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ABSTRACT

This work proposes a new method to sequentially train a deep neural network
on multiple tasks without suffering catastrophic forgetting, while endowing it
with the capability to quickly adapt to unknown tasks. Starting from existing
work on network masking (Wortsman et al., 2020), we show that a simple to learn
linear combination of a small number of task-specific masks (”impressions”) on
a randomly initialized backbone network is sufficient to both retain accuracy on
previously learned tasks, as well as achieve high accuracy on new tasks. In contrast
to previous methods, we do not require to generate dedicated masks or contexts
for each new task, instead leveraging transfer learning to keep per-task parameter
overhead negligible. Our work illustrates the power of linearly combining individ-
ual impressions, each of which fares poorly in isolation, to achieve performance
comparable to a dedicated mask. Moreover, even repeated impressions from the
same task (homogeneous masks), when combined can approach the performance
of heterogeneous combinations if sufficiently many impressions are used. Our
approach scales more efficiently than existing methods, requiring orders of
magnitude fewer parameters and can function without modification even when task
identity is missing. In addition, in the setting where task labels are not given at
inference, our algorithm gives an often favorable alternative to the entropy based
task-inference methods proposed in (Wortsman et al., 2020). We evaluate our
method on a number of well known image classification data sets and architectures.
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1 INTRODUCTION

Sequential learning without catastrophic forgetting has been an area of active research in machine
learning for some time (Maes et al., 1996; Thrun & Pratt, 1998; Serra et al., 2018). A precondition
for achieving artificial general intelligence (AGI) is that models be able to learn and remember a wide
variety of tasks sequentially, without forgetting previously learned ones. In real-world scenarios, data
from different tasks may not be available simultaneously, which makes it imperative to both allow
continued learning as well as to avoid catastrophic forgetting of a potentially unbounded number of
tasks (see also The Sequential Learning Problem (McCloskey & Cohen, 1989), Constraints Imposed
by Learning and Forgetting Functions (Ratcliff, 1990) and Lifelong Learning Algorithms (Thrun &
Pratt, 1998)). Recently, some successful approaches to combat this problem use task specific sub-
models, which allow neural networks to context-switch between different learning tasks (Wortsman
et al., 2020; Mallya et al., 2018; Mancini et al., 2018). The underlying context for each task can be
represented as ”filters” or ”masks”, altering the network connections for each task. Yet all of these
approaches scale unfavorably with the number of unique tasks to be learned.

Our contribution: We propose a novel method which exploits transfer learning and network masking
to sequentially learn a theoretically unlimited number of tasks with much lower parameter overhead
than prevailing benchmarks. Our method, termed ImpressLearn, uses elements from Supermasks in Su-
perposition (SupSup) by Wortsman et al. (2020). The SupSup approach leverages the observation that
even within randomly weighted neural networks there exist task-specific supermasks—subnetworks
produced by overlaying a binary mask that selectively removes connections—which achieve good
performance on the task. These supermasks can be learned from task-specific data and stored, one
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mask per task. At inference, the appropriate task-specific mask is applied when task identity is
known. When task-labels of a previously seen task are not known, the correct mask can be inferred
via entropy considerations.

A ”basis” of masks: Our approach goes further, driven by two core ideas. In order to dramatically
improve scaling of the parameters with the number of different tasks, we reduce the number of
necessary masks to a constant number, independent of the number of different tasks. Our basis-masks
are constructed from a small number of initial tasks. Leveraging transfer learning, this set of learned
masks, each of which can be interpreted as an ”impression” of a previously seen prior task, serves as
a set of latent features for new learning objectives, encoding common structural information. Our
second idea is to use the power of linear combinations to combine these impressions to quickly learn
a real-valued mask that performs well for new tasks. Hence, other than a fixed number of basis-masks,
only a small number of coefficients need to be learned and stored for each subsequent task. This
greatly benefits scalability, a major drawback of previous approaches, as this in principle allows
for an unlimited number of new tasks while the parameter overhead is several orders of magnitude
smaller than storing even a compressed binary network mask.

Figure 1: Overview of the ImpressLearn method (best viewed in colour). Given a fixed-weight
randomly initialized backbone network, we show that a few binary mask ”impressions” from training
prior tasks (3 in this case) can form a linear combination with coefficients α to learn new tasks.
Unlike the impressions, the resulting mask is real-valued, and not binary.

