
Published as a conference paper at ICLR 2024

EFFICIENT SHARPNESS-AWARE MINIMIZATION FOR
MOLECULAR GRAPH TRANSFORMER MODELS

Yili Wang1, Kaixiong Zhou2, Ninghao Liu3, Ying Wang4, Xin Wang1 ∗
1School of Artificial Intelligence, Jilin University, China
2Institute for Medical Engineering & Science, Massachusetts Institute of Technology, USA
3School of Computing, University of Georgia, USA
4College of Computer Science and Technology, Jilin University, China
wangyl21@mails.jlu.edu.cn, kz34@mit.edu,
ninghao.liu@uga.edu, {wangying2010, xinwang}@jlu.edu.cn

ABSTRACT

Sharpness-aware minimization (SAM) has received increasing attention in com-
puter vision since it can effectively eliminate the sharp local minima from the
training trajectory and mitigate generalization degradation. However, SAM re-
quires two sequential gradient computations during the optimization of each step:
one to obtain the perturbation gradient and the other to obtain the updating gradient.
Compared with the base optimizer (e.g., Adam), SAM doubles the time overhead
due to the additional perturbation gradient. By dissecting the theory of SAM and
observing the training gradient of the molecular graph transformer, we propose a
new algorithm named GraphSAM, which reduces the training cost of SAM and
improves the generalization performance of graph transformer models. There are
two key factors that contribute to this result: (i) gradient approximation: we use the
updating gradient of the previous step to approximate the perturbation gradient at
the intermediate steps smoothly (increases efficiency); (ii) loss landscape approxi-
mation: we theoretically prove that the loss landscape of GraphSAM is limited to a
small range centered on the expected loss of SAM (guarantees generalization per-
formance). The extensive experiments on six datasets with different tasks demon-
strate the superiority of GraphSAM, especially in optimizing the model update
process. The code is in: https://github.com/YL-wang/GraphSAM/tree/graphsam.

1 INTRODUCTION

Biochemical molecular property prediction is one of the essential tasks for many applications,
including drug discovery (Withnall et al., 2020; Wu et al., 2018; Ye et al., 2022) and molecular
fingerprint design (Honda et al., 2019; Kearnes et al., 2016). Motivated by the recent progress in
natural language processing and computer vision, graph transformer models have shown promising
results for molecular property prediction by treating molecular structures as graphs (Rong et al.,
2020; Chen et al., 2021a). The transformers learn the global interaction of every node to capture the
underlying structure, improving the molecular property classification performance.

Without the hand-crafted features or inductive biases encoded in the neural architecture, it is widely
observed that the transformer is prone to converge to sharp local minima, where the loss value changes
quickly in the neighborhood around model weights (Du et al., 2021; Zhou et al., 2022b; Chen et al.,
2021b; Andriushchenko & Flammarion, 2022; Zhou et al., 2021b). The sharp local minima are
highly correlated with significant generalization errors in various domains. To mitigate the sharpness,
existing studies on transformers for molecular property prediction use large-scale pre-training, while
the pre-training requires extensive resources and expert knowledge in constructing the informative
self-supervised learning tasks (Rong et al., 2020; Chithrananda et al., 2020; Ying et al., 2021; Liu
et al., 2021b). These laborious requirements prevent engineers from directly applying the transformer
for any downstream application.

Recently, sharpness aware minimization (SAM) (Foret et al., 2020) has been proposed to explicitly
smooth the sharp local minima during model training like pre-training. Nevertheless, SAM requires
two forward and backward propagations at each step: one to obtain the worst-case adversarial gradient

∗Correspondence to: Xin Wang

1

https://github.com/YL-wang/GraphSAM/tree/graphsam

Published as a conference paper at ICLR 2024

for perturbing weights named perturbation gradient and the other to obtain the updating gradient
for the training model. Compared with the base optimizer, SAM doubles the time overhead due
to the extra computation of the perturbation gradient. In order to improve the efficiency of
model training, some efficient SAM variants (AE-SAM, RST, ESAM, etc.) (Jiang et al., 2023; Zhao
et al., 2022a; Du et al., 2021) have been invented. They seek to enhance efficiency through "generic"

BBBP ClinTox Tox2180

82

84

86

88

90

92

94

Ac
cu

ra
cy

 V
al

ue

Pretraining
No-pretraining
+SAM
+GraphSAM
+AE-SAM
+RST
+LookSAM

Figure 1: The results of GROVER with
different strategies on three datasets.

techniques (e.g., Stochastic judgment gradient calculation)
that can be employed with "any" model and have been
successful in Computer Vision. Whether they still maintain
a high standard when they step out of their comfort area,
on the contrary, the answer is no. As shown in Fig. 1, com-
pared to the base optimizer of Adam (the second bar), the
performance of the pre-training-free Grover model with
SAM has a significant improvement (the third bar). How-
ever, other efficient SAM variants have minimal or even
counterproductive performance. The reason is that they
overlooked or omitted the principles of SAM’s success:
gradient direction and gradient size. This is the core aspect
that motivates the current work.

In this paper, we aim to improve the efficiency of SAM while maintaining generalization perfor-
mance of graph transformer models on molecular property prediction tasks. One of the existing
straightforward solutions to speed up SAM is to compute the perturbation gradient periodically, e.g.,
RST (Zhao et al., 2022a), which unfortunately leads to poor empirical results. In the experiments, we
observe the perturbation gradient direction is similar to the indispensable updating gradient direction
from the last step. Based on this discovery, we develop GraphSAM to reuse the updating gradient of
the previous step and approximate the perturbation gradient with free lunch. Specifically, GraphSAM
contains two sequential gradient computations at each step: one to obtain the updating gradient by
one forward and backward propagation and the other to use it to prepare the perturbation gradient for
the next step. The perturbation gradient is periodically re-anchored and gradually smoothed with
the updating gradient at the intermediate steps. By relieving the perturbation gradient computation
overhead, GraphSAM has comparable efficiency with the traditional optimizers. More importantly,
we verify through formula derivation and experiments that GraphSAM has the ability to compete
with SAM. GraphSAM can converge to the flat minima, as shown in Fig. 2. Our contribution is in the
following four aspects:

• We observe the sharp local minima in a convergence of the graph transformer model for the
molecular property prediction problem. Similar to other domains, the sharp local minima
result in poor generalization performance.

• We propose GraphSAM to relieve the computation overhead of SAM. In particular, instead
of computing the perturbation gradient at every step, GraphSAM computes it periodically
and uses the updating gradient of the previous step to approximate it smoothly.

• We experimentally observe the approximated perturbation gradient is close to the ground-
truth, and theoretically prove the loss landscape is constrained within a small bound centered
at the desired loss of SAM.

• The extensive experiments on the benchmark molecular datasets show that GraphSAM
achieves comparable or even outperforming results, and frees the expensive pre-training.
The time overhead is marginal compared with SAM.

2 RELATED WORK

Sharp Local Minima. Sharp local minima can primarily affect the generalization performance of
deep neural networks (Izmailov et al., 2018; Jastrzebski et al., 2017; Guo et al., 2022; Zhou et al.,
2022a; 2023; Wang et al., 2022b; 2020). Recently, many studies have attempted to explore how
to solve the optimization problem by locating the parameters in flat minima instead of sharp local
minima (Zhou et al., 2020; Jiang et al., 2019; Moosavi-Dezfooli et al., 2019; Zhou et al., 2021a; Liu
et al., 2020; Wen et al., 2018). At the same time, it is shown through a large number of experiments
that there is a strong correlation between sharpness and generalization error at various hyperparameter
settings (Jiang et al., 2019). This motivates the idea of minimizing sharpness during training to

2

Published as a conference paper at ICLR 2024

improve standard generalization, resulting in sharpness-aware minimization(SAM) (Foret et al.,
2020).

Sharpness-Aware Minimization. SAM has been successfully used in areas such as image classifica-
tion (Foret et al., 2020; Du et al., 2021; Liu et al., 2022; Zhao et al., 2022b) and natural language
processing (Bahri et al., 2021). Especially, LookSAM improves computational efficiency by elimi-
nating the calculation of the updating gradient (Liu et al., 2022). SAF (Du et al., 2022) suggests an
innovative trajectory loss that mitigates abrupt decreases in the loss at sharp local minima during
the weight update trajectory to reduce the time loss. Nevertheless, most of the work still ignores the
fact of SAM’s double overhead (Damian et al., 2021; Kwon et al., 2021; Wang et al., 2022a; Li &
Giannakis, 2023) and no studies of SAM are available in the graph domain. This forces us to propose
the GraphSAM algorithm in the field of molecular graphs, which retains the generalization ability of
SAM while improving computational efficiency.

Molecular Graph Representation Learning. In recent years, Steven et al.Kearnes et al. (2016);
Xiong et al. (2019) have tried applying GNNs to molecular characterization learning to better utilize
the structural information of molecules. Nevertheless, they have poor generalization ability to new-
synthesized molecules. Recently, a great deal of pre-training has been done on graphs to capture
the rich information in molecular graphs (Hu et al., 2019; 2020; Rong et al., 2020; Honda et al.,
2019). In contrast, the pre-training-free graph transformer models are prone to overfit and have
poor generalization performance, thus some recent studies utilize contrastive learning and data
augmentation methods to solve the problem (Xia et al., 2022; Zhang et al., 2020). However, these
methods have a considerable training time and are complex to operate.

3 PROBLEM STATEMENT AND SAM
3.1 MOLECULAR PROPERTY PREDICTION

A molecular structure can be represented by an attributed graph G = (V, E), where V and E
denote the atoms (nodes) and chemical bonds (edges) within the molecule, respectively. The
initial feature of node v is denoted as xv, and the initial feature of edge (u, v) is euv. The set of
neighbors of node v is denoted as Nv . We consider two categories of molecular property prediction
tasks: graph classification and graph regression. Both of them are given a set of molecular graphs
G = {G1, · · · , GN} and their labels/targets {y1, · · · , yN}, where the molecular property prediction
task is to infer the label/target of a new graph.

