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ABSTRACT

Motion representation plays a pivotal role in understanding video data, thereby
elevating the dynamic capture to the forefront of action recognition tasks based on
point cloud video. Previous works mainly compute the motion information in an
unguided way, e.g. aggregate the spatial variations on adjacent point cloud frames
using 4D convolutions or capture a point trajectory with kinematic computation
like scene flow. However, the former fails to explicitly consider motion represen-
tation in corresponding frames, and the latter’s reliance on tracking point trajecto-
ries becomes impractical in real-life applications due to the potential inter-frame
migration of points. In this paper, we tackle the dynamic capture in point cloud
video action by formulating it as solvable partial differential equations (PDEs) in
feature space. Based on this intuitive design, we propose Motion PointNet, a novel
method that improves the dynamic capture in point cloud video human action by
constructing clear guidance for network learning. Motion PointNet is composed
of a lightweight yet effective PointNet-like encoder and a PDEs-solving module
for dynamic capture. Remarkably, our Motion PointNet, with merely 0.72 M pa-
rameters and 0.82 G FLOPs, achieves an impressive accuracy of 97.52 % on the
MSRAction-3D dataset, surpassing the current state-of-the-art in all aspects. The
code and the trained models will be released for reproduction.

1 INTRODUCTION

Recognizing human actions within the context of 3D point cloud space necessitates more than just
spatial perception, as the dynamic capture of point cloud video human action has acquired paramount
significance and emerged as a forefront challenge in dynamic point cloud processing. Enhancing
dynamic capture has intuitively emerged as a pivotal solution for advancing the performance of the
3D action recognition task (Liu et al., 2019; Fan et al., 2021b; 2022; 2021a; 2023; Zhong et al.,
2022).

Early approaches primarily focused on spatial perception and encountered challenges when dealing
with the intricate structure of point cloud video data. Choy et al. (2019) and Wang et al. (2020)
tackle the point cloud video data with 4D voxelization, where information loss is inevitable. Recent
methods circumvent this issue by directly processing the point cloud while emphasizing the capture
of dynamics. Some of these methods implicitly capture the dynamic of the point cloud video by
searching related points in the spatial-temporal space (Liu et al., 2019; Fan et al., 2021b;a). These
methods rely on the sophisticated designed 4D convolutions and/or the transformer-based temporal
perception, where high computational demands and inherent complexity are always accompanied.
Other than that, these methods lack consideration of the motion tracking in correspondence frames
explicitly, and thus may not well present the dynamic information of the point cloud sequence.
Other methods try to explicitly capture the dynamics by computing point trajectory with kinematic
computation, e.g. scene flow (Zhong et al., 2022) for better motion representations. Nonetheless,
the approach proves unrealistic in real-life applications due to the potential inter-frame migration of
points. Additionally, these approaches require the exact formalization of the point trajectory, which
has proved to be a challenging endeavor (Wu et al., 2023; Liu et al., 2023). Beyond concerns about
training costs and point-tracking problems, the aforementioned approaches lack proper guidance
during the dynamic capture process. We contend that refining the focus of dynamic capture to a
distinct objective, beyond relying solely on global supervision from the action labels, can yield
significant benefits for the action recognition task.
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Figure 1: Overall architecture of our Motion PointNet. PointNet-like Encoder: Benefiting from
the rolling operation, as the network goes deeper, features from the current frame are continually
aggregated to the next frame, while also perceiving more spatial information with a larger spatial
receptive field. PDEs-solving module: The network can be trained in a pretrain-finetune manner.
We involve a PDEs-solving module in the pretrain stage to instruct the encoder to allocate a greater
level of attention to the temporal dimension. In the finetune stage, we load the pretrained weight of
the encoder only and add a classification head for supervised learning.

