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Abstract

We consider a revenue-maximizing seller with k heterogeneous items for sale to a
single additive buyer, whose values are drawn from a known, possibly correlated
prior D. It is known that there exist priors D such that simple mechanisms —
those with bounded menu complexity — extract an arbitrarily small fraction of the
optimal revenue ([BCKW15, HN19]). This paper considers the opposite direction:
given a correlated distribution D witnessing an infinite separation between simple
and optimal mechanisms, what can be said about D?
[HN19] provides a framework for constructing such D: it takes as input a sequence
of k-dimensional vectors satisfying some geometric property, and produces a D
witnessing an infinite gap. Our first main result establishes that this framework is
without loss: every D witnessing an infinite separation could have resulted from
this framework. An earlier version of their work provided a more streamlined
framework [HN13]. Our second main result establishes that this restrictive frame-
work is not tight. That is, we provide an instance D witnessing an infinite gap, but
which provably could not have resulted from the restrictive framework.
As a corollary, we discover a new kind of mechanism which can witness these
infinite separations on instances where the previous “aligned” mechanisms do not.

1 Introduction

Consider a revenue-maximizing seller with k items for sale to a single additive buyer, whose values
for the k items are drawn from a known distribution D. When k = 1, Myerson’s seminal work
provides a closed-form solution to the revenue-optimal mechanism, and it has a particularly simple
form: simply post a price p := argmaxp{p · Prv D[v � p]}, and let the buyer purchase the item
if they please ([Mye81]). For k > 1, however, this multi-dimensional mechanism design problem
remains an active research agenda forty years later.

While simple, constant-factor approximations are known in quite general settings when D is a product
distribution ([CHK07, CHMS10, CMS15, KW12, LY13, BILW14, Yao15, RW15, CDW16, CM16,
CZ17]), there may be an infinite gap between the revenue-optimal auction and any simple counterpart
when values are correlated ([BCKW15, HN19]). More specifically: one simple way to sell k items is
to treat the grand bundle of all items as if it were a single item, and sell it using Myerson’s optimal
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auction (which sets price argmaxp{p · Pr~v D[
P

i vi � p]}). Letting BRev(D) denote the revenue
achieved by this simple scheme, [HN19] further show a connection between BRev(D) and any

simple mechanism through the lens of menu complexity: any mechanism with menu complexity at
most C generates expected revenue at most C · BRev(D).

These works establish a strong separation between simple and optimal auctions: even when k =
2, there exist distributions D such that Rev(D) = 1 (the optimal revenue) while BRev(D) =
1. The fact that Rev(D) = 1 does not on its own suggest that D must be “weird” (the one-
dimensional distribution with CDF 1 � 1/

p
x has this property). The “weird” property is that

Rev(D)/BRev(D) = 1, which can never occur for a one-dimensional distribution.

[BCKW15] and [HN19] establish sufficient conditions for a distribution D to satisfy
Rev(D)/BRev(D) = 1. Simply put, the goal of this paper is to study necessary conditions for a
distribution to satisfy Rev(D)/BRev(D) = 1. We provide two main results. The first establishes
that the sufficient condition presented in [HN19] is in fact necessary for Rev(D)/BRev(D) = 1
(Theorem 6). The second establishes that the sufficient condition used in an earlier version of that
work [HN13] and [BCKW15] is not necessary (Theorem 9). In establishing Theorem 9, we also
construct a distribution D such that Rev(D)/BRev(D) = 1 yet the mechanism witnessing this
provably falls outside the scope of any previous constructions (Corollary 11).

A recent line of work has borrowed tools from machine learning (more specifically, recommender
systems) to approximate buyers with complex, high-dimensional valuations via low-dimensional
topic models [CD22]. Their work recognizes some settings where finding approximately optimal
mechanisms for these buyers reduces to finding approximately optimal mechanisms for buyers whose
valuations are approximated by the topic models. In this context, our work helps clarify the limits
where this modeling approach is effective: a model is tractable if and only if it steers clear of the
[HN19] framework. Beyond this specific direction, we note that there is a significant community at
the intersection of machine learning and multi-item auction design, and understanding the limits of
tractability is important for this community.