3.2 SHARP LOCAL MINIMA IN TRANSFORMER

Weight Loss Landscape. Existing studies have demonstrated that converging to a flat region in the

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Tr
ai

ni
ng

 L
os

s

+Adam
+SAM
+GraphSAM

Figure 2: The loss landscape of
GROVER with different optimizers.

loss landscape can improve the generalization performance
of DNNs (Li et al., 2018; Du et al., 2021; Xue et al., 2021;
Juan et al., 2023; Yang et al., 2022). To understand model
convergence, we visualize the loss landscape of GROVER
trained on the BBBP dataset in Fig. 2. The training loss
(y-axis) is defined as L(θ+ϕDθ) (e.g., cross-entropy loss),
where θ denotes the best-trained model parameters at the
convergence of GROVER. Dθ is the random gradient direc-
tions sampled from Gaussian distribution, and ϕ (x-axis)
controls the scalar size of the step that moves by Dθ to
get the perturbation parameters, which is called the best
parameter’s neighborhood. In Fig. 2, we can observe that
the loss landscape of Adam is much sharper, i.e., its neigh-
borhood parameters’ training loss is much larger than SAM
and GraphSAM. The over-parameterized pre-training-free graph transformer model is located in the
sharp local minima.

Generalization Performance. Transformer models rely on massive pre-training (Rong et al., 2020;
Yuan et al., 2021; Liu et al., 2021a; Touvron et al., 2021; Sun et al., 2022) to mitigate the sharp local
minima problem, such as GROVER (Rong et al., 2020). They are demanding data and computation
resources, and require laborious tuning and expert knowledge in designing the pre-training tasks.
When the pre-training process is removed, the models often fall into the sharp local minima, which
significantly affects the generalization performance of graph transformer models. As shown in Fig. 1,

3

Published as a conference paper at ICLR 2024

we use the test accuracy value to express the models’ generalization performance, and the GROVER
performance significantly deteriorates once pre-training is ablated.

3.3 SHARPNESS-AWARE MINIMIZATION

In order to improve generalization and free model construction from large-scale pre-training, Foret
et al. (Foret et al., 2020) propose the SAM algorithm to seek parameter values whose entire neigh-
borhoods have both low loss and low curvature. Formally, SAM trains a transformer by solving the
following min-max optimization problem:

min
θ

max
∥ϵ̂∥2≤ρ

LG(θ + ϵ̂), (1)

where ρ is the size of the gradient stepping ball, G is the training dataset, and θ denotes the model
weight parameters. Here we omit the regularization term for simplicity. At training step t, SAM
solves the min-max problem by the following iterative process:

ϵt = ∇θLG(θt), ϵ̂t = ρ · ϵt
||ϵt||2

, ωt = ∇θLG(θt + ϵ̂t), θt+1 = θt − ηt · ωt. (2)

For the inner optimization, SAM calculates the perturbation gradient ϵt with a complete forward and
backward propagation and then normalizes ϵt within the ρ-ball to get ϵ̂t. The normalized gradient ϵ̂t is
applied to update the model as shown by the inner maximization problem in equation 1. For the outer
optimization, SAM obtains the updating gradient ωt with another complete forward and backward
propagation. Then ωt is used to update the model with the learning rate ηt towards the expected
smooth minima. SAM consumes double overhead due to the extra computation of perturbation
gradient compared with the base optimizer.

4 GRAPHSAM

4.1 UNDERSTANDING OF THE GRADIENTS

To optimize the computational efficiency of SAM, we provide deeper insights into the perturbation
gradient ϵt and the updating gradient ωt. Particularly, we introduce two key observations as motivation
from experiments conducted on the BBBP dataset with two graph transformer models.

0 100 200 300 400 500 600 700
Step

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Gr
ad

ie
nt

 L
2-

No
rm

|| t + 1 t||2 || t + 1 t||2

200 300 400
0.00

0.02

0.04

0.06

Grover CoMPT
Model

89
90
91
92
93
94
95
96

Ac
cu

ra
cy

 V
al

ue

Adam
SAM
SAM-One
SAM-k

SAM GraphSAMSAM-k SAM-One
Algorithm

0

100

200

300

400

500

Nu
m

be
r o

f d
ire

ct
io

ns

Consistent
Inconsistent

Figure 3: Illustration on the observation of gradient on GROVER and CoMPT with BBBP dataset.
(a) Gradient variation during training. (b) Accuracy of Adam, SAM, SAM-One, and SAM-k. (c) The
similarity direction numbers of ϵSt+1 and ωS

t in SAM , or the similarity direction numbers of ϵt and ϵSt
in GraphSAM, SAM-K, and SAM-One.

Observation 1 (The change of ϵt and ωt during the iterative training process). As shown in Fig. 3(a),
we use ||ϵt+1 − ϵt||2 and ||ωt+1 − ωt||2 to describe the changing degrees of perturbation gradient ϵt
and the updating gradient ωt, respectively. It is observed that ωt changes more drastically and has a
broader range during the training process. In contrast, the variation of ϵt is relatively minor, which
can lead us to focus on the perturbation gradient to improve the computational loss of the model. We
also observe ||ωt||2 » ||ϵt||2 in Fig. 9, which is useful for the subsequent proof of the theory.1

According to Observation 1 where the perturbation gradient changes gently, an intuitive solution to
reducing the time complexity of SAM is to compute ϵt only once at the beginning, and then reuse

1The observation is unique to the domain of molecular graphs.

4

Published as a conference paper at ICLR 2024

the initial ϵt at the following training steps. Mathematically, we name such an efficient solution
as SAM-One, where the perturbation gradient is given by ϵt = ϵ0, for t ≥ 1. Notably, SAM-One
can be regarded as a special case of SAM-k (Liu et al., 2022), where the perturbation gradient is
computed every k step. Although the computational efficiency is improved, the performances of
both SAM-One and SAM-k deteriorate significantly as shown in Fig. 3(b). For example, SAM-One
consistently delivers the worst generalization performance. Compared with SAM on the CoMPT
model, the molecule property classification accuracy of SAM-One drops from 96.2% to 92.2%. One
possible reason is that the influence of ϵt fluctuation is non-negligible, as shown in the small window
of Fig. 3(a). The old perturbation gradient obtained many steps before, fails to accurately reflect
the scale of current ϵt. This experimental observation demonstrates that the vanilla algorithm of
SAM-One or SAM-k does not adapt well to the molecular property prediction problem. Thus, we
further study the correlation between the perturbation gradient and the updating gradient as follows.

Definition 1 (Similarity metric). We use the cosine function to measure the similarity between two
vectors, denoted as cos(·, ·). The vector intersection angle is denoted as ∠, e.g., if cos(a, b) = 1,
then ∠ab = 0◦.

Definition 2 (Gradient direction similarity). Given the perturbation gradient ϵt and the updating
gradient ωt, if 0 ≤ cos(ϵt, ωt) ≤ 1, we call ϵt and ωt are consistent; and if −1 ≤ cos(ϵt, ωt) <
0, then ϵt and ωt are inconsistent. That is, the angle ∠ between consistent vectors satisfies
0◦ ≤ ∠ ≤ 90◦.

Observation 2 (Similarity between ϵt+1 and ωt). As shown in Fig. 3(c), we divide the simi-
larity scores between the (ϵt+1, ωt) pair of SAM into two categories: consistent pairs with
0 ≤ Cos(ϵt+1, ωt) ≤ 1, and inconsistent pairs with −1 ≤ cos(ϵt+1, ωt) < 0. We observe
that the gradient direction of ωt is prone to be close to that of ϵt+1 during the training process. In
particular, consistent pairs account for 67.45% in the overall training process.

The above observations motivate us to approximate the perturbation gradient with the updating
gradient from the last step, in order to save time for the model optimization computation.

4.2 AN EFFICIENT SOLUTION

In the following, we propose a novel optimization algorithm, GraphSAM, to address the above
challenges. The innovation of GraphSAM has the following two aspects: perturbation gradient
approximation and gradient ball’s size (ρ) scheduler.

Perturbation gradient approximation. GraphSAM contains two sequential gradient computations
at each step: one to obtain the updating gradient by forward and backward propagation, and the other
to use the updating gradient to prepare the perturbation gradient for the next step. Indeed, at training
step t, we have:

ϵ0 = ∇θLG(θ0), ϵ̂t = ρ · ϵt
||ϵt||2

, ωt = ∇θLG(θt + ϵ̂t),

θt+1 = θt − ηt · ωt, ϵt+1 = β · ϵt + (1− β) · ωt/ ∥ ωt ∥2 .
(3)

Like the SAM algorithm, at training step t = 0, we need an additional forward and backward
propagation to compute the perturbation gradient ϵ0. Then we project the perturbation gradient within
the ρ-ball to get ϵ̂t and the neighboring parameters (θt+ ϵ̂t) of θt. With another forward and backward
propagation from (θt + ϵ̂t), we can get the updating gradient ωt to update the model. Unlike the
SAM algorithm, at training step t+ 1, GraphSAM uses the idea of moving average to prepare ϵt+1

by combining the ϵt with ωt of the previous step, and the hyperparameter β ∈ [0, 1) controls the
exponential decay rate of the moving average. The moving average method can effectively retain
the information of the previous steps of ωt, and the initial information of ϵ0. The ϵt+1 acquired
by this method can be approximated with the ground truth. Meanwhile, it prevents computing the
perturbation gradient at each step with additional forward and backward propagation, which increases
the efficiency of SAM for model optimization.