In light of the aforementioned considerations, we propose a new perspective by viewing dynamic
capture as solvable high-dimensional partial differential equations (PDEs) in the feature space. By
building a proper input-output mapping i.e. solving PDEs in the feature space, we can provide
clear temporal guidance for the dynamic capture process. This concept is built on two intuitive
facts: (i) PDEs in real-world applications are usually adopted in the discretized high-dimensional
coordinate space, e.g. point cloud (Wu et al., 2023). (ii) Solving PDEs with proper input-output
mapping facilitates the modeling of sequence data (Tran et al., 2021; Liu et al., 2023). Notably, our
work represents a pioneering effort in applying PDEs-solving to point cloud video data. Despite
challenges, we demonstrate how the concept of solving high-dimensional PDEs can address the
shortcomings of other methods and enhance dynamic capture within point cloud video data in two
aspects: (i) For the absence of proper motion tracking and temporal guidance problem, adopting
PDEs-solving can explicitly capture the motion information in a well-guided way by establishing
a suitable input-output mapping in a PDEs problem, instead of relying solely on the action ground
truth. (ii) For the point tracking difficulties, we avoid the explicit kinematic equation by solving
PDEs in high-dimensional space with deep models. This allows us to formalize the input-output
mapping as learning operators, which can be universally approximated by model optimization.

Building upon these observations, we introduce our Motion PointNet with the utilization of PDEs
solving during dynamic capture for the point cloud video action recognition task. Specifically, we
pretrain the feature encoder of our Motion PointNet with a distinctive PDEs-solving module to
improve the dynamic capture process. Our Motion PointNet contains two parts: Firstly, a PointNet-
like encoder is adopted for spatial-temporal feature generation (see Fig.1 (i)). We adopted the set
abstraction (Qi et al., 2017) on the adjacent point cloud frames to generate local variations between
frames. Diverging from the 4D convolutions that process the point cloud sequence recursively and
thus lead to inherent complexity, we treat all frames into a batch with a reshape operation that aligns
with previous video networks (Wang et al., 2019; Lin et al., 2019). In doing so, we establish a
streamlined and lightweight yet spatially and temporally conscious encoder. Secondly, an PDEs-
solving module is applied to solve the PDEs problem in the context of dynamic capture (see Fig.1
(ii)). Given the spatial-temporal feature generated from the proposed encoder, we design our PDEs-
solving as a feature reconstruction process from the masked token. Previous reconstruction-based
pretrain approaches mainly address the inner data distribution patterns within spatial (Pang et al.,
2022) or temporal (Wang et al., 2021) dimensions solely. Distinctively, we decouple the spatial-
temporal feature and propose the reconstruction of the spatial feature from the temporal dimension.
This approach prioritizes the optimization within the temporal-to-spatial Banach spaces and allows
for the synthesis of spatial and temporal feature spaces during the dynamic capture process. Then
we apply a classical spectral PDEs-solving method (Gottlieb & Orszag, 1977) for the mapping from
temporal space to spatial space. We further adopt two attention layers for the feature aliment in
different spaces (see Fig.1 (iii)).

The proposed PDEs-solving module improves the dynamic capture problem by a directive temporal-
to-spatial mapping. Facilitated by the strong temporal perceptual ability of the proposed PDEs-
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solving module, our Motion PointNet improves the performance of the point cloud video ac-
tion recognition task by a clear margin. Extensive experiments on various benchmarks including
MSRAction-3D (Li et al., 2010), NTU RGB+D (Shahroudy et al., 2016), and UTD-MHAD (Chen
et al., 2015) prove the superiority of our proposal. Prominently, with only 0.72M parameters and
0.82G FLOPs, our Motion PointNet achieves an accuracy of 97.52% on the MSRAction-3D dataset.

In summary, the contributions of this work are summarized as follows: (i) We propose a brand-new
perspective that views the dynamic capture process - a nonlinear modeling problem, as a PDEs-
solving problem. The novelty lies in the reconstruction of spatial information from the temporal
dimension as the PDEs-solving target. By doing so, we can establish a synthesis of spatial spaces
and temporal spaces, thereby enhancing the dynamic capture process. (ii) We propose a lightweight
PointNet-like encoder and a PDEs-solving module to enhance dynamic capture in the point cloud
video action recognition task. These components form the foundation of our Motion PointNet frame-
work, tailored for the task of point cloud video action recognition.

