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Abstract

In this paper we tackle the problem of generating conformers of a molecule in 3D
space given its molecular graph. We parameterize these conformers as continuous
functions that map elements from the molecular graph to points in 3D space.
We then formulate the problem of learning to generate conformers as learning
a distribution over these functions using a diffusion generative model, called
Molecular Conformer Fields (MCF). To model the field of graphs, we build score
network on Transformer-based architecture. Our approach is simple and scalable,
and obtains results that are comparable or better than the previous state-of-the-
art while making no assumptions about the explicit structure of molecules (e.g.
modeling torsional angles). MCF represents an advance in extending diffusion
models to handle complex scientific problems in a conceptually simple, scalable
and effective manner.

1 Introduction

In this paper we tackle the problem of Molecular Conformer Generation, i.e. predicting the diverse
low-energy three-dimensional conformers of molecules, relying solely on their molecular graphs as
illustrated in Fig. 1. Molecular Conformer Generation is a fundamental problem in computational
drug discovery and chemo-informatics (Batzner et al., 2022). Conventional methods like rule-based
OMEGA (Hawkins et al., 2010) or stochastic Markov chain Monte Carlo (MCMC) (Wilson et al.,
1991) and molecular dynamics (MD) (Grebner et al., 2011) can suffer from sampling inefficiency and
fail to generate representative conformers for complex molecules (Hawkins, 2017). In the domain of
learning-based approaches, several works have looked at conformer generation problems through the
lens of probabilistic modeling, using either normalizing flows (Xu et al., 2021a) or diffusion models
(Xu et al., 2022; Jing et al., 2022). For example, the quality of conformers from GeoMol (Ganea
et al., 2021) and Torsional Diffusion (Jing et al., 2022) depends on the local substructure prediction
model which is not differentiable. On the other hand, recent works have proposed domain-agnostic
approaches for generative modeling of data in function space (Du et al., 2021; Dupont et al., 2022b,a;
Zhuang et al., 2023) obtaining great performance (see Sect. A.1 for additional related work). As an
example, in Zhuang et al. (2023) the authors use a diffusion model to learn a distribution over fields f ,
showing great results on different data domains like images (i.e. f : R2 → R3) or 3D geometry (i.e.
f : R3 → R1), where the domain of the function Rn is fixed across functions. However, dealing
with fields defined on different domains (e.g. different molecular graphs, as in molecular conformer
generation) still remains an open problem.

To address these issues, we present Molecular Conformer Fields (MCF), an approach to learn
generative models of molecular conformers. We interpret conformers as fields/functions (we use both
terms exchangeably) on graphs that map elements in the graph Gi to points in R3, fi : Gi → R3,
which we define as conformer fields. Our contributions can be summarized as follows:
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Figure 1: We formulate the molecular conformer generation problem as learning a distribution of
functions over graphs. Each conformer is a field (e.g. a function) f that can map elements from a
particular molecular graph G to points in 3D space, f : G → R3. We call these conformer fields as
they can be continuously evaluated for any point in G. We visualize an example of conformer field
where points are colored based on the distance to their closest atom (see Appendix A.7 for details).

• We provide a simple yet effective approach for molecule conformer generation that outper-
forms previous approaches on standard benchmarks.

• Our approach directly predicts the 3D position of atoms as opposed to torsional angles or
other domain-specific variables, providing a simple and scalable training recipe.

• Unlike most conformer generation models based on graph neural networks, we demonstrate
the effectiveness of Transformer-based encode-decoder model to this problem.

• We provide an extensive ablation study to understand what are the factors that are critical
for performance in molecular conformer generation.

2 Method

MCF is a diffusion generative model that captures distributions over conformer fields. We are given
observations in the form of an empirical distribution f0 ∼ q(f0) over fields where a field f0 : G → R3

maps vertices v ∈ G on a molecular graph G to 3D space R3. As a result, latent variables f1:T are
also functions on graphs that can be continuously evaluated.

2.1 Conformers as Functions on Graphs

Following the setting in previous work (Xu et al., 2022; Ganea et al., 2021; Jing et al., 2022) a
molecule with n atoms is represented as an undirected graph G = ⟨V, E⟩, where V = {vi}ni=1 is the
set of vertices representing atoms and E = {eij |(i, j) ⊆ |V| × |V|} is the set of edges representing
inter-atomic bonds. In this paper, we parameterize a molecule’s conformer as a function f : G → R3

that takes atoms in the molecular graph G and maps them to 3D space, we call this function a
conformer field. The training set is composed of conformer fields fi : Gi → R3, that each maps
atoms of a different molecule Gi to a 3D point. We then formulate the task of conformer generation
as learning a prior over a training set of conformer fields. We drop the subscript i in the remainder of
the text for notation simplicity.

We learn a denoising diffusion generative model (Ho et al., 2020) over conformer fields f . In particular,
given conformer field samples f0 ∼ q(f0) the forward process takes the form of a Markov Chain
with progressively increasing Gaussian noise: q(f1:T |f0) =

∏T
t=1 q(ft|ft−1), q(ft|ft−1) :=

N (ft−1;
√
ᾱtf0, (1− ᾱt)I). We train MCF using the denoising objective function in (Ho et al.,

2020): Et∼[0,T ],f0∼q(f0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(

√
ᾱtf0 +

√
1− ᾱtϵ, t)∥2

]
. We discuss the benefits of

building generative model over conformer fields in Appendix A.7.

