but also improves the transparency
and predictability of the generation process.

6 EXPERIMENTS

In this section, we will perform experimental studies on the above two applications to verify the
correctness of our understanding from the Hopfieldian view.

6.1 EXPERIMENTAL SETUP

Datasets. Our experiments are performed on benchmark datasets for diverse reasoning problems.
We consider 6 datasets for 3 different tasks: Arithmetic Reasoning, Commonsense Reasoning, and
Symbolic Reasoning. Specifically, for Arithmetic Reasoning, we select GSM8K (Cobbe et al., 2021)
and SVAMP (Patel et al., 2021); we study StrategyQA (Geva et al., 2021) and CommonsenseQA
(CSQA) (Talmor et al., 2019) for Commonsense Reasoning; lastly, for Symbolic Reasoning, we
choose the Coin Flip (Wei et al., 2022) and Random Letter datasets, where the latter one is con-
structed from the Last Letter dataset (Wei et al., 2022). More details and statistics of the datasets are
provided in Appendix B.1.

LLMs. We employ Llama-2-7B-Chat (Touvron et al., 2023) and Llama-3-8B-Instruct (Meta, 2024)
to evaluate their precision performance (accuracy) both before and after applying RoT to differ-
ent datasets. Furthermore, we use Llama-2-13B-Chat (Touvron et al., 2023) and Llama-2-70B-
Chat (Touvron et al., 2023) to show that our method performs effectively in larger-scale models.

Baselines. Since our goal is to analyze the performance and robustness before and after control
model reasoning in both zero-shot and few-shot settings, we focus on three baselines in our study:
1) Base: as the simplest approach with LLMs for reasoning, feed the model with only one question
query. 2) CoTZ (Kojima et al., 2022): the most common zero-shot CoT is employed to provide

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results of RoT and CoT based on different LLMs on a variety of reasoning tasks. Green
indicates an equal or improved accuracy compared to the Base method, while red indicates an accu-
racy decrease. It can be observed that, compared to CoT prompting, RoT achieves more consistent
accuracy improvements across a variety of tasks.

Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

Base 26.00 54.00 47.75 63.62 44.80 20.33
+ CoTZ 26.31 46.00 43.41 62.05 52.75 24.33
+ RoTZ 26.23 54.33 48.24 63.54 45.45 20.67

Base 26.00 54.00 47.75 63.62 44.80 20.33
+ CoTF 4.62 38.67 53.07 59.26 47.60 31.00
+ RoTF 25.55 56.00 48.16 63.80 45.50 20.33

Llama-3-8B-Instruct
Base 73.31 80.67 72.65 65.07 68.90 44.00

+ CoTZ 74.45 82.33 72.24 66.07 90.45 43.00
+ RoTZ 74.83 83.33 72.89 65.24 76.35 47.67

Base 73.31 80.67 72.65 65.07 68.90 44.00
+ CoTF 72.02 81.00 73.63 62.75 96.50 50.67
+ RoTF 74.37 83.67 73.30 65.94 70.30 43.66

Table 2: The robust results of our approach and different general baselines with CoT on each task.
Bold text indicates optimal results in a single dataset.

Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

CoTZ 5.46 11.34 6.54 6.04 8.80 14.00
RoTZ 3.02 1.32 1.64 0.70 0.30 0.68
CoTF 1.44 0.00 2.78 0.48 2.70 2.00
RoTF 0.08 0.67 0.00 1.88 0.00 0.00

Llama-3-8B-Instruct
CoTZ 33.36 85.32 2.94 5.94 13.80 18.66
RoTZ 2.58 2.66 0.82 1.14 16.40 11.34
CoTF 0.23 0.33 0.74 0.26 0.45 1.00
RoTF 0.37 0.34 0.33 0.26 0.45 1.00

a thought path. 3) CoTF (Wei et al., 2022): directly using some demonstrations before asking a
question to LLMs.

Evaluation Metrics. We consider the performance of RoT zero-shot (RoTZ) and few-shot (RoTF)
settings. Besides the utility of performance, which is evaluated by accuracy, we also conducted
results on the robustness against forms of prompts. For zero-shot settings, we selected three different
specific instructions: (1) Let’s think step by step. (2) Let’s think about this logically. (3) Let’s solve
this problem by splitting it into steps. For few-shot settings, we conducted two studies: 1) Using
the original order of the given demonstrations, shown in Appendix C.3. 2) Based on experiment
1, we randomly shuffled the order of the demonstrations. Then we use the accuracy difference to
consider the robust performance of our approach. Specifically, given a list of accuracy results from
A = {Ã1, Ã2, · · · , Ãn} given by different prompts mentioned above, the robust score is calculated
by their pairwise difference:

∑n
i=1

∑n
j=i+1 |Ãi − Ãj |. The answer extraction process is based on

the methodology outlined by Kojima et al. (2022). Detailed procedures and results are provided in
the Appendix C.2.