2 RELATED WORKS

2.1 POINT CLOUD VIDEO ACTION RECOGNITION

Point cloud video contains complex spatial-temporal information and combines an intricate structure
with both unordered (intra-frame) and ordered (inter-frame) nature. Early methods either simplify
its structure by dimensionality reduction using projections (Luo et al., 2018), or adopt voxeliza-
tion to construct a regulated grid-based data (Choy et al., 2019; Wang et al., 2020). Similar to
projections/voxel-based methods in static point clouds, those methods also faced information loss
and issues with processing efficiency. Recent methods (Liu et al., 2019; Min et al., 2020; Fan et al.,
2021b;a) inclined to process the point cloud video directly with PointNet-like set abstraction (Qi
et al., 2017). For instance, Fan et al. (2021b) proposed a 4D convolution that implicitly captures the
dynamic of adjacent point cloud frames by adopting the PointNet-like set abstraction between them
and processes the point cloud sequence recursively. After that, an improved version (Fan et al., 2022)
proposed to enhance dynamic capture with an additional temporal convolution. These point-based
methods focus more on the motion representation and try to improve the dynamic capture process
in different aspects. P4Transformer (Fan et al., 2021a) and PST-Transformer (Fan et al., 2023)
captured dynamic by searching related points in the spatial-temporal space with attention-based net-
works. Kinet (Zhong et al., 2022) proposed a kinematics-inspired neural network and solved the
dynamic capture in point cloud sequence using scene flow. Different from all the aforementioned
methods, our Motion PointNet is built upon a brand-new perspective that treats dynamic capture in
point cloud sequence as a solvable PDEs problem.

2.2 PDES-SOLVING WITH DEEP MODELS

Our work is also related to solving PDEs numerically with deep models. The PSEs-solving problem
has been widely explored with spectral methods since the last century (Gottlieb & Orszag, 1977;
Fornberg, 1998). Recently, some research work explored the deep models for PDEs due to their
great nonlinear modeling capability (Li et al., 2020; Tran et al., 2021; Fanaskov & Oseledets, 2022;
Liu et al., 2023). In this paper, we aim to adopt the PSEs-solving in the point cloud video action
recognition task. Specifically, we design a unique temporal-to-spatial mapping with a reconstruction
target to enhance the dynamic capture process in the point cloud video action recognition task. To
the best of our knowledge, we are the first work that adopts PDEs-solving in this task.

3 PROPOSED METHOD

We illustrate the proposed Motion PointNet in detail in the following sections. Fig.1 shows the
overall architecture of the Motion PointNet, which is composed of a PointNet-like encoder and a
PDEs-solving module. The network is trained in a pretrain-finetune manner. In the pretrain stage
(see Fig.1 (a) process), we train our encoder with the PDEs-solving module under the supervision of
the reconstruction loss. In the finetune stage (see Fig.1 (b) process), we load the pretrained weight
of the encoder only and add a classification head for the action recognition task.
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3.1 POINTNET-LIKE ENCODER

We design a lightweight yet effective encoder for the temporal feature generation in our Motion
PointNet. Given a point cloud with N points that presented as P = {p1, p2, ..., pN}, where each
point pi ∈ R3 is specified by the geometric coordinates {x, y, z}. A point cloud video contains
T frames of point clouds presented as V = {P1, P2, ..., PT }, combining characteristics of both
unordered intra-frame and ordered inter-frame. Previous methods (Fan et al., 2021b;a; 2023) process
the point cloud video V recursively by sophisticated designed 4D convolutions. Differently, we
process T frames of data as batches following previous video networks (Lin et al., 2019; Wang
et al., 2019), thus processing the point cloud video with the shape of {B×T,N,C}. Here a ‘batch’
represents a group of data entered into the network for training, and the ‘batch size’ represents the
number of training samples in each batch. Here the batch size = B×T . Usually, C = 3 represents
the spatial coordinates {x, y, z}.

