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Abstract

Open-domain semantic parsing remains a chal-001
lenging task, as models often rely on heuris-002
tics and struggle to handle unseen concepts.003
In this paper, we investigate the potential of004
large language models (LLMs) for this task005
and introduce Retrieval-Augmented Seman-006
tic Parsing (RASP), a simple yet effective ap-007
proach that integrates external lexical knowl-008
edge into the parsing process. Our experiments009
not only show that LLMs outperform previous010
encoder-decoder baselines for semantic pars-011
ing, but that RASP further enhances their abil-012
ity to predict unseen concepts, nearly doubling013
the performance of previous models on out-of-014
distribution concepts. These findings highlight015
the promise of leveraging large language mod-016
els and retrieval mechanisms for robust and017
open-domain semantic parsing.018

1 Introduction019

Open-domain semantic parsing involves mapping020

natural language text to formal meaning represen-021

tations, capturing the concepts, relations between022

them, and the contects in which they appear (Oepen023

and Lønning, 2006; Hajič et al., 2012; Banarescu024

et al., 2013; Bos et al., 2017; Martínez Lorenzo025

et al., 2022). Such meaning representations are ap-026

plied in many downstream applications—ranging027

from database querying to embodied questions028

answering—where parsers must handle a vast array029

of concepts that may not appear in the training data.030

While neural encoder-decoder architectures have031

shown impressive performance in semantic pars-032

ing tasks, their reliance on training distributions033

constrains their ability to generalize, especially to034

out-of-distribution (OOD) concepts.035

Most existing semantic parsers struggle to inter-036

pret unseen words or rare senses, often defaulting037

to the most frequent meaning encountered during038

training. As a result, they fail to adapt to novel039

linguistic phenomena and remain limited to fixed040

patterns. Recent work (Zhang et al., 2024a) have 041

attempted to mitigate these limitations by encoding 042

concept representations numerically, forcing mod- 043

els to learn underlying ontologies from resources 044

like WordNet (Fellbaum, 1998). However, these 045

approaches require substantial preprocessing and 046

intricate encodings that can be difficult for models 047

to fully exploit. 048

In our work, instead, we explore the potential of 049

large language models (LLMs), powerful decoder- 050

only architectures with strong in-context learning 051

capabilities and extensive pretraining, to enhance 052

ability of semantic parsers to generalize. We pose 053

two central research questions: 054

• Do large language models outperform tradi- 055

tional encoder-decoder architectures in se- 056

mantic parsing? Decoder-only architectures 057

are known to be more scalable and to inter- 058

nalize broader knowledge, potentially leading 059

to stronger generalization and learning abili- 060

ties. Assessing their performance in semantic 061

parsing tasks can help reveal the architectural 062

advantages of these decoder-only models. 063

• How can these large language models be 064

leveraged to improve generalization to 065

out-of-distribution concepts? Beyond sim- 066

ple architecture comparisons, we investigate 067

whether LLMs can be guided to handle con- 068

cepts more flexibly, using their ability to inter- 069

pret and integrate external information. 070

In Section 2 we provide background on the se- 071

mantic formalism of our choice, earlier approach 072

to semantic parsing, and the challenge of an im- 073

portant sub-task, word sense disambiguation. Then 074

we propose Retrieval-Augmented Semantic Pars- 075

ing (RASP) in Section 3, a technique that inte- 076

grates a retrieval mechanism into the parsing pro- 077

cess. RASP leverages external lexical knowledge 078

(e.g., WordNet) in the input, enabling the model 079
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to dynamically access and interpret relevant con-080

cept information. By incorporating this retrieval081

step (Section 4), we relax the reliance on lemma-082

based mappings and allow the model to adapt more083

naturally to unseen words or senses. Our results084

show that this approach nearly doubles the perfor-085

mance on predicting OOD concepts compared to086

previous methods, demonstrating a substantial ad-087

vancement in handling challenging open-domain088

data (Section 5).089

2 Background and Related Work090

2.1 Discourse Representation Structure091

Discourse Representation Theory (Kamp and092

Reyle, 1993, DRT) is a semantic modeling frame-093

work. The core component of DRT is the Discourse094

Representation Structure (DRS), a formal represen-095

tation that captures the meaning of a discourse,096

which captures the essence of the text and covering097

linguistic phenomena like anaphors and temporal098

expressions. Unlike many other formalisms such as099

Abstract Meaning Representation (Banarescu et al.,100

2013, AMR) used for large-scale semantic anno-101

tation efforts, DRS covers logical negation, quan-102

tification, and discourse relations, has complete103

word sense disambiguation, and offers a language-104

neutral meaning representation. A Discourse Rep-105

resentation Structure (DRS) can be coded and vi-106

sualised in various ways, which are all provided in107

Parallel Meaning Bank (Abzianidze et al., 2017).108

In formal semantics they are often pictured in a109

human-readable box format. The clause notation110

was introduced to represent DRS in a sequential111

format suitable for machine learning models (van112

Noord et al., 2018). To further simplify DRS, Bos113

(2023) proposed a variable-free format known as114

Sequence Box Notation (SBN). An example of the115

three different but logically equivalent formats is116

shown in Figure 1. Recent trends in using seq2seq117

models have led to a preference for sequence nota-118

tion, which is also the format used in this paper.119

2.2 Semantic Parsing120

Semantic parsing, as a traditional NLP task, re-121

mains essential in real-world applications, despite122

recent progress in natural language understanding123

shown by large language models. For instance,124

natural language front-end interfaces to databases125

require a mapping from text to structured data.126

Speech interactions with conversational agents that127

act in the real world (e.g., service robots) require128

DRS (box notation):
            x1
            male.n.02(x1)
                 Name(x1, Mary)
            ¬   x2 e1 t1

    time.n.08(t1)
         t1 ≺ now
    commit.v.01(e1)
        Time(e1, t1)
        Theme(e1, x2)
        Agent(e1, x1)
    crime.n.01(x2)