Compared with SAM in equation 2, instead of exactly calculating perturbation gradient with extra
forwarding and backward, GraphSAM approximates ϵt+1 for the next step based on the above two
observations: ϵt changes slowly and ϵt+1 positively relates to ωt. As the training step increases,
ϵt+1 obtained by moving average may gradually deviate from the ground-truth exactly computed by

5

Published as a conference paper at ICLR 2024

SAM. Therefore, to reduce the error, the perturbation gradient ϵt+1 is periodically re-anchored, e.g.,
the perturbation gradient is recalculated at the first-step of each epoch. This ultimately makes the
direction of ϵt+1 obtained by the moving average is keeping close to the ground-truth.

To evaluate the approximation performance, we compare the approximated perturbation gradients
obtained by SAM-One, SAM-k, and GraphSAM in Fig. 3(c). Specifically, we measure their co-
sine similarity scores with the ground-truth perturbation gradient obtained by SAM. As shown in
Fig. 3(c), consistentpairs accounts for 72.46% of the total training process in GraphSAM. The
consistentpairs statistics of SAM-One (40.05%) and SAM-k (56.74%) algorithms are much worse
than GraphSAM. The results show that our GraphSAM provides a better solution to approximate the
perturbation gradient.

Gradient ball’s size (ρ) scheduler. As seen from equation 3, the projected perturbation gradient
size ϵ̂t is determined not only by the perturbation gradient ϵt, but also by the size of gradient ball ρ.
The models’ generalization ability is correlated intimately with ρ (Kwon et al., 2021), as shown in
Table 8 in the experiment. In general, the size of the perturbation gradient should change with the
training process. The early stages of training require a larger perturbation gradient size to enable
graph transformer models to handle the much sharper minima cases. When the model converges at
the later stages of training, the perturbation gradient should decrease or even converge to 0, allowing
the model to fall into a flatter region. Therefore, motivated by the learning rate scheduling (e.g.,
StepLR (Brownlee, 2016)), we propose a simple but effective gradient ball’s size scheduler as below:

ρnew = ρinitial ∗ γepoch/λ, (4)

where the hyperparameter λ controls the update rate of ρ, i.e., how many epochs for one update.
The hyperparameter γ controls the modification scale in ρ. Summarizing the above, the GraphSAM
algorithm is shown in Appendix.

4.3 GRADIENT APPROXIMATION ANALYSIS

In this section, we verify that the perturbation gradient of GraphSAM approximates the ground truth.
Meanwhile, we prove the loss landscape of GraphSAM is limited to a small range centered on the
expected loss of SAM.

Before going to the mathematical proof, we first illustrate GraphSAM and SAM in Fig. 4. Considering

- ·wt

β·εt-1

(1- β)·wt-1

||wt-1||2
εt

G

θt

θt
adv

- ·wt θt+1

α

εt
S

εt
G

εt
S

Figure 4: Visualization of GraphSAM.
The black dashed line is obtained from
GraphSAM’s updating gradient which
targets the model’s parameters θ moving
to a flatter region.

the model parameter learning from θt to θt+1, GraphSAM
first approximates the perturbation gradient and then ad-
versarially perturbs the graph transformer model to the
neighborhood, where the model is finally updated to θt+1

with a complete forward and backward propagation. In
particular, the perturbation gradient ϵGt of GraphSAM is
obtained from the moving average between ϵt−1 and ωt−1

as shown by the last equation in equation 3. The projected
perturbation gradient ϵ̂Gt practically used to perturb model
to neighborhood θadvt , is obtained by mapping ϵGt over the
gradient ball. Based upon θadvt , we compute the updat-
ing gradient ωt by a forward and backward propagation
to update θt -> θt+1. Therefore, each training step of
GraphSAM only requires the same tensor flowing as the
base optimizer. In contrast, as illustrated in Fig. 4, SAM
takes another complete propagation to obtain ϵSt and its
projected one ϵ̂St . Since ϵ̂St is exactly estimated, we treat it
as the ground truth compared with the approximated perturbation gradient ϵ̂Gt used in GraphSAM.

Conjecture 1. Let ϵ̂S and ϵ̂G denote the perturbation weights of SAM and GraphSAM, respectively,
where we ignore the subscript of t for the simple representation. Suppose that ω

||ω||2 » ϵ as empirically
discussed in Observation 12, and ||ϵ̂S||2 < ||ϵ̂G||2 for ρ > 0 designating ϵ̂S as the ground-truth. We
have:

max
∥ϵ̂S∥2≤ρ

LG(θ + ϵ̂S) ≤ max
∥ϵ̂G∥2≤ρ

LG(θ + ϵ̂G).

2This assumption is obtained from Fig. 9

6

Published as a conference paper at ICLR 2024

We list the detailed proof in Appendix A.2. From the generalization capacity perspective, it is
observed that the adversarially perturbed loss of SAM is upper bounded by that of GraphSAM.
Recalling the min-max optimization problem of SAM in equation 1, if we replace the inner maximum
objective from LG(θ + ϵ̂S) to LG(θ + ϵ̂G), the graph transformer is motivated to smooth a worse
neighborhood loss in the loss landscape. In other words, the proposed GraphSAM aims to minimize
a rougher neighborhood loss, whose value is theoretically larger than that of SAM, and obtain a
smoother landscape associated with the desired generalization.

Conjecture 2. Let ||LG(θ + ϵ̂G) − LG(θ + ϵ̂S)|| denote the gap of generalization performance
between SAM and GraphSAM. It is positively correlated with the gradient approximation error as
below:

∥ LG(θ + ϵ̂G)− LG(θ + ϵ̂S) ∥∝∥ ϵ̂G − ϵ̂S ∥ .

We list the detailed proof in Appendix A.1. Given the above-constrained loss bias and the limited
training epochs, the optimization algorithm of GraphSAM is prone to converge to the area neighboring
that of SAM, where the loss landscape is smooth and desired for good generalization. Indeed, we can
compute the loss bias by:

∥ ϵ̂G − ϵ̂S ∥≤∥ α · ϵ̂G ∥= α· ∥ ρ · ϵG
∥ ϵG ∥

∥, (5)

where ∥ α · ϵ̂G ∥ denotes the arc length between gradients ϵ̂G and ϵ̂S. When the intersection angle α
(or the size of gradient ball ρ) is close to 0, ϵ̂Gt is infinitely approximated to ϵ̂St . Conjecture 2 with
equation 5 shows GraphSAM’s loss landscape is constrained within a small bound centered at the
desired loss of SAM.

As the training step t increases, the intersection angle α between ϵ̂Gt and ϵ̂St gets wider, and the
generalization performance of GraphSAM may reduce significantly. As seen from equation 5, in
addition α, the size of gradient ball ρ plays another key role in determining the gradient approximation
error. Therefore, to ensure GraphSAM has a similar generalization performance as SAM, we
periodically reduce the size of ρ by using equation 4. In summary, we use the moving average method
to approximate the ground-truth, and control the size of ρ to reduce the gap between ϵ̂Gt and ϵ̂St . Both
of them are the keys to keeping GraphSAM with good generalization performance.

5 EXPERIMENTS RESULTS

In this section, we evaluate the effectiveness of GraphSAM on two graph transformer models. Overall,
we aim to answer three research questions as follows. Q1: Can GraphSAM improve the generalization
performance of the graph transformer models? Q2: How effective is GraphSAM compared to SAM
and other variants of SAM? Q3: How do each module and key hyperparameters of GraphSAM affect
its efficiency and performance?

5.1 EXPERIMENT SETUP

Datasets. Following the settings of previous molecular graph tasks, we consider six public benchmark
datasets: BBBP, Tox21, Sider, and ClinTox for the classification task, and ESOL and Lipophilicity
for the regression task. We evaluate all models on a random split as suggested by MoleculeNet (Wu
et al., 2018), and split the datasets into training, validation, and testing with a 0.8/0.1/0.1 ratio.
More detailed statistics are provided in Appendix A.3. In addition, the Backbone frameworks and
baselines and Implementations are described in detail in Appendix A.4.

5.2 PERFORMANCE ANALYSIS

5.2.1 GENERALIZATION PERFORMANCE IMPROVEMENT

To answer the research question Q1, we apply GraphSAM to GROVER and CoMPT in a comprehen-
sive comparison with the baseline approaches on different datasets. We make two key observations.

▷ Lacking the large-scale pre-training process, an over-parameterized graph transformer
model does not necessarily work better than a GNNs-based model. As shown in Table 1,
compared with GNNs-based models, GROVER (no pre-training) and CoMPT have even worse
performance on most datasets than the GNNs-based CMPNN. It fully illustrates that the over-
parameterized transformer model tends to fall into the sharp local minima during the training
process like Fig. 2. The sharp local minima significantly affect the generalization performance of the
graph transformer model.

7

Published as a conference paper at ICLR 2024

Table 1: Prediction results of GraphSAM and baselines on six datasets. We used 5-fold cross-
validation with random split and replicated experiments on each task five times. The mean and
standard deviation of AUC or RMSE values are reported. Bold is the best optimizer, and underlined
is the best model.