We then extend the spatial encoder from PointNet++ (Qi et al., 2017) for static point clouds only
to the temporal domain. For a static point cloud P , Qi et al. (2017) adopt a multilayer perceptron
(MLP) for spatial set abstraction:

Feature = f (P, P
′
), (1)

where f represents a standard PointNet++ layer. We omit some basic operations in point cloud
processing to simplify the description (e.g. sampling and grouping for the generation of P

′
from

P ). Here P functions as the support points and P
′

is the downsampled query points from the original
P . We recommend referring to PointNet++ (Qi et al., 2017) for more details. Eq.1 can be extended
and further formed as follows when using batch processing, thus easily fitting our reshaped point
cloud video:

Feature = f ({P1, P2, ..., }, {P1, P2, ..., }
′
) = f (V, V

′
). (2)

However, the simple spatial encoder still lacks temporal consciousness and cannot well present the
motion information. We solve this problem by adding a rolling operation i.e. torch.roll() on the
temporal dimension which leads to frame misalignment in point cloud videos. In other words, we
generate the support points and the query points from different point cloud frames instead of the
same one to aggregate temporal features from Pt → Pt+1:

Feature = f (Pt, P
′

t+1). (3)

Here, the Pt functions as the support points and P
′

t+1 is the downsampled query points from the
next point cloud frame Pt+1. When using batch processing, Eq.3 can be reformulated as follows:

Feature = f ({P1, P2, ..., Pt, ...}, {P2, P3, ..., Pt+1, ...}
′
) = f (V1, V

′

2 ), (4)
where the index of V represents the temporal index of the first point cloud frame in the point cloud
sequence. In this way, the spatial set abstraction is extended to the temporal domain by operat-
ing on the adjacent frames while keeping its lightness and simplicity. We naturally stack multiple
PointNet++ layers to build our PointNet-like encoder. As the network delves deeper, simultaneous
temporal rolling and spatial abstraction persist, resulting in the expansion of the encoder’s receptive
fields in both spatial and temporal dimensions. Taking a 3-layer depth encoder as an example:

Layer1 = f (V1, V
′

2 ) Layer2 = f (V
′

2 , V
′′

3 ) Layer3 = f (V
′′

3 , V
′′′

4 ), (5)
where more superscript ′ represents the larger spatial sampling scale than the previous layer. Dif-
ferent from previous methods, our encoder maintains the sequence length T while aggregating tem-
poral information from the current frame to the next frame, greatly enhancing the local information
density of our features.

3.2 PDES-SOLVING MODULE

We introduce a PDEs-solving module that intensifies the network’s focus on dynamic capture. Tra-
ditional methods relying solely on global supervision from the action labels lack temporal guidance,
potentially leading to an inadequate representation of dynamics in the point cloud video action
recognition. To address this limitation, the proposed PDEs-solving module decouples the spatial-
temporal feature and builds a PDEs problem by a directive temporal-to-spatial mapping. Together
with the contrastive loss (presented later) in the pretrain stage, our PDEs-solving module refines
the focus of dynamic capture to a distinct objective. By doing so, we expect to provide temporal
guidance.
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Figure 2: Comparison between reconstruction target for (a) inner data distribution and (b) dynamic
capture in temporal feature.

3.2.1 BUILDING TEMPORAL-TO-SPATIAL MAPPING

Given the spatial-temporal feature acquired from the encoder Feature ∈ RT×M , where M < N
is the number of spatial regions after aggregation. Subsequently, we proceed with max-pooling in
both the temporal and spatial dimensions, respectively, and obtain the sub-global temporal feature
Ft ∈ RT and the sub-global spatial feature Fs ∈ RM . Existing reconstruction-based self-supervised
learning mainly addresses the inner data distribution patterns by reconstructing masked tokens (see
Fig.2 (a)). These methods focus on either the spatial or temporal dimension solely and are usually
sensitive to mask ratio. Furthermore, simply recovering the masked data does not meet our purposes
of dynamic capture. Distinctively, we target reconstructing the Fs from a learnable parameters set
Fmasked
s by reversing the Ft with spectral methods (see Fig.2 (b)). Both the Ft and the Fs are in

the Banach spaces F = F(D;RdF ), where D ⊂ Rd is a bounded open set. Based on assumptions
from Lu et al. (2021) and Li et al. (2021b), we can solve the PDEs with a deep model Mθ by
approximating the optimal operator. This process can be formulated as follows:

M : Ft
θ−→ Fs, (6)

where θ is the learnable parameter set. Our PDEs-solving module directly incorporates the feature
variations over time as the variable θ in the modeling process. This allows a more accurate and
nuanced representation of how point cloud features evolve over time compared to previous temporal
modeling approaches.