Specifically, ImpressLearn uses the first few tasks from a multi-task set to generate a relatively
small number of binary masks. For subsequent tasks, these impressions are used akin to a basis:
new tasks are learned through a simple linear combination of the basis-impressions. This might be
reminiscent of associative learning where impressions of previous scenarios are combined to cope
with new ones. In order to increase the expressivity of this approach, we allocate one real-valued
coefficient for each layer of weights of the underlying model. Learning these linear combinations
is fast and simple; and storing the coefficients requires only trivial overhead per task. For instance,
in the case of LeNet-300-100 on RotatedMNIST with a basis set of 10 masks, new tasks require
only 3× 10 = 30 parameters while a new SupSup mask at e.g. 10% sparsity requires ≥ 25K weight
indices to specify. We provide ample empirical evidence of the efficacy of our ImpressLearn approach
on a variety of benchmarks, outlining the radical savings in parameters needed to be stored per task
compared to SupSup.

Homogeneous masks: Somewhat surprisingly, we can even generate all basis-masks from the same
initial task using different random seeds for the learning algorithm (but the same random backbone
network). We show that with a sufficiently large number of such ”homogeneous” impressions,
our algorithm learns linear combinations with close to benchmark accuracy on new tasks. We are
reminded of an infant learning by taking different ”snapshots” of the same object, to infer properties
of another. This ”homogeneous impression” method is particularly useful to address possible drifts
in the data. Akin to ensembling, it leverages the power of linear combinations for transfer learning.
An additional important advantage is that the homogeneous method has no limit on the number of
basis-mask we can generate ab initio (since this requires a single task only).

To provide another benchmark for our approach, we also try our linear combination approach with
a set of completely random masks of desired sparsity. We demonstrate on several benchmarks that
if we chose a sufficiently large set of such random basis masks, our optimization still yields good
accuracy. While naturally, combinations of random masks lag behind the heterogeneous and also
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the homogeneous setting, we show that there is a trade-off between number of masks and their
task-specificity (non-randomness). In settings where producing task-specific basis masks is costly and
where we might not wish to perform the SupSup mask search, our linear combination optimization
still can yield satisfactory results with a large number of random masks.

Example: LeNet-300-100 on RotMNIST To illustrate our approach and its performance, Fig. 2
shows the accuracy of our ImpressLearn approach, compared to SupSup on the Rotated MNIST
task set. This allows us to share some observations which generalize to a wide variety of benchmarks
(see Sec. 4). First, to show the power of the linear combination approach beyond pure transfer
learning, we evaluate the accuracy of a basis mask on tasks different from the one the mask was
trained on: we get close to random accuracy (”X” in Fig. 2, leftmost box plot). Next we illustrate how
a linear combination of a small number of masks from different tasks (heterogeneous impressions)
achieves close to benchmark accuracy on new tasks. In this case, combining a few masks already gives
performance close to, even exceeding, the SupSup benchmark. This is followed by the performance
of a set of homogeneous masks, where all impressions are generated from the first task (middle of
Fig. 2). We can see that when using homogeneous impressions, we need a larger number of basis
masks to achieve accuracy comparable to the heterogeneous setting, but that ultimately here also
we match SupSup accuracy, with a vastly smaller number of parameters than the SupSup approach.
Lastly, in the right part of Fig. 2 we study how our linear combination approach performs on tasks
from the basis set when task labels are not provided at inference (basis-GN setting). Here, the our
optimization finds the ”correct” mask, or a linear combination of equal or better accuracy, providing
an alternative to the entropy-based GN-inference of (Wortsman et al., 2020).

Figure 2: Left: Average validation performance on 10 new Rotated MNIST tasks by number of
impressions and impression type. X indicates incorrect mask. Numbers 5, 10, . . . indicate heteroge-
neous and numbers with ∧ indicate a homogeneous impression set. Right: Average performance on
tasks 1 to min(|Mhom|, 25) in basis-GN regime on basis tasks without task identity. All results are
averaged over 3 different seeds and masks of density ∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.

Unknown task labels at inference and a new GN algorithm: Wortsman et al. (2020) showed that
in the so called GN regime where task labels are given at training but not at inference, entropy
minimization starting from a uniform combination of (binary) masks quickly singles out the ”correct”
mask for a task. Even though our masks for non-basis tasks are real-valued linear combinations
of binary masks, we show that in the GN setting a similar entropy minimization allows us to infer
the correct real-valued mask with the same approach. Moreover, in what we call the basis-GN
regime where the unlabeled tasks come from the set of basis tasks, we show that our ImpressLearn
optimization finds a linear combination that either favors the correct mask or yields an even better
accuracy than the corresponding basis mask without using the entropy of the output. This means that
the optimization routine of ImpressLearn gives an alternative algorithm for inference in the case of
unknown task labels at test time: it finds a linear combination of masks that often outperforms the
corresponding basis mask.

In Section 2, we briefly review related work and general approaches to countering catastrophic forget-
ting, highlighting research that motivated our approach. In Section 3, we lay out the ImpressLearn
algorithm, including our modified objective function. In Section 4, we demonstrate the effectiveness
of ImpressLearn on a variety of benchmark data sets and architectures to show close-to-benchmark
performance with a drastically reduced parameter count on new tasks, especially where the number
of possible tasks is large. We discuss our results including the trade offs between homogeneous and
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heterogeneous masks. Finally, in Section 5 we talk about limitations of our work, and areas for future
research.