Task Graph Classification (ROC-AUC↑) Graph Regression (RMSE↓)
Dataset BBBP Tox21 Sider ClinTox ESOL Lipophilicity

GCN 0.690±0.041 0.819±0.031 0.623±0.022 0.807±0.044 0.970±0.071 1.313±0.149

MPNN 0.901±0.032 0.834±0.014 0.634±0.014 0.881±0.037 0.702±0.042 1.242±0.249

DMPNN 0.912±0.037 0.845±0.012 0.646±0.020 0.897±0.042 0.665±0.060 1.159±0.207

CMPNN 0.925±0.017 0.837±0.016 0.640±0.018 0.918±0.016 0.582±0.055 0.633±0.029

GROVER 0.917±0.028 0.822±0.019 0.649±0.035 0.853±0.043 0.639±0.087 0.671±0.047

+ SAM 0.926±0.022 0.840±0.035 0.660±0.043 0.872±0.044 0.619±0.089 0.662±0.052

+ GraphSAM 0.928±0.016 0.846±0.012 0.665±0.038 0.866±0.051 0.625±0.083 0.654±0.056

CoMPT 0.948±0.025 0.828±0.008 0.621±0.013 0.914±0.034 0.562±0.071 0.618±0.012

+ SAM 0.962±0.033 0.839±0.006 0.643±0.009 0.927±0.025 0.517±0.025 0.611±0.015

+ GraphSAM 0.961±0.012 0.841±0.004 0.645±0.013 0.937±0.008 0.511±0.018 0.608±0.007

▷ GraphSAM and SAM can improve the generalization performance of transformer models
that fall into sharp local minima. Compared with the vanilla model, adapting GraphSAM to each

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

Lo
ss

CoMPT
Adam_train
Adam_test
SAM_train

SAM_test
GraphSAM_train
GraphSAM_test

0 10 20 30 40 50
Epochs

0.2
0.4
0.6
0.8
1.0
1.2

Lo
ss

GROVER
Adam_train
Adam_test
SAM_train

SAM_test
GraphSAM_train
GraphSAM_test

Figure 5: Loss curves of different optimizers on the
BBBP dataset.

transformer model, it delivers the average
improvements of 1.52% (GROVER), and
2.16% (CoMPT), respectively. SAM is 1.55%
(GROVER) and 1.97% (CoMPT). We show the
loss curves of GROVER and CoMPT with dif-
ferent optimizers in Fig. 5. SAM has the best
generalization loss (the purple line), Graph-
SAM is the second best (the green line), and
Adam is the worst (the orange line). In par-
ticular, there is a large gap between Adam’s
training loss and testing loss. This is because
the over-parameterized pre-training-free graph transformer model is always prone to overfitting.

In addition, as shown in Fig. 2, we display the loss landscape and demonstrate that both GraphSAM
and SAM have significantly improved the sharpness compared to Adam. GraphSAM and SAM
optimize the model update using the perturbation gradient to seek parameter values with low
loss and curvature throughout the neighborhood. It also prevents the parameters from falling into
sharp local minima. Both GraphSAM and SAM can improve the model’s generalization.

5.2.2 THROUGHPUT AND ACCURACY OF THE OPTIMIZERS

To answer the research question Q2, we summarize the model efficiency and generalization perfor-
mance of different optimization algorithms in Table 7. In summary, we observe that:

▷ GraphSAM has a similar generalization performance to SAM while having high throughput.
We compare the throughput and generalization performance of GraphSAM with other optimization
algorithms in Table 2 and Table 7. Where throughput denotes the computational overhead which
is quantified by graphs processed per second (Graphs/s), and the generalization performance is
measured by test ROC-AUC/RMSE. The experimental results show that GraphSAM can improve
the training speed up to 155.4% compared to SAM. The reason for this is that we perform only one
forward and backward propagation in most of the training steps, which will greatly improve
the model’s efficiency. In terms of performance, GraphSAM is close to SAM and even better than
SAM on some datasets in Table 13.

The other optimization algorithms also can improve efficiency but lose some generalization perfor-
mance. For instance, although SAM-k and SAM-One have a high throughput, their generalization
performance is poor. This is because though they also periodically compute the perturbation gradient,
it differs significantly from the ground-truth gradient at other training times, eventually affecting
the model’s generalization performance. LookSAM is an optimization algorithm designed for the

3Under the optimal parameters, SAM theoretically has the best performance

8

Published as a conference paper at ICLR 2024

Table 2: Classification accuracy and training speed.
BBBP

GROVER ROC-AUC↑ Throughput
Adam 0.917 362
SAM 0.926 201(100.0%)

SAM-One 0.899 330(164.2%)
SAM-k 0.915 287(142.7%)

LookSAM 0.919 266(132.3%)
AE-SAM 0.923 291(144.8%)

RST 0.912 312(155.2%)
GraphSAM 0.928 272(135.3%)

CoMPT ROC-AUC↑ Throughput
Adam 0.948 218
SAM 0.962 112(100.0%)

SAM-One 0.922 199(177.6%)
SAM-k 0.941 183(163.4%)

LookSAM 0.952 161(143.8%)
AE-SAM 0.955 178(158.9%)

RST 0.940 186(166.1%)
GraphSAM 0.961 174(155.4%)

transformer model in the computer vision do-
main. Unlike our algorithm, it maintains the
perturbation gradient by the updating gradi-
ent. Due to the design of LookSAM, it does
not conform to the properties of the molecu-
lar graph model. Therefore, it is inferior to
train the model based on the original hyper-
parameter. LookSAM has been tuned by us
(ρ = 0.0001, α = 0.2, k = 8), but its per-
formances are only the same as Adam’s in all
datasets, and LookSAM takes more time. In ad-
dition, AE-SAM and RST compute the update
gradient by different strategies, respectively. Be-
cause of the determination problem of the strate-
gies, their computational consumption is very
dissimilar in different models and data. There is
also no guarantee that the generalization perfor-
mance will not be affected. Please see Appendix A.4 and A.5 for details.

5.2.3 ROLES OF GRAPHSAM MODULES.
To answer the research question Q3, we conduct experiments on multiple graph transformer models
and datasets for Adam, SAM, and GraphSAM to verify the role of each module. In summary, we
have the following two observations.

▷ The size of ρ directly impacts the generalization of SAM and GraphSAM for different
datasets. In particular, we investigate the impact of different fixed-value ρ and gradient ball’s size ρ
schedulers on the performance of various datasets. We list their performances in Table 8, and conduct
that: (1) The ρ of the gradient ball helps SAM and GraphSAM to seek the model parameters that
lie in neighborhoods having uniformly low loss. We need to manually adjust the size of ρ to get
better performance for different datasets (e.g., the best performance of BBBP is ρ = 0.05 but ESOL
is ρ = 0.001 in SAM). Due to the nature of GraphSAM, which needs a small ρ to approximate the
ground-truth, ρ is unsuitable for over-scaling. (2) Compared to fixed ρ, the scheduler can improve
the model’s generalization performance on different datasets. The reason for the above conduct is
that parameter re-scaling can cause a difference in sharpness values so the size of ρ may weaken
the correlation between sharpness and generalization gap (Dinh et al., 2017), this phenomenon is
named the scale-dependency problem. Our gradient ball’s size ρ scheduler module, which changes
the size of rho periodically, can remedy the scale-dependency problem of sharpness. Experimentally,
GraphSAM and SAM have relatively stable generalization performance in different datasets under
the action of the scheduler.

▷ Accuracy-efficiency trade-off. The secret of GraphSAM’s ability to maintain similar perfor-
mance to SAM is the timely re-anchor of ϵt. The effectiveness of another module of GraphSAM,
moving average, has been shown in Table 1. In this part, we mainly verify the correlation between
accuracy-efficiency. We propose the GraphSAM-K to investigate the impact of the rate of re-anchor
to the perturbation gradient ϵt on generalization performance. The K means that we perform an
additional forward and backward propagation to re-anchor from ϵt to ϵ0 for every K epoch. As in
Fig. 6, we analyze GraphSAM-K for different values of K. The N means that only once re-anchor of
ϵt. When K = 1, GraphSAM is comparable to SAM. When K = 2, the performance of GraphSAM
is slightly higher than Adam’s. When K > 2, the efficiency of GraphSAM is increasing rapidly, but
its performance drops sharply. The reason is that as the training steps increase, the error between ϵ̂t
obtained from equation 3 and the ground-truth ϵ̂S becomes increasingly large. To reduce the error,
we need to re-anchor the ϵt by forward and backward propagation in each epoch repeatedly.

6 CONCLUSION

In this paper, we perform a series of analytical experiments to show that the graph transformer model
suffers from sharp local minima when the pre-training process is removed. SAM can solve this
problem, but its computational loss is double that of the traditional optimizer. Then we propose an
efficient algorithm GraphSAM which reduces the training cost of SAM and improves the generaliza-
tion performance of graph transformer models. The experiments show the superiority of GraphSAM,
especially in optimizing the model update process.

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGMENTS

This work was supported by a grant from the National Natural Science Foundation of China under
grants (No.62372211, 62272191), the Foundation of the National Key Research and Development of
China (No.2021ZD0112500), and the International Science and Technology Cooperation Program of
Jilin Province (No.20230402076GH), and the Science and Technology Development Program of Jilin
Province (No. 20220201153GX).

REFERENCES

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International Conference on Machine Learning, pp. 639–668. PMLR, 2022.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
generalization. arXiv preprint arXiv:2110.08529, 2021.

Lorenz C Blum and Jean-Louis Reymond. 970 million druglike small molecules for virtual screening
in the chemical universe database gdb-13. Journal of the American Chemical Society, 131(25):
8732–8733, 2009.

J Brownlee. Using learning rate schedules for deep learning models in python with keras. Machine
learning mastery, June, 21, 2016.

Stephen J Capuzzi, Regina Politi, Olexandr Isayev, Sherif Farag, and Alexander Tropsha. Qsar mod-
eling of tox21 challenge stress response and nuclear receptor signaling toxicity assays. Frontiers
in Environmental Science, 4:3, 2016.

Jianwen Chen, Shuangjia Zheng, Ying Song, Jiahua Rao, and Yuedong Yang. Learning at-
tributed graph representations with communicative message passing transformer. arXiv preprint
arXiv:2107.08773, 2021a.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021b.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: large-scale self-
supervised pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885, 2020.

Alex Damian, Tengyu Ma, and Jason D Lee. Label noise sgd provably prefers flat global minimizers.
Advances in Neural Information Processing Systems, 34:27449–27461, 2021.