3.2.2 SOLVING PDES MAPPING

We then introduce the core of the PDEs-solving module with a spectral method. The approximating
of θ in Eq.6 can be formulated as follows:

Mθ =

O∑
i=1

wiMθ,i, (7)

where O is the number of operators and wi is learnable weight. As shown in Fig.1 (iii), the core of the
PDEs-solving module is composed of a multi-head self-attention (MHSA) layer, a spectral method
layer, and a multi-head cross-attention (MHCA) layer. Although a simplistic deep model (Liu et al.,
2023) can be used for PDEs-solving, the design attempts to learn the operator as a whole (O = 1)
while still maintaining network efficiency is challenging due to the complexities of input-output
mappings in high-dimensional space (Wu et al., 2023; Karniadakis et al., 2021). We tackle this
problem with the combination of the attention mechanism and the classic spectral method (Tolstov,
2012) for PDE, which decomposes complex nonlinear mappings into multiple basis operators, while
also holding the universal approximation capacity with theoretical guarantees.

For every ft ∈ Ft, we use trigonometric as the basis operators following Lu et al. (2021) and Li
et al. (2021b):

Mθ,(2k−1)(ft) = sin(kft), Mθ,(2k)(ft) = cos(kft), k ∈ {1, ..., N/2} (8)
where N is even. Then, the calculation of the mapping output can be formulated as follows:

Ft→s = Ft + wsin[Mθ,(2k−1)(Ft)]
O/2
k=1 + wcos[Mθ,(2k)(Ft)]

O/2
k=1. (9)

Building upon the spectral method we elaborate above, we use a standard MHSA (Vaswani et al.,
2017) layer to enhance the temporal feature before feeding into the spectral method layer. Further-
more, we align the two different Banach spaces of the mapping output Ft→s and Fmasked

s by an
MHCA layer and output the predicted F̂s. 1 The Fmasked

s is initialized with the same shape as Fs.
1Due to page limitations in the main text, we further detail this process in the Appendix A.
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3.2.3 CONTRASTIVE MATCHING LOSS

We compare the predicted F̂s with the ground truth Fs using a contrastive-based InfoNCE loss (Oord
et al., 2018) in our pretrain stage to refine the focus of dynamic capture to a distinct objective. We
consider both the input Ft and the output Fs to contain more abstract information about the spatio-
temporal features. By treating the f− in Feature ∈ RT×M before applying spatial/temporal pooling
as the negative sample, we force the model to learn the implicit mapping between the spatial and
temporal space, instead of reconstructing the de-pooling feature by closer both Ft and Fs to Feature

(which is against the learning objectives). For every f̂s ∈ F̂s, we treat the corresponding token in Fs

as positive sample fs+. The loss function can be formulated as follows:

L =
∑

f̂s,i∈F̂s

−log
exp(f̂s

T

,i fs+/τ)

exp(f̂s
T

,i fs+/τ) +
∑

f−,j∈Feature exp(f̂s
T

,i f−,j/τ)
, (10)

where τ is a temperature that controls the network sensitivity to positive and negative samples.
Several ablation studies in Section 4.3 underscore the superiority of our loss design.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

We evaluate the proposed Motion PointNet on three benchmarks including the MSRAction-3D (Li
et al., 2010) dataset, NTU RGB+D (Shahroudy et al., 2016) dataset and UTD-MHAD (Chen et al.,
2015) dataset for point cloud video action recognition. We conduct all our experiments on the
NVIDIA A100 GPUs. Following the previous works (Zhong et al., 2022; Fan et al., 2021b; 2023;
Chen et al., 2015), we use default data splits in all evaluated datasets for fair comparisons. In
most of the experiments, we pretrain our Motion PointNet with the PDEs-solving module on the
training data split with a 24-frame video input and finetune the encoder we proposed in Sec.3.1 with
a classification head. We report our Motion PointNet results from the finetuned models.