2 RELATED WORK

In practice, intelligence systems should be able to learn a variety of tasks incrementally and without ex-
periencing catastrophic forgetting—degrading performance on previously acquired skills (McCloskey
& Cohen, 1989), while possibly transferring current knowledge to facilitate future training. Often-
times tasks are diverse and not available concurrently, making joint training impractical. Conversely,
ordinary finetuning (continued training of a pre-trained network) inevitably leads to catastrophic
forgetting. Continual learning encompasses a broad spectrum of algorithms and architectures that
address these issues and propose systems capable of learning from an incremental stream of tasks
while minimizing catastrophic forgetting. Most naturally, these techniques are categorized into three
groups described below (Delange et al., 2021; Wortsman et al., 2020).

Regularization-based methods: This class of algorithms trains on new tasks by finetuning weights
but attempts to retain performance on previously learned tasks through regularization. A number
of studies assess the importance of individual parameters for previous tasks and penalize their
displacement accordingly during optimization. Pioneering this approach, Serra et al. (2018) estimates
parameter importance using a Laplace-approximated posterior distribution after training on earlier
tasks. Zenke et al. (2017) impose a quadratic penalty proportional to the accumulated sensitivity
of previous loss functions to perturbations in the corresponding parameter; Aljundi et al. (2018)
use the same strategy but accumulate sensitivity of the network output to parameter perturbations
instead. In contrast, Li & Hoiem (2018) regularize by means of distilling current knowledge on
the incoming task’s data and using it during finetuning. Regularization-based methods require no
additional memory overhead per task and hence are advantageous in capacity constrained settings.
However, the plasticity of a network decreases with more tasks, imposing a natural limit on new tasks,
which creates a trade-off between learning new tasks and catastrophic forgetting.

Replay methods: Techniques in this category preserve performance on prior tasks by replaying,
rehearsing or otherwise utilizing representative samples from the corresponding data distributions.
Most commonly, replay models store examples of seen data in a separate memory buffer (Rebuffi
et al., 2017; Rolnick et al., 2019; Riemer et al., 2019); others maintain generators that approximate
the original data distribution and provide pseudo-examples (Atkinson et al., 2021; Shin et al., 2017).
While the majority of algorithms in this group replay stored examples during optimization to mimic
joint training, Lopez-Paz & Ranzato (2017) uses them to constrain optimization space and ensure
positive knowledge transfer. Replay methods require additional memory to store data samples or
allocate generators, however, these costs are usually kept fixed. For this reason, like regularization-
based models, replay models exhibit poor stability-plasticity trade-off with more tasks, but often
come with increased memory requirements when compared to regularization based methods.

Parameter isolation methods: These methods allocate new parameters for incoming tasks and
feature little to no interference between previously learned tasks. Rusu et al. (2016) allocate a new
copy of the network and enable forward transfer learning with lateral connections going into new
modules. Ren et al. (2017) combine individual learners in a decision tree and eliminate outdated
models with tree pruning. A large body of recent algorithms piggyback on a single backbone network
shared by all tasks. As such, Wen et al. (2020) (BatchEnsemble) operate on a fixed pretrained network
and, for each incoming task, optimize for a rank one parameter mask applied to the backbone at
inference. Mallya & Lazebnik (2018) (PackNet) use pruning to assign subsets of free parameters of
a backbone network to individual tasks by issuing one binary parameter mask per task. Assigned
parameters are forever frozen at their trained values, limiting capacity of the network for future tasks.
In a subsequent study, Mallya et al. (2018) (Piggyback) lift this limitation by directly optimizing
per-task binary masks and applying them to a fixed pretrained network.

SupSup Our ImpressLearn algorithm is most closely related to yet another similar method called
SupSup (Wortsman et al., 2020). This algorithm trains individual per-task binary masks but applies
them to a randomly-initialized network, leveraging the existence of supermasks (Zhou et al., 2019).
The mask optimization algorithm, edge-popup (Ramanujan et al., 2019), uses a heaviside function to
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binarize mask values on the forward pass and employs a straight-through estimator when computing
gradients. In addition, Wortsman et al. (2020) propose different training and inference modes
depending on availability of task identifiers; e.g., GG refers to the scenario when task identifies
are known during both training and inference, while in GN they are available only during training.
For the GN case Wortsman et al. (2020) introduce a one-shot algorithm to infer task identity by
minimizing the output entropy, starting from a uniform linear combination of masks and optimizing
the coefficients. While at first glance this algorithm resembles ours, there are essential differences
as we use optimization of a refined linear combination to learn new tasks. While SupSup and other
related methods suffer no catastrophic forgetting regardless of the number of tasks, they are required
to store the corresponding parameter mask for each task, which is costly. SupSup try to address this
by storing masks as attractors of a Hopfield network, but it is unclear how feasible this approach is.

