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ABSTRACT

Large Language Models have demonstrated remarkable abilities across various
tasks, with Chain-of-Thought (CoT) prompting emerging as a key technique to
enhance reasoning capabilities. However, existing research primarily focuses on
improving performance, lacking a comprehensive framework to explain and un-
derstand the fundamental factors behind CoT’s success. To bridge this gap, we
introduce a novel perspective grounded in the Hopfieldian view of cognition in
cognitive neuroscience. We establish a connection between CoT reasoning and
key cognitive elements such as stimuli, actions, neural populations, and represen-
tation spaces. From our view, we can understand the reasoning process as the
movement between these representation spaces. Building on this insight, we de-
velop a method for localizing reasoning errors in the response of CoTs. Moreover,
we propose the Representation-of-Thought (RoT) framework, which leverages the
robustness of low-dimensional representation spaces to enhance the robustness of
the reasoning process in CoTs. Experimental results demonstrate that RoT im-
proves the robustness and interpretability of CoT reasoning while offering fine-
grained control over the reasoning process.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional capabilities in following the natural
language instructions (Ouyang et al., 2022; Jin et al., 2024) and excelling across a variety of down-
stream tasks (Hu et al., 2023a; Zhang et al., 2023). As reasoning skills are crucial for tasks such as
commonsense and mathematical reasoning (Rae et al., 2021), there is a growing focus on enhancing
these capabilities. One prominent approach is Chain-of-Thought (CoT) prompting (Wei et al., 2022;
Kojima et al., 2022), a simple yet highly effective technique to unleash the reasoning capability of
LLMs. However, despite its success, a natural and fundamental research question remains: How
does the reasoning capability emerge through CoT prompting?

Numerous studies have sought to identify the key factors or elements that enable CoT to enhance the
reasoning capabilities of LLMs (Kojima et al., 2022; Wang et al., 2023a; Tang et al., 2023; Merrill &
Sabharwal, 2023). Some works focus on improving CoT reasoning through query-based corrections
(Kim et al., 2023), knowledge-enhanced frameworks (Zhao et al., 2023), and symbolic reasoning
chains for faithful CoT (Lyu et al., 2023; Lanham et al., 2023). Other research has examined how
the sequence of demonstrations, random labels (Min et al., 2022), or even meaningless tokens (Pfau
et al., 2024) can positively influence reasoning performance. However, these works primarily fo-
cus on improving the model’s reasoning performance, and they do not provide a comprehensive
framework to explain the underlying factors driving CoT’s success.

To understand the reasoning process in CoTs more deeply, we draw inspiration from cognitive neuro-
science, specifically the relationship between cognition and brain function. In this field, the Hopfiel-
dian view (Hopfield, 1982) and the Sherringtonian view (Sherrington, 1906) represent two different
ways of understanding neural computational models and cognitive mechanisms. While the Sherring-
tonian view of cognitive explanation focuses on specific connections between neurons in the brain,
the Hopfieldian view emphasizes distributed computation across neural populations, where informa-
tion is not encoded by a single neuron but rather by the cooperative activity of many neurons. This
perspective is particularly suited to explaining complex cognitive functions like memory storage,
pattern recognition, and reasoning. Thus, the Hopfieldian view is generally considered more ad-
vanced than the Sherringtonian view, especially in the context of explaining distributed computation
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Figure 1: Illustration of the emergence of cognition in the brain and CoT reasoning from the Hop-
fieldian view.

and the dynamics of neural networks (Barack & Krakauer, 2021). Based on these, a natural question
is: whether we can understand the reasoning in CoTs from the Hopfieldian view of cognition?

The Hopfieldian view explains the production of behavioral actions as emerging from transforma-
tions or movements within neural populations in response to stimuli in the brain (Barack & Krakauer,
2021) (cf. Figure 1). This perspective approaches cognition at the level of representations, disre-
garding the detailed roles of individual molecules, cells, and circuits, thus allowing the potential for
a more conceptual and semantic understanding of complex cognitive systems. Viewing the CoT-
triggered reasoning process in LLMs through this lens is intuitive: CoT prompting induces shifts in
the model’s trajectory in much the same way that external stimuli shape cognitive responses, driving
representation changes without altering the underlying system. Specifically, similar to the Hop-
fieldian mechanism, where the shift or movement in neural populations happens during cognition
itself, CoT influences reasoning during inference, controlling the logical steps without modifying
the model’s parameters.

Given the parallels between the CoT-triggered reasoning process and the Hopfieldian view of cogni-
tion in the brain, we first establish a connection between these two by aligning key elements: stim-
uli and actions, neural populations, and representation spaces. Particularly, we provide a general
framework for identifying the “representation spaces” of the “stimuli” given by CoTs. We conceptu-
alize the reasoning process elicited by CoT prompting as movement between representation spaces,
enabling us to improve and deepen our understanding of CoTs. Based on these connections, we then
leverage the strength of the Hopfieldian view to improve or further understand CoTs. Specifically,
by leveraging the “representation spaces” in CoTs, we develop a method for localizing the reasoning
error in the responses. Moreover, by leveraging the robustness of low-dimensional representation
spaces, we propose a new framework, namely Representation-of-Thought (RoT), which enhances
the robustness of CoTs. We summarize the key contributions of our work as follows:

1. We establish a connection between the reasoning process in CoTs and the Hopfieldian view
of cognition, grounded in cognitive neuroscience, to identify the key factors driving CoT’s
success in zero-shot and few-shot settings. To the best of our knowledge, this is the first
known attempt to leverage cognitive science for CoT interpretability by associating its core
elements with the Hopfieldian framework.

2. Based on these connections, we leverage the strength of the Hopfieldian view to understand
and further improve CoTs. We first consider how to localize the reasoning error based
on the low-dimensional representation spaces. Then, by leveraging the robustness of the
Hopfieldian view, we propose a new framework, RoT, to enhance the robustness of CoTs’
performance.

3. Comprehensive experiments on three tasks, including arithmetic reasoning, commonsense
reasoning, and symbolic reasoning, reveal that our framework can provide intuitive and
interpretable analysis, allowing error tracing and control for CoT reasoning.
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2 RELATED WORK