4.2 ACTION RECOGNITION RESULTS

MSRAction-3D dataset includes 567 depth map sequences of 20 action classes performed by 10
subjects. To generate point cloud videos from the original data, we adopt the standard method
following Liu et al. (2019) and Fan et al. (2021b;a), and report the average accuracy of our exper-
iment over 10 runs following the convention. We compare our Motion PointNet to prior works in
Tab.1. Our report proves that the proposed method outperforms the current SOTA by significant
margins, gaining a +3.79% accuracy with 24-frame input. Furthermore, it maintains superior per-
formance with reduced frame input (12/16-frame), demonstrating the robustness of the proposed
Motion PointNet. The performance on 4/8-frame MSRAction-3D indicates a slight limitation on
short video input with a comparable accuracy. Indicate that the simple and explicit temporal infor-
mativeness of adjacent frames is proportional to the length of the input video.

Notably, the proposed method not only attains state-of-the-art performance but also surpasses ex-
isting models in terms of model parameters, complexity, and running time. As illustrated in Tab.2,
previous approaches that rely on sophisticated 4D convolutions are usually accompanied by intri-
cate computational demands and substantial learning parameters. For instance, PSTNet (Fan et al.,
2021b) is composed of a hierarchical architecture with 4-layer 4D convolutions, which result in over
50G FLOPs. When further improving the performance by even more complex networks (Fan et al.,
2021a; 2023), the learning parameters reach a staggering 40M+. Differently, our Motion PointNet
miniaturizes the model in both FLOPs and learning parameters to the SOTA level. Remarkably, our
Motion PointNet surpasses the current state-of-the-art with a 0.55G FLOPs (when comparing at a
16-frame input) and 0.72M learning parameters. We further visualize the points corresponding to
high feature response in Fig.4. As we can see, the main moving part of actions (e.g. swinging arms
in the golf swing) are highlighted, which is consistent with the proposed intuition.

NTU RGB+D dataset contains 60 action classes and 56,880 video samples, which is a large-scale
dataset consisting of complex scenes with noisy background points. We report the results of the
cross-subject and cross-view scenarios following the official data partition (Shahroudy et al., 2016).
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Table 1: Comparison with current state-of-the-art on MSRAction-3D dataset.

Methods Accuracy(%) of different frame rate

4-frame 8-frame 12-frame 16-frame 24-frame
MeteorNet (Liu et al., 2019) 78.11 81.14 86.53 88.21 88.50

P4Transformer (Fan et al., 2021a) 80.13 83.17 87.54 89.56 90.94
PSTNet (Fan et al., 2021b) 81.14 83.50 87.88 89.90 91.20

SequentialPointNet (Li et al., 2021a) 77.66 86.45 88.64 89.56 91.94
PointMapNet (Li et al., 2023) 79.04 84.93 87.13 89.71 91.91
PSTNet++ (Fan et al., 2022) 81.53 83.50 88.15 90.24 92.68
Kinet (Zhong et al., 2022) 79.80 83.84 88.53 91.92 93.27

3DInAction (Ben-Shabat et al., 2023) 80.47 86.20 88.22 90.57 92.23
PST-Transformer (Fan et al., 2023) 81.14 83.97 88.15 91.98 93.73

Motion PointNet 79.46 85.88 90.57 93.33 97.52

Table 2: Qualitative results for efficiency evaluation on MSRAction-3D. Notice that the reported
runtime results are on 24-frame MSRAction-3D.

Methods flames FLOPs(G) Param.(M) Acc.(%) time(ms)

PSTNet (Fan et al., 2021b)

16

54.09 8.44 89.90 63.88
MeteorNet (Liu et al., 2019) 1.70 17.60 88.21 80.11
P4Transformer (Fan et al., 2021a) 40.38 42.07 89.56 25.18
PST-Transformer (Fan et al., 2023) - 44.20 91.98 69.37
Kinet (Zhong et al., 2022) 10.35 3.20 91.92 -

Motion PointNet 16/24 0.55/0.82 0.72 93.33/97.52 1.17

We compare our Motion PointNet to prior works in Tab.3. Our report proves that the proposed
method maintains its superiority on the large-scale dataset. Our Motion PointNet is superior to most
of the methods with different input modalities including depth map, skeleton, and dense points. It
consistently outperforms the large model including PSTNet (Fan et al., 2021b), P4Transformer (Fan
et al., 2021a), and PST-Transformer (Fan et al., 2023) in both the cross-subject (92.9% accuracy)
and cross-view (98.0% accuracy) protocols, while forming a way more lightweight network. As
shown in Tab.4, our Motion PointNet offers consistent superiority in lightweight regarding model
parameters (1.64M parameters) and computational complexity (15.47G FLOPs).