3 APPROACH

Preliminaries and notation. We largely adopt the notation from Wortsman et al. (2020). For the
standard l-way classification task from a set of tasks T , inputs x are mapped to a distribution p over
output neurons {1, ..., l}. Let f be a network architecture defined over the backbone weight matrix
W , which is taken to be random but fixed. Similar to (Wortsman et al., 2020) we use the Edge-Popup
training algorithm of Ramanujan et al. (2019) (based on earlier work by Zhou et al. (2019)) to train
a binary mask M t for a task t ∈ T . We further stratify each mask by layer: let d be the number of
weight-layers of the network computing f . For i ∈ [1, . . . , d] denote by M t

i the part of the binary
matrix corresponding to layer i of the network such that M t = ⊕iM t

i . Similarly, let Wi denote the
submatrix of W corresponding to the ith layer. The sparsity ∈ (0, 1] of a mask M t is given by the
fraction of 1s in the mask and is usually fixed in advance to s1. For each task t ∈ T the SupSup
algorithm aims to find a mask M t of sparsity s to minimize E(x,y)L(y, f(x,M t �W )), where L is
the model’s loss function (cross-entropy in most cases), y ∈ {0, 1}l is the one-hot encoding of the
label and � defines the element-wise product.

Supermask training with edge-popup: For each task t, the edge-popup algorithm in SupSup learns a
score matrix S with the same dimensions as W via gradient descent as a function of the (unchanged)
weights and the loss function. It then generates the mask M by setting the top s fraction of scores in
S to 1 and the rest to 0.

Inference without task labels (GN): The task inference idea presented in Wortsman et al. (2020) is
based on the intuition that the correct mask for a task should give a highly certain (i.e. low entropy)
model output. The algorithm hence starts with an equally weighted combination of masks and uses
gradient descent on these coefficients using output entropy as the loss function. This quickly singles
out the correct mask by up-weigting the corresponding coefficient. We adopt this algorithm without
change to our real-valued masks in the GN scenario.

The ImpressLearn algorithm. For ImpressLearn we define a set basis tasks Tb ⊂ T and call
its compliment Tn = T \ Tb the set of ”new” tasks. We randomly initialize and freeze once and for
all a backbone network with weights W 2.

Step 1: For each t ∈ Tb we use the edge-popup algorithm as in SupSup to create one or several
basis-masks M t, leading to a setM = {M1,M2, . . .} of basis-masks. We use up to 250 basis masks
for various benchmark architectures and data sets.

Step 2: For each new task s ∈ Tn we define a coefficient-matrix αs ∈ R|M|×d. To find the layerwise
linear combination of basis masks, we optimize

α̂s = arg min
αs
L

(
y, f

(
x,

∑
Mt∈M

⊕di=1α
s
t,i(M

t
i �Wi)

))
. (1)

1Note that often sparsity is defined in a complementary way as the fraction of zeros in M t, but we will
keep consistency with Wortsman et al. (2020). We consider sparsities ∈ [0.05, 0.5], where 0.05 means 95% of
weights are deactivated.

2Various standard initializations are possible; we use a Kaiming normal distribution (He et al., 2019) and set
the biases to zero.
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Initial Condition on the αt,i: A priori all basis masks have equal chance to contribute to a new
task. Moreover, testing a basis mask for task t on any other task t′ 6= t gives close to random
performance, meaning there is no direct knowledge transfer (see Section 4). Hence, a uniform prior
on the distibution of the α-coefficients per layer is a reasonable assumption. We treat each layer
independently, setting αi,t = 1/|M| at the start of the gradient-based optimization.

Regularization: While overfitting is less of a concern, given the small number of parameters in our
optimization Eq. (1) we want to enforce that our algorithm aims for a sparse combination of masks
when possible, especially when faced with one of the basis tasks, where we expect our algorithm
to identify the ”correct” mask among the basis masks. For some benchmarks we hence apply an
L1-penalty for each layer for deviations from unit L1-coefficient norm, to obtain the loss function:

J = L+ λ

d∑
i=1

|M|∑
t=1

|αst,i| − 1

2

(2)