2.2 Diffusion Generative Model on Conformer Fields

To tackle the problem of learning a diffusion generative model over conformer fields we extend
the recipe in (Zhuang et al., 2023), generalizing from fields defined in ambient Euclidean space to
functions on graphs (e.g. conformer fields). In order to do this, we compute the k leading eigenvectors
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Figure 2: Interaction between context and query pairs in the PerceiverIO architecture. Context pairs
Ct attend to a latent array of learnable parameters via cross attention. The latent array then goes
through several self attention blocks. Finally, the query pairs Qt cross-attend to the latent array to
produce the final noise prediction ϵ̂q .

of the normalized graph Laplacian ∆G (Maskey et al., 2022; Sharp et al., 2022) as positional encoding
for points in the graph. The eigen-decomposition of the normalized graph Laplacian can be computed
efficiently using sparse eigen-problem solvers (Hernandez et al., 2009) and only needs to be computed
once before training. We use the term φ(v) =

√
n[φ1(v), φ2(v), . . . , φk(v)] ∈ Rk to denote the

normalized Laplacian eigenvector representation of a vertex v ∈ G.

We adopt an explicit field parametrization where a field is characterized by uniformly sampling a
set of vertex-signal pairs {(φ(vc),y(c,0))}, vc ∈ G,y(c,0) ∈ R3, which is denoted as context set. We
row-wise stack the context set and refer to the resulting matrix via C0 = [φ(Vc), Y(c,0)]. Here,
φ(Vc) denotes the Laplacian eigenvector representation context vertices and Y(c,0) denotes the 3D
position of context vertices at time t = 0. We define the forward process for the context set by
diffusing the 3D positions and keeping Laplacian eigenvectors fixed:

Ct = [φ(Vc),Y(c,t) =
√
ᾱtY(c,0) +

√
1− ᾱtϵc], (1)

where ϵc ∼ N (0, I) is a noise vector of the appropriate size. We now turn to the task of formulating
a score network for fields. The score network needs to take as input the context set (i.e. the field
parametrization), and needs to accept being evaluated continuously in G. We do this by sampling a
query set of vertex-signal pairs {φ(vq),y(q,0)}. Equivalently to the context set, we row-wise stack
query pairs and denote the resulting matrix as Q0 = [φ(Vq), Y(q,0)]. Note that the forward diffusion
process is equivalently defined for both context and query sets:

Qt = [φ(Vq),Y(q,t) =
√
ᾱtY(q,0) +

√
1− ᾱtϵq], (2)

where ϵq ∼ N (0, I) is a noise vector of the appropriate size. The underlying field is solely defined
by the context set, and the query set are the function evaluations to be de-noised. The resulting score
field model is formulated as follows, ϵ̂q = ϵθ(Ct, t,Qt). The detailed algorithms can be found in the
Appendix A.5.

2.3 Score Field Network ϵθ

In MCF, the score field’s design space covers all architectures that can process irregularly sampled
data, such as Transformers (Vaswani et al., 2017) and their corresponding Graph counterparts (Maskey
et al., 2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al., 2020). The score field network ϵθ
is primarily implemented using PerceiverIO (Jaegle et al., 2022), an effective transformer encoder-
decoder architecture that efficiently manage large numbers of elements in the context and query sets.
Fig. 2 demonstrates how these sets are used within the PerceiverIO architecture.

3 Experiments

We use two popular datasets: GEOM-QM9 (Ruddigkeit et al., 2012) and GEOM-DRUGS (Ruddigkeit
et al., 2012). We follow the same splitting and experimental settings as described in GeoMol (Ganea
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et al., 2021) and Torsional Diff. Jing et al. (2022). we report the same metrics as previous works to
compare the generated and ground truth conformer ensembles: Average Minimum RMSD (AMR)
and Coverage. In the Appendix A.6.1 and Appendix A.6.2 we provide additional experiments that
validate the design choices for the score network architecture, as well as empirically validating the
chemical properties of generated conformer ensembles in Appendix A.6.3.

3.1 GEOM-QM9

We report results in Tab. 1, showing that MCF outperforms previous approaches by a substantial
margin. In addition, it is important to note that MCF is a general approach for learning functions
on graphs that does not make any assumptions about the intrinsic geometric factors important in
conformers like torsional angles. This makes MCF simpler to implement and applicable to other
settings in which intrinsic geometric factors are not known or expensive to compute.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

CGCF (Xu et al., 2021a) 69.47 96.15 0.425 0.374 38.20 33.33 0.711 0.695
GeoDiff (Xu et al., 2022) 76.50 100.00 0.297 0.229 50.00 33.50 0.524 0.510
GeoMol (Ganea et al., 2021) 91.50 100.00 0.225 0.193 87.60 100.00 0.270 0.241
Torsional Diff. (Jing et al., 2022) 92.80 100.00 0.178 0.147 92.70 100.00 0.221 0.195
MCF (ours) 96.57 100.00 0.107 0.072 94.60 100.00 0.130 0.084

Table 1: Molecule conformer generation results on GEOM-QM9. MCF obtains better results than
the state-of-the-art Torsional Diffusion (Jing et al., 2022), without making any explicit assumptions
about the geometric structure of molecules (i.e. without modeling torsional angles).