Experimental Settings. If not explicitly stated, in all experiments, we set the number of stimuli
prompts M = 1, the sample number N = 128, and select the samples by high perplexity. At the
same time, we set the max new tokens to 512 in the generation stage and pick the last 5 layers to
control. We choose α based on the accuracy performance on each dataset. In the reasoning error
localization experiment, we set δ = 10. We use float16 to load large language models and employ
greedy search as our decoding strategy. All experiments are conducted using one NVIDIA L20 GPU
(except Llama-2-70B-Chat which uses three NVIDIA A100 GPUs).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

7B 13B 70B
Model Size

20

25

30

35

40

45

50

55

60

Ac
cu

ra
cy

 (%
)

26.00

35.63

52.08

25.55

36.47

52.39
Base
RoT

(a) Larger scale

32 64 128 256 512
Layer

0

10

20

30

40

50

60

M
ea

n
Va

lu
es

 (%
)

54.33 54.33 54.33 53.78 53.67

CoT accuracy = 46

(b) Numbers of samples.

1 3 5 10 15
Layer

0

10

20

30

40

50

60

M
ea

n
Va

lu
es

 (%
)

53.67 53.67 54.33 53.67

45.0

CoT accuracy = 46

(c) Last layer

Figure 2: Ablation study of our approch. (a) Results on a larger scale on the GSM8K dataset. (b)
Results on the number of samples on the SVAMP dataset. (c) Results on the number of selected
layers on the SVAMP dataset.

6.2 EXPERIMENTAL RESULTS

Utility Performance. We first consider the utility performance of RoT. As shown in Table 1, we
can see that: 1) The original CoT performs unstable on different tasks. Generally speaking, CoTZ

and CoTF appear better, but they are lower than Base in some datasets, such as the CSQA dataset
in the zero-shot scenario, which is consistent with the observation in (Kojima et al., 2022). At the
same time, for few-shot, CoTF performs extremely poorly in the GSM8k dataset because Llama-
2-7B-Chat repeats the given demonstrations, resulting in a reduction in the number of valid tokens.
Compared to CoTs, our RoT performs strongly in generalization on these datasets but may have
lower accuracy in some cases. This is because, in RoT, we add additional directions to the hidden
states of the prompt. These manipulations will cause a loss of information regarding the original
query, making the accuracy lower. 2) In terms of different models, the Llama-3-8B-Instruct model
has been improved more significantly. For example, with Llama-2-7B-Chat as the backbone, RoTZ

is improved by only 0.23 and 0.33 compared with Base on the GSM8K and SVAMP datasets, re-
spectively; with Llama-3-8B-Instruct, the improvements are 1.52 and 2.66, respectively. This is
primarily because the model is trained on a larger corpus and has learned more knowledge, so the
activations contain richer information and can better capture related representations.

Robustness Analysis. We also conducted experiments on robustness, and the results are shown in
Table 2 (more results are included in Appendix B.2). From this table, we can observe that RoT
demonstrates a remarkable advancement over CoT in terms of robustness. We found that CoT
methods are very sensitive to prompt design and sometimes fail to output the corresponding response
based on the given instruction. However, our RoT extracts more essential information from the
representation engineering level, making it more adaptable to various prompts. Note that for Llama-
3-8B-Instruct, there are two datasets (SVAMP and Coin Flip) that do not provide robust performance
gains. This is because Llama-3-8B-Instruct is a very strong model, while Coin Flip and SVAMP are
two relatively easy tasks (as can be seen from the Table 1, the accuracy of CoTs in the SVAMP
dataset is greater than 81%, and in the Coin Flip dataset is greater than 90%). These two factors may
cause it to over-capture too many irrelevant concepts from the stimuli, thus pointing to the wrong
reasoning direction.

Results on Larger Models. To further demonstrate the effectiveness of our approach, we conduct
research on a larger scale. Specifically, we follow the few-shot settings, and evaluate two larger
models (Llama-2-13B-Chat and Llama-2-70B-Chat) on the GSM8K dataset. From Figure 2a, we
can see that our approach has improved performance on both 13B and 70B, but the improvement on
70B is smaller. We speculate that this is because the 70B model contains very rich knowledge, and
the knowledge contained in a few demonstrations has limited improvement on the model.

Case Study of Reasoning Error Localization. We conducted a reasoning error localization ex-
periment. We can calculate the token-level score with Algorithm 1 through our approach. Figure 3
shows that our approach can localize those errors in the response through CoT. In this case, Llama-
2-7B-Chat did not really understand the known information in the given question and calculated
different units (hour and minute). Specifically, before calculating the hour and minute tokens, the
scores of the tokens are all greater than zero, indicating no potential errors, while when calculating
the hour and minute tokens, our method detects potential conflicts with previous knowledge and
thus obtains a score less than zero. We also show our additional case study in Appendix D.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

John collects peaches for 3 hours. He can collect 2 peaches a minute. How many peaches does
he collect?