Proper context and formal statements of our results require precise definitions, which we provide in
Section 2 immediately below. Section 3 provides formal statements of our results, along with context
alongside related work. Subsequent sections provide proofs.

2 Preliminaries

We consider an auction design setting with a single buyer, single seller, and k heterogeneous items.
Note that our positive results hold for arbitrary k, while our constructions use only k = 2 (and k = 1
is not possible). We use D to denote a distribution over Rk

�0, the (possibly correlated) distribution
over the buyer’s values for the k items. The buyer is additive, meaning that their value for a set of
items S is equal to

P
i2S vi. We use Rev(D) to denote the optimal expected revenue achievable by

any incentive-compatible mechanism (formally, the supremum of expected revenues, or 1 if the
supremum is undefined), and let BRev(D) denote the revenue achieved by selling the grand bundle
as a single item using Myerson’s auction.4 Finally, a mechanism M is a set {(~qi, pi)}i, where each
~qi 2 [0, 1]k denotes a vector of probabilities, and pi 2 R denotes a price. When the buyer’s valuation
is ~v, they pay the auctioneer pi(~v), where i(~v) := argmaxi{~v · ~qi � pi}.5 Rev(D,M) denotes the
expected revenue achieved by a particular mechanism M on distribution D. We will also use the
shorthand ~q

M (~v) to denote the allocation vector purchased by a vector ~v, and p
M (~v) to denote the

price paid (we may drop the superscript of M if the mechanism is clear from context).

Brief Overview of [HN19]. Below, we formally define two geometric properties of sequences
of points, which are the focus of this paper. Many of the ideas below appear in both [BCKW15]
and [HN19], but we will use the formal definitions from [HN19] (and an earlier published ver-

4We briefly remind the reader that BRev(D) serves as a proxy for the achievable revenue by any simple
mechanism, especially when focusing on the gap between infinite and finite. For example, the revenue achieved
by selling the items separately is at most kBRev(D), the revenue achieved by any deterministic mechanism
is at most 2kBRev(D), and, more generally, the revenue achieved by any mechanism which offers at most m
distinct options is at most mBRev(D) [HN19].

5How ties are broken is irrelevant to our results — all results hold for arbitrary tie-breaking. Also, all
mechanisms include an all-zero pair ~q0 = (0, . . . , 0), p0 = 0 to insure individual rationality.

2



sion [HN13]). Below, morally the vectors ~xi correspond to possible (scaled) valuation vectors, and
the vectors ~qi correspond to possible vectors of allocation probabilities.
Definition 1. Let X = (~xi)Ni=1 be an ordered sequence of N points (N may be finite, or equal to

+1), with each ~xi 2 Rk
�0. Let Q = (~qi)Ni=0 be another ordered sequence of N points, with each

~qi 2 [0, 1]k, and starting with ~q0 = (0, ..., 0). Define the following:

gapX,Q
i := min

0j<i
(~qi � ~qj) · ~xi MenuGap(X,Q) :=

NX

i=1

gapX,Q
i

||~xi||1
.

We will also slightly abuse notation and define MenuGap(X) := supQ{MenuGap(X,Q)}.
6

MenuGap(X) is some measure of how distinct the angles of points in X are. To get intuition for
this, one might try to write a short proof that when k = 1, MenuGap(X) = 1 for all X (or that
MenuGap(X) = 1 whenever all ~xi 2 X are parallel). We provide such a proof in Appendix A.
MenuGap(X,Q) is just some geometric measure with no obvious intuition for why this quantity
should be of interest to auction designers. However, one key result of [HN19] shows that this quantity
has connections to simplicity vs. optimality gaps. Specifically, they show:
Theorem 2 ([HN19], Proposition 7.1). For every pair of sequences X = (~xi)Ni=1, Q = (~qi)Ni=0
starting with ~q0 = (0, ..., 0), and all " > 0, there exists a distribution D and mechanism M s.t.:

Rev(D,M)

BRev(D)
� (1� ") ·MenuGap(X,Q).