Chain-of-Thought (CoT). The CoT is a prompting technique that engages LLMs in step-by-step
reasoning rather than directly providing the answers (Nye et al., 2021). Studies have shown that
introducing intermediate steps or learning from demonstrations can significantly improve the rea-
soning performance of LLMs (Wei et al., 2022; Kojima et al., 2022). Given the success of CoT,
numerous studies have explored its application to a variety of complex problems, including arith-
metic, commonsense, symbolic reasoning (Wang et al., 2023c; Zhou et al., 2023; Wang & Zhou,
2024), and logic tasks (Creswell & Shanahan, 2022; Pan et al., 2023; Weng et al., 2023). Recently,
numerous endeavors have been made to enhance the reasoning capabilities in LLMs (Wang et al.,
2023a; Dutta et al., 2024). For example, Kim et al. (2023) proposed a query-based approach to cor-
rect erroneous reasoning steps within a CoT. Zhao et al. (2023) introduced a knowledge-enhanced
method to improve the factual correctness for multi-pole open-domain QA tasks. Lyu et al. (2023)
developed “faithful CoT”, i.e., a framework that first translates natural language queries into sym-
bolic reasoning chains and then solves the problem using CoT. Additionally, several studies have
also focused on the sequence and quantity of demonstrations within the context, investigating their
contributions to the final reasoning performance. For this, Min et al. (2022) discovered that even
random labels or ineffective reasoning steps can still improve the model’s reasoning performance.
Lanham et al. (2023) demonstrated the impact of intervening in the CoT process by adding mistakes
or paraphrases. Pfau et al. (2024) showed that using meaningless filler tokens in place of a chain-of-
thought can surprisingly boost reasoning performance. However, these studies primarily focused on
how to improve the CoT’s reasoning performance and do not provide a framework to analyze the fun-
damental reasons, i.e., how does the reasoning capability emerge through CoT? Dutta et al. (2024)
investigates the neural sub-structures within LLMs that manifest Chain-of-Thought (CoT) reasoning
on the Llama-2-7B model. Similarly, Rai & Yao (2024) explores neurons in the feed-forward layers
of LLMs to analyze their arithmetic reasoning capabilities on the Llama-2-7B model. Both studies
are grounded in the Sherringtonian view of neural activity. In contrast, we adopt the Hopfieldian
perspective to bridge this gap, focusing on representations rather than individual neurons. We apply
our approach across three different downstream tasks and can further extend our analysis to larger
models like Llama-2-70B.

Interpretability of LLMs. Interpretability plays a key role in a deeper understanding of LLMs
to identify potential risks and better meet human requirements (Zou et al., 2023). Common inter-
pretability strategies include (i) Salience maps, which rely on highlighting the regions in the input
that are attended by the model (Simonyan et al., 2014; Smilkov et al., 2017; Clark et al., 2019;
Hu et al., 2023c;b; Lai et al., 2024); (ii) Feature visualization, which creates representative inputs
indicative of particular neurons’ activations (Szegedy et al., 2014; Nguyen et al., 2016; Fong &
Vedaldi, 2018; Nguyen et al., 2019); and (iii) Mechanistic interpretability, which employs reverse-
engineering tools to explain networks based on circuits and node-to-node connections (Olah et al.,
2020; Olsson et al., 2022; Wang et al., 2023b). However, these methods often require substantial
human intervention and are limited in terms of scalability or interpretability, especially for the large
language models (Fong & Vedaldi, 2018; Jain & Wallace, 2019; Hu et al., 2024). Thus, these meth-
ods cannot be directly used to interpret CoT reasoning. Additionally, most current approaches focus
on representation-level analysis without considering how these representations connect to concepts
learned during pre-training (Bricken et al., 2023; Templeton et al., 2024). Other works investigate
the localization and representation of concepts in the network (Kim et al., 2018; Li et al., 2024),
linear classifier probing to uncover input properties (Belinkov, 2022), fact localization and edit-
ing (Meng et al., 2022; Zhong et al., 2023; Cheng et al., 2024a;b), concept erasure (Shao et al.,
2023; Gandikota et al., 2023), and corrective analysis (Burns et al., 2023), etc. These observations
are aligned with RepE (Zou et al., 2023), which emphasized the nearly linear nature of LLM repre-
sentations (Park et al., 2024). However, none of these approaches directly address the inner workings
of CoT reasoning. While recent work has begun exploring connections between LLM interpretabil-
ity and cognitive neuroscience (Vilas et al., 2024). However, it does not discuss the Hopfieldian view
and also does not discuss how to explain the reasoning process in CoTs via cognitive neuroscience.
Our work provides the first attempt to interpret CoT reasoning from the Hopfieldian perspective.

3 PRELIMINARIES

Large Language Models and Prompting. Prompts can take various forms, such as a single sen-
tence or longer paragraphs, and may include additional information or constraints to guide the
model’s behavior. Let M : X 7→ Y be an LLM that takes an input sequence x = (x1, x2, . . . , xq) ∈
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X and produces an output sequence y = (y1, y2, . . . , ym) ∈ Y . The model is typically trained to op-
timize the conditional probability distribution pr(y|x), which assigns a probability to each possible
output sequence y given x. To incorporate a prompt w with the input sequence x, we can concate-
nate them into a new sequence x̂ = (w, x1, x2, . . . , xq). The conditional probability distribution
pr(ŷ|x̂) is then computed using x̂. Formally, the probability of the output sequence ŷ given x̂ is:

pr(ŷ|x̂) =
m∏
i=1

pr(yi|y<i, x̂),

where y<i represents the prefix of the sequence y up to position i− 1, and pr(yi|y<i, x̂) denotes the
probability of generating yi given y<i and x̂.

The Hopfieldian View. In cognitive neuroscience, two prominent perspectives aim to explain cog-
nition: the Sherringtonian view and the Hopfieldian view.1 The Hopfieldian view focuses on un-
derstanding behavior through computation and representation within neural spaces, rather than the
specific biological details of neurons, ion flows, or molecular interactions (Hopfield, 1982; 1984;
Hopfield & Tank, 1986). It operates at a higher level of abstraction, emphasizing the role of repre-
sentations and the computations performed on them.

This approach conceptualizes cognition as transformations between representation spaces. At the
implementation level, the collective activity of neurons is mapped onto a representation space, which
contains a low-dimensional representational manifold. Algorithmically, Hopfieldian computation
views these representation spaces as fundamental entities, with movements within or transformations
between them as the central operations. The representations themselves are structured as basins
of attraction within a state space, and while they are implemented by neural structures (whether
individual neurons, neural populations, or other components), the focus is on the dynamics of the
system rather than its specific biological mechanisms. Most Hopfieldian models, in practice, center
on the activity of neural populations.

A parameter space defines the dimensions of variation within these representational spaces, aligning
with quality-space approaches from philosophy, where content is similarly structured. Computa-
tions over these representations are understood as dynamic transformations between spaces or shifts
within them, characterized by features like attractors, bifurcations, limit cycles, and trajectories.
Ultimately, cognitive functions are realized through these dynamic movements within or between
representational spaces.

Linear Representations in Language Models. Recent investigations into the internal mechanics
of LLMs have revealed intriguing properties of their learned representations. Park et al. (2024)
posited that high-level semantic features such as gender or honesty could be linearly represented
as directions within the model’s representation space. This can be illustrated by the well-known
word analogy task using a word embedding model (Mikolov et al., 2013). By defining M(·) as a
function of extracting the representations of a given word by a word embedding model, the oper-
ation M(Spain) −M(Madrid) +M(Paris) often results in an output close to M(France), where
M(Spain)−M(Madrid) can be considered as the representation vector of the abstract “capital of”
feature in the embedding space. Concurrently, research on interpretable neurons (Dale et al., 2023;
Ortiz-Jiménez et al., 2023; Voita et al., 2024) has identified neurons that consistently activate for
specific input features or tasks, suggesting that these features may also be represented as directions
in the LLMs’ neuron space. For instance, Tigges et al. (2023) use the PCA vector between LLMs’
hidden states on instructions “positive” and “negative” to find the sentiment direction in LLMs. Ad-
ditionally, recent works (Zou et al., 2023; Arditi et al., 2024) show the effectiveness of engineering
on language models using these directions. For example, adding multiples of the “honesty” direction
to some hidden states has been sufficient to make the model more honest and reduce hallucinations.