Heterogeneous vs homogeneous masks, random masks and overlap: In our heterogenous ap-
proach, we create one mask for each task in Tb. In this setting we leverage knowledge transfer from all
basis tasks for a new task. However, in some settings with few tasks, limiting mask generation to one
per task affects the viability of our method and doesn’t allow for scaling benefits to become apparent.
For example, for Split-CIFAR-100 with 20 taks, we can only generate at most 20 heterogeneous
masks. We have hence also evaluated our approach with a set of basis masks all coming from the
same task, so called homogeneous masks. A priori it is unclear whether masks produced on the same
backbone network for the same task are sufficiently different to generate a diverse enough basis
set. While previous work suggests that wider network architectures can support multiple suitable
subnetworks for a given task Ramanujan et al. (2019); Frankle & Carbin (2019), we find this effect is
prominent even using relatively conservative architectures such as LeNet 300-100 with Permuted
MNIST (Lecun et al. (1998)). Our experiments show that masks are very sensitive to initial conditions
of the popup scores and to data ordering: the overlap of homogeneous masks produced with different
random seeds is close to the overlap of randomly picked masks. Hence, at sufficiently low sparsities,
homogeneous masks, even on the same backbone network, are close to independent.

Our approach can be extended to a mix of homogeneous and heterogeneous impressions, though in
this paper we only study the trade-off for ”pure” homogeneous and heterogeneous settings.

To quantify the importance of task specific data in mask generation we also compare ImpressLearn
with the scenario where in Step 1 the basis masks are picked randomly instead of through the SupSup
popup algorithm (see Sec. 4). This allows us to study the trade-offs between random and task-specific
tasks and gives an alternative in the case where the SupSup mask search is hard to implement. In
this setting, for a fixed sparsity, masks are chosen uniformly at random (by picking edges one at a
time without repetition until the desired sparsity is reached). This mask set is then used for Step 2 of
ImpressLearn to optimize the α-coefficients. While in general this approach requires a larger base
set than SupSup-based approaches, it avoids the SupSup optimization step, which in some scenarios
could be costly (since it requires optimization of a larger number of parameters than our Step 2).

Optimization and parallelization: We use the SupSup algorithm with random initializations for
the edge popup scores and data ordering to generate the basis mask setM. One fetching attribute of
using a set of basis masks is the ability to parallelize the training process. Our approach allows for all
masks to share the same backbone network, both in the heterogeneous and the homogeneous setting.
Thus one can parallelize the same model and train multiple tasks at the same time on different GPUs,
only constrained by the number of cores or GPU accelerators available.

To optimize the αs for new tasks, we use stochastic gradient descent.

4 EXPERIMENTAL RESULTS

4.1 DATA, MODELS AND PARAMETERS

We evaluated ImpressLearn over the following classification datasets: MNIST (Lecun et al., 1998):
Permuted and Rotated; Split CIFAR-100 (Krizhevsky, 2012) and Split ImageNET (Deng et al., 2009).
A detailed description of our experimental choices and infrastructure can be found in App. A.1.
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4.2 RESULTS

Our results are presented in Figs. 2 (Sec. 1), 4, 3 and 5. We have also performed a couple of sanity
checks to evaluate our algorithm and understand which ingredients contribute to its performance.

Evaluating with ”incorrect” masks To make sure that any accuracy improvements from the linear
combination are an effect of the optimization routine of the α coefficients itself, and do not come
from chance application of a suitable mask that does well on other tasks, we test impressions
derived from one task on other tasks. We find that the incorrect mask fails to have any predictive
power on other tasks when used in isolation, giving a roughly random accuracy of 10 ± 3% for
Permuted/Rotated-MNIST/SplitImageNet (Figs. 3, 2 and 5) and 20± 2% on SplitCIFAR (Fig. 4)
benchmarks respectively.

Performance on unlabeled basis tasks - basis-GN setting: To evaluate the strength of our opti-
mization routine, we have studied the ”basis”-GN setting, by which we mean that our model is
presented with one of the basis tasks without explicitly providing a task label (as opposed to the
full GN setting where the unlabeled tasks can come from the basis and the new set). We show that
for most benchmark our algorithm is able to either find the correct mask or a linear combination of
basis masks of equal or often better accuracy. As such, our α-optimization algorithm can serve as an
alternative to the one-shot entropy based algorithm of SupSup for task inference in the GN setting.
More details and a comparison for PermutedMNIST are given in App. A.3.

Results: Overall, our results demonstrate the strength of ImpressLearn in various settings. We see
that the ImpressLearn coefficient optimization is able to learn new tasks well with a fraction of
the parameters required by other approaches. In line with expectations, we see a strong positive
relationship between accuracy and the size of the impression set |M|, with saturation reached at
different data-specific sizes. While the number of heterogeneous masks required for good accuracy
varies by dataset, ImpressLearn is particularly resource efficient when the number of possible
tasks is large and it becomes costly to store a separate mask for each task (e.g. RotatedMNIST
and PermutedMNIST). We also see that compared to the heterogeneous scenario we need more
homogeneous basis masks to achieve similar performance (and even more random masks, see App.
A.4).