John S Delaney. Esol: estimating aqueous solubility directly from molecular structure. Journal of
chemical information and computer sciences, 44(3):1000–1005, 2004.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. In International Conference on Machine Learning, pp. 1019–1028. PMLR, 2017.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural networks.
arXiv preprint arXiv:2110.03141, 2021.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou. Sharpness-aware training
for free. Advances in Neural Information Processing Systems, 35:23439–23451, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.

Anna Gaulton, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne
Light, Shaun McGlinchey, David Michalovich, Bissan Al-Lazikani, et al. Chembl: a large-scale
bioactivity database for drug discovery. Nucleic acids research, 40(D1):D1100–D1107, 2012.

Kaitlyn M Gayvert, Neel S Madhukar, and Olivier Elemento. A data-driven approach to predicting
successes and failures of clinical trials. Cell chemical biology, 23(10):1294–1301, 2016.

10

Published as a conference paper at ICLR 2024

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3996–4004, 2022.

Shion Honda, Shoi Shi, and Hiroki R Ueda. Smiles transformer: Pre-trained molecular fingerprint
for low data drug discovery. arXiv preprint arXiv:1911.04738, 2019.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1857–1867, 2020.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Stanisław Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623,
2017.

Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
aware minimization. arXiv preprint arXiv:2304.14647, 2023.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.

Xin Juan, Fengfeng Zhou, Wentao Wang, Wei Jin, Jiliang Tang, and Xin Wang. Ins-gnn: Improving
graph imbalance learning with self-supervision. Information Sciences, 637:118935, 2023.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider database of drugs and side
effects. Nucleic acids research, 44(D1):D1075–D1079, 2016.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning, pp. 5905–5914. PMLR, 2021.

Bingcong Li and Georgios B Giannakis. Enhancing sharpness-aware optimization through variance
suppression. arXiv preprint arXiv:2309.15639, 2023.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Chen Liu, Mathieu Salzmann, Tao Lin, Ryota Tomioka, and Sabine Süsstrunk. On the loss landscape
of adversarial training: Identifying challenges and how to overcome them. Advances in Neural
Information Processing Systems, 33:21476–21487, 2020.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022.

11

Published as a conference paper at ICLR 2024

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10012–10022, 2021a.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. Exact: Scalable graph neural
networks training via extreme activation compression. In International Conference on Learning
Representations, 2021b.

Ines Filipa Martins, Ana L Teixeira, Luis Pinheiro, and Andre O Falcao. A bayesian approach to in
silico blood-brain barrier penetration modeling. Journal of chemical information and modeling, 52
(6):1686–1697, 2012.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Robust-
ness via curvature regularization, and vice versa. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9078–9086, 2019.

Raghunathan Ramakrishnan, Mia Hartmann, Enrico Tapavicza, and O Anatole Von Lilienfeld.
Electronic spectra from tddft and machine learning in chemical space. The Journal of chemical
physics, 143(8), 2015.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Ying Song, Shuangjia Zheng, Zhangming Niu, Zhang-Hua Fu, Yutong Lu, and Yuedong Yang.
Communicative representation learning on attributed molecular graphs. In IJCAI, volume 2020,
pp. 2831–2838, 2020.

Govindan Subramanian, Bharath Ramsundar, Vijay Pande, and Rajiah Aldrin Denny. Computational
modeling of β-secretase 1 (bace-1) inhibitors using ligand based approaches. Journal of chemical
information and modeling, 56(10):1936–1949, 2016.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Pichao Wang, Xue Wang, Hao Luo, Jingkai Zhou, Zhipeng Zhou, Fan Wang, Hao Li, and Rong Jin.
Scaled relu matters for training vision transformers. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 2495–2503, 2022a.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In Proceedings of the web
conference 2020, pp. 1082–1092, 2020.

Yili Wang, Kaixiong Zhou, Rui Miao, Ninghao Liu, and Xin Wang. Adagcl: Adaptive subgraph
contrastive learning to generalize large-scale graph training. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management, pp. 2046–2055, 2022b.

Wei Wen, Yandan Wang, Feng Yan, Cong Xu, Chunpeng Wu, Yiran Chen, and Hai Li. Smoothout:
Smoothing out sharp minima to improve generalization in deep learning. arXiv preprint
arXiv:1805.07898, 2018.

Michael Withnall, Edvard Lindelöf, Ola Engkvist, and Hongming Chen. Building attention and
edge message passing neural networks for bioactivity and physical–chemical property prediction.
Journal of cheminformatics, 12(1):1–18, 2020.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

12

Published as a conference paper at ICLR 2024

Jun Xia, Jiangbin Zheng, Cheng Tan, Ge Wang, and Stan Z. Li. Towards effective and generalizable
fine-tuning for pre-trained molecular graph models. bioRxiv, 2022.

Zhaoping Xiong, Dingyan Wang, Xiaohong Liu, Feisheng Zhong, Xiaozhe Wan, Xutong Li, Zhaojun
Li, Xiaomin Luo, Kaixian Chen, Hualiang Jiang, et al. Pushing the boundaries of molecular
representation for drug discovery with the graph attention mechanism. Journal of medicinal
chemistry, 63(16):8749–8760, 2019.

Haotian Xue, Kaixiong Zhou, Tianlong Chen, Kai Guo, Xia Hu, Yi Chang, and Xin Wang. Cap:
Co-adversarial perturbation on weights and features for improving generalization of graph neural
networks. arXiv preprint arXiv:2110.14855, 2021.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Hua Gao, Angel Guzman-Perez, Timothy
Hopper, Brian P Kelley, Andrew Palmer, Volker Settels, et al. Are learned molecular representations
ready for prime time? 2019.

Yintao Yang, Rui Miao, Yili Wang, and Xin Wang. Contrastive graph convolutional networks with
adaptive augmentation for text classification. Information Processing & Management, 59(4):
102946, 2022.

Xian-bin Ye, Quanlong Guan, Weiqi Luo, Liangda Fang, Zhao-Rong Lai, and Jun Wang. Molecular
substructure graph attention network for molecular property identification in drug discovery.
Pattern Recognition, 128:108659, 2022.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zi-Hang Jiang, Francis EH Tay, Jiashi
Feng, and Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on
imagenet. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
558–567, 2021.

Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. Motif-driven contrastive learning
of graph representations, 2020. URL https://arxiv.org/abs/2012.12533.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Randomized sharpness-aware training for boosting
computational efficiency in deep learning. arXiv preprint arXiv:2203.09962, 2022a.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Ss-sam: Stochastic scheduled sharpness-aware minimiza-
tion for efficiently training deep neural networks. arXiv preprint arXiv:2203.09962, 2022b.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper
graph neural networks with differentiable group normalization. Advances in neural information
processing systems, 33:4917–4928, 2020.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet
energy constrained learning for deep graph neural networks. Advances in Neural Information
Processing Systems, 34:21834–21846, 2021a.

Kaixiong Zhou, Qingquan Song, Xiao Huang, Daochen Zha, Na Zou, and Xia Hu. Multi-channel
graph neural networks. In Proceedings of the Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence, pp. 1352–1358, 2021b.

Kaixiong Zhou, Xiao Huang, Qingquan Song, Rui Chen, and Xia Hu. Auto-gnn: Neural architecture
search of graph neural networks. Frontiers in big Data, 5:1029307, 2022a.

Kaixiong Zhou, Zirui Liu, Rui Chen, Li Li, S Choi, and Xia Hu. Table2graph: Transforming tabular
data to unified weighted graph. In Proceedings of the Thirty-First International Joint Conference
on Artificial Intelligence, IJCAI, pp. 2420–2426, 2022b.

Kaixiong Zhou, Soo-Hyun Choi, Zirui Liu, Ninghao Liu, Fan Yang, Rui Chen, Li Li, and Xia Hu.
Adaptive label smoothing to regularize large-scale graph training. In Proceedings of the 2023
SIAM International Conference on Data Mining (SDM), pp. 55–63. SIAM, 2023.

13

https://arxiv.org/abs/2012.12533

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 APPENDIX 1: PROOF FOR CONJECTURE 2

Conjecture 2. Let ∥ LG(θ + ϵ̂G) − LG(θ + ϵ̂S) ∥ denote the gap of generalization performance
between SAM and GraphSAM. It is positively correlated with the gradient approximation error as
below:

∥ LG(θ + ϵ̂G)− LG(θ + ϵ̂S) ∥∝∥ ϵ̂G − ϵ̂S ∥ .

Proof 1. For SAM loss function LG(θ + ϵ̂), based on Taylor Expansion (Liu et al., 2022), we can
obtain:

LG(θ + ϵ̂) ≈ LG(θ) + ϵ̂∇θLG(θ) (6)

Therefore, we have:
LG(θ + ϵ̂G)− LG(θ + ϵ̂S)

= (LG + ϵ̂G∇θLG(θ))− (LG + ϵ̂S∇θLG(θ))

= (ϵ̂G − ϵ̂S)∇θLG(θ)

(7)

According to equation 7, the gap in generalization performance between SAM and GraphSAM is
proportional to the gradient approximation error.

A.2 APPENDIX 2: PROOF FOR CONJECTURE 1

Conjecture 1. Let ϵ̂S and ϵ̂G be the projected perturbation gradients of SAM and GraphSAM,
respectively. We ignore the subscript t for the simple representation. For any ρ > 0, we assume that
||ϵ̂S||2 < ||ϵ̂G||2 and ϵ̂S is the ground-truth, we have

max
∥ϵ̂S∥2≤ρ

LG(θ + ϵ̂S) ≤ max
∥ϵ̂G∥2≤ρ

LG(θ + ϵ̂G). (8)

Proof 2. For SAM loss function Combining equation 2 of the main paper, we can see that the size
of ϵ̂t is determined by ϵt. Then ϵGt is expressed as follows:

ϵGt = βϵGt−1 + (1− β)
ωt−1

||ωt−1||2
. (9)

(1) When t = 0, ϵGt = ϵSt , because both of them are computed by the same forward and backward
propagation.