4 BRIDGING REASONING IN COTS AND THE HOPFIELDIAN VIEW

In this section, we aim to build a bridge between the reasoning process in CoTs and the cogni-
tive brain from the Hopfieldian view. We will particularly associate the main elements (stimuli,
neural populations, and representation spaces) in the Hopfieldian view. After understanding these
elements, we can leverage the strength of the Hopfieldian view to deepen our understanding of the

1See Appendix A for an introduction to the Sherringtonian view. For a detailed comparison between these
two views, refer to (Barack & Krakauer, 2021) and (Bechtel, 2007).
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reasoning process in current CoTs and further improve it. Note that we will leave other elements in
the Hopfieldian view, such as attractors and state space, as future work.

Stimuli and Actions. Stimuli and actions are key components of how the brain processes informa-
tion and interacts with the environment. Actions refer to the motor responses or behaviors that result
from cognitive processing, which are responses given by LLMs through CoTs.

Stimuli refer to external or internal events, objects, or changes in the environment that are detected
by the sensory systems and can influence cognitive processes and behavior. Based on this, we can
adopt the term “stimuli” from cognitive science in the context of CoTs to refer to specific prompt
text or instructions that trigger CoT reasoning. Specifically, in the zero-shot setting, we define the
stimulus as szero to represent a set of supplementary instructions in the prompt that encourage the
model to provide more intermediate reasoning steps before arriving at a final answer. For example,
it can be “let’s think step by step” or “make sure to give steps before your answer”. In the few-shot
setting, the stimulus sfew is defined as the sequence of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . }
in the prompt, where q̃i represents the query and ãi is the corresponding response. In the following
discussion, we use s+ to indicate that stimuli are included in the model’s input and s− to indicate
that no stimuli are added. Note that we avoid using explicitly negative stimuli, such as “please be
careless and answer the following question”, because a well-aligned model would likely refuse to
behave in such a manner (Ouyang et al., 2022).

Neural Populations. As we mentioned, in the Hopfieldian view, representations are realized by
various forms of neural organization, especially populations. Identifying these “neural populations”
in CoTs is especially important. In our framework, there are two steps for finding them.

(i) Stimulus Set Designing. Here our goal is to elucidate the sensitivity of LLMs to different CoT
prompts with stimuli. Understanding such sensitivity could help us know the neural populations
raised from the stimuli. In detail, we construct a prompt set. For each query q, we consider
two forms of prompts: positive one (with stimuli) as p+ = T (s+, q) and negative one (with-
out stimuli) as p− = T (s−, q), where T is the prompt template. Specifically, for each query qi,
we construct M number of prompts for both of them with different stimuli, which is denoted as
Pi = {pi,−1 , pi,+1 , pi,−2 , pi,+2 , . . . , pi,−M , pi,+M }. Such construction is to make our following neural
populations less dependent on the specific template form. Thus, in total, we have a stimulus set
P ∗ = {P1, P2, · · · , PN}, where N is the number of queries. These contrastive pairs of prompts
will be used to identify neural populations given by these stimuli.

(ii) Identifying Neural Populations. Intuitively, the neural populations should be the most influ-
ential activation vectors of these prompts or stimuli. In detail, for each prompt in P ∗, the next
step is capturing the network architecture’s corresponding neural populations. Since LLMs rely on
transformer-based architecture to store distinct representations intended for different purposes, it
is crucial to design the extraction process to capture task-specific representations carefully. For a
given prompt p+ or p−, we will find the “most representative token”, which encapsulates rich and
highly generalizable representations of the stimuli. Here we select the last token after tokenizing the
prompt, which is based on the observation in Zou et al. (2023) that it is the most informative token
for decoder-only or auto-regressive architecture models.

Once the last token position is identified, we can naturally select some of its activations (hidden
state) in hidden layers. Previous studies (Fan et al., 2024; Cosentino & Shekkizhar, 2024) have
shown that not all layers store important information about reasoning; thus we focus on a subset of
them to reduce the computation cost, whose indices are denoted as a set K (in practice, K is always
the last several layers). Thus, we have a collection of activation vectors. However, since we are
focusing on the reasoning of CoT, studying the neural populations raised from the stimuli rather
than the whole prompt is more important. Thus, we consider the difference in the activations of
pairs of prompts. Specifically, for a pair (p+, p−), we can get their activations for all selected layers
K: {hk(p

+)}k∈K and {hk(p
−)}k∈K, where hk(p) refers to the activation vector of the k-th layer for

a given input prompt p. Then the differences of activations {h̃k(p)}k∈K are the neural populations
for such stimuli, where h̃k(p) = hk(p

+) − hk(p
−) represents the most influential information we

get from the stimuli for the query. Based on this, for each hidden layer in K, we have the neural
population for all queries, which is denoted as

h∗
k = {h̃k(P1), h̃k(P2), . . . , h̃k(PN )}. (1)

5
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Representation Spaces. After we have the neural populations for each selected hidden layers,
our final goal is to find the representation space. In the Hopfieldian view, the representation of
information is thought to occur within low-dimensional space embedded within higher-dimensional
neural spaces. Thus, these representation spaces will be the most informative subspaces of the neural
populations. Here we adopt the s-PCA to find such an s dimensional subspace. Specifically, for the
k-th layer where k ∈ K, we perform PCA analysis on h∗

k:

Rk = PCA(h∗
k). (2)

Then, the space spanned by this eigenvector will be the representation space for this layer. Motivated
by the previous linear representation introduced in Section 3, here we set s = 1, i.e., we only
consider the principal component. Intuitively, this means each representation space will focus on
one “concept”.

5 APPLICATIONS OF HOPFIELDIAN VIEW TO COTS

In the previous section, we mainly discussed how each element in the Hopfieldian view corresponds
to the reasoning in CoTs. From our previous view, we can understand the reasoning process as the
movement between these representation spaces. Based on these connections, we can leverage the
strength of the Hopfieldian view to improve or further understand CoTs. In this section, we first
consider how to localize the reasoning error based on the low dimensional representation spaces.
Then, by leveraging the robustness of the Hopfieldian view, we propose a new framework, namely
Representation of Thought, that enhances the performance robustness of CoTs.

5.1 REASONING ERROR LOCALIZATION

In this task, for a given query, we want to check if there are some reasoning errors in the response
by CoTs. If so, we aim to localize these errors. As in the Hopfieldian view, cognition occurs
within low-dimensional representation spaces. Reasoning errors can be identified by analyzing the
structure of these spaces, such as when certain directions Rk (representing specific cognitive factors)
are disproportionately activated or suppressed. This can help localize the source of the error within
the cognitive process. Motivated by this, we can leverage the internal structure of spaces we have
learned via PCA to locate the reasoning error for a given query in CoTs.

Intuitively, since the reasoning occurs within these representation spaces, if there is a reasoning error
in the response, then during the reasoning process, some tokens make the activations (hidden states)
of the response far from the corresponding representation spaces. This is because if these activations
are far from the spaces, CoTs do not reason the corresponding “concepts” in the response. Motivated
by this, our idea is to iteratively check the tokens in the response to see whether they are far from
the representation spaces.