3.2 GEOM-DRUGS

Results on Tab. 2 where we see how MCF outperforms previous approaches by substantial a margin
while being comparable to Torsional Diffusion (Jing et al., 2022). In particular, we see that MCF tends
to do better in Recall than Torsional Diffusion, while the trend is reversed for Precision. However,
the gap by which MCF outperforms Torsional Diffusion in Recall is larger than the one opposite
trend for Precision. Again, it is important to note that MCF does not make any assumptions about
the intrinsic geometric factors important in conformers like torsional angles and thus is simpler to
train (e.g. it does not require a local substructure prediction model). We include detailed analysis
of MCF results compared with Torsional Diff. in Appendix A.6.4. We also include experiments of
transferring MCF trained on GEOM-DRUGS to GEOM-XL to the Appendix A.6.5.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

GeoDiff (Xu et al., 2022) 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol (Ganea et al., 2021) 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. (Jing et al., 2022) 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
MCF (ours) 78.15 86.03 0.526 0.501 55.86 55.13 0.779 0.734

Table 2: Molecule conformer generation results on GEOM-DRUGS.

4 Conclusions

In this paper we introduced MCF, where we formulate the problem of molecular conformer gen-
eration as learning a distribution over continuous fields on molecular graphs. MCF is formulated
specifically as a diffusion generative model over fields, which we show obtains comparable or better
performance relative to state-of-the-art methods when evaluated on molecular generation across
different benchmarks. Notably, MCF achieves these results without explicitly modeling geometric
properties of molecules like torsional angles, which makes it simpler to understand and scale. MCF
presents an exciting avenue for future research on scaling conformer generation to proteins and other
macro molecular structures.
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A Appendix

A.1 Related Work

Recent works have tackled the problem of conformer generation using learning-based generative
models. Simm & Hernández-Lobato (2019) and Xu et al. (2021b) develop two-stage methods which
first generate interatomic distances following VAE framework and then predict conformers based on
the distances. In Xu et al. (2021a), a normalizing flow approach is proposed as an alternative to VAEs.
To avoid the accumulative errors from two-stage generation, Shi et al. (2021) implement score-based
generative model to directly model the gradient of logarithm density of atomic coordinates. In
GeoDiff (Xu et al., 2022), a diffusion model is used which focuses on crafting equivariant forward
and backward processes with equivariant graph neural networks. In GeoMol (Ganea et al., 2021), the
authors propose a regression objective coupled with an Optimal Transport loss to predict the torsional
angles of bonds that assemble substructures of a molecule. Following this, Torsional Diffusion (Jing
et al., 2022) proposed a diffusion model on the torsional angles of the bonds rather than a regression
model used in Ganea et al. (2021). We further discuss the equivariance in conformer generation in
Appendix A.3.

Our approach extends recent efforts in generative models for continuous functions in Euclidean
space (Zhuang et al., 2023; Dupont et al., 2022b,a; Du et al., 2021), to functions defined over graphs
(e.g. chemical structure of molecules). The term Implicit Neural Representation (INR) is used in
these works to denote a parameterization of a single function (e.g. a single image in 2D) using a
neural network that maps the function’s inputs (i.e. pixel coordinates) to its outputs (i.e. RGB
values). Different approaches have been proposed to learn distributions over fields in Euclidean space;
GASP (Dupont et al., 2022b) leverages a GAN whose generator produces field data whereas a point
cloud discriminator operates on discretized data and aims to differentiate real and generated functions.
Two-stage approaches (Dupont et al., 2022a; Du et al., 2021) adopt a latent field parameterization
(Park et al., 2019) where functions are parameterized via a hyper-network (Ha et al., 2017) and
a generative model is learnt on the latent or INR representations. In addition, our approach also
relates to recent work focusing on fitting a function (e.g. learning an INR) on a manifold using an
intrinsic coordinate system (Koestler et al., 2022; Grattarola & Vandergheynst, 2022), and generalizes
it to the problem of learning a probabilistic model over multiple functions defined on different
manifolds/graphs. Intrinsic coordinate systems have also been used in Graph Transformers to tackle
supervised learning tasks (Maskey et al., 2022; Sharp et al., 2022; He et al., 2022; Dwivedi et al.,
2020).

Recent strides in the domain of protein folding dynamics have witnessed revolutionary progress,
with modern methodologies capable of predicting crystallized 3D structures solely from amino-acid
sequences using auto-regressive models like AlphaFold (Jumper et al., 2021). However, transferring
these approaches seamlessly to general molecular data is fraught with challenges. Molecules present
a unique set of complexities, manifested in their highly branched graphs, varying bond types, and
chiral information, aspects that make the direct application of protein folding strategies to molecular
data a challenging endeavor.