Moreover, for all i 2 [N ], the support of D contains a single point of the form ci~xi, for some ci 2 R+

(and no other points). Additionally, ~q
M (ci~xi) = ~qi.

The “Moreover,...” portion of Theorem 2 gives some insight to their construction. Further insight can
be deduced by observing that the constraint “gapX,Q

i  ~xi · (~qi � ~qj)” looks similar (but far from
identical) to an incentive compatibility constraint involving a valuation vector ~xi and two allocation
vectors ~qi, ~qj . We refer the reader to [HN19] for further details and intuition for this connection.
Theorem 2 gives a framework for proving simplicity vs. optimality gaps, but leaves open the question
of actually finding a pair of sequences X,Q. They approach this through the following observation:
Definition 3. Given a sequence of points X = (~xi)Ni=0 2 [0, 1]k starting with ~x0 = (0, ..., 0), define

SupGap(X) (read “support gap of X") as SupGap(X) := MenuGap(X,X).

Observation 4. For all X , MenuGap(X) � SupGap(X).

Finally, [HN13] propose an explicit construction of a sequence X with infinite SupGap.
Theorem 5 ([HN13]). There exists an infinite sequence X of points in [0, 1]2 s.t. SupGap(X) = 1.

Theorems 2 and 5 together yield a two-dimensional distribution with Rev(D)/BRev(D) = 1. It is
also worth noting that all prior constructions follow this approach as well. For example, [BCKW15]
provides an infinite sequence X of points in [0, 1]3 such that SupGap(X) = 1.

3 Our Results

Independent of Observation 4 and Theorem 5, Theorem 2 alone provides a framework for constructing
distributions D so that Rev(D)/BRev(D) is large: find sequences X so that MenuGap(X) is large.
Our goal is to understand to what extent this framework is complete for constructing such instances.
Our first main result establishes that any distribution with Rev(D)/BRev(D) = 1 could have

resulted from the framework induced by Theorem 2. Specifically:

6Observe that gapX,Q
i and MenuGap(X,Q) might be negative. Any claims made throughout this paper

regarding MenuGap(X,Q) are vacuously true when MenuGap(X,Q) < 0. We allow gapX,Q
i to be negative

to match the definition of [HN19] verbatim (although our work will also show that this peculiarity of their
definition is not significant).
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Theorem 6. For any distribution D over k items, there exists a sequence of N points (N can be

finite, or equal to +1) X = (~xi)Ni=1, with each ~xi 2 supp(D), such that

MenuGap(X) � Rev(D)

9BRev(D)
.

In particular, if Rev(D)/BRev(D) = 1, then MenuGap(X) = 1 as well.

A complete proof of Theorem 6 appears in Section 4. Observe also that because MenuGap(X) is
monotone (in the sense that adding points to X , anywhere, cannot possibly decrease MenuGap(X)),
the fact that X is a subset of the support of D (rather than the entire support) is immaterial.7 Put
another way, the important aspect in constructing X is how elements in the support of D are ordered,
rather than which points are included.

Observation 4 further provides a framework to construct sequences so that MenuGap(X) is large:
construct sequences X so that SupGap(X) is large. One may then wonder if SupGap(X) and
MenuGap(X) are approximately related, for all X . For this specific question, the answer is triv-
ially no, due to incompatibility with scaling (multiplying every point in X by 1/2 will decrease
SupGap(X) by a factor of 2, but not MenuGap(X)). Therefore, not much insight is gained by
studying this precise question.

Instead, we observe that the interesting aspect of constructions resulting through SupGap(X) is that
~xi and ~qi are aligned (that is, ~xi = ci · ~qi for some ci 2 R�0). Specifically, even if ~qi = ~xi, this
equality is not maintained by the construction of Theorem 2. However, if ~qi and ~xi are aligned, this
alignment property is maintained by the construction. We therefore propose the following definition,
which captures the maximum value achievable by MenuGap(X,Q) when X,Q are aligned.
Definition 7. Let X = (~xi)Ni=1 be an ordered sequence of N points in [0, 1]k (N may be finite,

or equal to +1). Let also C = (ci)Ni=0 be an ordered sequence of numbers, with each ci 2
[0, 1/||~xi||1], starting with c0 = 0. Define:

sgapX,C
i := min

j<i
~xi · (ci~xi � cj~xj), and AlignGap(X,C) :=

NX

i=1

max{0, sgapX,C
i }

||~xi||1
.