To find out how many peaches John collects, we need to multiply the time he spends collecting

peaches (3 hours) by the number of peaches he can collect per minute (2 peaches/minute). So

-0.090.62

John collects: 3 hours x 2 peaches/minute = 6 peaches. Therefore, John collects 6 peaches.
-0.15 0.62 -0.32 0.62 0.62 -0.06

Figure 3: A real case of reasoning error localization by using Llama-2-7B-Chat in a zero-shot sce-
nario on GSM8K using Algorithm 1. The green bar indicates that the reasoning snippet is correct,
and the red bar means that the reasoning snippet may be wrong. The numbers in the bar are the
scores calculated by Algorithm 1.

Table 3: Results for different sample selection strategies.

Model Perlexity Random
Low High Seed1 Seed2 Seed3 Seed Avg.

Llama-2-7B-Chat 23.43 25.55 25.32 25.24 25.32 25.30
Llama-3-8B-Instruct 74.22 74.37 74.52 74.37 73.92 74.27

6.3 ABLATION STUDY

Number of Samples. We conducted an ablation study on how to select samples and how many
samples N in the stimulus set for constructing neural populations are sufficient. For the sample
selection strategy, we focus on two different strategies and evaluate these on the GSM8K dataset:
1) Random strategy. We randomly select samples in the training dataset using three random seeds.
2) Low Perplexity strategy. We select samples based on low perplexity. 3) High Perplexity strategy.
Similar to the low perplexity strategy, we select samples based on high perplexity. As shown in Ta-
ble 3, we can observe that the high perplexity strategy has better and more generalized performance.
This is because high perplexity usually means low confidence in LLMs. Therefore, if a question has
a higher perplexity, the question has more latent knowledge information.

For the number of samples N , we consider the set N = {32, 64, 128, 256, 512} and calculate their
average accuracy scores on the SVAMP dataset using three different seeds. From Figure 2b, we can
see that the performance is quite stable for different numbers of samples. However, there is still a
little decrease when N is large enough. This is because when N is large enough, the representation
spaces contain richer information. Thus, adding the directions in (4) will make the query lose more
of its query information, causing a lower accuracy.

Number of Selected Layers. Here we study the effect of different numbers of selected layers |K|
for neural populations. While LLMs have many layers, such as Llama-2-7B, which contains 32
layers, recent studies have shown that not all layers store important information about reasoning and
that this information is usually found in the last layers of the model (Fan et al., 2024; Cosentino &
Shekkizhar, 2024). Therefore, we consider the last L layers, where L = {1, 3, 5, 10, 15}.

In this experiment, we evaluate it with three different seeds. Figure 2c displays the result of average
accuracy scores on the SVAMP dataset. From this figure, we can see that the accuracy first increases
and then shows a decreasing trend as the number of control layers increases. This is because when
the number of layers is very small, each manipulation will correct some of the reasoning errors.
However, in RoT we have to manipulate each activation in the layer of the set K, and each manip-
ulation will lose some information about the query. Thus, the accuracy decreases when the number
of layers is larger.

7 CONCLUSION

In this paper, we proposed a novel framework to explain and understand the fundamental factors
behind CoT’s success. Specifically, we first connected CoT reasoning and the Hopfieldian view
of cognition in cognitive neuroscience. Then, we developed a method for localizing reasoning er-
rors and proposed the RoT framework to enhance the robustness of the reasoning process in CoTs.
Experimental results demonstrate that RoT improves the robustness and interpretability of CoT rea-
soning while offering fine-grained control over the reasoning process.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. CoRR, abs/2406.11717,
2024.

David L Barack and John W Krakauer. Two views on the cognitive brain. Nature Reviews Neuro-
science, 22(6):359–371, 2021.

Horace B Barlow. Summation and inhibition in the frog’s retina. The Journal of physiology, 119(1):
69, 1953.

William Bechtel. Mental mechanisms: Philosophical perspectives on cognitive neuroscience. Psy-
chology Press, 2007.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Comput. Linguistics,
48(1):207–219, 2022.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, et al. Towards monoseman-
ticity: Decomposing language models with dictionary learning. Transformer Circuits Thread,
2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in lan-
guage models without supervision. In Proceedings of ICLR 2023, 2023.

Keyuan Cheng, Muhammad Asif Ali, Shu Yang, Gang Lin, Yuxuan Zhai, Haoyang Fei, Ke Xu,
Lu Yu, Lijie Hu, and Di Wang. Leveraging logical rules in knowledge editing: A cherry on the
top. CoRR, abs/2405.15452, 2024a.

Keyuan Cheng, Gang Lin, Haoyang Fei, Yuxuan Zhai, Lu Yu, Muhammad Asif Ali, Lijie Hu,
and Di Wang. Multi-hop question answering under temporal knowledge editing. CoRR,
abs/2404.00492, 2024b.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of bert’s attention. In Proceedings of ACL 2019, pp. 276–286, 2019.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. CoRR, abs/2110.14168, 2021.

Romain Cosentino and Sarath Shekkizhar. Reasoning in large language models: A geometric per-
spective. CoRR, abs/2407.02678, 2024.

Antonia Creswell and Murray Shanahan. Faithful reasoning using large language models. CoRR,
abs/2208.14271, 2022.