A.2 Limitations and Future Work

While MCF shows competitive performance in molecular conformer generation, it does encounter
limitations and potential improvements for future explorations. One limitation is that our proposed
method is computationally expensive. Extensive computations first stem from the Transformer-based
(Vaswani et al., 2017) score network. In MCF, we use a PerceiverIO (Jaegle et al., 2022) as score
network, an efficient transformer that allows for sub-quadratic compute. Other efficient transformer
architectures and tricks like (Dao et al., 2022) can be used to improve training efficiency. The
other factor is computational cost during inference. In MCF, we iterate 1000 timesteps to sample
a conformer following DDPM (Ho et al., 2020). Efficient sampling like DDIM (Song et al., 2021),
which can be seamlessly incorporated in MCF, as well as distillation approaches like (Song et al.,
2023; Berthelot et al., 2023).

Another limitation could be the fact that MCF does not explicitly model the equivariance of the
molecular system. Though experiments in the paper have demonstrated that equivariance may not
be necessary to achieve competitive performance on conformer generation. MCF may not perform
as well as conformer generation when applied to problems with limited data or related to sequential
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problems like molecular dynamics (MD) simulations. In future work, we plan to extend MCF to
conditional inference. For example, molecular docking can be formulated as conformer generation
problem conditioned on proteins (Corso et al., 2022). Also, current framework can be expanded
to de novo drug designs where no molecule information is provided (Hoogeboom et al., 2022).
Besides, scaling up our model to large molecules, like proteins, can be of great interest. MCF by
nature provides the flexibility to generate from partially observed sample, which can be suitable for
designing proteins with known functional motifs (Watson et al., 2023).

A.3 Equivariance in Conformer Generation

Equivariance has become an important topic of study in generative models (Abbott et al., 2023, 2022;
Kanwar et al., 2020). In particular, enforcing equivariance as an explicit inductive bias in neural
networks can often lead to improved generalization (Köhler et al., 2020) by constraining the space of
functions that can be represented by a model. On the other hand, recent literature shows that models
that can learn these symmetries from data rather than explicitly enforcing them (e.g. transformers vs
CNNs) tend to perform better as they are more amenable to optimization (Bai et al., 2021).

Equivariance also plays an interesting role in conformer generation. On one hand, it is important
when training likelihood models of conformers, as the likelihood of a conformer is invariant to roto-
translations (Köhler et al., 2020). On the other hand, when training models to generate conformers
given a molecular graph, explicitly baking roto-translation equivariance might not be as necessary.
This is because the intrinsic structure of the conformer encodes far more information about its
properties than the extrinsic coordinate system (eg. rotation and translation) in which the conformer
is generated (Ruddigkeit et al., 2012). In addition, recent approaches for learning simulations on
graphs (Sanchez-Gonzalez et al., 2020) or pre-training models for molecular prediction tasks (Zaidi
et al., 2022) have relied on non-equivariant architectures.

We follow this trend and empirically show that explicitly enforcing roto-translation equivariance is
not a strong requirement for generalization. Furthermore, we also show that approaches that do not
explicitly enforce roto-translation equivariance (like ours) can match or outperform approaches that
do.

A.4 Implementation details

In this section we describe implementation details for all our experiments. We also provide hyper-
parameters and settings for the implementation of the score field network ϵθ and compute used for
each experiment in the paper.

A.4.1 Score Field Network implementation details

The time-step t is incorporated into the score computation by concatenating a positional embedding
representation of t to the context and query sets. The specific PerceiverIO settings used in all
quantitatively evaluated experiments are presented in Tab. 3. Practically, the MCF network consists
of 6 transformer blocks, each containing 1 cross-attention layer and 2 self-attention layers. Each of
these layers has 4 attention heads. An Adam (Kingma & Ba, 2015) optimizer is employed during
training with a learning rate of 1e− 4. We use EMA with a decay of 0.9999. A modified version of
the publicly available repository is used for PerceiverIO 2. Since molecules have different number
of atoms, we set the number of context and query sets as the number of atoms during training and
inference.

A.4.2 Compute

Each model was trained on an machine with 8 Nvidia A100 GPUs, we trained models for 500 epochs.

A.5 Sampling and Inference Algorithm

For training, we uniformly sample context and query sets from f0 ∼ Uniform(q(f0)) and only
corrupt their signal using the forward process in Eq. 1 and Eq. 2. We train the score field network ϵθ
to denoise the signal portion of the query set, given the context set. During sampling, to generate

2https://huggingface.co/docs/transformers/model_doc/perceiver
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Hyper-parameter GEOM-QM9 GEOM-DRUGS Ablation GEOM-QM9

#eigenfuncs (k) 28 32 28

#freq pos. embed t 64 64 64

#latents 512 512 512
#dim latents 512 256 256
#blocks 6 6 6
#dec blocks 2 2 2
#self attends per block 2 2 2
#self attention heads 4 4 4
#cross attention heads 4 4 4

batch size 64 64 64
lr 1e− 4 1e− 4 1e− 4
epochs 250 100 250

Table 3: Hyperparameters and settings for MCF on different datasets.

a conformer fields f0 ∼ pθ(f0) we first define a query set QT = [φ(Vq), Y(q,T ) ∼ N (0, I)] of
random values to be de-noised. We set the context set to be a random subset of the query set. We use
the context set to denoise the query set and follow ancestral sampling as in the vanilla DDPM (Ho
et al., 2020). Note that during inference the eigen-function representation φ(v) of the context and
query sets does not change, only their corresponding signal value (e.g. their 3D position). Alg. 1 and
Alg. 2 show the sampling and inference algorithms of our proposed MCF respectively.