We will also slightly abuse notation and denote by AlignGap(X) := supC{AlignGap(X,C)}.

Recall that we have chosen to let ci range in [0, 1/||~xi||1] (rather than be fixed at 1, or 1/||~xi||1) to
give potential constructions flexibility in scaling ~qi. Additionally, by ensuring that the contribution
of each sgapX,C

i is non-negative, we give potential constructions flexibility to ignore points in the
sequence. That is, any construction using MenuGap directly can always set ~qi := argmaxj<i{~qj ·~xi},
which effectively just drops ~xi from the sequence. Counting max{0, sgapX,C

i } towards the objective
(rather than just sgapX,C

i ) gives constructions that arise through AlignGap the same flexibility.
Lemma 8. For all X , AlignGap(X)  MenuGap(X).

The proof of Lemma 8 is in Appendix B. Lemma 8 induces a framework to design sequences with
large MenuGap: design sequences with large AlignGap. Our second main result establishes that this
framework is not without loss of generality, even for k = 2. Specifically:
Theorem 9. There exist sequences X = (~xi)1i=1 2 [0, 1]2 such that:

AlignGap(X)  6 but MenuGap(X) = 1.

A complete proof of Theorem 9 appears in Section 5. By the discussion following Definition 7,
the source of this gap is entirely due to the requirement that the sequence Q be aligned with X

(and is not due to inability to scale, or inability to ignore difficult points in X). We make this
crisp with the following definition and corollary, which construct a novel distribution witnessing
Rev(D)/BRev(D) = 1 that is provably distinct from all previous approaches.
Definition 10. For a distribution D and mechanism M , define the Aligned Revenue of M on D:

ARev(D,M) := E~v D[p
M (~v)·I(~v is parallel to ~q

M (~v))], ARev(D) := sup
M

{ARev(D,M)}.
7Of course, if the support of D is uncountable, then clearly the entire support of D cannot be included in X .
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Corollary 11. There exist distributions D over two items such that Rev(D)/ARev(D) = 1.

A proof of Corollary 11 appears in Appendix C. It is worth noting that all previous constructions estab-
lishing Rev(D)/BRev(D) = 1 proceeded by producing an X such that SupGap(X) = 1. Indeed,
the [BCKW15] construction provides such an X when k = 3, the [HN13] construction provides an
X when k = 2, and the [PSW19] construction adapts parameters in that of [HN13]. By Theorem 2,
this implies not only that Rev(D)/BRev(D) = 1, but also that ARev(D)/BRev(D) = 1. Corol-
lary 11 establishes the existence of a fundamentally different construction,8 as our D has a finite ratio
between ARev(D)/BRev(D), yet still maintains an infinite ratio between Rev(D)/BRev(D).

Additional Related Work. We’ve already discussed the most related work to ours, which is
that of [HN19, BCKW15]. There is also a large body of work studying product distributions

specifically, and establishes that simple mechanisms can achieve constant factor approximations in
quite general settings [CHK07, CHMS10, CMS15, KW12, LY13, BILW14, Yao15, RW15, CDW16,
CM16, CZ17]). Recent works have made progress in obtaining arbitrary approximations ([BGN17,
KMS+19]), which again rely on the assumption that D is a product distribution.

Three recent lines of work address the [BCKW15, HN19] constructions in a different manner.
First, [CTT19, CTT20] consider the related buy-many model (where the auctioneer cannot prevent
the buyer from interacting multiple times with the auction). [CTT19] establishes that selling separately
achieves an O(log k)-approximation to the optimal buy-many mechanism in quite general settings
(including the settings considered in this paper). In a different direction, [PSW19] uses the lens of
smoothed analysis ([ST04]) to reason about the robustness of the [HN19] constructions. Finally,
[Car17] considers a correlation robust framework in which the valuation profile is drawn from a
correlated distribution that is not completely known to the seller; the goal is to design a mechanism
that maximizes the worst-case (over correlations) seller revenue, when only the items’ marginal
distributions are known. [Car17] shows that selling each item separately is optimal; see [BGLT19,
GL18] for further work in this model.