David Dale, Elena Voita, Loïc Barrault, and Marta R. Costa-jussà. Detecting and mitigating halluci-
nations in machine translation: Model internal workings alone do well, sentence similarity even
better. In Proceedings of ACL 2023, pp. 36–50, 2023.

Subhabrata Dutta, Joykirat Singh, Soumen Chakrabarti, and Tanmoy Chakraborty. How to
think step-by-step: A mechanistic understanding of chain-of-thought reasoning. CoRR,
abs/2402.18312, 2024.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. Not all layers of llms are necessary during inference. CoRR, abs/2403.02181,
2024.

Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by
filters in deep neural networks. In Proceedings of CVPR 2018, pp. 8730–8738, 2018.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. In Proceedings of ICCV 2023, pp. 2426–2436, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? A question answering benchmark with implicit reasoning strategies. Trans. Assoc.
Comput. Linguistics, 9:346–361, 2021.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

John J Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

John J Hopfield and David W Tank. Computing with neural circuits: A model. Science, 233(4764):
625–633, 1986.

Lijie Hu, Ivan Habernal, Lei Shen, and Di Wang. Differentially private natural language models:
Recent advances and future directions. CoRR, abs/2301.09112, 2023a.

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. Improving faithfulness
for vision transformers. CoRR, abs/2311.17983, 2023b.

Lijie Hu, Yixin Liu, Ninghao Liu, Mengdi Huai, Lichao Sun, and Di Wang. SEAT: stable and
explainable attention. In Brian Williams, Yiling Chen, and Jennifer Neville (eds.), Proceedings
of AAAI 2023, pp. 12907–12915, 2023c.

Lijie Hu, Chenyang Ren, Zhengyu Hu, Cheng-Long Wang, and Di Wang. Editable concept bottle-
neck models. CoRR, abs/2405.15476, 2024.

Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Proceedings of NAACL-HLT
2019, pp. 3543–3556, 2019.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang,
and Mengnan Du. The impact of reasoning step length on large language models. CoRR,
abs/2401.04925, 2024.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV). In Proceedings of ICML 2018, pp. 2673–2682, 2018.

Seungone Kim, Se June Joo, Yul Jang, Hyungjoo Chae, and Jinyoung Yeo. Cotever: Chain of
thought prompting annotation toolkit for explanation verification. In Proceedings of EACL 2023,
pp. 195–208, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proceedings of NeurIPS 2022, 2022.

Songning Lai, Lijie Hu, Junxiao Wang, Laure Berti-Équille, and Di Wang. Faithful vision-language
interpretation via concept bottleneck models. In Proceedings of ICLR 2024, 2024.

Tamera Lanham, Anna Chen, Ansh Radhakrishnan, Benoit Steiner, Carson Denison, Danny Her-
nandez, Dustin Li, Esin Durmus, Evan Hubinger, Jackson Kernion, et al. Measuring faithfulness
in chain-of-thought reasoning. CoRR, abs/2307.13702, 2023.

Jia Li, Lijie Hu, Zhixian He, Jingfeng Zhang, Tianhang Zheng, and Di Wang. Text guided image
editing with automatic concept locating and forgetting. CoRR, abs/2405.19708, 2024.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki,
and Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of IJCNLP 2023,
pp. 305–329, 2023.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in GPT. In Proceedings of NeurIPS 2022, 2022.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
CoRR, abs/2310.07923, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta blog, 2024.

Tomás Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of HLT-NAACL 2013, pp. 746–751, 2013.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of EMNLP 2022, pp. 11048–11064, 2022.

Gordon J Mogenson. The neurobiology of Behavior: an introduction. Routledge, 2018.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Understanding neural networks via feature visualiza-
tion: A survey. In Proceedings of LNCS 2019, pp. 55–76, 2019.

Anh Mai Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks. In Proceedings
of NeurIPS 2016, pp. 3387–3395, 2016.

Maxwell I. Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. CoRR, abs/2112.00114, 2021.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. CoRR, abs/2209.11895, 2022.

Guillermo Ortiz-Jiménez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In Proceedings of NeurIPS 2023, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. In Proceedings of NeurIPS 2022, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-lm: Empowering large
language models with symbolic solvers for faithful logical reasoning. In Proceedings of EMNLP
2023, pp. 3806–3824, 2023.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In Proceedings of ICML 2024, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of NAACL-HLT 2021, pp. 2080–2094, 2021.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models. CoRR, abs/2404.15758, 2024.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis Song,
John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. CoRR, abs/2112.11446, 2021.

Daking Rai and Ziyu Yao. An investigation of neuron activation as a unified lens to explain chain-
of-thought eliciting arithmetic reasoning of llms. arXiv preprint arXiv:2406.12288, 2024.

Shun Shao, Yftah Ziser, and Shay B. Cohen. Gold doesn’t always glitter: Spectral removal of linear
and nonlinear guarded attribute information. In Proceedings of EACL 2023, pp. 1603–1614, 2023.

Charles Scott Sherrington. Observations on the scratch-reflex in the spinal dog. The Journal of
physiology, 34(1-2):1, 1906.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Proceedings of ICLR 2014, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. CoRR, abs/1706.03825, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of ICLR 2014,
2014.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of NAACL-HLT 2019,
pp. 4149–4158, 2019.

Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, and Muhan
Zhang. Large language models are in-context semantic reasoners rather than symbolic reasoners.
CoRR, abs/2305.14825, 2023.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet. Transformer Circuits Thread, 2024.

Curt Tigges, Oskar John Hollinsworth, Atticus Geiger, and Neel Nanda. Linear representations of
sentiment in large language models. arXiv preprint arXiv:2310.15154, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288, 2023.

Martina G. Vilas, Federico Adolfi, David Poeppel, and Gemma Roig. Position: An inner inter-
pretability framework for AI inspired by lessons from cognitive neuroscience. In Proceedings of
ICML 2024, 2024.

Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. Neurons in large language models:
Dead, n-gram, positional. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings
of ACL 2024, pp. 1288–1301, 2024.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. In
Proceedings of ACL 2023, pp. 2717–2739, 2023a.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in GPT-2 small. In Proceedings
of ICLR 2023, 2023b.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. CoRR,
abs/2402.10200, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of ICLR 2023, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of NeurIPS 2022, 2022.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. In Proceedings of
EMNLP 2023, pp. 2550–2575, 2023.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui
Wang. A survey on language models for code. CoRR, abs/2311.07989, 2023.

Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, and Lidong Bing. Verify-and-edit: A
knowledge-enhanced chain-of-thought framework. In Proceedings of ACL 2023, pp. 5823–5840,
2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models via multi-hop questions. In Pro-
ceedings of EMNLP 2023, pp. 15686–15702, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V. Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In Proceedings of ICLR 2023, 2023.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to AI transparency. CoRR, abs/2310.01405, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A ADDITIONAL PRELIMINARIES

The Sherringtonian View. Unlike the Hopfieldian perspective, the Sherringtonian view (Sherring-
ton, 1906; Barlow, 1953) of cognitive explanation emphasizes the importance of direct neuron-to-
neuron connections in the brain. This view posits that the primary explanation for cognition lies
in the specific interactions between neurons and the computations these neurons perform within
well-defined circuits (Mogenson, 2018).

At an algorithmic level, the Sherringtonian view conceptualizes cognition as networks of nodes
(neurons) with weighted connections (synapses) between them. In this framework, neurons perform
distinct computational transformations on the signals they receive from other neurons in the network.
Cognitive processes are described by how individual neurons receive inputs, process these inputs
through neural transfer functions, and transmit the resulting signals to connected neurons. Thus,
cognition is explained through the computations occurring at the level of individual neurons and the
signal flow across their connections.

Zero-shot CoT. Zero-shot CoT is a simple but effective chain of thought (CoT) prompting ap-
proach proposed by Kojima et al. (2022). It allows language models to generate a step-by-step
explanation or thought process to solve problems without requiring prior demonstrations or specific
training by simply adding “Let’s think step by step” before each answer. Specifically, given a query
q and a model M with weights θ, the generation process can be defined as:

R = arg max pr(R|q, t; θ) (5)
where R is the response text of the model, which is generated from all potential responses R, and t
is a prompt text like “Let’s think sttep by step.”

Few-shot CoT. Similar to zero-shot CoT, few-shot CoT (Wei et al., 2022) is also a prompting tech-
nique that gives a few examples with step-by-step reasoning processes to stimulate the model’s rea-
soning ability. Formally, given the query q and a set of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . },
our aim is to generate a response with intermediate reasoning steps:

R = arg max pr(R|D, q; θ) (6)

Table 4: Statistics of the data set.

Dataset Task Domain # Samples Answer Format

GSM8K Arithmetic 1319 Number
SVAMP Arithmetic 300 Number

StrategyQA Commonsense 2290 Yes or No
CSQA Commonsense 1221 Multiple Choices

Coin Flip Symbolic 2000 Yes or No
Random Letter Symbolic 300 Letter

B OTHER EXPERIMENTAL DETAILS

B.1 DATASET

The statistics of the data is shown in Table 4. The details about each data set are as follows:

Arithmetic Reasoning. The arithmetic reasoning benchmarks aim to analyze and/or understand
the model’s mathematical reasoning skills. These include: (i) GSM8K Cobbe et al. (2021), a math
word problems benchmark encompassing a variety of reasoning steps; (ii) SVAMP Patel et al.
(2021), containing math word problems with multiple structures.

Commonsense Reasoning. These data sets aim to analyze the ability of the model on common-
sense reasoning tasks. These include: (i) StrategyQA Geva et al. (2021), a commonsense benchmark
requiring multi-level strategy to answer the question; (ii) CSQA Talmor et al. (2019) benchmark
dataset of multiple-choice questions that require different types of commonsense knowledge to pre-
dict the correct answers.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Symbolic Reasoning. These data sets aim to test the abilities of the model requiring advanced
symbolic capabilities. For this task, we curated two new datasets, as follows. (i) Coin Flip dataset,
we employ the data curation strategy of a previous study Wei et al. (2022) using the number of oper-
ations as 2, 4 and 7 to come up with the complete dataset; (ii) Random Letter, an advanced version
of the last letter concatenation with reference to the previously studied form of word assembly Wei
et al. (2022), where 2-4 words are randomly formed and characters are randomly drawn from them,
instead of taking the beginning or the end of each word at a fixed point.