Mary

now

male.n.02

time.n.08

crime.n.01

commit.v.01

(b) graph notation

¬

∈

∈
∈
∈

Agent

Time

Theme

Name

≺

(a) box notation

(c) sequence notation
male.n.02 Name ”Mary" NEGATION <1 time.n.08 TPR now 
commit.v.01 Agent -2 Time -1 Theme +1 crime.n.01

Figure 1: Three formats of Discourse Representation
Structure (DRS) for "Mary didn’t commit a crime.": the
box notation, a directed acyclic graph, and the sequence
notation.

situation-sensitive symbol grounding. Hence, ad- 129

vancing the development of more robust and gen- 130

eral semantic parsers remains crucial. 131

Early approaches to semantic parsing primarily 132

relied on rule-based systems (Woods, 1973; Hen- 133

drix et al., 1977; Templeton and Burger, 1983). The 134

advent of neural methodologies, coupled with the 135

availability of large semantically annotated datasets 136

(Banarescu et al., 2013; Bos et al., 2017; Abzian- 137

idze et al., 2017), marked a significant shift in se- 138

mantic parsing techniques (Barzdins and Gosko, 139

2016; van Noord and Bos, 2017; Bevilacqua et al., 140

2021a). The introduction of pre-trained language 141

models within the sequence-to-sequence frame- 142

work further improved parsing performance (van 143

Noord et al., 2018, 2020; Ozaki et al., 2020; Samuel 144

and Straka, 2020; Shou and Lin, 2021; Bevilacqua 145

et al., 2021a; Zhou et al., 2021; Martínez Lorenzo 146

et al., 2022; Zhang et al., 2024b; Liu, 2024a,b; 147

Yang et al., 2024). Furthermore, several studies 148

introduced more pre-training tasks specifically de- 149

signed for semantic parsing (Bai et al., 2022; Wang 150

et al., 2023a). With the rise of large language 151

models, there has been considerable discussion 152

about leveraging these models for semantic parsing, 153

achieving notable results through techniques like 154

prompting and chain-of-thought reasoning (Roy 155
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et al., 2022; Ettinger et al., 2023; Jin et al., 2024).156

However, there is currently no work that leverages157

the knowledge and understanding capabilities of158

large language models to address the generalization159

problem in semantic parsing.160

2.3 Word Sense Disambiguation161

The generalization problem introduced in the pre-162

vious section can also be understood as word sense163

disambiguation (WSD) for out-of-distribution con-164

cepts, within the context of semantic parsing. For165

instance, consider the sentence "She had £10,000166

in the bank", with the target word "bank". In tra-167

ditional WSD tasks, a predefined inventory of pos-168

sible senses (e.g., 1. sloping land; 2. financial in-169

stitution; 3. a long ridge or pile; 4. ...) would be170

provided, and the WSD model would classify the171

word according to one of these senses (Navigli,172

2009; Bevilacqua et al., 2021b).173

In semantic parsing, WSD can be seen as a sub-174

task (Zhang et al., 2024a), but it is more challeng-175

ing because the parsing model must generate the176

correct sense directly without access to an explic-177

itly provided sense inventory. However, traditional178

knowledge-based WSD offers a potential solution179

that inspires our approach: by retrieving and pre-180

senting all possible concepts as alternatives, we181

can explicitly provide external information to the182

model, thereby enhancing its generalization capa-183

bility. As a consequence, this requires the model to184

be able to process long contexts, making the LLMs185

become the preferences, in particular retrieval aug-186

mented generation.187

2.4 Retrieval Augmented Generation188

Retrieval-Augmented Generation (RAG) is a hy-189

brid approach that combines retrieval mechanisms190

with generative models to enhance the quality and191

accuracy of text generation tasks (Zhao et al., 2024;192

Gao et al., 2024). In RAG, a retrieval component193

first identifies relevant information from a large194

external knowledge base or corpus, which is then195

used as additional context for the generative model.196

This method allows the model to generate more197

informed and contextually accurate outputs, partic-198

ularly in scenarios where the input data alone may199

not provide sufficient information.200

By integrating retrieved knowledge into the gen-201

erative process, RAG effectively bridges the gap202

between retrieval and generative models, leading to203

improved performance in tasks such as question an-204

swering (Karpukhin et al., 2020; Lewis et al., 2020;205

Text

WordNet

LLM

…

Meaning 
Representation

Tokenization& 
Lemmatization

Retrieval 
Augmentation

Figure 2: Global overview of RASP (Retrieval-
Augmented Semantic Parsing). Both the training and
testing phases adhere to this pipeline.