4 A Converse to Theorem 2: The [HN19] Framework is WLOG

In this section, we prove Theorem 6. Our proof has two main parts. First, we will take the optimal
auction for D (or one that is arbitrarily close to optimal) and repeatedly simplify it through a sequence
of lemmas, at the cost of small constant-factors of revenue. The second part takes this simple menu
and draws a connection to MenuGap. Missing proofs can be found in Appendix B.

Simplifying the Optimal Mechanism. We show that for every D, there exists an approximately-
optimal mechanism which satisfies some useful properties. First, we argue that we may ignore menu
options with low prices.
Definition 12. We say that a mechanism M is c-expensive if every option has price at least c.

Claim 13. For all c 2 R�0, all distributions D, and all mechanisms M , there exists a c-expensive

mechanism M
0

satisfying Rev(D,M
0) � Rev(D,M)� c.

Our next step will show that we can assume further structure on the prices charged, at the cost of a
factor of two.
Definition 14. A c-expensive mechanism M is oddly-priced (respectively, evenly-priced) if for all ~v,

there exists an odd (respectively, even) integer i such that p
M (~v) 2 [c · 2i, c · 2i+1).

Claim 15. For all c-expensive mechanisms M , and all D, there exists either an oddly-priced or

evenly-priced c-expensive mechanism M
0

satisfying Rev(D,M
0) � Rev(D,M)/2.

This concludes our simplification of the mechanism. In the subsequent section, we draw a connection
between MenuGap and the revenue of oddly- or evenly-price c-expensive mechanisms.

Connecting Structured Mechanisms to MenuGap. We begin with the following definition,
which describes our proposed X,Q based on a structured mechanism for D.

8On a technical level, our construction certainly borrows several ideas from previous ones, however.
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Definition 16 (Representative Sequences). Let M be a c-expensive mechanism which is oddly-priced

or evenly-priced, and let D be any distribution. An "-representative sequence for M,D is the

following:

• Define ~q0(D,M) := (0, . . . , 0).

• Define offset a to be 1 if M is oddly-priced, and 0 if M is evenly-priced.

• For all j 2 N+, define Bj := {~v 2 supp(D) : pM (~v) 2 [c · 22(j�1)+a
, c · 22(j�1)+a+1)}.

• For all j 2 N+, let ~xj 2 Bj be such that ||~xj ||1  ||~v||1 · (1 + ") for all ~v 2 Bj .
9

• For all j 2 N+, let ~qj := ~q
M (~xj).

Proposition 17. Let M be a c-expensive, and oddly- or evenly-priced. Let (X,Q) be an "-

representative sequence for M,D. Then: MenuGap(X,Q) � Rev(D,M)
4(1+")BRev(D) .

Proof. The proof will follow from two technical claims. The first claim relates ||~xi||1 and BRev(D).
The second claim relates Rev(D,M) and MenuGap(X,Q). Crucially, this claim uses the fact that
the mechanism is either oddly-priced or evenly-priced (and therefore p

M (~xi), pM (~xj) differ by at
least a factor of 2, for any i 6= j).

Claim 18. (1 + ") · BRev(D) � k~xik1 · Pr~v⇠D[~v 2 Bi].

Claim 19. If X,Q is an "-representative sequence for M,D, then gapX,Q
i � p

M (~xi)/2.

With these two claims, we can complete the proof of Proposition 17:

MenuGap(X,Q) :=
1X

i=1

gapX,Q
i

||~xi||1

�(Claim 19)
1X

i=1

p
M (~xi)

2 · ||~xi||1

�(Claim 18)
1X

i=1

p
M (~xi) · Pr~v⇠D[~v 2 Bi]

2 · (1 + ")BRev(D)

�
1X

i=1

E~v⇠D|~v2Bi
[pM (~v)] · Pr~v⇠D[~v 2 Bi]

4 · (1 + ")BRev(D)

� Rev(D,M)

4 · (1 + ")BRev(D)
.