Algorithm 1 Training
1: ∆Gφi = φiλi // Compute Laplacian eigenvectors
2: repeat
3: (C0,Q0) ∼ Uniform(q(f0))
4: t ∼ Uniform({1, . . . , T})
5: ϵc ∼ N (0, I), ϵq ∼ N (0, I)
6: Ct = [φ(Vc),

√
ᾱtY(c,0) +

√
1− ᾱtϵc]

7: Qt = [φ(Vq),
√
ᾱtY(q,0) +

√
1− ᾱtϵq]

8: Take gradient descent step on
∇θ ∥ϵq − ϵθ(Ct, t,Qt)∥2

9: until converged

<latexit sha1_base64="oc4RQ0b7ff0VCQ9MbjwAE3K78k0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRa1GXRjcsq9gFNLJPppB06mYSZiVBCfsONC0Xc+jPu/BsnbRbaemDgcM693DPHjzlT2ra/rdLK6tr6RnmzsrW9s7tX3T/oqCiRhLZJxCPZ87GinAna1kxz2oslxaHPadef3OR+94lKxSLxoKcx9UI8EixgBGsjuW6I9dj30/vs8XxQrdl1ewa0TJyC1KBAa1D9cocRSUIqNOFYqb5jx9pLsdSMcJpV3ETRGJMJHtG+oQKHVHnpLHOGTowyREEkzRMazdTfGykOlZqGvpnMM6pFLxf/8/qJDq68lIk40VSQ+aEg4UhHKC8ADZmkRPOpIZhIZrIiMsYSE21qqpgSnMUvL5POWd25qDfuGrXmdVFHGY7gGE7BgUtowi20oA0EYniGV3izEuvFerc+5qMlq9g5hD+wPn8A7pSRoA==</latexit>

R3

<latexit sha1_base64="/A2Z8MJVCYg8adp9bpXnifsFTYg=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKr2PQi8cI5oHJEmYns8mQ2dllpjcQQv7CiwdFvPo33vwbJ8keNLGgoajqprsrSKQw6Lrfzsrq2vrGZm4rv72zu7dfODismzjVjNdYLGPdDKjhUiheQ4GSNxPNaRRI3ggGd1O/MeTaiFg94ijhfkR7SoSCUbTSU3tIddIXpeFZp1B0y+4MZJl4GSlChmqn8NXuxiyNuEImqTEtz03QH1ONgkk+ybdTwxPKBrTHW5YqGnHjj2cXT8ipVbokjLUthWSm/p4Y08iYURTYzohi3yx6U/E/r5VieOOPhUpS5IrNF4WpJBiT6fukKzRnKEeWUKaFvZWwPtWUoQ0pb0PwFl9eJvXzsndVvny4KFZuszhycAwnUAIPrqEC91CFGjBQ8Ayv8OYY58V5dz7mrStONnMEf+B8/gAkkpCV</latexit>

'(v)

<latexit sha1_base64="JwUqk8hnfIBoNiho9/tkjnkHv4Y=">AAACGHicbVDJSgNBEO2Je9yiHr00BkFB4oy4HcVcPCZgFsiE0NOpSZr0LHTXCGHIZ3jxV7x4UMRrbv6NPUkENT664fFeFVX1vFgKjbb9aeUWFpeWV1bX8usbm1vbhZ3duo4SxaHGIxmppsc0SBFCDQVKaMYKWOBJaHiDcuY3HkBpEYX3OIyhHbBeKHzBGRqpUzh1IdZCGupiH5AduQHDvuen5VEHT6h530LVCMe0UyjaJXsCOk+cGSmSGSqdwtjtRjwJIEQumdYtx46xnTKFgksY5d1EQ8z4gPWgZWjIAtDtdHLYiB4apUv9SJkfIp2oPztSFmg9DDxTmW2p/3qZ+J/XStC/bqcijBOEkE8H+YmkGNEsJdoVCjjKoSGMK2F2pbzPFONossybEJy/J8+T+lnJuSxdVM+LN7ezOFbJPjkgR8QhV+SG3JEKqRFOHskzeSVv1pP1Yr1bH9PSnDXr2SO/YI2/AF/Un/U=</latexit>

✏✓(Ct, t,Qt)