Borgeaud et al., 2021; Guu et al., 2020; Izacard 206

and Grave, 2021; Petroni et al., 2020), common- 207

sense reasoning (Liu et al., 2021; Wan et al., 2024) 208

and other downstream tasks (Lewis et al., 2020; 209

Izacard et al., 2024; Jiang et al., 2023; Guo et al., 210

2023; Cheng et al., 2023; Li et al., 2023). While 211

RAG was initially employed in a wide scope of 212

applications, its popularity can be attributed to the 213

advent of large language models and their strong 214

capabilities. Consequently, we will concentrate on 215

the application of RAG in the context of LLMs. 216

3 Retrieval-Augmented Semantic Parsing 217

We propose a new method that combines retrieval- 218

augmented generation with semantic interpretation: 219

Retrieval-Augmented Semantic Parsing (RASP), a 220

framework that is outlined in Figure 2. It comprises 221

two key components: retrieval and parsing. 222

Different from the Dense Passage Retrieval 223

(Karpukhin et al., 2020) method, which is com- 224

monly employed in question-answering tasks, our 225

retrieval process is designed to be more straightfor- 226

ward and tailored to the needs of semantic parsing. 227

The process begins with tokenizing and lemmatiz- 228

ing1 the source text. Following these, we perform 229

a search for relevant concept synsets in an external 230

knowledge base, specifically WordNet. For exam- 231

ple, in the sentence "Mary went for birdwatching. 232

She saw a harrier, a golden eagle, and a hobby", the 233

retrieval process would identify multiple synsets 234

for "go", "birdwatch", "see", "harrier", "golden ea- 235

gle" and "hobby", as illustrated in Table 1. Ad- 236

ditionally, to ensure comprehensive coverage of 237

multi-word expressions, which are critical in cap- 238

turing the correct semantic meaning, we employ a 239

hierarchical n-gram search strategy. This strategy 240

involves sequential searches using 4-gram, 3-gram, 241

2-gram, and 1-gram patterns, thereby ensuring that 242

1https://www.nltk.org/api/nltk.stem.wordnet.html

3



Source Text Mary went for birdwatching. She saw a harrier, a golden eagle, and a hobby.

Concepts

golden_eagle.n.01: large eagle of mountainous regions of ... having a golden-brown head and neck
birdwatch.v.01: watch and study birds in their natural habitat
... ...
harrier.n.01: a persistent attacker
harrier.n.02: a hound that resembles a foxhound but is smaller
harrier.n.03: hawks that hunt over meadows and marshes and prey on small terrestrial animals ...
... ...
hobby.n.01 an auxiliary activity
hobby.n.02 a child’s plaything consisting of an imitation horse mounted on rockers ...
hobby.n.03 small Old World falcon formerly trained and flown at small birds

Prompts
Normal prompt: Text to parse: {Source Text}
RASP prompt: Considering the concepts with glosses: {Concepts}. Text to parse: {Source Text}

Gold DRS
female.n.02 Name "Mary" time.n.08 TPR now birdwatch.v.01 Agent -2 Time -1 ELABORATION <1
female.n.02 ANA -3 see.v.01 Experiencer -1 Time +1 Stimulus +3 time.n.08 TPR now harrier.n.03
golden_eagle.n.01 entity.n.01 Sub -2 Sub -1 Sub +1 hobby.n.03

Table 1: An example illustrating the workflow of RASP. We omit some senses and words for the retrieved concepts
to save space. The distinction between prompts for semantic parsing with and without RASP are shown in the
Prompts row. Some examples of complete prompts can be found in Appendix A.

no multi-word expressions (such as "golden eagle")243

are overlooked.244

The parsing process for a decoder-only model2245

is guided by the probability distribution of possible246

output sequences given an input sequence. The247

model generates an output sequence by predicting248

each token iteratively, based on the input text and249

previously generated tokens, as shown in (1).250

pdecoder−only(o|x) =
n∏

i=1

pθ(oi|x, o1:i−1) (1)251

Here, x is the input text, o1:i−1 represents the se-252

quence generated so far, and oi is the token gen-253

erated at the current step. θ refers to the model’s254

parameters, and p denotes the likelihood of gener-255

ating output sequence o given input sequence x.256

To enhance this process, retrieval and generation257

are integrated, leveraging external knowledge to258

inform output generation. Mathematically, the re-259

trieval step introduces a probability, p(o′|x), which260

models the likelihood of retrieving relevant con-261

cepts o′ based on x. This probability is combined262

multiplicatively with the generation probability, as263

shown in (2). This combination ensures both com-264

ponents contribute meaningfully, with retrieval act-265

ing as a filter to guide the generation process toward266

relevant concepts.267

2The models we use are all in decoder-only architecture,
so we omit the discussion about encoder-decoder architecture.

PRASP (o|x) = p(o′|x)pdecoder−only(o|x, o′)