We also report the hyper-settings of our Motion PointNet for the two aforementioned datasets in
Tab.5. We modified the basis hyperparameters in the table and selected the best-setting group in our
experiments. The NTU RGB+D dataset requires a deeper network due to its complex scenes and
large scale. Notice that our PDEs-solving module is also lightweight with only additional +5.2M
parameters and +0.2G FLOPs in both settings.

UTD-MHAD dataset contains 27 classes and 861 data sequences for action recognition. We apply
our Motion PointNet to the UTD-MHAD benchmark and compare the proposed approach with cur-
rent SOTA methods. The encoder settings of the Motion PointNet are consistent with the settings
for the NTU RGB+D benchmark. Results in Tab.6 illustrate the accuracy of different approaches.
Our Motion PointNet maintains its superior performance with the highest accuracy of 92.79%.

4.3 ABLATION STUDIES

We conduct extensive ablation experiments on the proposed Motion PointNet. Results in Tab.7
show that the proposed encoder itself has outperformed the PST-Transformer (Fan et al., 2023)
with a 95.76% accuracy. Furthermore, the PDEs-solving module brings a significant improve-
ment (+1.75% accuracy) to our encoder. We also implement our PDEs-solving module on the
PST-Transformer. After pertaining together with our PDEs-solving module, the PST-Transformer
encoder also achieved a +1.32% accuracy improvement. This underscores the universality of our
PDEs-solving module and the applicability of the PDE-solving perspective across different scenar-
ios in point cloud video action recognition.

We further validate the effectiveness of different components in the PDEs-solving module. Results
are shown in Tab.8. Firstly, we assess the individual contributions of the three layers that constitute
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Figure 3: Visualization of high feature response on MSRAction-3D dataset. High response points
are marked in orange, which are selected based on the magnitude of the feature response. We choose
binary representation for clarity in visualization.

Table 3: Compare to the current state-of-the-art on NTU RGB+D dataset.

Methods Modalities Cross Cross
Subject View

Li et al. (Li et al., 2018)
depth map

68.1 83.4
Wang et al. (Wang et al., 2018) 87.1 84.2
MVDI (Xiao et al., 2019) 84.6 87.3

SkeleMotion (Caetano et al., 2019)
skeleton

69.6 80.1
DGNN (Shi et al., 2019) 89.9 96.1
MS-G3D (Liu et al., 2020) 91.5 96.2

3DV (Wang et al., 2020)

points

88.8 96.3
P4Transformer (Fan et al., 2021a) 90.2 96.4
PST-Transformer (Fan et al., 2023) 91.0 96.4
Kinet (Zhong et al., 2022) 92.3 96.4
PSTNet (Fan et al., 2021b) 90.5 96.5
PSTNet++ (Fan et al., 2022) 91.4 96.7
PointMapNet Li et al. (2023) 89.4 96.7
SequentialPointNet (Li et al., 2021a) 90.3 97.6

Motion PointNet points 92.9 98.0

Table 4: Qualitative results for efficiency evaluation on NTU RGB+D dataset.

Model FLOPs(G) PARAMS(M)

PSTNet (Fan et al., 2021b) 19.58 8.52
PointMapNet Li et al. (2023) - 2.65
P4Transformer (Fan et al., 2021a) 48.63 65.17
PST-Transformer (Fan et al., 2023) 48.68 65.19
GeometryMotion-Net (Liu & Xu, 2021) 68.42 40.44

Motion PointNet 15.47 1.64
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Table 5: Hyper-settings of our Motion PointNet.
Dataset MSRAction-3D NTU RGB+D

Input points × frames 2048 × 24 2048 × 24

Encoder Number of encoder layers 3 5

Setting Spatial stride 32, 8, 2 8, 8, 1, 1, 4
K-neighbors 48, 32, 8 32, 48, 16, 24, 32

Output feature channel 1024 1024

PARAMS(M) w/o PDEs-solving 0.72 1.64
w/ PDEs-solving 5.95 6.83

FLOPs(G) w/o PDEs-solving 0.82 15.47
w/ PDEs-solving 1.06 15.73

Table 6: Compare to the current state-of-the-art
on UTD-MHAD benchmark.