Above, the first line is the definition of MenuGap. The fourth line uses the fact that for all ~v 2 Bi,
p
M (~v)  22(i�1)+a+1 = 2 · 22(i�1)+a  2pM (~xi). The final line is just rewriting the definition of

Rev(D,M), and using the fact that every ~v 2 supp(D) with p(~v) > 0 is in some Bi.

Wrapping Up. Proposition 17, together with the fact that an oddly- or evenly-priced mechanism is
guaranteed to get a good approximation to the optimum, now suffices to prove Theorem 6.

Proof of Theorem 6. Set c = Rev(D)/100, and " = 1/100. Note that "-representative sequences
are guaranteed to exist for any M,D, as " > 0. Let M 0 denote the c-expensive mechanism promised
by Claim 13. Let then M

00 denote the oddly- or evenly-priced mechanism promised by Claim 15.
Finally, let X,Q denote the "-representative sequence for M 00,D. We get:

MenuGap(X,Q) �(Proposition 17) Rev(D,M
00)

4(1 + ")BRev(D)

9Note that for all " > 0, such an ~xj exists, even if Bj is not closed (as long as Bj is non-empty). In particular,
because M is c-expensive, we know that ||~v||1 � c > 0 for all ~v who pay � c. If Bj is empty, instead omit
~xj , ~qj from both lists (i.e. decrease all future indices by one).
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Figure 1: An illustration of two layers of our construction. The number of points in each layer
increases with `, but they are always evenly spaced between (1, 0) and (0, 1). The direction in which
the points are placed alternates between clockwise and counterclockwise.

�(Claim 15) Rev(D,M
0)

8(1 + ")BRev(D)

�(Claim 13) Rev(D)� c

8(1 + ")BRev(D)

� Rev(D)

9BRev(D)
.

5 No Converse to Lemma 8: Separating MenuGap and AlignGap

In this section we prove our second main result: Lemma 8 does not admit a converse, even approxi-
mately. We briefly remind the reader that all previous constructions witnessing Rev(D)/BRev(D) =
1 arose by establishing sequences X with AlignGap(X) = 1 (in fact, even SupGap(X) = 1).
Theorem 9 establishes that constructions exist outside of this more restrictive framework. Missing
proofs can be found in Appendix B.

Description of our construction. Our infinite sequence X consists of consecutive layers of points.
For ` = 2 to 1, layer ` has n` := `dln2(`)e+ 1 points. These points/vectors have `2 norm equal to
one, and are evenly spaced (in terms of their angle) between (1, 0) and (0, 1). If ` is even, they go
counterclockwise from (1, 0) to (0, 1). If ` is odd, they go clockwise from (0, 1) to (1, 0):

• Define n` := `dln2(`)e+ 1. Define ✓` :=
⇡

2(n`�1) .

• Point ~x`,j is the j
th point in the `

th layer, and is (cos(j✓`), sin(j✓`)) when ` is even, or
(sin(j✓`), cos(j✓`)) when ` is odd.

• The infinite sequence X is ((~x`,j)
n`�1
j=0 )1`=2.

Figure 1 demonstrates two layers of our construction. In the remainder of this section, we may refer
to the sequence of points ~x`,j by a single indexed sequence ~xi. The latter is the same as the former
where points are ordered lexicographically with respect to the original indexing.

Upper Bounding AlignGap(X) via Lagrangian duality. We first upper bound AlignGap(X)
and establish that it’s finite. To this end, observe that for any sequence X , AlignGap(X) is the
solution to the following (infinite, if X is infinite) mathematical program, where the variables are
sgapi, ci (the sequence ~xi is fixed, as we’re aiming to compute AlignGap(X)):

AlignGap(X) :

8
<

:

max
P

i max{0, sgapi}/||~xi||1
subject to: 8i, j < i : sgapi  ~xi · (ci~xi � cj~xj)

8i : 0  ci  1/||~xi||1
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We next proceed with a series of relaxations of this program. Some steps are specific to our choice of
X from Section 5, while others hold for arbitrary X . Our first step is specific to this construction,
and simply bounds ||~x||1. Consider the following mathematical program:

AlignGap0(X) :

8
<

:

max
P

i max{0, sgapi}
subject to: 8i, j < i : sgapi  ~xi · (ci~xi � cj~xj)

8i : 0  ci 
p
2.