Mathematically, for a given prompt T via CoT of query x with its response y = (y1, y2, · · · , ym),
we will iteratively feed the prompt with a part of the response, i.e., Ti = T ⊕ y≤i, where ⊕ is the
string concatenation. If the activations of Ti−1 are close to while those of Ti are very far from the
representation spaces {Rk}k∈K in (2), then we can think the i-th token yi makes an reasoning error.
We use the following criterion to access and/or evaluate the quality of the rationale for Ti:

scores(Ti) = Mean({scoresk(Ti)}k∈K),where scoresk(Ti) = hk(Ti)
⊤Rk − δ. (3)

Here δ is the threshold, scoresk(Ti) is the rationale for the k-th representation space, and scores(Ti)
is the average score across all layers in K. When the score is less than 0, it indicates that the
activations of prompt Ti are far from the representation spaces. See Algorithm 1 for details.

5.2 REPRESENTATION OF THOUGHT

The Hopfieldian view of cognition offers a framework that can potentially be used to control or
influence cognitive processes. Specifically, influencing neural populations directly offers a more
robust way to control cognition compared to simply providing different stimuli. Firstly, influenc-
ing neural populations directly allows the manipulation of the core dynamics of neural state spaces,
including attractor states, bifurcations, and transitions between cognitive states. This direct inter-
vention bypasses the variability and unpredictability associated with external stimuli, which depend
on the individual’s perception, attention, and prior experiences. Moreover, external stimuli are sub-
ject to various forms of noise and variability, including sensory processing errors, environmental
distractions, and individual differences in interpretation. Direct manipulation of neural populations

6
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Algorithm 1 Reasoning Error Localization

Require: Prompt T for query x; response y = (y1, · · · , ym) of the prompt T via a CoT; threshold
δ > 0; representation vectors {Rk}k∈K in (2) with layer set K.

1: for i = 1, · · · ,m do
2: Denote a new prompt Ti = T ⊕ y≤i. Using the same process as in Section 4 to get the

activations of Ti in layers in the set K, which are denoted as hk(Ti), k ∈ K.
3: Calculate scores(Ti) = Mean({scoresk(Ti)}k∈K) in (3).
4: if scores(Ti) < 0 and scores(qT−1) ≥ 0 then
5: Mark token yi as a “reasoning error”.
6: end if
7: end for

can reduce these sources of noise, providing a cleaner and more consistent pathway to controlling
cognitive states.

Our RoT leverages representation spaces’ structure to enhance the robustness of reasoning in CoTs.
Intuitively, we can manipulate a given query’s activations to be closer to the representation spaces
to enhance robustness since these spaces are the inherent entities in the reasoning process. After the
manipulation, the hidden states will be less dependent on the specific form of the prompt, query, and
stimuli but will be more dependent on the intrinsic entities of the reasoning task.

Mathematically, for a given prompt T via CoTs of query x. By using a similar procedure as in the
Neural Populations section, we can get its neural populations {hk(T )}k∈K. In RoT, motivated by
(Zou et al., 2023; Arditi et al., 2024), we can manipulate them by injecting the directions of their
corresponding representation spaces to make them closer to these spaces:

h′
k(T ) =

{
hk(T ) + αRk if k ∈ K
hk(p) otherwise ,

(4)

where h′
k(T ) denotes the manipulated hidden state, α is a scaling factor controlling the manipulation

strength. Its sign should follow the sign of hk(T )
⊤Rk.

By directly manipulating neural populations, RoT offers a more precise and interpretable method
for influencing the model’s output compared to traditional prompt engineering techniques. This
approach not only enhances control over the model’s behavior but also improves the transparency
and predictability of the generation process.

6 EXPERIMENTS

In this section, we will perform experimental studies on the above two applications to verify the
correctness of our understanding from the Hopfieldian view.

6.1 EXPERIMENTAL SETUP

Datasets. Our experiments are performed on benchmark datasets for diverse reasoning problems.
We consider 6 datasets for 3 different tasks: Arithmetic Reasoning, Commonsense Reasoning, and
Symbolic Reasoning. Specifically, for Arithmetic Reasoning, we select GSM8K (Cobbe et al., 2021)
and SVAMP (Patel et al., 2021); we study StrategyQA (Geva et al., 2021) and CommonsenseQA
(CSQA) (Talmor et al., 2019) for Commonsense Reasoning; lastly, for Symbolic Reasoning, we
choose the Coin Flip (Wei et al., 2022) and Random Letter datasets, where the latter one is con-
structed from the Last Letter dataset (Wei et al., 2022). More details and statistics of the datasets are
provided in Appendix B.1.

LLMs. We employ Llama-2-7B-Chat (Touvron et al., 2023) and Llama-3-8B-Instruct (Meta, 2024)
to evaluate their precision performance (accuracy) both before and after applying RoT to differ-
ent datasets. Furthermore, we use Llama-2-13B-Chat (Touvron et al., 2023) and Llama-2-70B-
Chat (Touvron et al., 2023) to show that our method performs effectively in larger-scale models.

Baselines. Since our goal is to analyze the performance and robustness before and after control
model reasoning in both zero-shot and few-shot settings, we focus on three baselines in our study:
1) Base: as the simplest approach with LLMs for reasoning, feed the model with only one question
query. 2) CoTZ (Kojima et al., 2022): the most common zero-shot CoT is employed to provide
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Table 1: Results of RoT and CoT based on different LLMs on a variety of reasoning tasks. Green
indicates an equal or improved accuracy compared to the Base method, while red indicates an accu-
racy decrease. It can be observed that, compared to CoT prompting, RoT achieves more consistent
accuracy improvements across a variety of tasks.

Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

Base 26.00 54.00 47.75 63.62 44.80 20.33
+ CoTZ 26.31 46.00 43.41 62.05 52.75 24.33
+ RoTZ 26.23 54.33 48.24 63.54 45.45 20.67

Base 26.00 54.00 47.75 63.62 44.80 20.33
+ CoTF 4.62 38.67 53.07 59.26 47.60 31.00
+ RoTF 25.55 56.00 48.16 63.80 45.50 20.33

Llama-3-8B-Instruct
Base 73.31 80.67 72.65 65.07 68.90 44.00

+ CoTZ 74.45 82.33 72.24 66.07 90.45 43.00
+ RoTZ 74.83 83.33 72.89 65.24 76.35 47.67

Base 73.31 80.67 72.65 65.07 68.90 44.00
+ CoTF 72.02 81.00 73.63 62.75 96.50 50.67
+ RoTF 74.37 83.67 73.30 65.94 70.30 43.66

Table 2: The robust results of our approach and different general baselines with CoT on each task.
Bold text indicates optimal results in a single dataset.

Method
Arithmetic Commonsense Symbolic

GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter
Llama-2-7B-Chat

CoTZ 5.46 11.34 6.54 6.04 8.80 14.00
RoTZ 3.02 1.32 1.64 0.70 0.30 0.68
CoTF 1.44 0.00 2.78 0.48 2.70 2.00
RoTF 0.08 0.67 0.00 1.88 0.00 0.00

Llama-3-8B-Instruct
CoTZ 33.36 85.32 2.94 5.94 13.80 18.66
RoTZ 2.58 2.66 0.82 1.14 16.40 11.34
CoTF 0.23 0.33 0.74 0.26 0.45 1.00
RoTF 0.37 0.34 0.33 0.26 0.45 1.00

a thought path. 3) CoTF (Wei et al., 2022): directly using some demonstrations before asking a
question to LLMs.