Table 5: The detailed robust results in the zero-shot settings.

Method Arithmetic Commonsense Symbolic
GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat
CoTZ1 26.31 46.00 43.41 62.05 52.75 24.33
CoTZ2 26.23 48.33 43.90 60.52 48.35 17.67
CoTZ3 23.58 51.67 46.68 63.54 50.10 17.33
RoTZ1 26.23 54.33 48.24 63.54 45.45 20.67
RoTZ2 24.72 53.67 47.91 63.58 45.50 20.67
RoTZ3 25.09 53.67 47.42 63.23 45.35 20.33

Llama-3-8B-Instruct
CoTZ1 74.45 82.33 72.24 66.07 90.45 43.00
CoTZ2 74.83 83.33 72.65 63.32 83.55 42.00
CoTZ3 58.15 40.67 73.71 63.10 89.40 33.67
RoTZ1 74.83 83.33 72.89 65.24 76.35 47.67
RoTZ2 74.91 83.33 72.73 64.93 71.95 46.67
RoTZ3 73.62 82.00 72.48 65.50 68.15 42.00

Table 6: The detailed robust results in the few-shot settings.

Method Arithmetic Commonsense Symbolic
GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat
CoTF1 4.62 38.67 53.07 59.26 47.60 31.00
CoTF2 3.18 38.67 50.29 59.74 50.30 29.00
RoTF1 25.55 56.00 48.16 63.80 45.50 20.33
RoTF2 25.63 55.33 48.16 65.68 45.50 20.33

Llama-3-8B-Instruct
CoTF1 72.02 81.00 73.63 62.75 96.50 50.67
CoTF2 72.25 80.67 72.89 67.47 95.00 50.67
RoTF1 74.37 83.67 73.30 65.94 70.30 43.67
RoTF2 74.00 83.33 73.63 65.68 69.85 42.67

B.2 DETAILS OF ROBUST EXPERIMENT

We show our detailed results of the robustness in Table 5 and 6. For zero-shot settings, the terms
Z1, Z2, and Z3 refer to the use of three different prompts, respectively (as shown in Section 6). For
few-shot settings, the terms F1 and F2 also refer to two different experiments, as shown in Section
6.

C PROMPTS

C.1 PROMPT TEMPLATES

Table 7 illustrates the design of stimulus prompts utilized for Chain of Thought (CoT) prompting,
distinguishing between zero-shot CoT and few-shot CoT methodologies. In the zero-shot CoT ap-
proach, the model is presented with a question devoid of preceding examples, in contrast to the
few-shot CoT method, where the model is furnished with multiple exemplars. For each method, the
first row is a positive prompt and the second is a negative prompt. Red indicates stimulus token.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: The stimulus prompting design for CoT-style methods.

zero-shot CoT
USER: <question>
ASSISTANT: Let’s think step by step.
USER: <question>
ASSISTANT:

few-shot CoT

USER: <n different examples>
<question>
ASSISTANT:
USER: <question>
ASSISTANT:

Table 8: Extraction templates for various tasks.

Task Extraction Template
StrategyQA Therefore, the answer (Yes or No) is

CSQA Therefore, among A through E, the answer is
Coin Flip Therefore, the answer (Yes or No) is

Random Letter Therefore, the answer is

C.2 ANSWER EXTRACT PROMPTS

The demonstration of our answer extraction method is in Table 8.

C.3 EXAMPLE PROMPTS FOR FEW-SHOT SETTING

We demonstrate our example prompts for few-shot setting in Table 9, 10, 11, 12 and 13.

D CASE DEMONSTRATIONS

We show our additional cases on arithmetic, commonsense, and symbolic reasoning tasks in Fig-
ure 4, 5, 6, and 7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 9: Few-shot exemplars for the full chain of thought prompt for the arithmetic reasoning task.
The highlighted part refers to the reasoning steps.

PROMPT FOR GSM8K AND SVAMP
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?

A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 =
74. After eating 35, they had 74 - 35 = 39. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?

A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he
gave Denny 20 - 12 = 8. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?

A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4
more toys. 5 + 4 = 9. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed
each day, from Monday to Thursday. How many computers are now in the server room?

A: There were originally 9 computers. For each of 4 days, 5 more computers were added.
So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.

Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost
2 more. How many golf balls did he have at the end of Wednesday?

A: Michael started with 58 golf balls. After losing 23 on Tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have
left?

A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has
23 - 15 dollars left. 23 - 15 is 8. The answer is 8.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 10: Few-shot exemplars for the full chain of thought prompt for StrategyQA. The highlighted
part refers to the reasoning steps.

PROMPT FOR STRATEGYQA
Q: Do hamsters provide food for any animals?

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?