Observation 20. For the sequence X defined in Section 5, AlignGap0(X) � AlignGap(X).

Proof. Every ~xi in the construction has ||~xi||1 � ||~xi||2 = 1. Therefore, the new objective function
is only larger. Moreover, every ~xi in the construction has ||~xi||1 � 1/

p
2 (because the `2 norm is 1),

so this is relaxing the upper bound on ci.

We proceed to upper bound AlignGap0(X) via a Lagrangian relaxation of the formulation above.
Consider the following Lagrangian relaxation. We put a Lagrangian multiplier of 1 on every constraint
of the form sgapi  ~xi · (ci~xi � ci�1~xi�1), for all i > 1, and a Lagrangian multiplier of 0 on all
other constraints involving sgap. We will not put a Lagrangian multiplier on constraints binding
ci to [0,

p
2], and keep those in the program. This yields the following Lagrangian relaxation (for

simplicity of notation below, define c0 := 0, and define ~x0 = ~0):

LagRel1(X) :

⇢
max

P
i max{0, sgapi}+ ~xi · (ci~xi � ci�1~xi�1)� sgapi

subject to: 8i : 0  ci 
p
2

Observation 21. For all X , AlignGap0(X)  LagRel1(X).

We now proceed to further simplify LagRel1(X). The next step is defined below:

LagRel2(X) :

⇢
max

P
i ~xi · (ci~xi � ci�1~xi�1)

subject to: 8i : 0  ci 
p
2

Observation 22. For all X , LagRel1(X) = LagRel2(X).

Finally, we can rewrite the objective function to group all coefficients of ci. For ease of notation
below, define ~xN+1 := ~0 (if N is finite. If N = 1, there are no notational issues).

LagRel(X) :

⇢
max

P
i ci~xi · (~xi � ~xi+1)

subject to: 8i : 0  ci 
p
2

Observation 23. For all X , AlignGap0(X)  LagRel1(X) = LagRel2(X) = LagRel(X).

Now, we move to analyze LagRel(X) for our particular sequence X .

Claim 24. For the sequence X defined in Section 5, LagRel(X) =
p
2 ·

P
i 1� ~xi · ~xi+1.

Proof. For all i, ~xi · (~xi � ~xi+1) � 0, as each ~xi has `2 norm exactly one. Thus, the optimal solution
for LagRel(X) sets each ci :=

p
2. Recalling that ~xi · ~xi = 1 for all i concludes the claim.

Proposition 25. For the sequence X defined in Section 5, LagRel(X)  6.

Proof. Let us first observe that if ~xi is the last point in a layer, then in fact ~xi+1 = ~xi, and therefore
1� ~xi · ~xi+1 = 0. Therefore, these terms do not contribute to the sum. We can then rewrite the term
to sum over all layers as follows:

LagRel(X) =
p
2 ·

X

`

n`�2X

j=0

1� ~x`,j · ~x`,j+1

=
p
2 ·

X

`

(n` � 1) · (1� cos(✓`))
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
p
2 ·

X

`

(n` � 1) · ✓2`/2

=
p
2 ·

X

`

⇡
2

8(n` � 1)

=
p
2 ·

X

`

⇡
2

8`dln2(`)e
 6.

Above, the first line follows by the reasoning in the first paragraph. The second line follows by
observing that the angle between any two points in layer ` is exactly ✓` (and the two points in question
of `2 norm equal to one). The third line follows as cos(✓`) � 1� ✓

2
`/2 for any ✓` 2 [0,⇡/2] (and all

✓` are indeed in [0,⇡/2]). The fourth line follows by substituting the definition of ✓` as a function
of n`. The fifth line follows by definition of n`. The final line is just calculation for this particular
infinite series (this follows as

P1
`=2

1
` ln2(`)  3).

Observation 20, Observation 23, and Proposition 25 yield the main result of this section:

Proposition 26. For the sequence X defined in Section 5, AlignGap(X)  6.