= p(o′|x)
N∏
i=1

pθ(oi|x, o′, o1:i−1)
(2) 268

By incorporating retrieved concepts, RASP goes 269

beyond relying solely on the input sequence and 270

training data, adding additional context to guide 271

generation. For example, when handling words 272

with multiple meanings, like "hobby," retrieved 273

synsets help the model select the correct interpre- 274

tation based on glosses and context. This integra- 275

tion sharpens the model’s focus on relevant con- 276

cepts, reducing the likelihood of generating incor- 277

rect or overly broad outputs, particularly for out-of- 278

distribution concepts. 279

4 Experiments 280

4.1 Datasets 281

We conduct our experiments on the Parallel Mean- 282

ing Bank (PMB, version 5.1.0)3 (Abzianidze et al., 283

2017; Zhang et al., 2024b). We first use the 284

gold-standard English data of the PMB to eval- 285

uate the large language models and their retrieval- 286

augmented version under in-distribution condi- 287

tions. 288

To further assess the models’ ability to handle 289

out-of-distribution (OOD) concepts, we adopt the 290

3https://pmb.let.rug.nl/releases

4

https://pmb.let.rug.nl/releases


challenge set proposed by Zhang et al. (2024a),291

which is also derived from the PMB. Neural se-292

mantic parsers often default to the first sense of293

unknown concepts–an approach that can lead to294

"lucky guesses" without truly understanding new295

words. The challenge set, consisting of 500 sen-296

tences, is deliberately designed to eliminate this297

shortcut. Each sentence includes at least one con-298

cept that does not appear in the training data and299

does not correspond to the first sense in the on-300

tology. In total, the challenge set contains 410301

unknown nouns, 128 verbs, and 65 modifiers (ad-302

jectives and adverbs). By evaluating on this set, we303

measure the true generalization capability of the304

models, testing whether they can correctly inter-305

pret novel concepts rather than relying on heuristic306

assigning.307

Train Dev Standard Challenge

9,560 1,195 1,195 500

Table 2: Dataset statistics for PMB 5.1.0, i.e., number
of meaning representations for train, development and
two test sets: standard and challenge.

4.2 Experiment Settings308

It is crucial to note that large language models,309

when used in zero-shot or few-shot scenarios, tend310

to perform poorly on the highly complex graph311

structures inherent in formal meaning represen-312

tations such as DRS. Prior work (Ettinger et al.,313

2023; Zhang et al., 2024a) demonstrates that with-314

out fine-tuning, LLMs struggle to match the perfor-315

mance of models specifically optimized for these316

tasks. Therefore, in our experiments, we fine-tune317

all large language models.318

For RASP, we explore two retrieval-enhanced319

approaches: (1) Train+Test Retrieval: Incorporate320

retrieval-derived concepts both during training and321

inference, thereby familiarizing the model with322

external lexical knowledge throughout the entire323

learning process. (2) Test-Only Retrieval: Use re-324

trieval only during inference, training the model325

on raw DRS structures without external lexical in-326

puts. Our experiments show that the first approach327

consistently yields better performance. Thus, we328

focus our primary analysis on the first approach329

and provide results for the second approach in Ap-330

pendix C.331

Due to computational constraints, we select332

open-sourced LLMs with model sizes under333

10B parameters, including phi3-4B, Mistral-7B, 334

LLaMa3-3B, LLaMa3-8B, Gemma2-2B, Gemma2- 335

9B, Qwen2.5-3B, and Qwen2.5-7B. These models 336

strike a balance between state-of-the-art language 337

understanding and manageable resource require- 338

ments. For fine-tuning, we employ Low-Rank 339

Adaptation (Hu et al., 2021, LoRA), a parameter- 340

efficient technique that introduces trainable low- 341

rank matrices (A and B) into the model’s layers, 342

greatly reducing computational overhead: 343

W +∆W = W +A ·B (3) 344

We compare our results against several strong 345

baselines, including BART, T5, byT5, TAX-parser 346

(Zhang et al., 2024b), and AMS-Parser (Yang et al., 347

2024), all of which were previously fine-tuned on 348

PMB data. We exclude work conducted on earlier 349

versions of PMB or using silver data. Additionally, 350

we do not apply retrieval augmentation to these 351

baseline models due to input length constraints, 352

which limit their ability to incorporate external lex- 353

ical sources efficiently. 354

We trained each model for 10 epochs, using a 355

learning rate of 10−4, and fp16 precision. More 356

information on the hyperparameters is provided in 357

Appendix B. 358

4.3 Evaluation Metrics 359

We used SMATCH and its variants to evaluate the 360

performance of the models. SMATCH (Cai and 361

Knight, 2013), referred to as Hard-SMatch, strictly 362

matches concepts, where any discrepancy results in 363

a non-match. In contrast, its variant, Soft-SMatch 364

(Opitz et al., 2020), considers concept similarity 365

when matching. Instead of adopting the approach 366

of using word-embedding similarity, we applied the 367

Wu-Palmer similarity (Wu and Palmer, 1994), as in- 368

troduced by Zhang et al. (2024b). Wu-Palmer simi- 369

larity provides a precise measure of semantic sim- 370

ilarity between concepts based on their positions 371

within the WordNet taxonomy. Unlike embedding- 372

based methods, it does not rely on external training 373

and easily adapts to changes in WordNet’s structure 374

or content. The calculation is: 375

WuP = 2 ∗ depth(LCS(s1, s2))
depth(s1) + depth(s2)

(4) 376

where s is the concept, LCS refers to the Least 377

Common Subsumer of these concepts, and depth 378

denotes the distance from the concept to the root 379

of the taxonomy. 380
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Model Size Input Graph-level Node-level

Hard-SMatch↑ Soft-SMatch↑ IFR↓ F score↑

BART-large 400M Normal 79.54 82.81 3.92 75.40
T5-large 770M Normal 84.27 86.44 6.41 79.88
byT5-large 580M Normal 87.41 89.43 4.78 84.75
AMS-Parser – Normal 87.08 89.15 0.00 85.00
TAX-Parser 580M Normal 86.65 91.80 2.34 80.12

Phi-3 4B Normal 85.74 87.92 4.94 (59) 81.60
RASP 85.96 (+0.3%) 88.13 (+0.2%) 4.80 (57) 83.33 (+2.1%)

Mistral 7B Normal 89.95 92.48 2.00 (24) 83.90
RASP 90.95 (+1.1%) 93.33 (+0.9%) 1.58 (19) 85.00 (+1.3%)