Figure 3: Left: Average performance on 10 new PermutedMNIST tasks by number of impressions
and impression type. X indicates incorrect mask. Numbers N indicate a heterogeneous and N∧ a
homogeneous impression set. Right: Performance of our α-optimization in the basis-GN regime
averaged over min(|M|, 25) basis tasks. All results are averaged over 3 different seeds and masks of
density ∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.

For the SplitImageNet task we only show results for a heterogeneous basis mask set of ≤ 35 masks
due to limitations on compute. We anticipate that a larger basis mask set will achieve performance
closer to the SupSup benchmark and highlight again that our approach scales to an unlimited number
of tasks with few extra parameters. Note also that for SplitImageNet, in the basis-GN regime our
α-optimization yields a better accuracy than the SupSup baseline or the entropy based approach of
(Wortsman et al., 2020), highlighting the power of our linear combination routine.

GN setting: We have verified on several benchmarks that the one-shot algorithm of Wortsman et al.
(2020) continues to work in our setting where the masks for new tasks can be viewed as real-valued
masks obtained through linear combinations of binary (basis) masks. Our experiments show that the
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one-shot algorithm continues to work without change. For PermutedMNIST for example, in the GN
scenario the algorithm was able to find the correct mask 94.6 % of the time in 3 epochs, and 98.1 %
within 5 when inferring identity among 250 learned tasks.

Figure 4: Left: Average performance on 5 new Split CIFAR-100 tasks by number of impressions
and impression type. X indicates incorrect mask. Numbers N indicate a heterogeneous and N∧ a
homogeneous impression set. Right: Performance of our α-optimization in the basis-GN regime
averaged over min(|M|, 25) basis tasks. All results are averaged over 3 different seeds and masks of
density ∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.

Table 1: Parameter count for different architectures and data sets.
Dataset (Max Tasks)

Model O(params) Mask (kB) |M| Layers |αt| Φ (kB) C x

PermutedMNIST (784 !)
LeNet 300-100 266K 64.9 100 3 300 ≈ 1.17 55.5

RotatedMNIST (359)
LeNet 300-100 266K 64.9 5 3 15 0.96 67.4

Split CIFAR-100 (20)
ResNet-18 6.2M 1513 10 21 210 757.6 1.99
Wide ResNet-18† 11.7M 2856 10 21 210 1429 1.99
Wide ResNet-34† 21.8M 5322 10 37 370 2662 1.99

ImageNET (2100)
ResNet-50 25.6M 6250 75 53 3975 238.7 26.2
ResNet-101† 44.5M 10864 75 104 7800 418.47 25.9
ResNet-152† 60.2M 14697 75 155 11625 570.31 25.7
pre-ResNet-200† 64.7M 15795 100 203 15225 623.6 25.3
VGG 16† 137.9M 33667 75 16 1200 1207 27.89
WRN-50-2-bottleneck† 68.9M 16821 75 53 3975 616.28 27.2

Table 2: Parameter tradeoff for different models and datasets. The maximum number of possible tasks
for each data set is given in brackets in the first column. For ImageNet we have assumed that entire
set of classes is split into 10-way tasks. For RotatedMNIST we have assumed a 1 degree granularity
of rotations. O(params) is the number of parameters of the network (weights only, assuming biases
are set to zero). Mask Size is the space on disk required to store each additional SupSup mask as
16-bit integers. |M| was approximately chosen to give either benchmark or very good performance
on new tasks. |αt| is the number of parameters (floating point) per additional new task, given a basis
of size |M|. Φ is the storage per task amortizing the cost of storing |M| basis masks over all possible
tasks. Cx is the compression or savings ratio compared to SupSup. † marks those architectures we
have not run due to resource constraints. For those we have interpolated the size of the basis set |M|
from those architectures/data sets that we ran.
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4.3 MODEL EFFICIENCY/PARAMETER SAVINGS

Here, we present the parameter savings for our ImpressLearn approach, compared to the SupSup
proposal for various architectures and data sets. Our approach has the fixed cost of storing the basis
masks as well as the task-specific α coefficients for each new task. We amortize the basis masks
across all tasks for comparison.

Table 2 highlights the parameter savings of our approach for various data sets and architectures.
Amortizing mask storage across tasks and accounting for storage of the α coefficients, we get
particularly impressive savings of an order of magnitude or more for data sets with a large number of
tasks, like PermutedMNIST and (general) ImageNet. We have also evaluated potential savings our
approach would yield for several common architectures by giving an educated guess on the number
of required basis masks. In the case of ImageNet the number of potential tasks is so large that storage
of basis masks per new task is very small even if we double the number of masks considered, and
memory required to store the α remains small. Overall, we believe our approach affords considerable
savings in memory at the expense of either no or small loss in accuracy.