(2) When t = 1, ϵGt = βϵG0 + (1− β) ω0

||ω0||2 > ϵSt ,

ϵGt − ϵSt = β(ϵG0 − ϵS1) + (1− β)(
ω0

||ω0||2
− ϵS1)

= β(ϵS0 − ϵS1) + (1− β)(
ω0

||ω0||2
− ϵS1),

(10)

as shown in Fig. 3(a) of the main paper, the change of perturbation gradient is small, and after
experimental analysis, the updating gradient ωt≫ ϵt. So ϵGt > ϵSt , for t = 1.

(3) When t = 2, because of ϵG1 > ϵS1 , we have

ϵGt − ϵSt = β(ϵG1 − ϵS2) + (1− β)(
ω1

||ω1||2
− ϵS2)

> β(ϵS1 − ϵS2) + (1− β)(
ω1

||ωt−1||2
− ϵS2),

so ϵGt > ϵSt , for t = 2.

14

Published as a conference paper at ICLR 2024

(4) When t > 2, analogously to the above conclusions, we have

ϵGt − ϵSt = β(ϵGt−1 − ϵSt) + (1− β)(
ωt−1

||ωt−1||2
− ϵS2)

> β(ϵSt−1 − ϵSt) + (1− β)(
ωt−1

||ωt−1||2
− ϵSt)

In summary, we can conclude thatϵGt > ϵSt , for t > 0.

Following the above, the equation 7 can be rewritten as follows:

LG(θt + ϵ̂Gt)− LG(θt + ϵ̂St)

≈ (ϵ̂Gt − ϵ̂St)∇θLG(θt)

≈ (ϵGt − ϵSt)∇θLG(θt) > 0.

(11)

Therefore, it can be proved that

max
∥ϵ̂S∥2≤ρ

LG(θ + ϵ̂S) < max
∥ϵ̂G∥2≤ρ

LG(θ + ϵ̂G)

Also when ρ = 0 or t = 0, then

max
∥ϵ̂S∥2≤ρ

LG(θ + ϵ̂S) = max
∥ϵ̂G∥2≤ρ

LG(θ + ϵ̂G)

Although we prove the correctness of Theorem 1 equation 8 by Mathematical Induction and experi-
ment, we still want to find out the main factors affecting the perturbation gradient of GraphSAM, so
we expand equation 9 as follows:

ϵGt = βϵGt−1 + (1− β)
ωt−1

||ωt−1||2
= β[βϵGt−2 + (1− β)

ωt−2

||ωt−2||2
] + (1− β)

ωt−1

||ωt−1||2
= β2ϵGt−2 + β(1− β)

ωt−2

||ωt−2||2
+ (1− β)

ωt−1

||ωt−1||2
...

= βtϵG0 + βt−1(1− β)
ω0

||ω0||2
+ · · ·+ β0(1− β)

ωt−1

||ωt−1||2
.

(12)

As equation 12, we find that the parameter β of the moving average plays a key role. So we perform
some experiments on it. As shown in Table 3, it is known experimentally that GraphSAM performs
best when β = 0.99. This result is particularly evident in the ESOL dataset. So equation 10 holds for
a suitable β. In the paper, we experimentally observe that the perturbation gradient and the updating
gradient differ by two orders of magnitude, i.e., 100 times. Therefore, the optimal result is β = 0.99,
so 1− β=0.01.

Table 3: The influence of smoothing parameter β of moving average on GraphSAM algorithm on
CoMPT.

Algorithm β BBBP (ROC-AUC↑) ClinTox(ROC-AUC↑) ESOL (RMSE↓) Lipophilicity (RMSE↓)
0.9 0.958± 0.014 0.928± 0.015 0.557± 0.020 0.614± 0.021

GraphSAM 0.99 0.961± 0.012 0.937± 0.008 0.511± 0.018 0.608± 0.007

0.999 0.959± 0.003 0.931± 0.006 0.549± 0.023 0.612± 0.010

15

Published as a conference paper at ICLR 2024

A.3 APPENDIX 3: THE STATISTICS OF DATASETS

GraphSAM and SAM is evaluated on six molecular graph datasets, as described below:

Molecular Classification Datasets.

• BBBP (Martins et al., 2012): This is a Blood-brain barrier penetration (BBBP) dataset, which
involves recording whether a compound has the permeability to penetrate the blood-brain barrier.
It has binary labels for 2,039 molecules.

• Tox21 (Capuzzi et al., 2016): This is a public database for measuring the toxicy of compounds,
which contains 7,831 compounds against 12 different targets.

• Sider (Kuhn et al., 2016): The Side Effect Resource (Sider) is a database of marketed drugs and
adverse drug reactions, which contains 1,427 approved drugs with 27 system organ branches.

• Clintox (Gayvert et al., 2016): It has 1,478 drugs and compares them approved through FDA and
drugs eliminated due to the toxicity during clinical trials.

Molecular Regression Datasets.

• ESOL (Delaney, 2004): It is a small dataset with 1,128 molecules to document the solubility of
compounds.

• Lipophilicity (Gaulton et al., 2012). it was selected from the ChEMBL database, and contains
4,198 molecules to determine the lipophilicity of the molecule.

The statistics of the molecular graph datasets used in the graph classification and graph regression are
summarized in Table 4.

Table 4: Statistics of datasets.
Category Dataset #Tasks Task Type #Molecule

BBBP 1 Classification 2,039
Physiology Tox21 12 Classification 7,831

Sider 27 Classification 1,427
Clintox 2 Classification 1,478

Physical chemistry ESOL 1 Regression 1,128
Lipophilicity 1 Regression 4,198

In addition to the above datasets, we have performed experiments on three additional datasets from
biophysics (BACE) and quantum mechanics (QM7, QM8, QM9), as shown in Table 5 and Table 6.
This demonstrates the generalization capability of GraphSAM.

Quantum Mechanics Datasets.

• QM7 (Blum & Reymond, 2009): The QM7 dataset is a subset of the GDB-13 database, which
contains 7615 stable, synthesizable organic molecules.

• QM8 (Ramakrishnan et al., 2015): The QM8 dataset comes from a quantum mechanical com-
putational modeling study of the electronic energy spectra and excited state energies of small
molecules. It contains 21786 samples.

Biophysics Dataset.

• BACESubramanian et al. (2016): The BACE dataset provides combined quantitative (IC50)
and qualitative (binary labeling) results for a set of human β-secretase 1 (BACE-1) inhibitors
and contains data for 1,522 molecules. All data are experimental values reported in the scientific
literature over the last decade, some of which also provide detailed crystal structures.

16

Published as a conference paper at ICLR 2024

Table 5: Statistics of three additional datasets.
Category Dataset #Tasks Task Type #Molecule

Quantum mechanics QM7 1 Regression 7,165
QM8 12 Regression 21,786

Biophysics BACE 1 Classification 1,522

Table 6: Prediction results of GraphSAM and baselines.

BACE QM7 QM8
GROVER ROC-AUC ↑ MAE ↓ MAE ↓

Adam 0.871 78.9 0.0203
SAM 0.886 76.4 0.0189

GraphSAM 0.882 75.8 0.0185
CoMPT ROC-AUC ↑ MAE ↓ MAE ↓
Adam 0.863 66.1 0.0159
SAM 0.876 64.3 0.0145

GraphSAM 0.880 64.1 0.0141

A.4 APPENDIX 4: TRAINING DETAILS AND ALGORITHM DETAILS

Backbone frameworks and baselines. To implement SAM and GraphSAM on molecular graph data
with two widely-used graph transformer backbones, GROVER (Rong et al., 2020) and CoMPT (Chen
et al., 2021a). We comprehensively compare them against four baselines in the graph-level task.
GCN (Kipf & Welling, 2016) is the most classical graph convolutional neural network. Compared
with GCN, MPNN (Gilmer et al., 2017) and its two variants (DMPNN (Yang et al., 2019) and
CMPNN (Song et al., 2020)) integrate the edge features into the message-passing process.

SAM and Efficient Variants of SAM. Here we analyze the advantages and disadvantages of SAM
and the efficient variants of SAM, and verify them through experiments. As shown in Table 7.

• SAM (Foret et al., 2020): First work on Sharpness-Aware Minimization(SAM) type methods.
SAM computes the perturbation gradient and the updating gradient by two forward propagation
and backpropagation, respectively. This prevents the model parameters from falling into sharp
local minima. The disadvantage is twice the computational loss of the base optimizer.

• LookSAM (Liu et al., 2022): An efficient approach to SAM variants. It saves computational
loss by observing the training gradient of the CV domain model and periodically computing two
gradients. The disadvantage is that it only cares about the gradient direction but ignores the gradient
size. This leads to poor results when applied to other domains if the gradient direction is not similar
to the CV domain. When the ρ is tuned down, the performance of LookSAM is only close to the
base optimizer.

• AE-SAM (Jiang et al., 2023): A generic hot-swappable component AE-SAM utilizes Squared
stochastic gradient norms to decide whether to compute only the perturbation gradient and not
the updating gradient. When Squared stochastic gradient norms exceed a certain threshold,
quadratic gradient computation is performed and vice versa. The trend of its Squared stochastic
gradient norms in the CV domain is not the same as in the molecular graph domain. Therefore its
performance varies greatly when encountering different models and data while ignoring gradient
direction and gradient size.

• RST (Zhao et al., 2022a): A method that utilizes the Bernoulli trial to periodically compute two
gradients. It is more stochastic and faster to calculate than AE-SAM. However, its drawbacks
are also apparent, aimlessly deciding whether to update the gradient or not ends up with poorer
performance. Its performance is only slightly higher than SAM-One and lower than SAM-k.