Evaluation Metrics. We consider the performance of RoT zero-shot (RoTZ) and few-shot (RoTF )
settings. Besides the utility of performance, which is evaluated by accuracy, we also conducted
results on the robustness against forms of prompts. For zero-shot settings, we selected three different
specific instructions: (1) Let’s think step by step. (2) Let’s think about this logically. (3) Let’s solve
this problem by splitting it into steps. For few-shot settings, we conducted two studies: 1) Using
the original order of the given demonstrations, shown in Appendix C.3. 2) Based on experiment
1, we randomly shuffled the order of the demonstrations. Then we use the accuracy difference to
consider the robust performance of our approach. Specifically, given a list of accuracy results from
A = {Ã1, Ã2, · · · , Ãn} given by different prompts mentioned above, the robust score is calculated
by their pairwise difference:

∑n
i=1

∑n
j=i+1 |Ãi − Ãj |. The answer extraction process is based on

the methodology outlined by Kojima et al. (2022). Detailed procedures and results are provided in
the Appendix C.2.

Experimental Settings. If not explicitly stated, in all experiments, we set the number of stimuli
prompts M = 1, the sample number N = 128, and select the samples by high perplexity. At the
same time, we set the max new tokens to 512 in the generation stage and pick the last 5 layers to
control. We choose α based on the accuracy performance on each dataset. In the reasoning error
localization experiment, we set δ = 10. We use float16 to load large language models and employ
greedy search as our decoding strategy. All experiments are conducted using one NVIDIA L20 GPU
(except Llama-2-70B-Chat which uses three NVIDIA A100 GPUs).
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Figure 2: Ablation study of our approch. (a) Results on a larger scale on the GSM8K dataset. (b)
Results on the number of samples on the SVAMP dataset. (c) Results on the number of selected
layers on the SVAMP dataset.

6.2 EXPERIMENTAL RESULTS

Utility Performance. We first consider the utility performance of RoT. As shown in Table 1, we
can see that: 1) The original CoT performs unstable on different tasks. Generally speaking, CoTZ

and CoTF appear better, but they are lower than Base in some datasets, such as the CSQA dataset
in the zero-shot scenario, which is consistent with the observation in (Kojima et al., 2022). At the
same time, for few-shot, CoTF performs extremely poorly in the GSM8k dataset because Llama-
2-7B-Chat repeats the given demonstrations, resulting in a reduction in the number of valid tokens.
Compared to CoTs, our RoT performs strongly in generalization on these datasets but may have
lower accuracy in some cases. This is because, in RoT, we add additional directions to the hidden
states of the prompt. These manipulations will cause a loss of information regarding the original
query, making the accuracy lower. 2) In terms of different models, the Llama-3-8B-Instruct model
has been improved more significantly. For example, with Llama-2-7B-Chat as the backbone, RoTZ

is improved by only 0.23 and 0.33 compared with Base on the GSM8K and SVAMP datasets, re-
spectively; with Llama-3-8B-Instruct, the improvements are 1.52 and 2.66, respectively. This is
primarily because the model is trained on a larger corpus and has learned more knowledge, so the
activations contain richer information and can better capture related representations.

Robustness Analysis. We also conducted experiments on robustness, and the results are shown in
Table 2 (more results are included in Appendix B.2). From this table, we can observe that RoT
demonstrates a remarkable advancement over CoT in terms of robustness. We found that CoT
methods are very sensitive to prompt design and sometimes fail to output the corresponding response
based on the given instruction. However, our RoT extracts more essential information from the
representation engineering level, making it more adaptable to various prompts. Note that for Llama-
3-8B-Instruct, there are two datasets (SVAMP and Coin Flip) that do not provide robust performance
gains. This is because Llama-3-8B-Instruct is a very strong model, while Coin Flip and SVAMP are
two relatively easy tasks (as can be seen from the Table 1, the accuracy of CoTs in the SVAMP
dataset is greater than 81%, and in the Coin Flip dataset is greater than 90%). These two factors may
cause it to over-capture too many irrelevant concepts from the stimuli, thus pointing to the wrong
reasoning direction.

Results on Larger Models. To further demonstrate the effectiveness of our approach, we conduct
research on a larger scale. Specifically, we follow the few-shot settings, and evaluate two larger
models (Llama-2-13B-Chat and Llama-2-70B-Chat) on the GSM8K dataset. From Figure 2a, we
can see that our approach has improved performance on both 13B and 70B, but the improvement on
70B is smaller. We speculate that this is because the 70B model contains very rich knowledge, and
the knowledge contained in a few demonstrations has limited improvement on the model.

Case Study of Reasoning Error Localization. We conducted a reasoning error localization ex-
periment. We can calculate the token-level score with Algorithm 1 through our approach. Figure 3
shows that our approach can localize those errors in the response through CoT. In this case, Llama-
2-7B-Chat did not really understand the known information in the given question and calculated
different units (hour and minute). Specifically, before calculating the hour and minute tokens, the
scores of the tokens are all greater than zero, indicating no potential errors, while when calculating
the hour and minute tokens, our method detects potential conflicts with previous knowledge and
thus obtains a score less than zero. We also show our additional case study in Appendix D.
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John collects peaches for 3 hours. He can collect 2 peaches a minute. How many peaches does
he collect?

To find out how many peaches John collects, we need to multiply the time he spends collecting 

peaches (3 hours) by the number of peaches he can collect per minute (2 peaches/minute). So

-0.090.62    

John collects: 3 hours x 2 peaches/minute = 6 peaches. Therefore, John collects 6 peaches.
-0.15 0.62 -0.32 0.62   0.62 -0.06

Figure 3: A real case of reasoning error localization by using Llama-2-7B-Chat in a zero-shot sce-
nario on GSM8K using Algorithm 1. The green bar indicates that the reasoning snippet is correct,
and the red bar means that the reasoning snippet may be wrong. The numbers in the bar are the
scores calculated by Algorithm 1.

Table 3: Results for different sample selection strategies.

Model Perlexity Random
Low High Seed1 Seed2 Seed3 Seed Avg.

Llama-2-7B-Chat 23.43 25.55 25.32 25.24 25.32 25.30
Llama-3-8B-Instruct 74.22 74.37 74.52 74.37 73.92 74.27

6.3 ABLATION STUDY

Number of Samples. We conducted an ablation study on how to select samples and how many
samples N in the stimulus set for constructing neural populations are sufficient. For the sample
selection strategy, we focus on two different strategies and evaluate these on the GSM8K dataset:
1) Random strategy. We randomly select samples in the training dataset using three random seeds.
2) Low Perplexity strategy. We select samples based on low perplexity. 3) High Perplexity strategy.
Similar to the low perplexity strategy, we select samples based on high perplexity. As shown in Ta-
ble 3, we can observe that the high perplexity strategy has better and more generalized performance.
This is because high perplexity usually means low confidence in LLMs. Therefore, if a question has
a higher perplexity, the question has more latent knowledge information.

For the number of samples N , we consider the set N = {32, 64, 128, 256, 512} and calculate their
average accuracy scores on the SVAMP dataset using three different seeds. From Figure 2b, we can
see that the performance is quite stable for different numbers of samples. However, there is still a
little decrease when N is large enough. This is because when N is large enough, the representation
spaces contain richer information. Thus, adding the directions in (4) will make the query lose more
of its query information, causing a lower accuracy.