<latexit sha1_base64="CHfIqCKE8fWmj+VaRkrMbMGubsI="></latexit>

Di↵used context set: Ct

<latexit sha1_base64="JvNPxWop1gj7sKk4hr3fjx++PdY="></latexit>

Di↵used query set: Qt

<latexit sha1_base64="A2ggNXvf8tth+wdaBgFuCCoMFdY=">AAACCnicdVBNaxsxENU6bZO4X25yzEWtKfS0aLtubOdk8CVHF+oPsI3RyrO2sFa7SLOlZvG5l/yVXHJoCbnmF+TWf1Ot7UJb2gdCj/dmmJkXZUpaZOyHVzl49PjJ4dFx9emz5y9e1l6dDGyaGwF9karUjCJuQUkNfZSoYJQZ4EmkYBituqU//AzGylR/wnUG04QvtIyl4OikWe31BOELFt1Ulz+1gBd0QycJx2UUF93NjM1qdea3W61GI6DMb4QhC9uOsLDZbLdo4LMt6mSP3qz2MJmnIk9Ao1Dc2nHAMpwW3KAUCjbVSW4h42LFFzB2VPME7LTYnrKhb50yp3Fq3NNIt+rvHQVPrF0nkassd7R/e6X4L2+cY9yaFlJnOYIWu0FxriimtMyFzqUBgWrtCBdGul2pWHLDBbr0qi6EX5fS/5PBez849z98bNQ77X0cR+SMvCHvSECapEMuSY/0iSBfyTX5Rr57V96Nd+vd7Uor3r7nlPwB7/4niTaazA==</latexit>

Context set: C0

<latexit sha1_base64="ea3QkuaQiNwIPMolOUgkbvfJ8kM=">AAACCHicdVDJSgNBEO1xjXGLevRgYxA8hZkYNfEU8OIxAbNAEkJPpyZp0rPQXSOGIUcv/ooXD4p49RO8+Td2FkFFHxQ83quiqp4bSaHRtj+shcWl5ZXV1Fp6fWNzazuzs1vXYaw41HgoQ9V0mQYpAqihQAnNSAHzXQkNd3g58Rs3oLQIg2scRdDxWT8QnuAMjdTNHLQRbjGpxqBGVANe0DFt+wwHrpdUx127m8nauZO8YxeK1M7ZUxhScpxSwaHOXMmSOSrdzHu7F/LYhwC5ZFq3HDvCTsIUCi5hnG7HGiLGh6wPLUMD5oPuJNNHxvTIKD3qhcpUgHSqfp9ImK/1yHdN5+RG/dubiH95rRi9YicRQRQjBHy2yIslxZBOUqE9oYCjHBnCuBLmVsoHTDGOJru0CeHrU/o/qedzzlnutFrIlovzOFJknxySY+KQc1ImV6RCaoSTO/JAnsizdW89Wi/W66x1wZrP7JEfsN4+Abwdmcc=</latexit>

Query set: Q0

<latexit sha1_base64="2ugd/PmOKPowUPklDDw9AIEdO1o="></latexit>

f0 ⇠ q(f0), f0 : G ! R3

Figure 3: Left: MCF training algorithm. Right: Visual depiction of a training iteration for a
conformer field. See Sect. 2 for definitions.

Algorithm 2 Sampling
1: ∆Gφi = φiλi // LBO eigen-decomposition
2: QT = [φ(Vq),Y(q,t) ∼ N (0q, Iq)]
3: CT ⊆ QT ▷ Random subset
4: for t = T, . . . , 1 do
5: z ∼ N (0, I) if t > 1, else z = 0

6: Y(q,t−1) = 1√
αt

(
Y(q,t) − 1−αt√

1−ᾱt
ϵθ(Ct, t,Qt)

)
+ σtz

7: Qt−1 = [φ(Vq),Y(q,t−1)]
8: Ct−1 ⊆ Qt−1 ▷ Same subset as in step 2
9: end for

10: return f0 evaluated at coordinates φ(Vq)
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Query set: Qt�1

Figure 4: Left: MCF sampling algorithm. Right: Visual depiction of the sampling process of a
conformer field.
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A.6 Additional experiments

In this section we include additional experiments ablating architecture choices, as well as prediction
the ensemble properties of generated conformers.

A.6.1 Ablation experiments

In this section we provide an ablation study over the key design choices of MCF. We run all our
ablation experiments on the GEOM-QM9 dataset following the settings in GeoMol (Ganea et al.,
2021) and Torsional Diffusion (Jing et al., 2022) and described in Sect. 3.2. In particular we study:
(i) how does performance behave as a function of the number of Laplacian eigenvectors used in φ(v).
(ii) How does the model perform without atom features (e.g. how predictable conformers are given
only the graph topology, without using atom features). Results in Tab. 4 show that the graph topology
G encodes a surprising amount of information for sampling reasonable conformers in GEOM-QM9,
as shown in row 2. In addition, we show how performance of MCF changes as a function of the
number of eigen-functions k. Interestingly, with as few as k = 2 eigen-functions MCF is able to
generate consistent accurate conformer.