• GraphSAM: An efficient SAM-type method based on gradient descent trend specifically designed
for transformer models in the molecular graph domain. In contrast to the single improvement of
other SAM-type methods, we design the gradient approximation method for the gradient direction.
We design an adjustable gradient ball’s size (ρ) scheduler for the gradient size. In addition, we

17

Published as a conference paper at ICLR 2024

have designed a method to compute the gradient periodically so that GraphSAM maintains a high
level of performance improvement. Last but not least, we prove the effectiveness of GraphSAM
through experimentation and derivation.

Implementations. The backbone implementations and their hyperparameter settings are provided
by the publicly released repositoriesRong et al. (2020); Chen et al. (2021a). GROVER and CoMPT
utilize Adam as the base optimizer, and neither uses the pre-training strategy. We only adjust the
specific hyperparameters introduced by GraphSAM: (1) smoothing parameters of moving average β
is tuned within {0.9, 0.99, 0.999}, (2) the initial size of the gradient ball ρ is selected from {0.05, 0.01,
0.005, 0.001}, (3) the ρ’s update rate λ is searched over {1, 3, 5}, (4) and the scheduler’s modification
scale γ = {0.5, 0.2, 0.1}. Due to space limitations, we place our experiments on hyperparameters in
Appendix A.6. All the experiments are implemented by PyTorch, and run on an NVIDIA TITAN-RTX
(24G) GPU.

GraphSAM uses uniform hyperparameters for different models45 and datasets to train with the
following settings: (1) initial_ρ = 0.05; (2) γ = 0.5; (3) β = 0.99; (4) λ = 1. For the other
model parameters, we use the model parameter settings of the original paper. LookSAM uses the
hyperparameters (ρ = 0.0001, α = 0.2, k = 8) for training. SAM-k uses k=8, where k stands for step
instead of epoch. And GraphSAM algorithm is shown in Algorithm 1.

Algorithm 1 GraphSAM
Require: Network fθ; Training set G; Batch size b; Neighborhood size ρ > 0; Moving average

hyperparameter β; Learning rate η > 0; ρ’s update rate λ > 0; The modification scale γ.
1: for epoch←− 0,1,2,· · · E do
2: Sample a mini-batch in B ⊂ G with size b.
3: for t←− 0,1,2,· · · N do
4: if t == 0: then
5: ϵt = ∇θLB(θt)
6: if epoch%λ == 0: then
7: ρnew = ρinitial ∗ γepoch/λ

8: end if
9: else

10: ϵt = βϵt−1 + (1− β)ωt−1/ ∥ ωt−1 ∥2
11: end if
12: ϵ̂t = ρ · sign(ϵt) |ϵt|

||ϵt||2
13: ωt = ∇θLB(θt)|θt+ϵ̂t
14: θt+1 = θt − η · ωt

15: end for
16: end for
17: Return: θt
Ensure: Model trained with GraphSAM.

4https://github.com/tencent-ailab/GROVER/
5https://github.com/jcchan23/CoMPT/

18

Published as a conference paper at ICLR 2024

A.5 APPENDIX 5: SUPPLEMENTARY EXPERIMENTS.

In this section, we mainly add some experiments to sections 5.2.2 (Throughput and accuracy of the
optimizers) and 5.2.3 (Roles of GraphSAM modules) of the main paper.

➀We compare the throughput and generalization performance of GraphSAM with other optimization
algorithms in Table 7. Where throughput denotes the computational overhead which is quantified
by graphs processed per second (Graphs/s), and the generalization performance is measured by test
ROC-AUC/RMSE.

We can see that AE-SAM is more stable compared to RST and LookSAM. This depends on how high
its throughput is, i.e., whether it computes the two gradients multiple times. When its throughput
is high, its performance will be relatively lower, and vice versa. GraphSAM, on the other hand,
performs very consistently, improving both the throughput and the generalization performance of the
model, which is attributed to the three improvement parts of this paper. In addition, due to LookSAM
and RST’s own shortcomings for molecular graphs, their performance improvement is not sufficient
and may even be counterproductive. For example, RST is only close to the simple SAM-k method in
most cases.

Table 7: Classification accuracy and training speed. The numbers in parentheses (·) indicate the ratio
of GraphSAM’s training speed w.r.t. SAM.

Tox21 Sider ClinTox
GROVER ROC-AUC↑ Throughput ROC-AUC↑ Throughput ROC-AUC↑ Throughput

Adam 0.822 131 0.649 130 0.853 161
SAM 0.840 81(100.0%) 0.660 79(100.0%) 0.872 110(100.0%)

SAM-One 0.801 118(145.6%) 0.610 114(144.3%) 0.818 150(136.4%)
SAM-k 0.815 109(134.6%) 0.631 105(132.9%) 0.836 141(128.1%)

LookSAM 0.829 92(113.6%) 0.653 95(120.3%) 0.847 128(116.4%)
AE-SAM 0.834 90(111.1%) 0.649 101(127.8%) 0.858 133(121.0%)

RST 0.818 100(123.4%) 0.625 103(130.3%) 0.845 143(130.0%)
GraphSAM 0.846 98(121.0%) 0.665 98(124.1%) 0.866 134(121.8%)

CoMPT ROC-AUC↑ Throughput ROC-AUC↑ Throughput ROC-AUC↑ Throughput
Adam 0.828 119 0.621 219 0.914 211
SAM 0.839 60(100.0%) 0.643 114(100.0%) 0.927 115(100.0%)

SAM-One 0.788 102(170.0%) 0.595 198(173.6%) 0.879 201(174.7%)
SAM-k 0.819 94(156.6%) 0.610 180(157.8%) 0.895 187(162.6%)

LookSAM 0.825 78(130.0%) 0.625 141(123.6%) 0.916 147(127.8%)
AE-SAM 0.833 71(118.3%) 0.631 150(131.6%) 0.909 155(134.8%)

RST 0.815 94(156.6%) 0.615 169(148.2%) 0.890 180(156.5%)
GraphSAM 0.841 85(141.7%) 0.645 153(134.2%) 0.937 160(139.1%)

ESOL Lipophilicity
GROVER RMSE↓ Throughput RMSE↓ Throughput

Adam 0.639 360 0.671 160
SAM 0.619 223(100.0%) 0.662 68(100.0%)

SAM-One 0.671 332(148.9%) 0.715 143(210.3%)
SAM-k 0.650 298(133.6%) 0.698 129(189.7%)

LookSAM 0.633 278(126.1%) 0.680 90(132.4%)
AE-SAM 0.631 289(129.6%) 0.674 100(147.0%)

RST 0.638 305(130.9%) 0.690 116(170.1%)
GraphSAM 0.625 282(126.5%) 0.654 95(139.7%)

CoMPT RMSE↓ Throughput RMSE↓ Throughput
Adam 0.562 502 0.618 432
SAM 0.517 282(100.0%) 0.611 234(100.0%)

SAM-One 0.601 457(162.1%) 0.638 392(167.5%)
SAM-k 0.575 413(146.5%) 0.630 367(156.8%)

LookSAM 0.543 338(119.9%) 0.621 318(135.9%)
AE-SAM 0.527 329(116.7%) 0.615 308(131.6%)

RST 0.588 391(138.6%) 0.633 371(158.5%)
GraphSAM 0.511 347(123.0%) 0.608 331(141.5%)

19

Published as a conference paper at ICLR 2024

➁We investigate the impact of different fixed-value ρ and gradient ball’s size ρ schedulers on the
performance of various datasets. We list their performances in Table 8.

We find that our proposed Gradient ball’s size (ρ) schedule is more stable than the fixed (ρ), and
eliminates the need for extensive tuning to find the optimal rho.

Table 8: The influence of gradient ball’s size ρ on SAM and GraphSAM on the CoMPT.

Algorithm ρ BBBP(ROC-AUC↑) Tox21(ROC-AUC↑) Sider(ROC-AUC↑)
0.05 0.957± 0.010 0.822± 0.011 0.621± 0.018

SAM 0.005 0.952± 0.022 0.842± 0.008 0.635± 0.021

0.001 0.953± 0.021 0.835± 0.013 0.641± 0.029

scheduler 0.962± 0.033 0.839± 0.006 0.643± 0.049

0.05 0.933± 0.025 0.810± 0.033 0.618± 0.029

GraphSAM 0.005 0.949± 0.020 0.826± 0.020 0.625± 0.018

0.001 0.964± 0.008 0.838± 0.006 0.636± 0.016

scheduler 0.961± 0.012 0.841± 0.004 0.645± 0.013

Algorithm ρ ClinTox(ROC-AUC↑) ESOL(RMSE↓) Lipophilicity(RMSE↓)
0.05 0.910± 0.031 0.539± 0.031 0.622± 0.016

SAM 0.005 0.918± 0.016 0.534± 0.021 0.601± 0.009

0.001 0.924± 0.018 0.527± 0.014 0.613± 0.018

scheduler 0.927± 0.025 0.517± 0.025 0.611± 0.015

0.05 0.902± 0.045 0.946± 0.103 0.691± 0.053

GraphSAM 0.005 0.924± 0.020 0.598± 0.212 0.625± 0.018

0.001 0.931± 0.008 0.528± 0.016 0.610± 0.016

scheduler 0.937± 0.008 0.511± 0.014 0.608± 0.007

▷ Accuracy-efficiency trade-off. The secret of GraphSAM’s ability to maintain similar perfor-
mance to SAM is the timely re-anchor of ϵt. The effectiveness of another module of GraphSAM,
moving average, has been shown in Table 1. In this part, we mainly verify the correlation between
accuracy-efficiency. We propose the GraphSAM-K to investigate the impact of the rate of re-anchor
to the perturbation gradient ϵt on generalization performance. The K means that we perform an
additional forward and backward propagation to re-anchor from ϵt to ϵ0 for every K epoch. As in
Fig. 6, we analyze GraphSAM-K for different values of K. The N means that only once re-anchor of
ϵt. When K = 1, GraphSAM is comparable to SAM. When K = 2, the performance of GraphSAM
is slightly higher than Adam’s. When K > 2, the efficiency of GraphSAM is increasing rapidly, but
its performance drops sharply. The reason is that as the training steps increase, the error between ϵ̂t
obtained from equation 3 and the ground-truth ϵ̂S becomes increasingly large. To reduce the error,
we need to re-anchor the ϵt by forward and backward propagation in each epoch repeatedly.