Number of Selected Layers. Here we study the effect of different numbers of selected layers |K|
for neural populations. While LLMs have many layers, such as Llama-2-7B, which contains 32
layers, recent studies have shown that not all layers store important information about reasoning and
that this information is usually found in the last layers of the model (Fan et al., 2024; Cosentino &
Shekkizhar, 2024). Therefore, we consider the last L layers, where L = {1, 3, 5, 10, 15}.

In this experiment, we evaluate it with three different seeds. Figure 2c displays the result of average
accuracy scores on the SVAMP dataset. From this figure, we can see that the accuracy first increases
and then shows a decreasing trend as the number of control layers increases. This is because when
the number of layers is very small, each manipulation will correct some of the reasoning errors.
However, in RoT we have to manipulate each activation in the layer of the set K, and each manip-
ulation will lose some information about the query. Thus, the accuracy decreases when the number
of layers is larger.

7 CONCLUSION

In this paper, we proposed a novel framework to explain and understand the fundamental factors
behind CoT’s success. Specifically, we first connected CoT reasoning and the Hopfieldian view
of cognition in cognitive neuroscience. Then, we developed a method for localizing reasoning er-
rors and proposed the RoT framework to enhance the robustness of the reasoning process in CoTs.
Experimental results demonstrate that RoT improves the robustness and interpretability of CoT rea-
soning while offering fine-grained control over the reasoning process.
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A ADDITIONAL PRELIMINARIES

The Sherringtonian View. Unlike the Hopfieldian perspective, the Sherringtonian view (Sherring-
ton, 1906; Barlow, 1953) of cognitive explanation emphasizes the importance of direct neuron-to-
neuron connections in the brain. This view posits that the primary explanation for cognition lies
in the specific interactions between neurons and the computations these neurons perform within
well-defined circuits (Mogenson, 2018).

At an algorithmic level, the Sherringtonian view conceptualizes cognition as networks of nodes
(neurons) with weighted connections (synapses) between them. In this framework, neurons perform
distinct computational transformations on the signals they receive from other neurons in the network.
Cognitive processes are described by how individual neurons receive inputs, process these inputs
through neural transfer functions, and transmit the resulting signals to connected neurons. Thus,
cognition is explained through the computations occurring at the level of individual neurons and the
signal flow across their connections.

Zero-shot CoT. Zero-shot CoT is a simple but effective chain of thought (CoT) prompting ap-
proach proposed by Kojima et al. (2022). It allows language models to generate a step-by-step
explanation or thought process to solve problems without requiring prior demonstrations or specific
training by simply adding “Let’s think step by step” before each answer. Specifically, given a query
q and a model M with weights θ, the generation process can be defined as:

R = arg max pr(R|q, t; θ) (5)
where R is the response text of the model, which is generated from all potential responses R, and t
is a prompt text like “Let’s think sttep by step.”

Few-shot CoT. Similar to zero-shot CoT, few-shot CoT (Wei et al., 2022) is also a prompting tech-
nique that gives a few examples with step-by-step reasoning processes to stimulate the model’s rea-
soning ability. Formally, given the query q and a set of demonstrations D = {(q̃1, ã1), (q̃2, ã2), . . . },
our aim is to generate a response with intermediate reasoning steps:

R = arg max pr(R|D, q; θ) (6)

Table 4: Statistics of the data set.

Dataset Task Domain # Samples Answer Format

GSM8K Arithmetic 1319 Number
SVAMP Arithmetic 300 Number

StrategyQA Commonsense 2290 Yes or No
CSQA Commonsense 1221 Multiple Choices

Coin Flip Symbolic 2000 Yes or No
Random Letter Symbolic 300 Letter

B OTHER EXPERIMENTAL DETAILS

B.1 DATASET

The statistics of the data is shown in Table 4. The details about each data set are as follows:

Arithmetic Reasoning. The arithmetic reasoning benchmarks aim to analyze and/or understand
the model’s mathematical reasoning skills. These include: (i) GSM8K Cobbe et al. (2021), a math
word problems benchmark encompassing a variety of reasoning steps; (ii) SVAMP Patel et al.
(2021), containing math word problems with multiple structures.

Commonsense Reasoning. These data sets aim to analyze the ability of the model on common-
sense reasoning tasks. These include: (i) StrategyQA Geva et al. (2021), a commonsense benchmark
requiring multi-level strategy to answer the question; (ii) CSQA Talmor et al. (2019) benchmark
dataset of multiple-choice questions that require different types of commonsense knowledge to pre-
dict the correct answers.
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Symbolic Reasoning. These data sets aim to test the abilities of the model requiring advanced
symbolic capabilities. For this task, we curated two new datasets, as follows. (i) Coin Flip dataset,
we employ the data curation strategy of a previous study Wei et al. (2022) using the number of oper-
ations as 2, 4 and 7 to come up with the complete dataset; (ii) Random Letter, an advanced version
of the last letter concatenation with reference to the previously studied form of word assembly Wei
et al. (2022), where 2-4 words are randomly formed and characters are randomly drawn from them,
instead of taking the beginning or the end of each word at a fixed point.

Table 5: The detailed robust results in the zero-shot settings.

Method Arithmetic Commonsense Symbolic
GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat
CoTZ1 26.31 46.00 43.41 62.05 52.75 24.33
CoTZ2 26.23 48.33 43.90 60.52 48.35 17.67
CoTZ3 23.58 51.67 46.68 63.54 50.10 17.33
RoTZ1 26.23 54.33 48.24 63.54 45.45 20.67
RoTZ2 24.72 53.67 47.91 63.58 45.50 20.67
RoTZ3 25.09 53.67 47.42 63.23 45.35 20.33

Llama-3-8B-Instruct
CoTZ1 74.45 82.33 72.24 66.07 90.45 43.00
CoTZ2 74.83 83.33 72.65 63.32 83.55 42.00
CoTZ3 58.15 40.67 73.71 63.10 89.40 33.67
RoTZ1 74.83 83.33 72.89 65.24 76.35 47.67
RoTZ2 74.91 83.33 72.73 64.93 71.95 46.67
RoTZ3 73.62 82.00 72.48 65.50 68.15 42.00

Table 6: The detailed robust results in the few-shot settings.

Method Arithmetic Commonsense Symbolic
GSM8K SVAMP CSQA StrategyQA Coin Flip Random Letter

Llama-2-7B-Chat
CoTF1 4.62 38.67 53.07 59.26 47.60 31.00
CoTF2 3.18 38.67 50.29 59.74 50.30 29.00
RoTF1 25.55 56.00 48.16 63.80 45.50 20.33
RoTF2 25.63 55.33 48.16 65.68 45.50 20.33

Llama-3-8B-Instruct
CoTF1 72.02 81.00 73.63 62.75 96.50 50.67
CoTF2 72.25 80.67 72.89 67.47 95.00 50.67
RoTF1 74.37 83.67 73.30 65.94 70.30 43.67
RoTF2 74.00 83.33 73.63 65.68 69.85 42.67

B.2 DETAILS OF ROBUST EXPERIMENT

We show our detailed results of the robustness in Table 5 and 6. For zero-shot settings, the terms
Z1, Z2, and Z3 refer to the use of three different prompts, respectively (as shown in Section 6). For
few-shot settings, the terms F1 and F2 also refer to two different experiments, as shown in Section
6.