Recall Precision

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
k Atom Features mean median mean median mean median mean median

28 YES 94.86 100.00 0.125 0.081 91.49 100.00 0.175 0.122
28 NO 90.70 100.00 0.187 0.124 79.82 93.86 0.295 0.213

16 YES 94.87 100.00 0.139 0.093 87.54 100.00 0.220 0.151
8 YES 94.28 100.00 0.162 0.109 84.27 100.00 0.261 0.208
4 YES 94.57 100.00 0.145 0.093 86.83 100.00 0.225 0.151
2 YES 93.15 100.00 0.152 0.088 86.97 100.00 0.211 0.138

Table 4: Experiments on GEOM-QM9 with different numbers of eigenvectors. In these experiments,
we use a smaller model than what we have in Table 1

A.6.2 Architectural choices

To further investigate the design choices of architecture in proposed MCF, we include additional
experiments on GEOM-QM9 as shown in Tab. 5. To investigate the effectiveness of using Laplacian
eigenvectors as positional embedding, we leverage SignNet (Lim et al., 2022) as the positional
embedding, which explicitly models symmetries in eigenvectors. Using SignNet does not benefit
the performance when compared with the standard MCF. Though adding edge attributes in SignNet
achieves better performance than SignNet alone, the performance is still not rival. Also, it’s worth
mentioning that SignNet includes graph neural networks (Xu et al., 2018) and Set Transformer (Lee
et al., 2019) which makes training less efficient.

In addition, we also report results using a vanilla Transformer encoder-decoder (Vaswani et al., 2017)
as the backbone instead of PerceiverIO (Jaegle et al., 2022). The Transformer contains 6 encoder
layers and 6 decoder layers with 4 attention heads. Other model hyperparameters follow the same
setting as listed in Tab. 3. It is indicated that Transformer is performing worse than PerceiverIO on
conformer generation, which validates the design choice of architecture in MCF.

Precision Recall

Coverage ↑ AMR ↓ Coverage ↑ AMR ↓
mean median mean median mean median mean median

MCF SignNet 94.1 100.0 0.153 0.098 87.5 100.0 0.222 0.152
MCF SignNet (edge attr.) 95.3 100.0 0.143 0.091 90.2 100.0 0.197 0.135
MCF Transformer 94.3 100.0 0.159 0.111 90.7 100.0 0.202 0.136
MCF PerceiverIO 96.57 100.00 0.107 0.072 94.60 100.00 0.130 0.084

Table 5: Molecule conformer generation results with different network architectures on GEOM-QM9.
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Figure 5: Comparison of conformers from ground truth, MCF, and Torsional Diffusion with energy
calculated with xTB (in kcal/mol).

A.6.3 Ensemble property prediction

To fully assess the quality of generated conformers we also compute chemical property resemblance
between the synthesized and the authentic ground truth ensembles. We select a random group of
100 molecules from the GEOM-DRUGS and produce a minimum of 2K and a maximum of 32
conformers for each molecule following (Jing et al., 2022). Subsequently, we undertake a comparison
of the Boltzmann-weighted attributes of the created and the true ensembles. To elaborate, we calculate
the following characteristics using xTB (as documented by (Bannwarth et al., 2019)): energy (E),
dipole moment (µ), the gap between HOMO and LUMO (∆ϵ), and the lowest possible energy,
denoted as Emin. Since we don’t have the access to the exact subset of DRUGS used in Jing et al.
(2022), we randomly pick three subsets and report the averaged and standard deviation. The results
are listed in Tab. 6. Our model achieves the lowest error on Emin when compared with other baselines,
which demonstrates that MCF is succeeds at generating stable conformers that are very close to the
ground states. This could root from the fact that MCF doesn’t rely on rule-based cheminfomatics
methods and the model learns to better model stable conformers from data. Besides, MCF achieves
competitive performance on µ and ∆ϵ. However, the error of E is high compared to the rest of
approaches, meaning that though MCF performs well in generating samples close to ground states, it
may also generate conformers with high energy that are not plausible in the dataset. In future work we
plan to further study the reasons for this result. Fig. 5 show examples of generated conformers from
our MCF and Torsional Diffusion when compared with ground truth. MCF generates conformers
where the ground state is closer to the ground truth than Torsional Diffusion. However, both methods
can generate conformers when higher energy than ground truth data.

E µ ∆ϵ Emin

OMEGA 0.68 0.66 0.68 0.69
GeoDiff 0.31 0.35 0.89 0.39
GeoMol 0.42 0.34 0.59 0.40
Torsional Diff. 0.22 0.35 0.54 0.13
MCF (ours) 0.71±0.06 0.31±0.05 0.60±0.06 0.04±0.00

Table 6: Median averaged errors of ensemble properties between sampled and generated conformers
(E, ∆ϵ, Emin in kcal/mol, and µ in debye).
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(a) (b) (c)

Figure 6: (a) Recall coverage metric as a function of the threshold distance. MCF outperforms
Torsional Diffusion across the full spectrum of thresholds. (b) Precision coverage as a function
of the threshold distance. We see that MCF outperforms Torsional Diffusion for median coverage
at low thresholds, which shows that MCF better captures that fine intrinsic geometric structure of
conformers. (c) Minimum averaged RMSD (lower is better) of recall and precision as a function of
the number of atoms in molecules.

A.6.4 Analysis of Results on GEOM-DRUGS

In Fig. 6 we show a breakdown of the performance on GEOM-DRUGS of MCF vs. Torsional
diffusion (Jing et al., 2022) as a function of the threshold distance, as well as a function of the number
of atoms in molecules. MCF outperforms Torsional Diffusion across the full spectrum of thresholds.
When looking at Precision metrics MCF outperforms Torsional Diffusion in median coverage at lower
thresholds, which shows that MCF better captures the fine intrinsic geometric structure of conformers.
We also include experiments of transferring MCF trained on GEOM-DRUGS to GEOM-XL to the
Appendix A.6.5.