GraphSAM(1)GraphSAM(2)GraphSAM(5)GraphSAM(N)90
91
92
93
94
95
96
97

Ac
cu

ra
cy

Accuracy-Training Time of CoMPT on BBBP

accuracy

6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0

Av
er

ag
e

Ti
m

e(
s/

ep
oc

h)

time

GraphSAM(1)GraphSAM(2)GraphSAM(5)GraphSAM(N)89.0
89.5
90.0
90.5
91.0
91.5
92.0
92.5
93.0

Ac
cu

ra
cy

accuracy

4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2

Av
er

ag
e

Ti
m

e(
s/

ep
oc

h)

Accuracy-Training Time of Grover on BBBP

time

Figure 6: Accuracy-Training Time of different models for GraphSAM-K. Average Time (s/epoch)
represents the average time consumed for each epoch.

20

Published as a conference paper at ICLR 2024

A.6 APPENDIX 6: HYPERPARAMETER STUDIES.

We conduct experiments on some hyperparameters introduced by GraphSAM in the training process.

❻ The appropriate size of ρ in GraphSAM is essential for model training. We conduct the experiment
and observe that the size of ρ is related to the initial size ρ, ρ’s update rate λ, and the scheduler’s
modification scale γ. To effectively evaluate the impact of the size of ρ, the default values of the
hyperparameters in this paper are initial ρ = 0.05, λ = 1, and γ = 0.5. In Fig. 7a, we find that
if the initial ρ is small, the weight perturbation has a smaller range, which eventually affects the
training performance of GraphSAM. In addition, if the initial ρ = 0.05 is large and the update rate
λ is big (i.e., ρ is updated more slowly), the perturbation range of GraphSAM deviates severely
from the SAM, causing the model generalization performance to drop sharply as shown in Fig. 7b.
Similarly, when the modification scale of ρ is faster i.e. γ = 0.1, the weight perturbation range spans
a larger extent, making the performance of GraphSAM scaled down, especially in the ESOL dataset
in Table 9. When the modification scale of ρ is faster i.e. γ = 0.1, the weight perturbation range
spans a larger extent, making the performance of GraphSAM scaled down, especially in the ESOL
dataset in Table 9.

Table 9: The influence of the gradient ball’s size ρ scheduler’s modification scale γ on GraphSAM
algorithm with CoMPT.

Algorithm γ BBBP (ROC-AUC↑) ClinTox(ROC-AUC↑) ESOL (RMSE↓) Lipophilicity (RMSE↓)
0.5 0.961± 0.012 0.937± 0.008 0.511± 0.018 0.608± 0.007

GraphSAM 0.2 0.959± 0.002 0.923± 0.015 0.560± 0.010 0.618± 0.019
0.1 0.956± 0.005 0.911± 0.011 0.608± 0.012 0.634± 0.010

0.05 0.01 0.005 0.001
94.6
94.8
95.0
95.2
95.4
95.6
95.8
96.0

Ac
cu

ra
cy

 V
al

ue

Initial size () of the gradient ball

1 3 5
94.6
94.8
95.0
95.2
95.4
95.6
95.8
96.0

Ac
cu

ra
cy

 V
al

ue

s update rate ()

Figure 7: Hyperparameter studies of ρ, and λ of CoMPT+ GraphSAM on BBBP dataset.

A.7 APPENDIX 7: SUPPLEMENT TO THE PRE-TRAINING EXPERIMENT.

We have also conducted experiments on the pre-training method, and both SAM and GraphSAM
have certain performance improvements. However, compared to non-pre-training experiments, the
improvement is limited. As shown in table 10, we provide the experimental results of SAM and
GraphSAM on the pre-trained model GROVER with six datasets.

Table 10: Prediction results of GraphSAM on pretraining-GROVER on six datasets. We used 5-fold
cross-validation with random split and replicated experiments on each task five times. The mean and
standard deviation of AUC or RMSE values are reported.

Task Graph Classification (ROC-AUC↑) Graph Regression (RMSE↓)
Dataset BBBP Tox21 Sider ClinTox ESOL Lipophilicity

GROVER 0.930±0.016 0.833±0.028 0.661±0.030 0.931±0.011 0.627±0.087 0.544±0.039

+ SAM 0.935±0.025 0.836±0.021 0.669±0.028 0.940±0.018 0.623±0.103 0.537±0.033

+ GraphSAM 0.939±0.011 0.838±0.033 0.673±0.036 0.938±0.020 0.619±0.111 0.529±0.030

21

Published as a conference paper at ICLR 2024

A.8 APPENDIX 8: ADDITIONS TO THE OBSERVATION OF GRADIENT VARIATION.

In this section, we address the phenomenon detailed as Observation I in the main text, as illustrated
in Fig. 8. This addition robustly affirms that the variations observed in the perturbation gradient
and the updating gradient in Observation I are not isolated instances, but rather a general trend.
Furthermore, we incorporate the trajectory of changes in the magnitudes of ||ϵt||2 and ||ωt||2 as
depicted in Fig. 9. This inclusion substantiates our finding ||ωt||2 » ||ϵt||2 , confirming the initial
observation and providing deeper insight into the underlying dynamics at play.

0 100 200 300 400 500 600 700
Step

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Gr
ad

ie
nt

 L
2-

No
rm

Tox21
|| t + 1 t||2 || t + 1 t||2

200 250 300 350 400
0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Gr
ad

ie
nt

 L
2-

No
rm

Sider
|| t + 1 t||2 || t + 1 t||2

200 250 300 350 400
0.00

0.02

0.04

0.06

0 100 200 300 400 500 600 700
Step

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Gr
ad

ie
nt

 L
2-

No
rm

ClinTox
|| t + 1 t||2 || t + 1 t||2

200 250 300 350 400
0.00

0.02

0.04

0.06

Figure 8: Illustration on the observation of gradient variation during training on GROVER with three
datasets.

0 100 200 300 400 500 600 700
Step

0
1
2
3
4
5
6
7
8

Gr
ad

ie
nt

 L
2-

No
rm

BBBP
|| t||2 || t||2

0 100 200 300 400 500 600 700
Step

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gr
ad

ie
nt

 L
2-

No
rm

Tox21
|| t||2 || t||2

0 100 200 300 400 500 600 700
Step

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Gr
ad

ie
nt

 L
2-

No
rm

Clintox
|| t||2 || t||2

Figure 9: Illustration on the observation of ||ϵt||2 and ||ωt||2 during training on GROVER with three
datasets.

Regarding the attention matrix over the CoMPT model on BBBP dataset, we observe that models
optimized with Adam, GraphSAM, and SAM obtain average entropies of 2.4130, 2.7239, and 2.8382,
respectively. That means the application of SAM approaches can smooth the attention scores to avoid
overfitting. The attention heat map is shown in Fig. 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

Attention Heatmap (Adam)

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

Attention Heatmap (SAM)

0.08

0.16

0.24

0.32

0.40

0.48

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

Attention Heatmap (GraphSAM)

0.1

0.2

0.3

0.4

0.5

Figure 10: Attention heat map.

In CV, the model’s perturbation gradient variations are often consistent with updating gradients,
which is not in line with the phenomena on the molecular graphs. To further address the concern
and provide holistic discussion, we add the following experiments to compare the performance of
lookSAM, AE-SAM, and GraphSAM in the CV and molecule datasets, respectively. LookSAM and
GraphSAM are efficient SAMs designed based on the gradient varification patterns of models in
their respective domains, and AE-SAM is an adaptively-updating efficient method according to the
comparison evaluation between gradient norm and a pre-defined threshold.

22

Published as a conference paper at ICLR 2024

Table 11: Performance of various SAM methods in the CV domain.
ResNet-18 (CV) CIFAR-10 CIFAR-100

+SGD 95.41 78.21
+SAM 96.53 80.18

+LookSAM 96.28 79.91

+AE-SAM 96.49 80.31
+GraphSAM 95.86 78.69

As shown in Fig.11 and Fig. 7, it is observed that LookSAM has better results on the image datasets
instead on the molecular graphs investigated in this work. On the contrary, our GraphSAM works
on the molecules but leads to the worst performances on the image benchmarks. That is because
model gradient variations are diverse across the different domains. It is challenging to transfer the
efficient SAMs designed based on the specific gradient patterns. AE-SAM achieves an acceptable
performance on the molecular graphs since the perturbation gradient norms of graph transformers
are monitored to inform the necessary gradient re-computation. But it is not as good as GraphSAM
where we accurately fit the perturbation gradients at each step. In summary, GraphSAM is optimized
particularly for graph transformers based on the empirical observations of gradient variations.

23

	Introduction
	Related Work
	Problem Statement and SAM
	Molecular Property Prediction
	Sharp Local Minima in Transformer
	Sharpness-aware Minimization

	GraphSAM
	Understanding of the Gradients
	An Efficient Solution
	Gradient Approximation Analysis

	Experiments Results
	Experiment Setup
	Performance Analysis
	Generalization Performance Improvement
	Throughput and accuracy of the optimizers
	Roles of GraphSAM modules.

	Conclusion
	ACKNOWLEDGMENTS
	Appendix
	Appendix 1: Proof for Conjecture 2
	Appendix 2: Proof for Conjecture 1
	Appendix 3: The Statistics of Datasets
	Appendix 4: Training Details and Algorithm Details
	Appendix 5: Supplementary experiments.
	Appendix 6: Hyperparameter studies.
	Appendix 7: Supplement to the pre-training experiment.
	Appendix 8: Additions to the observation of gradient variation.