Qwen2.5
3B Normal 86.50 88.64 4.69 (56) 82.60

RASP 88.70 (+2.5%) 90.74 (+2.4%) 3.01 (36) 83.90 (+1.6%)

7B Normal 89.88 91.83 2.51 (30) 84.50
RASP 89.93 (+0.1%) 91.87 (+0.1%) 2.51 (30) 85.50 (+1.2%)

LLama3
3B Normal 87.30 90.01 3.34 (40) 81.50

RASP 87.76 (+0.5%) 90.51 (+0.6%) 3.01 (36) 82.30 (+1.0%)

8B Normal 89.92 92.46 2.09 (25) 83.90
RASP 90.65 (+0.8%) 93.10 (+0.7%) 1.50 (18) 84.72 (+1.0%)

Gemma2
2B Normal 89.20 91.08 3.01 (36) 84.20

RASP 89.30 (+0.1%) 91.23 (+0.2%) 3.10 (37) 85.58 (+1.6%)

9B Normal 90.72 93.15 1.67 (20) 84.67
RASP 91.37 (+0.7%) 93.65 (+0.5%) 1.58 (19) 86.11 (+1.7%)

Table 3: Performance of baseline models, large language models (Normal) and their retrieval-augmented variants
(RASP) on standard test, with percentage changes in parentheses. Size is the number of model’s parameters (B:
billion). IFR is Ill-Formed Rate and the number of ill-formed prediction are in parentheses. Note: AMS-Parser
(Yang et al., 2024) performs well for IFR for it is a compositional neuro-symbolic system. TAX-Parser (Zhang et al.,
2024a) is a neuro-symbolic system, trained with a novel encoded meaning representation.

For the fine-grained evaluation on the challenge381

set, we applied the metric proposed by Wang et al.382

(2023b), focusing specifically on concept-node383

matching scores. When evaluating the results on384

the challenge set, we directly calculated the Wu-385

Palmer similarity between the target concepts and386

the corresponding model-generated results.387

5 Results388

5.1 Semantic Parsing on Standard Test389

Table 3 shows that large language models consis-390

tently surpass earlier encoder-decoder baselines,391

providing direct evidence for our first research392

question. While BART, T5, and byT5 achieve393

Hard-SMatch scores up to 87.41, several LLM-394

based models (e.g., Mistral-7B, Gemma2-9B) ex-395

ceed 90.0 on the standard test set. This improve-396

ment is substantial, with the strongest baseline397

LLM reaches 90.72 on Hard-SMatch, outperform-398

ing the best encoder-decoder model (byT5) by a399

margin of 3.3 points.400

These higher scores are also reflected in Soft-401

SMatch and node-level F-scores, indicating that402

LLM-based models not only produce more struc-403

turally accurate meaning representations but also 404

more reliably identify concept nodes. Additionally, 405

Ill-Formed Rate (IFR) reductions suggest that these 406

models generate fewer ill-structured outputs. In 407

summary, these improvements highlight that large 408

language models outperforms previous encoder- 409

decoder models. 410

Beyond confirming the advantages of LLMs, we 411

also examine the impact of retrieval augmentation 412

(RASP) on standard test results. Although the 413

largest gains from retrieval are observed on the 414

challenge set (as discussed in Section 5.2), even 415

here on the in-distribution standard test, RASP pro- 416

vides consistent performance improvements. Most 417

LLMs show an increase of about 0.3% to 2.5% 418

in Hard-SMatch and Soft-SMatch scores when us- 419

ing RASP. Furthermore, the Ill-Formed Rate (IFR) 420

tends to decrease, and the node-level F-score im- 421

proves by approximately 1.0% to 2.1%. These 422

node-level gains suggest that RASP’s improve- 423

ments stem largely from more accurate concept 424

prediction. While these enhancements are moder- 425

ate in the standard test scenario, they indicate that 426

retrieval can enhance the model’s understanding of 427

concept-level semantics. 428
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Model Input Noun Verb Modifiers Overall

BART-large Normal 26.11 37.34 46.88 30.95
T5-large Normal 25.48 35.21 41.28 29.45
byT5-large Normal 27.59 39.14 44.70 32.13
TAX-Parser Normal 42.15 31.58 43.27 39.68

phi-4B Normal 35.48 36.91 46.97 37.91
RASP 62.03 (+74.8%) 46.32 (+25.5%) 63.63 (+35.5%) 58.28 (+53.7%)

Mistral-7B Normal 38.02 40.61 50.00 39.87
RASP 72.03 (+89.5%) 59.27 (+46.0%) 67.42 (+34.8%) 68.44 (+71.7%)

Qwen2.5-7B Normal 38.51 37.52 46.97 39.12
RASP 66.77 (+73.4%) 56.95 (+51.8%) 64.39 (+37.1%) 64.12 (+63.8%)

LLama3.2-8B Normal 37.06 34.79 47.73 37.59
RASP 72.28 (+95.1%) 61.62 (+77.1%) 66.67 (+39.7%) 69.86 (+85.9%)

Gemma2-9B Normal 39.68 45.01 55.30 42.54
RASP 73.93 (+86.3%) 62.31 (+36.5%) 69.70 (+26.0%) 70.41 (+65.6%)

Table 4: Wu-Palmer similarities between unknown concepts and generated concepts across four parts of speech. For
the sake of clarity, we exclude the smaller version of the same model.