5 DISCUSSION

In this work, we propose a novel way to adapt an existing continual learning algorithm, leveraging
principles from transfer learning to generalize to new tasks, allowing for scalable and parameter-
efficient continual learning. Using a simple linear combination of masks, or impressions, we see
that even this basic setup is able to learn new tasks effectively. We show that this effect is consistent
across task types and network architectures, and that it achieves competitive performance while using
significantly fewer parameters. This work highlights the advantages of re-using existing meta-features
learned on previous tasks for future learning problems and opens up a space of possibilities of
applying transfer learning to protect against catastrophic forgetting.

One application of our approach could be protection against drifts in the data. In the homogeneous
setting, in anticipation of drift, one could learn a few basis masks and a linear combination, and then
update the latter accordingly when anticipating that the underlying data changes slightly but steadily.
To our knowledge, no other approach allows for such easy continued adjustments, as most of them fix
masks or weights for fixed tasks.

We have tried several variations of our approach using different types or masks:

Signed Binary Masks: M t ∈ {−1, 0, 1}|Mt|. Allows for a little more flexibility but did not perform
as well as 0,1 masks.

Real valued masks: M t ∈ R|M
t|. Real valued masks performed much better at high sparsity

(s > 0.75), but at lower sparsity the difference can be made up by adding more binary masks (which
are cheaper to store). Some regularization benefits are lost.

We have also briefly explored a hybrid approach to understand the value of our linear combinations:
inspired by early fine-tuning work where only the last layer of the network is retrained for each new
task, we have created a hybrid setting where we employ our ImpressLearn algorithm in all layers
except the last, and train a new SupSup mask in the last layer. This was done to demonstrate that
the power of our linear combination routine does not come from the number of extra α-parameters
we allow for each new task. We show that allowing even more parameters in the last layer (for an
additional SupSup mask) does not improve performance much, and that hence the power of our
approach does not reside simply in parameter finetuning for new tasks (see Sec. A.5).

Limitations: Our experimental results show that ImpressLearn works well on several benchmarks,
and particularly shines when the number of new tasks is large. In scenarios where the number of
different tasks is small (like SplitCIFAR with 20 tasks only) our approach will only give limited
parameter savings, if any. In the case of SplitImageNet we were only able to evaluate our approach
for a relatively small number of masks and could not match benchmark performance. However, in
particular in this case, our parameter savings are particularly impressive and highlight the power of
transfer learning in this setting.

In future work, we plan to explore other settings where the linear combination optimization could be
applied to leverage transfer learning for catastrophic forgetting.

9
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REPRODUCIBILITY

In keeping with conference guidelines, we have tried to ensure that our experimental results were
free of any bias that would misconstrue the results. As specified in the paper, all experiments were
run over multiple random seeds, on a variety of benchmarks using publicly available software and
hardware. The code for the experiments is self contained and references appropriate instructions to
install the relevant software dependencies. A copy of the experimental code will be made publicly
available.
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E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In Jennifer Dy and Andreas Krause (eds.), Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4548–4557. PMLR, 10–15 Jul 2018. URL http://proceedings.
mlr.press/v80/serra18a.html.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf.

Sebastian Thrun and Lorien Pratt. Lifelong Learning Algorithms, pp. 181–209. Springer US,
Boston, MA, 1998. ISBN 978-1-4615-5529-2. doi: 10.1007/978-1-4615-5529-2 8. URL
https://doi.org/10.1007/978-1-4615-5529-2_8.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=Sklf1yrYDr.

11

https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://www.sciencedirect.com/science/article/pii/S0079742108605368
https://doi.org/10.1037/0033-295X.97.2.285
https://doi.org/10.1037/0033-295X.97.2.285
https://www.sciencedirect.com/science/article/pii/S156849461730128X
https://www.sciencedirect.com/science/article/pii/S156849461730128X
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
http://arxiv.org/abs/1606.04671
http://proceedings.mlr.press/v80/serra18a.html
http://proceedings.mlr.press/v80/serra18a.html
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/0efbe98067c6c73dba1250d2beaa81f9-Paper.pdf
https://doi.org/10.1007/978-1-4615-5529-2_8
https://openreview.net/forum?id=Sklf1yrYDr


Under review as a conference paper at ICLR 2022

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In Proceedings of the 34th
Conference on Neural Information Processing Systems, June, 2020. ArXiv. URL http://
arxiv.org/abs/2006.14769.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3987–3995.
PMLR, 06–11 Aug 2017. URL http://proceedings.mlr.press/v70/zenke17a.
html.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems, 2019.

A APPENDIX

A.1 HYPERPARAMETERS AND DESCRIPTION OF EXPERIMENTS

Here we provide the details of our experimental work.

Table 3: Dataset, Model and Hyperparameter Overiew.
Model Dataset |Mhom| LR (λ) Opt. Batch Size

LeNet 300/100 MNIST
Rotated 250 0.002 0 RMSprop 128
Permuted 250 0.002 0 RMSprop 128

ResNet-18 Split CIFAR 100 75 0.02 0.005 ADAM 64
ResNet-50 SplitImageNet 75 0.0025 0.005 ADAM 96

For homogeneous basis masks, |Mhom| is the largest mask set we tried. For ADAM, momentum was
set to 0.9 and weight decay to 0.1.