C PROMPTS

C.1 PROMPT TEMPLATES

Table 7 illustrates the design of stimulus prompts utilized for Chain of Thought (CoT) prompting,
distinguishing between zero-shot CoT and few-shot CoT methodologies. In the zero-shot CoT ap-
proach, the model is presented with a question devoid of preceding examples, in contrast to the
few-shot CoT method, where the model is furnished with multiple exemplars. For each method, the
first row is a positive prompt and the second is a negative prompt. Red indicates stimulus token.
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Table 7: The stimulus prompting design for CoT-style methods.

zero-shot CoT
USER: <question>
ASSISTANT: Let’s think step by step.
USER: <question>
ASSISTANT:

few-shot CoT

USER: <n different examples>
<question>
ASSISTANT:
USER: <question>
ASSISTANT:

Table 8: Extraction templates for various tasks.

Task Extraction Template
StrategyQA Therefore, the answer (Yes or No) is

CSQA Therefore, among A through E, the answer is
Coin Flip Therefore, the answer (Yes or No) is

Random Letter Therefore, the answer is

C.2 ANSWER EXTRACT PROMPTS

The demonstration of our answer extraction method is in Table 8.

C.3 EXAMPLE PROMPTS FOR FEW-SHOT SETTING

We demonstrate our example prompts for few-shot setting in Table 9, 10, 11, 12 and 13.

D CASE DEMONSTRATIONS

We show our additional cases on arithmetic, commonsense, and symbolic reasoning tasks in Fig-
ure 4, 5, 6, and 7.
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Table 9: Few-shot exemplars for the full chain of thought prompt for the arithmetic reasoning task.
The highlighted part refers to the reasoning steps.

PROMPT FOR GSM8K AND SVAMP
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?

A: There are 15 trees originally. Then there were 21 trees after some more were planted.
So there must have been 21 - 15 = 6. The answer is 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?

A: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 =
74. After eating 35, they had 74 - 35 = 39. The answer is 39.

Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops.
How many lollipops did Jason give to Denny?

A: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he
gave Denny 20 - 12 = 8. The answer is 8.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad.
How many toys does he have now?

A: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4
more toys. 5 + 4 = 9. The answer is 9.

Q: There were nine computers in the server room. Five more computers were installed
each day, from Monday to Thursday. How many computers are now in the server room?

A: There were originally 9 computers. For each of 4 days, 5 more computers were added.
So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29.

Q: Michael had 58 golf balls. On Tuesday, he lost 23 golf balls. On Wednesday, he lost
2 more. How many golf balls did he have at the end of Wednesday?

A: Michael started with 58 golf balls. After losing 23 on Tuesday, he had 58 - 23 = 35.
After losing 2 more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have
left?

A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has
23 - 15 dollars left. 23 - 15 is 8. The answer is 8.
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Table 10: Few-shot exemplars for the full chain of thought prompt for StrategyQA. The highlighted
part refers to the reasoning steps.

PROMPT FOR STRATEGYQA
Q: Do hamsters provide food for any animals?

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?

A: Brooke Shields went to Princeton University. Princeton University is about as aca-
demically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also
succeed at the University of Pennsylvania. So the answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of Spice Girls?

A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls. Thus,
Hydrogen’s atomic number squared is less than 5. So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?

A: College commencement ceremonies can happen in December, May, and June. De-
cember is in the winter, so there can be frost. Thus, there could be frost at some com-
mencements. So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-46)?

A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months,
which is more than 6 months. Thus, a llama could not give birth twice during the War in
Vietnam. So the answer is no.

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6g/cm3, which is less than water. Objects less dense
than water float. Thus, a pear would float. So the answer is no.
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Table 11: Few-shot exemplars for the full chain of thought prompt for CSQA. The highlighted part
refers to the reasoning steps. There are newlines between the answer choices that are omitted in the
table for space reasons.

PROMPT FOR CSQA
Q: What do people use to absorb extra ink from a fountain pen? Answer Choices: (a)
shirt pocket (b) calligrapher’s hand (c) inkwell (d) desk drawer (e) blotter

A: The answer must be an item that can absorb ink. Of the above choices, only blotters
are used to absorb ink. So the answer is (e).

Q: What home entertainment equipment requires cable?
Answer Choices: (a) radio shack (b) substation (c) television (d) cabinet

A: The answer must require cable. Of the above choices, only television requires cable.
So the answer is (c).

Q: The fox walked from the city into the forest, what was it looking for? Answer Choices:
(a) pretty flowers (b) hen house (c) natural habitat (d) storybook

A: The answer must be something in the forest. Of the above choices, only natural habitat
is in the forest. So the answer is (b).

Q: Sammy wanted to go to where the people were. Where might he go? Answer Choices:
(a) populated areas (b) race track (c) desert (d) apartment (e) roadblock

A: The answer must be a place with a lot of people. Of the above choices, only populated
areas have a lot of people. So the answer is (a).

Q: Where do you put your grapes just before checking out? Answer Choices: (a) mouth
(b) grocery cart (c)super market (d) fruit basket (e) fruit market

A: The answer should be the place where grocery items are placed before checking out.
Of the above choices, grocery cart makes the most sense for holding grocery items. So
the answer is (b).

Q: Google Maps and other highway and street GPS services have replaced what? Answer
Choices: (a) united states (b) mexico (c) countryside (d) atlas

A: The answer must be something that used to do what Google Maps and GPS services
do, which is to give directions. Of the above choices, only atlases are used to give direc-
tions. So the answer is (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? Answer
Choices: (a) harder (b) anguish (c) bitterness (d) tears (e) sadness

A: The answer should be the feeling of someone getting divorced who was doing all the
work. Of the above choices, the closest feeling is bitterness. So the answer is (c).
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Table 12: Few-shot exemplars for the full chain of thought prompt for the random letter concatena-
tion task. The highlighted part refers to the reasoning steps.

PROMPT FOR RONDOM LETTER CONCATENATION
Q: Take the first letters of the words in "James Hickman " and concatenate them.

A: The first letter of "James" is "J". The first letter of "Hickman" is "H". Concatenating
them is "JH". The answer is JH.

Q: Take the second letters of the words in "Carl Mccall Bonilla " and concatenate them.

A: The second letter of "Carl" is "a". The second letter of "Mccall" is "c". The second
letter of "Bonilla" is "o" Concatenating them is "aco". The answer is aco.

Q: Take the third letters of the words in "Randy Tanner " and concatenate them.

A: The third letter of "Randy" is "n". The third letter of "Tanner" is "n". Concatenating
them is "nn". The answer is nn.

Q: Take the first letters of the words in "Kenny Kim " and concatenate them.

A: The first letter of "Kenny" is "K". The first letter of "Kim" is "K". Concatenating them
is "KK". The answer is KK.
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Table 13: Few-shot exemplars for the full chain of thought prompt for the coin flip task. The
highlighted part refers to the reasoning steps.

PROMPT FOR COIN FLIP
Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?

A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an
even number. The coin started heads up, so after an even number of flips, it will still be
heads up. So the answer is yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads
up?

A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the
coin still heads up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still
heads up?