5.2 Performance on the Challenge Set429

Table 4 provides the results on the challenge set, de-430

signed specifically to test the models’ ability to pre-431

dict out-of-distribution (OOD) concepts. Here, we432

report Wu-Palmer similarities for unknown nouns,433

verbs, and modifiers (adjectives & adverbs). We434

calculate the Wu-Palmer similarities between the435

target concepts (out-of-distribution concepts) and436

the generated concepts (see examples in Table 5).437

Among the baselines, TAX-Parser (Zhang et al.,438

2024a) stands out, achieving an overall similar-439

ity score of 39.68. However, some Normal (non-440

RASP) large language models already exceed this441

performance on the challenge set. For example,442

Gemma2-9B (Normal) obtains an overall score of443

42.54, indicating that LLMs can yield improve-444

ments, even without retrieval augmentation. When445

retrieval augmentation (RASP) is introduced, these446

large language models show substantial additional447

gains. For example, Gemma2-9B (RASP) achieves448

an overall similarity score of 70.41, compared to449

the best baseline’s 39.68—an increase of over 30450

absolute points. These gains are particularly re-451

markable for noun concepts, with relative improve-452

ments of approximately 70% to 95%. Verbs show453

increases between about 25% and 77%, and modi-454

fiers improve by roughly 26% to 43%.455

These results directly support our second456

research question regarding improving out-of-457

distribution generalization. While model scaling458

alone can yield moderate improvements, the in-459

tegration of external lexical knowledge through460

retrieval allows LLMs to select more accurate con-461

cepts in OOD scenarios. In effect, RASP helps the 462

models "look up" relevant information, enhancing 463

their concept selection and producing more seman- 464

tically appropriate results. In this case, retrieval- 465

augmented LLMs not only outperform strong base- 466

lines like TAX-Parser but also set the state-of-the- 467

art for OOD semantic parsing performance. 468

5.3 Error Analysis on the Challenge Set 469

We selected a subset of the challenge set and man- 470

ually checked how the best performing model— 471

Gemma2-9B (Normal) and Gemma2-9B (RASP)— 472

handle the out-of-distribution concepts. 473

We picked 22 instances, comprising 11 com- 474

pletely perfect predictions (WuP=1.00) and 11 im- 475

perfect predictions (WuP<1.00) made by RASP, as 476

presented in Table 5. With respect to the perfect 477

predictions, it is evident that the retrieval signifi- 478

cantly enhance the model’s ability to interpret most 479

out-of-distribution concepts. For instance, in the 480

text about birdwatching, the word "hobby" clearly 481

refers to a species of bird. The model without RAG 482

defaults to the most frequent sense number, pre- 483

dicts hobby.n.01 (an auxiliary activity). In contrast, 484

retrieval provides the glosses of each sense related 485

to the noun "hobby" and leads the model to pick 486

hobby.n.03 (a falcon), by explicit lexical connec- 487

tions between "falcon" in the gloss of hobby.n.03 488

and the context provided by "birdwatching". 489

However, RASP makes imperfect predictions 490

sometimes. We identified three possible causes: 491

(a) similar glosses between WordNet concepts; (b) 492

insufficient textual context; and (c) limitations in 493

the model’s linguistic coverage. 494
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Input Text Gold Normal RASP

He bought the painting for a song on a flea market. song.n.05 n.03 (0.22) n.05 (1.00)
The detective planted a bug in the suspect’s office to to gather evidence. plant.v.05 v.02 (0.22) v.05 (1.00)
Scientist examines the insect’s antennae. antenna.n.03 n.01 (0.24) n.03 (1.00)
I’ve seen a short extract from the film. extract.n.02 n.01 (0.25) n.02 (1.00)
She prepared a three course meal. course.n.07 n.03 (0.27) n.07 (1.00)
The music student practiced the fugue. fugue.n.03 n.02 (0.28) n.03 (1.00)
Johanna went birdwatching. She saw a harrier, a kite, and a hobby. hobby.n.03 n.02 (0.38) n.03 (1.00)
A harrier is a muscular dog with a hard coat. muscular.a.02 a.01 (0.50) a.02 (1.00)
The hiker spotted an adder sunbathing on a rock. adder.n.03 n.01 (0.50) n.03 (1.00)
A tiny wren was hiding in the shrubs. wren.n.02 n.01 (0.55) n.02 (1.00)
Hungarian is a challenging language with 18 cases. hungarian.n.02 n.01 (0.11) n.02 (1.00)

The moon is waxing. wax.v.03 v.03 (1.00) v.02 (0.75)
The function ordered the strings alphabetically. order.v.05 v.02 (0.17) v.06 (0.75)
The elephant’s trunk is an extended nose. extended.a.03 a.01 (0.50) a.01 (0.50)
A tripper helps control the flow of materials on a conveyor. tripper.n.04 n.02 (0.40) n.02 (0.40)
We saw a kite gliding in the sky during the walking. kite.n.04 n.03 (0.40) n.03 (0.40)
The elegant pen glided gracefully across the tranquil lake. pen.n.05 n.01 (0.36) n.01 (0.36)
The immature sparrows are feathering already. feather.v.05 v.03 (0.20) v.02 (0.29)
The visitors can observe various species of ray in the quarium. observe.v.02 v.01 (0.25) v.01 (0.25)
She hobbled the horse. It freaked out. hobble.v.03 v.01 (0.18) v.02 (0.18)
The gardener noticed the growth on the rose after the rain. growth.n.04 n.01 (0.18) n.01 (0.18)
The surge alarmed the town’s residents. alarm.v.02 v.01 (0.15) v.01 (0.15)

Table 5: Twenty instances of the challenge set with content words with out-of-distribution concepts in bold face,
and the concepts generated by the Gemma2-9B (Normal) and retrieval-augmented Gemma2-9B (RASP). The scores
in brackets are the Wu-Palmer Similarity between the predicted concept and gold concept.