A.6.5 Generalization to GEOM-XL

We now turn to the task of evaluating how well a model trained on GEOM-DRUGS transfers to
unseen molecules with large numbers of atoms. As proposed in Torsional Diff. (Jing et al., 2022)
we use the GEOM-XL dataset, which is a subset of GEOM-MoleculeNet that contains all species
with more than 100 atoms, which is a total of 102 molecules. Note that this evaluation not only tests
the capacity of models to generalize to molecules with large number of atoms but also serves as an
out-of-distribution generalization experiment.

In Tab. 7 we report AMR for both precision and recall and compare with GeoDiff (Xu et al., 2022),
GeoMol (Ganea et al., 2021) and Torsional Diffusion (Jing et al., 2022). In particular, when taking the
numbers directly from (Jing et al., 2022), Torsional Diffusion performs best closely followed by MCF.
However, in running the checkpoint provided by Torsional Diffusion and following their validation
process we found that 25 molecules failed to be generated, this is due to the fact that Torsional
Diffusion generates torsional angles conditioned on the molecular graph G and the local structures
obtained from RDKit. In some cases, RDKit can fail to find local structures and Torsional Diffusion
cannot generate conformers in this case. As a result, when evaluating both approaches in exactly
the same molecules MCF are Torsional Diffusion are extremely close in terms of generalization
performance, with Torsional Diffusion leading by a very narrow margin.

A.7 Continuous conformers

Molecules are ubiquitously represented as graphs G where vertices V of the graph represents atoms
and their properties and edges represents bonds that encode interactions between atoms. These bonds
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AMR-P ↓ AMR-R ↓ # mols

mean median mean median

GeoDiff 2.92 2.62 3.35 3.15 102
GeoMol 2.47 2.39 3.30 3.14 102
Torsional Diff. (Jing et al., 2022) 2.05 1.86 2.94 2.78 102
MCF (ours) 2.23 1.92 3.26 2.89 102

Torsional Diff. (our eval) 1.93 1.86 2.84 2.71 77
MCF (ours) 1.97 1.85 2.98 2.72 77

Table 7: Generalization results on GEOM-XL. MCF obtains comparable results to Torsional Diffusion
Jing et al. (2022), without making any explicit assumptions about the geometric structure of molecules.

Figure 7: Continuously evaluating generated conformer fields for different molecules in GEOM-QM9.

encode electron interactions between atoms but also serve to describe the nature and characteristics of
such interactions (i.e. covalent bonds, ionic bonds, metallic bonds, etc, ). In particular, the molecule’s
conformer is generated only for discrete atoms (e.g. vertices in G). However, since MCF encodes
continuous conformer fields it can be continuously evaluated in G. For example, we can evaluate
the sampled conformer fields for points along bonds. In order to do this, for a point p in a bond
connecting atoms (vi, vj) we linearly interpolate the Laplacian eigenvector representation of it’s
endpoints φ(p) = αφ(vi) + (1− α)φ(vj), we then feed this interpolated Laplacian eigenvector into
the model to sample its 3D position in the conformer field. We visualize results in Fig. 1 and 7. We
generated this visualizations an MCF model trained on GEOM-QM9 without atom features. Note
that while MCF is never trained on points along molecular bonds, it manages to generate plausible
3D positions for such points.

This flexibility to evaluate conformers continuously in G opens a realm of possibilities. For example,
at this subatomic scales, the paths that electrons take are not well-defined tracks, but rather regions of
space where they are most likely to be found, represented by probability density functions. These
electron clouds form the bonds between atoms, and their shapes can vary quite a bit depending on the
bond type, being sometimes symmetrical and other times quite complex and diffuse. MCF enables
the possibility of using additional training data from Quantum Monte Carlo methods (Nightingale &
Umrigar, 1998) to capture the probability density of electron clouds.

A.8 Additional visualization

In the supplementary material we provide videos showing the iterative inference process of MCF on
different molecules in GEOM-QM9, GEOM-DRUGS and GEOM-XL. Finally in Fig. 8 we show GT
and generated conformers from MCF for a molecule in GEOM-DRUGS.
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Figure 8: GT and generated conformers from MCF for a molecule in GEOM-DRUGS.

15


	Introduction
	Method
	Conformers as Functions on Graphs
	Diffusion Generative Model on Conformer Fields
	Score Field Network 

	Experiments
	GEOM-QM9
	GEOM-DRUGS

	Conclusions
	Appendix
	Related Work
	Limitations and Future Work
	Equivariance in Conformer Generation
	Implementation details
	Score Field Network implementation details
	Compute

	Sampling and Inference Algorithm
	Additional experiments
	Ablation experiments
	Architectural choices
	Ensemble property prediction
	Analysis of Results on GEOM-DRUGS
	Generalization to GEOM-XL

	Continuous conformers
	Additional visualization