A: Brooke Shields went to Princeton University. Princeton University is about as aca-
demically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also
succeed at the University of Pennsylvania. So the answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus,
Hydrogen’s atomic number squared is less than 5. So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?

A: College commencement ceremonies can happen in December, May, and June. De-
cember is in the winter, so there can be frost. Thus, there could be frost at some com-
mencements. So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months,
which is more than 6 months. Thus, a llama could not give birth twice during the War in
Vietnam. So the answer is no.

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6g/cm3, which is less than water. Objects less dense
than water float. Thus, a pear would float. So the answer is no.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Few-shot exemplars for the full chain of thought prompt for CSQA. The highlighted part
refers to the reasoning steps. There are newlines between the answer choices that are omitted in the
table for space reasons.

PROMPT FOR CSQA
Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a)
shirt pocket (b) calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: The answer must be an item that can absorb ink. Of the above choices, only blotters
are used to absorb ink. So the answer is (e).

Q: What home entertainment equipment requires cable?
Answer Choices: (a) radio shack (b) substation (c) television (d) cabinet

A: The answer must require cable. Of the above choices, only television requires cable.
So the answer is (c).

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices:
(a) pretty flowers (b) hen house (c) natural habitat (d) storybook

A: The answer must be something in the forest. Of the above choices, only natural habitat
is in the forest. So the answer is (b).

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices:
(a) populated areas (b) race track (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Of the above choices, only populated
areas have a lot of people. So the answer is (a).

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth
(b) grocery cart (c)super market (d) fruit basket (e) fruit market

A: The answer should be the place where grocery items are placed before checking out.
Of the above choices, grocery cart makes the most sense for holding grocery items. So
the answer is (b).

Q: Google Maps and other highway and street GPS services have replaced what? Answer
Choices: (a) united states (b) mexico (c) countryside (d) atlas

A: The answer must be something that used to do what Google Maps and GPS services
do, which is to give directions. Of the above choices, only atlases are used to give direc-
tions. So the answer is (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer
Choices: (a) harder (b) anguish (c) bitterness (d) tears (e) sadness

A: The answer should be the feeling of someone getting divorced who was doing all the
work. Of the above choices, the closest feeling is bitterness. So the answer is (c).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: Few-shot exemplars for the full chain of thought prompt for the random letter concatena-
tion task. The highlighted part refers to the reasoning steps.

PROMPT FOR RONDOM LETTER CONCATENATION
Q: Take the first letters of the words in "James Hickman " and concatenate them.

A: The first letter of "James" is "J". The first letter of "Hickman" is "H". Concatenating
them is "JH". The answer is JH.

Q: Take the second letters of the words in "Carl Mccall Bonilla " and concatenate them.

A: The second letter of "Carl" is "a". The second letter of "Mccall" is "c". The second
letter of "Bonilla" is "o" Concatenating them is "aco". The answer is aco.

Q: Take the third letters of the words in "Randy Tanner " and concatenate them.

A: The third letter of "Randy" is "n". The third letter of "Tanner" is "n". Concatenating
them is "nn". The answer is nn.

Q: Take the first letters of the words in "Kenny Kim " and concatenate them.

A: The first letter of "Kenny" is "K". The first letter of "Kim" is "K". Concatenating them
is "KK". The answer is KK.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 13: Few-shot exemplars for the full chain of thought prompt for the coin flip task. The
highlighted part refers to the reasoning steps.

PROMPT FOR COIN FLIP
Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?

A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an
even number. The coin started heads up, so after an even number of flips, it will still be
heads up. So the answer is yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads
up?

A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the
coin still heads up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still
heads up?

A: The coin was flipped by Sal. So the coin was flipped 1 time, which is an odd num-
ber. The coin started heads up, so after an odd number of flips, it will be tails up. So the
answer is no.

Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by no one. So the coin was flipped 0 times. The coin started
heads up, and it was not flipped, so it is still heads up. So the answer is yes.

Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads
up?

A: The coin was flipped by Ryan and Shaunda. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber.

So, the total amount of blue fiber required is 2 bolts x 1 bolt = 2 bolts.

The total amount of white fiber required is half of 2 bolts, which is 1 bolt.

Therefore, the total number of bolts needed for the robe is 2 + 1 = 3 bolts.

Q: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in
total does it take?

To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber.

To find the total amount of blue fiber required, we can multiply the number of bolts by
the amount of blue fiber per bolt:
2 bolts x 2 = 4 bolts of blue fiber

To find the total amount of white fiber required, we can multiply the number of bolts by
the amount of white fiber per bolt:
2 bolts x 0.5 = 1 bolt of white fiber

Now, we need to divide the total amount of blue fiber by the amount of blue fiber
required per bolt to find the total number of bolts needed:
4 bolts of blue fiber / 2 = 2 bolts of blue fiber per bolt

Therefore, it takes 2 bolts of blue fiber and 1 bolt of white fiber to make the robe.