The verb "alarm" in Table 5 is an instance of the495

similarity problem. The challenge arises because496

some of its senses have similar glosses, such as497

alarm.v.01 (fill with apprehension or alarm) and498

alarm.v.02 (warn or arouse to a sense of danger).499

Similar issues occur with the verbs "wax", "order",500

"observe" and "hobble". Although glosses were501

carefully crafted by lexicographers, they don’t al-502

ways show a clear difference in meaning (Mihalcea503

and Moldovan, 2001; Navigli, 2006).504

In cases of insufficient textual context, such as505

with the noun "kite" in the sentence "We saw a506

kite gliding in the sky", the sense annotators chose507

kite.n.04 (a bird of prey). However, kite.n.03 (a508

plaything) could perhaps also be appropriate given509

the limited context provided by this sentence. Sim-510

ilar issues can be raised in the sentences with the511

noun "tripper" and the verb "feathering".512

The third cause can be attributed to the model’s513

linguistic coverage. A case in point is "pen": the514

meanings of pen.n.01 (a writing implement) and515

pen.n.05 (a female swan) are quite different, but the516

latter is the correct one in the text "Jane saw two517

swans. The elegant pen glided gracefully across518

the tranquil lake". However, the model fails to dis-519

tinguish them, likely because "pen" is rarely used520

to refer to "swan" in available corpora. As a result,521

the models may not have encountered this sense522

during training, making it challenging for them to 523

predict a meaning they have not been exposed to. 524

In sum, while retrieval drastically improves con- 525

cept prediction, there are still some difficulties that 526

can pose challenges for the models. 527

6 Conclusion 528

This paper demonstrates that large language mod- 529

els (LLMs), even without retrieval augmentation, 530

outperform previous encoder-decoder approaches 531

in semantic parsing for Discourse Representation 532

Structures, thereby answering our first research 533

question in the affirmative, setting a new state of 534

the art. We have also shown that our proposed 535

Retrieval-Augmented Semantic Parsing (RASP) 536

framework, which integrates external lexical knowl- 537

edge, further enhances the performance of LLMs. 538

Notably, RASP nearly doubles the accuracy on out- 539

of-distribution concepts, providing a direct answer 540

to our second research question and confirming its 541

robust generalization ability in open-domain sce- 542

narios. Our experiments show that by simply ap- 543

pending relevant lexical information to the model 544

input, the RASP approach offers a practical and in- 545

tuitive approach that can be easily applied to other 546

meaning representations used in natural language 547

processing, such as AMR (Banarescu et al., 2013) 548

and BMR (Martínez Lorenzo et al., 2022). 549
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7 Limitations550

We think the limitations of this work mainly come551

from two aspects: the language models used in552

RASP and the retrieval source (i.e., WordNet).553

The retrieval is proven to provide more informa-554

tion and knowledge to the models. However, re-555

trieval will significantly increase the input length of556

the model, making it (only) adoptable for the large557

language models with strong context understanding558

and long text processing capabilities. Therefore,559

the RASP framework cannot be directly used to560

improve previous parsers that rely on other meth-561

ods, which is also why we only provided results of562

retrieval-augmented LLMs.563

Another limitation is the retrieval source. RASP564

is based on WordNet, so if a sense is not in Word-565

Net, it will never be guessed. For example, "velvet566

scooter" (a bird) is not in WordNet, nor is Cobb567

salad (a dish). Hence, RASP will never make a568

perfect prediction for such cases. Moreover, the569

glosses in WordNet, even though carefully crafted570

by lexicographers in most cases, are sometimes571

concise, lacking information to separate them from572

other senses. This makes it difficult for the models573

to accurately distinguish between different mean-574

ings (see Section 5.3).575
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A Prompt900

The following is a complete example of the901

prompts we use for the LLMs. Since the mod-902

els we use are all instruction-based versions, the903

prompt is structured in a dialogue format.904

RASP Prompt

user:
Please parse the following text into
Discourse Representation Structure,
considering using the concepts based
on the following glosses:
- birdwatch.v.01: watch and study birds in
their natural habitat
- saw.n.01: a condensed but memorable
saying embodying some important fact of
experience that is taken as true by many
people
- saw.n.02: hand tool having a toothed
blade for cutting
- saw.n.03: a power tool for cutting wood
- saw.v.01: cut with a saw
- harrier.n.01: a persistent attacker
- harrier.n.02: a hound that resembles
a foxhound but is smaller; used to hunt
rabbits
- harrier.n.03: hawks that hunt over
meadows and marshes and prey on small
terrestrial animals
- kite.n.01: a bank check that has been
fraudulently altered to increase its face
value
- kite.n.02: a bank check drawn on
insufficient funds at another bank in
order to take advantage of the float
- kite.n.03: plaything consisting of a
light frame covered with tissue paper;
flown in wind at end of a string
- kite.n.04: any of several small graceful
hawks of the family Accipitridae having
long pointed wings and feeding on insects
and small animals
- kite.v.01: increase the amount (of a
check) fraudulently
- kite.v.02: get credit or money by using
a bad check
- kite.v.03: soar or fly like a kite
- kite.v.04: fly a kite
- hobby.n.01: an auxiliary activity
- hobby.n.02: a child’s plaything
consisting of an imitation horse mounted
on rockers; the child straddles it and
pretends to ride
- hobby.n.03: small Old World falcon
formerly trained and flown at small birds