We performed experiments for a range of densities s ∈ {0.05, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3}. For
consistency, we maintained the same numerical ordering of tasks from each dataset across all
experiments. Each seed varied the random initialization of the popup scores and the training data
ordering. For a heterogeneous basis set we used one seed to generate the entire basis set. In the
homogeneous case we seeded every mask to ensure mask diversity. The backbone network was
fixed for one basis set and α-optimization for new tasks. All runs were performed on three different
backbone networks and train/test splits to ensure that results were sufficiently general. The boxplots
contain averages over all these settings and sparsities.

A.1.1 INFRASTRUCTURE

For all models except LeNet 300-100, we used GPU enabled hardware to expedite training time. Our
experiments were performed on a SLURM cluster enabled with NVIDIA V100 Tesla and RTX 8000
GPUs. For the Imagenet experiments specifically, we were memory constrained and thus hard to tune
batch size appropriately to fit within the 48 GB available on the device.
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A.2 IMAGENET RESULTS

Here we show ImpressLearn on SplitImageNet.

Figure 5: Left: Average performance on 5 new SplitImageNet tasks by number of heterogeneous
impressions. X indicates incorrect mask. Right: Performance of our α-optimization in the basis-GN
regime averaged over min(|M|, 25) basis tasks.

A.3 BASIS GN SETTING AND A NEW TASK-INFERENCE ALGORITHM

As shown in the experimental results in Figs. 2, 4, 3 and 5, our α-optimization is able to perform
well when presented with a basis-task without task label. In that case, our algorithm finds a linear
combination of masks that nearly always matches or outperforms the corresponding basis mask for
this task. Our algorithm hence constitutes an alternative to entropy-based methods presented in
(Wortsman et al., 2020) for the GN scenario (task labels given at training but not at inference).

In Fig. 6 we show how our algorithm outperforms the baseline SupSup performance for
PermutedMNIST.

Figure 6: Comparison of inference accuracy between basis-GN, SupSup GG and SupSup GN
on PermutedMNIST. GN performance averaged over 10 different data splits and orderings
per seed and sparsity. All results are averaged over 3 different seeds and masks of density
∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.
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A.4 RANDOM BASIS MASKS

Here we compare performance of a set of random basis masks to homogeneous masks to illustrate
the trade-offs in case the SupSup step is not available or difficult to implement (Figs. 7, 8 and 9).
Generally, in the limit of a large number of masks, the random methods, while yielding inferior
accuracy, is faring surprisingly well and could become an alternative for resource-constrained settings.

Figure 7: Random vs Homogeneous masks: Average validation performance on 10 unseen Ro-
tated MNIST tasks by number of impressions and impression type.X indicates incorrect mask.
Standard numbers indicate an impression set of random, untrained masks and N∧ indicates a
homogeneous impression set. All results averaged over 3 different seeds and masks of density
∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.

Figure 8: Random vs Homogeneous masks: Average validation performance on 10 unseen Per-
muted MNIST tasks by number of impressions and impression type. X indicates incorrect mask.
Standard numbers indicate an impression set of random, untrained masks and N∧ indicates a
homogeneous impression set.All results averaged over 3 different seeds and masks of density
∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.
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Figure 9: Random vs Homogeneous masks: Average performance on 5 unseen Split CIFAR-100
tasks by number of impressions and impression type. X indicates incorrect mask. Standard numbers
indicate an impression set of random, untrained masks and N∧ indicates a homogeneous impression
set.All results averaged over 3 different seeds and masks of density ∈ {5, 8, 10, 15, 20, 25, 30}×10−2.

A.5 HYBRID APPROACH

Here we study the hybrid setting where for each new task we employ our ImpressLearn algorithm in
all layers except the last, and train a new SupSup mask only on the last layer. This demonstrates that
the power of our linear combination routine does not come from the number of extra α-parameters
we allow for each new task. We show that allowing even more parameters in the last layer (for an
additional SupSup mask) does not improve performance much, and that hence the power of our
approach does not reside simply in parameter finetuning for new tasks (Fig. 10)

Figure 10: Left: Hybrid vs Regular (Heterogeneous Impressions). Right: Hybrid vs Regular
(Homogeneous Impressions). Average performance on 5 new Split CIFAR-100 tasks by number
of impressions and impression type. h denotes a hybrid model was used whereas ∧ indicates a
homogeneous impression set. h∧ indicates both. All results averaged over 3 different seeds and
masks of density ∈ {5, 8, 10, 15, 20, 25, 30} × 10−2.
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