Step 3: Picking a Q to Lower Bound MenuGap(X). Finally, we propose a sequence Q and show
that MenuGap(X,Q) = 1. We describe the sequence again in layers, to match our description of
X (that is, the vector ~q`,j corresponds to the vector ~x`,j). In particular, for each even layer `, the
vectors ~q`,j will have a fixed x-coordinate, and the y-coordinate will increase with j. For each odd
layer, we will introduce no new vectors (i.e. we will just let gapX,Q

i = 0 for all i in an odd layer).
Specifically, the construction is as follows:

• Define ↵ :=
P1

`=2
1

` ln2(`) (and note that ↵ < 1).

• Define z` :=
1
↵

P`
j=2

1
j ln2(j) .

• Define �` := z` � z`�1 = 1
↵` ln2(`) .

• For j < n` � 1, define z`,j := 1� �` cot((j + 1)✓`). For j = n` � 1, define z`,j := 1.10

• For all even `, and all j, set ~q`,j := (z`, z`,j).

• For all odd `, and all j, set ~q`,j := argmax`0<`,j0{~x`,j · ~q`0,j0}.

Proposition 27. MenuGap(X,Q) = 1.

In our proof (Appendix B) we first analyze which point sets the gap for ~x`,j , and observe that
it must either be ~q`,j�1 or ~q`�2,n`�2�1 (that is, it must be the previous point in the same layer,
or the final point in the previous even layer). We can then bound the gap of each layer exactly,
and then take a sum over layers: for any even layers we have that the sum of gaps is at leastPn`�1

j=0 gapX,Q
`,j � �` · ln(n`)/2, where gapX,Q

`,j := gapX,Q
i , where ~xi := ~x`,j (~xi is the jth point on

layer `). Recall that �` := 1
↵n`

= 1
↵` ln2(`) we conclude that:

X

` even

n`�1X

j=0

gapX,Q
`,j �

X

` even

�` · ln(n`)/2 =
X

` even

1

2↵` ln(`)
= 1.

This completes the proof of Theorem 9: Proposition 26 establishes that AlignGap(X)  6, while
Proposition 27 establishes that MenuGap(X) = 1.

10To see that z`,j � 0 observe that cot(x)  1/x for all x 2 [0,⇡/2]. Therefore we get �` cot((j + 1)✓`) 
�` 1

(j+1)✓`
 �`

2(n`�1)
⇡(j+1)  2

⇡ �`n` =
2`dlog2 `e
⇡↵` log2 `

 1, for all `, j (↵ > 1.9). To see that z`,j  1 simply note that
the term we subtract can’t be negative.
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6 Conclusion

We study the nature of distributions D with Rev(D)/BRev(D) = 1. Prior work established a
framework to construct such distributions, and therefore established sufficient conditions [BCKW15,
HN19]. Our first main result establishes that the most general of these frameworks is in fact complete
(Theorem 6). Our second main result establishes that the more restrictive framework, through which
all previous constructions arose, is not complete (Theorem 9). Finally, we build upon our main
construction to develop a novel distribution D witnessing Rev(D)/BRev(D) = 1, but for which
none of the “aligned” mechanisms of prior work can possibly witness this (Corollary 11).

In terms of future work, it remains open as to whether there is an alternative definition for “sequences
with MenuGap(X) = 1” which is easier to parse. Our work establishes that understanding such
sequences is necessary and sufficient to understand distributions with Rev(D)/BRev(D) = 1,
and establishes that “sequences with MenuGap(X) = 1” is not equivalent to “sequences with
AlignGap(X) = 1.” But it would be exciting for future work to better understand sequences with
MenuGap(X) = 1.

Interestingly, ongoing work by [AS22] uses the framework developed in this paper in order to prove
approximation results for so-called fine-grained buy-many mechanisms, a class of mechanisms which
interpolates between buy-one and the recently introduced buy-many mechanisms [CTT19, CTT20].
In general, our techniques make it possible for future work to explore the gap between various simple
versus optimal benchmarks without having to reason directly about the underlying mechanisms.
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