Text to parse: Johanna went birdwatching.
She saw a harrier, a kite, and a hobby.

model:
female.n.02 Name "Johanna" time.n.08
TPR now birdwatch.v.01 Agent -2 Time
-1 ELABORATION <1 female.n.02 ANA -3
see.v.01 Experiencer -1 Time +1 Stimulus
+3 time.n.08 TPR now harrier.n.03 kite.n.04
entity.n.01 Sub -2 Sub -1 Sub +1 hobby.n.03

905

Normal Prompt

user:
Text to parse: Johanna went birdwatching.
She saw a harrier, a kite, and a hobby.

model:
female.n.02 Name "Johanna" time.n.08
TPR now birdwatch.v.01 Agent -2 Time
-1 ELABORATION <1 female.n.02 ANA -3
see.v.01 Experiencer -1 Time +1 Stimulus
+3 time.n.08 TPR now harrier.n.03 kite.n.04
entity.n.01 Sub -2 Sub -1 Sub +1 hobby.n.03

906

B Experiment Settings 907

Table 6 and 7 provide the basic details of the ex- 908

periments and models. 909

Category Details Category Details

Stage SFT/inference Precision fp16
Fine-tuning LoRA Batch Size 1
Cutoff Length 1024 GPU Number 4
Learning Rate 10−4 GPU H100
Epochs 10 lr scheduler cosine

Table 6: Configurations for large language models Fine-
Tuning and Inference.

Model Details

BART-large facebook/bart-large
T5-large google-t5/t5-large
byT5-large google/byt5-large
Phi-3-4B microsoft/Phi-3.5-mini-instruct
Qwen2.5-3B Qwen/Qwen2.5-3B-Instruct
Qwen2.5-7B Qwen/Qwen2.5-7B-Instruct
LLama3.2-3B meta-llama/Llama-3.2-3B-Instruct
LLama3.1-8B meta-llama/Llama-3.1-8B-Instruct
Gemma2-2B google/gemma-2-2b-it
Gemma2-9B google/gemma-2-9b-it

Table 7: Details of Models.

C Additional Experiments 910

We present the results of fine-tuning on Normal 911

data and testing by RASP prompt, as shown in Ta- 912

bles 8 and 9. This approach involves providing re- 913

trieval information during inference but using only 914

text-to-DRS data during training. From the results, 915

it is evident that this training method adversely af- 916

fects the model’s performance, particularly on the 917

standard test. We believe that fine-tuning reduces 918

the models’ ability of in-context learning, which 919

limits the models from effectively utilizing the ad- 920

ditional information provided by retrieval. 921
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Model Size Input Graph-level Node-level

Hard-SMatch↑ Soft-SMatch↑ IFR↓ F score↑

Phi-3 4B Normal 85.74 87.92 4.94 (59) 81.60
RASP 66.78 (–22.1%) 70.88 (–19.4%) 14.9 (178) 63.50 (–22.2%)

Mistral 7B Normal 89.95 92.48 2.00 (24) 83.90
RASP 83.22 (–7.5%) 85.90 (–7.1%) 3.58 (43) 80.10 (–4.5%)

Qwen2.5
3B Normal 86.50 88.64 4.69 (56) 82.60

RASP 84.32 (–2.5%) 87.44 (–1.4%) 5.00 (60) 81.90 (–0.8%)

7B Normal 89.88 91.83 2.51 (30) 84.50
RASP 86.23 (–4.1%) 90.78 (–1.1%) 2.57 (33) 83.40 (–1.3%)

LLama3
3B Normal 87.30 90.01 3.34 (40) 81.50

RASP 85.90 (–1.6%) 86.91 (–3.4%) 4.10 (49) 77.59 (–4.8%)

8B Normal 89.92 92.46 2.09 (25) 83.90
RASP 88.65 (–1.4%) 91.30 (–1.3%) 2.50 (30) 82.11 (–2.1%)

Gemma2
2B Normal 89.20 91.08 3.01 (36) 84.20

RASP 84.40 (–5.4%) 89.93 (–1.3%) 3.01 (36) 80.11 (–4.9%)

9B Normal 90.72 93.15 1.67 (20) 84.67
RASP 91.11 (+0.4%) 93.35 (+0.2%) 1.79 (21) 83.10 (–1.9%)

Table 8: Performance on standard test.

Model Input Noun Verb Modifiers Overall

phi-4b Normal 35.48 36.91 46.97 37.91
RASP 40.03 (+12.8%) 36.32 (–1.6%) 49.13 (+4.6%) 40.03 (+5.6%)

Mistral-7b Normal 38.02 40.61 50.00 39.87
RASP 40.90 (+7.6%) 49.27 (+21.3%) 50.00 (–0.0%) 43.61 (+9.4%)

Qwen2.5-7b Normal 38.51 37.52 46.97 39.12
RASP 40.11 (+4.2%) 43.54 (+16.1%) 50.00 (+6.5%) 41.94 (+7.2%)

LLama3.2-8b Normal 37.06 34.79 47.73 37.59
RASP 42.10 (+13.6%) 38.88 (+11.8%) 49.00 (+2.7%) 42.00 (+11.7%)

Gemma2-9b Normal 39.68 45.01 55.30 42.54
RASP 45.93 (+15.8%) 50.11 (+11.3%) 59.70 (+8.0%) 48.34 (+13.6%)

Table 9: Performance on the challenge set.
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