+ Control

Figure 4: A real case predicted by Llama-2-7B-Chat with zero-shot CoT on the GSM8K dataset.
The segment highlighted in blue represents the correct output of the model. The red part shows that
the model starts to reason in the wrong direction without control, while the green portion indicates
the model reason in the correct direction after adding control.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
A: There are 15 trees originally. Then there were 21 trees after some more were
planted. So there must have been 21 - 15 = 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.} The answer is 5.
...

Q: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows forces a restart to install updates,
which takes 20 minutes. Then Carla has to restart the download from the beginning.
How load does it take to download the file?

Let's break this problem down step by step!
Initially, Carla can download 2 GB/minute. To find out how many minutes it would take
to download the entire file, we can divide the file size (200 GB) by the download rate (2
GB/minute):
200 GB / 2 GB/minute = 100 minutes

However, Windows forces a restart after 40% of the download is complete. To find out
how many GB are left to download, we can calculate 40% of the total file size:
40% of 200 GB = 0.4 x 200 GB = 80 GB

So, Carla has to restart the download from the beginning, and she has 80 GB left to
download. To find out how many minutes it will take to download the remaining 80 GB,
we can divide the remaining file size by the download rate:
80 GB / 2 GB/minute = 40 minutes.

Adding the initial 100 minutes to the additional 40 minutes, Carla will need a total of:
100 minutes + 40 minutes = 140 minutes to download the entire file.

Let's break it down step by step:
1. Carla can download 2 GB/minute, so it would normally take her:
200 GB / 2 GB/minute = 100 minutes to download the file.

2. But, 40% of the way through the download, Windows forces a restart. This means
she has downloaded:
40% of 200 GB = 80 GB at that point. This means she still has: 200 GB - 80 GB = 120
GB left to download.

3. The restart takes 20 minutes, so Carla loses 20 minutes of download time.

4. After the restart, Carla has to start the download from the beginning, which means
she has to re-download the 80 GB she already had. This adds another 80 GB / 2
GB/minute = 40 minutes to the total download time.

Therefore, the total download time is:
100 minutes (original download time) + 20 minutes (restart time) + 40 minutes (re-
downloading already downloaded portion) = 160 minutes.+ Control

Figure 5: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the GSM8K dataset.
The purple part is an example of input-output pairs given by user. The segment highlighted in blue
represents the correct output of the model. The red part shows that the model starts to reason in the
wrong direction without control, while the green portion indicates the model reason in the correct
direction after adding control.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Q: Do hamsters provide food for any animals?
A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?
A: Brooke Shields went to Princeton University. Princeton University is about as
academically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also
succeed at the University of Pennsylvania. So the answer is yes.
...

Q: Is a platypus immune from cholera?

I think I can help you with that!

A: Platypuses are mammals.

Cholera is a bacterial infection that can affect many animals, including mammals.
Platypuses do not have a natural immunity to cholera. So, the answer is no.

According to scientific research, platypuses are resistant to cholera.

This is because they have a unique immune system that is adapted to their aquatic
environment. Platypuses have a low body temperature, which makes it difficult for many
pathogens, including cholera, to replicate and cause disease.

Additionally, their immune system is highly effective at recognizing and eliminating
pathogens, and they have a strong response to bacterial infections.

In fact, studies have shown that platypuses are resistant to a range of bacterial
infections, including cholera, and that they are able to recover quickly from infections
that would be fatal to other animals.

So, to answer your question, yes, platypuses are generally immune from cholera!+ Control

Figure 6: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the strategyQA
dataset. The purple part is an example of input-output pairs given by user. The segment high-
lighted in blue represents the correct output of the model. The red part shows that the model starts
to reason in the wrong direction without control, while the green portion indicates the model reason
in the correct direction after adding control.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?
A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an
even number. The coin started heads up, so after an even number of flips, it will still be
heads up. So the answer is yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads
up?
A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.
...

Q: A coin is heads up. verley flips the coin. nytavious does not flip the coin. alsiha does
not flip the coin. leroyal does not flip the coin. Is the coin still heads up?

The coin was flipped by Verley. So the coin was flipped 1 time, which is an odd number.
The coin started heads up, so after an odd number of flips, it will be tails up.

However, no one else flipped the coin, so the coin was not flipped again. Since the coin
was flipped an odd number of times initially, it will still be heads up. So the answer is
yes.

The only person who flipped the coin is Verley. Since the coin was initially heads up,
Verley's flip would change the side of the coin.

Therefore, the coin is no longer heads up.+ Control

Figure 7: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the coin flip dataset.
The purple part is an example of input-output pairs given by user. The segment highlighted in blue
represents the correct output of the model. The red part shows that the model starts to reason in the
wrong direction without control, while the green portion indicates the model reason in the correct
direction after adding control.

27

	Introduction
	Related Work
	Preliminaries
	Bridging Reasoning in CoTs and the Hopfieldian View
	Applications of Hopfieldian View to CoTs
	Reasoning Error Localization
	Representation of Thought

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusion
	Additional Preliminaries
	Other Experimental Details
	Dataset
	Details of Robust Experiment

	Prompts
	Prompt Templates
	Answer Extract Prompts
	Example Prompts for Few-shot Setting

	Case Demonstrations