A: The coin was flipped by Sal. So the coin was flipped 1 time, which is an odd num-
ber. The coin started heads up, so after an odd number of flips, it will be tails up. So the
answer is no.

Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd
number. The coin started heads up, so after an odd number of flips, it will be tails up. So
the answer is no.

Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the
coin still heads up?

A: The coin was flipped by no one. So the coin was flipped 0 times. The coin started
heads up, and it was not flipped, so it is still heads up. So the answer is yes.

Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads
up?

A: The coin was flipped by Ryan and Shaunda. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.
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To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber. 

So, the total amount of blue fiber required is 2 bolts x 1 bolt = 2 bolts.

The total amount of white fiber required is half of 2 bolts, which is 1 bolt.

Therefore, the total number of bolts needed for the robe is 2 + 1 = 3 bolts.

Q: A robe takes 2 bolts of blue fiber and half that much white fiber.  How many bolts in
total does it take?

To find the total number of bolts needed for the robe, we need to calculate the total
amount of blue fiber and white fiber required, and then divide that by the amount of
blue fiber required per bolt. The problem states that a robe takes 2 bolts of blue fiber
and half that much white fiber. 

To find the total amount of blue fiber required, we can multiply the number of bolts by
the amount of blue fiber per bolt:
2 bolts x 2 = 4 bolts of blue fiber

To find the total amount of white fiber required, we can multiply the number of bolts by
the amount of white fiber per bolt:
2 bolts x 0.5 = 1 bolt of white fiber

Now, we need to divide the total amount of blue fiber by the amount of blue fiber
required per bolt to find the total number of bolts needed:
4 bolts of blue fiber / 2 = 2 bolts of blue fiber per bolt

Therefore, it takes 2 bolts of blue fiber and 1 bolt of white fiber to make the robe.

+ Control

Figure 4: A real case predicted by Llama-2-7B-Chat with zero-shot CoT on the GSM8K dataset.
The segment highlighted in blue represents the correct output of the model. The red part shows that
the model starts to reason in the wrong direction without control, while the green portion indicates
the model reason in the correct direction after adding control.
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Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today.
After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
A: There are 15 trees originally. Then there were 21 trees after some more were
planted. So there must have been 21 - 15 = 6.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in
the parking lot?
A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.}  The answer is 5.
...

Q: Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but
40% of the way through the download, Windows forces a restart to install updates,
which takes 20 minutes. Then Carla has to restart the download from the beginning.
How load does it take to download the file?

Let's break this problem down step by step!
Initially, Carla can download 2 GB/minute. To find out how many minutes it would take
to download the entire file, we can divide the file size (200 GB) by the download rate (2
GB/minute):
200 GB / 2 GB/minute = 100 minutes

However, Windows forces a restart after 40% of the download is complete. To find out
how many GB are left to download, we can calculate 40% of the total file size:
40% of 200 GB = 0.4 x 200 GB = 80 GB

So, Carla has to restart the download from the beginning, and she has 80 GB left to
download. To find out how many minutes it will take to download the remaining 80 GB,
we can divide the remaining file size by the download rate:
80 GB / 2 GB/minute = 40 minutes.

Adding the initial 100 minutes to the additional 40 minutes, Carla will need a total of:
100 minutes + 40 minutes = 140 minutes to download the entire file.

Let's break it down step by step:
1. Carla can download 2 GB/minute, so it would normally take her:
200 GB / 2 GB/minute = 100 minutes to download the file.

2. But, 40% of the way through the download, Windows forces a restart. This means
she has downloaded:
40% of 200 GB = 80 GB at that point. This means she still has: 200 GB - 80 GB = 120
GB left to download.

3. The restart takes 20 minutes, so Carla loses 20 minutes of download time.

4. After the restart, Carla has to start the download from the beginning, which means
she has to re-download the 80 GB she already had. This adds another 80 GB / 2
GB/minute = 40 minutes to the total download time.

Therefore, the total download time is: 
100 minutes (original download time) + 20 minutes (restart time) + 40 minutes (re-
downloading already downloaded portion) = 160 minutes.+ Control

Figure 5: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the GSM8K dataset.
The purple part is an example of input-output pairs given by user. The segment highlighted in blue
represents the correct output of the model. The red part shows that the model starts to reason in the
wrong direction without control, while the green portion indicates the model reason in the correct
direction after adding control.
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Q: Do hamsters provide food for any animals?
A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?
A: Brooke Shields went to Princeton University. Princeton University is about as
academically rigorous as the University of Pennsylvania. Thus, Brooke Shields could also
succeed at the University of Pennsylvania. So the answer is yes.
...

Q: Is a platypus immune from cholera?

I think I can help you with that!  

A: Platypuses are mammals.

Cholera is a bacterial infection that can affect many animals, including mammals. 
Platypuses do not have a natural immunity to cholera.  So, the answer is no.

According to scientific research, platypuses are resistant to cholera.

This is because they have a unique immune system that is adapted to their aquatic
environment. Platypuses have a low body temperature, which makes it difficult for many
pathogens, including cholera, to replicate and cause disease. 

Additionally, their immune system is highly effective at recognizing and eliminating
pathogens, and they have a strong response to bacterial infections.

In fact, studies have shown that platypuses are resistant to a range of bacterial
infections, including cholera, and that they are able to recover quickly from infections
that would be fatal to other animals.

So, to answer your question, yes, platypuses are generally immune from cholera!+ Control

Figure 6: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the strategyQA
dataset. The purple part is an example of input-output pairs given by user. The segment high-
lighted in blue represents the correct output of the model. The red part shows that the model starts
to reason in the wrong direction without control, while the green portion indicates the model reason
in the correct direction after adding control.
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Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up?
A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an
even number. The coin started heads up, so after an even number of flips, it will still be
heads up. So the answer is yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads
up?
A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is
an even number. The coin started heads up, so after an even number of flips, it will still
be heads up. So the answer is yes.
...

Q: A coin is heads up. verley flips the coin. nytavious does not flip the coin. alsiha does
not flip the coin. leroyal does not flip the coin.  Is the coin still heads up?

The coin was flipped by Verley. So the coin was flipped 1 time, which is an odd number.
The coin started heads up, so after an odd number of flips, it will be tails up. 

However, no one else flipped the coin, so the coin was not flipped again. Since the coin
was flipped an odd number of times initially, it will still be heads up. So the answer is
yes.

The only person who flipped the coin is Verley. Since the coin was initially heads up,
Verley's flip would change the side of the coin. 

Therefore, the coin is no longer heads up.+ Control

Figure 7: A real case predicted by Llama-3-8B-Instruct with few-shot CoT on the coin flip dataset.
The purple part is an example of input-output pairs given by user. The segment highlighted in blue
represents the correct output of the model. The red part shows that the model starts to reason in the
wrong direction without control, while the green portion indicates the model reason in the correct
direction after adding control.

27


	Introduction
	Related Work
	Preliminaries
	Bridging Reasoning in CoTs and the Hopfieldian View
	Applications of Hopfieldian View to CoTs
	Reasoning Error Localization
	Representation of Thought

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study

	Conclusion
	Additional Preliminaries
	Other Experimental Details
	Dataset
	Details of Robust Experiment

	Prompts
	Prompt Templates
	Answer Extract Prompts
	Example Prompts for Few-shot Setting

	Case Demonstrations