Methods Accuracy(%)

SequentialPointNet (Li et al., 2021a) 92.31
PointMapNet (Li et al., 2023) 91.61

Motion PointNet 92.79

Table 7: Ablation on PDEs-solving module. Ex-
periments are conducted on the MSRAction-3D
benchmark.

Methods Accuracy(%)

PST-Transformer (Fan et al., 2023) 93.73
+ PDEs-solving 95.05 (+1.32)

Our Encoder 95.76
+ PDEs-solving 97.52 (+1.76)

the core of PDEs-solving module. We observe that the spectral method primarily contributes to the
performance enhancement, with the MHSA and MHCA layers also demonstrating their indispens-
ability. The following results prove the utility of our contrastive matching loss. Other measures
including cosine similarity and L2 distance are not ideal when we want to maximize the similarity
between representations since they are either insensitive to linear scale or unbounded and harder to
optimize. Finally, we validate different reconstruction targets in the PDEs-solving module. The per-
formance decays when we attempt to capture the dynamics by solving Fs → Ft instead of Ft → Fs.
We hypothesize that this phenomenon arises because Ft preserves a higher degree of integrated tem-
poral information during the process of solving PDEs.

Table 8: Ablation of different components of PDEs-solving module. Experiments are conducted on
the MSRAction-3D benchmark.

Settings Accuracy(%)

full PDEs-solving module 97.52

PDEs-solving core
w/o MHSA − 0.71

w/o spectral method − 1.14
w/o MHCA − 0.41

w/o contrastive matching L2 similarity − 0.63
Cosine similarity − 0.43

w/ contrastive matching InfoNCE loss ± 0.

reconstruction targets Fs → Ft − 0.68
Ft → Fs ± 0.

5 CONCLUSION

We have presented a novel architecture called Motion PointNet. Firstly, we proposed to view the dy-
namic capture process in the point cloud video action recognition task as a PDEs-solving problem.
Based on this perspective, we designed a PDEs-solving module and a lightweight PointNet-like en-
coder to construct our Motion PointNet. The proposed method refines the focus of dynamic capture
to a distinct objective with clear temporal guidance. Thus bringing significant improvement to the
three evaluated benchmarks. The extensive experimental results also supported our superiority in
versatility and model miniaturization. In future work, we aim to further extend our Motion PointNet
to an extensive range of point cloud video understanding tasks including segmentation, detection,
and object tracking.
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A DETAILS FOR THE MHSA AND MHCA LAYERS

The MHSA layer and MHCA layer share the same structure but with different inputs. The MHSA
layer uses the same Ft for query, key, and value generation. The MHCA layer uses the Fmasked

s for
query generation, and the mapping output Ft→s for key and value generation.

MHSA Firstly, the Ft is fed into a standard MHSA (Vaswani et al., 2017) module. We add the
frame indexes as the position embedding. This process can be formulated as follows:

Ft = PE([1, 2, ..., T ]) + Ft, (11)

Hm = Softmax({FtW
Q
m} × {FtW

K
m }Transpose/

√
d)× FtW

V
m , (12)

Ft = Concat(H1, . . . ,Hm), (13)

where PE(·) is the positional encoding function that embeds the frame index to high-dimension.
WQ

m ,WK
m ,WV

m are learnable weights of the mth head for query, key, and value respectively. And d
is the number of feature channels.

MHCA After getting the mapping output Ft→s from our spectral method layer, we align the two
different Banach spaces of Ft→s and Fs by an MHCA layer. We execute this process with a learnable
masked parameters set that is aligned with the Fs. This process can be formulated as follows:

Hm = Softmax({Fmasked
s WQ

m} × {Ft→sW
K
m }Transpose/

√
d)× Ft→sW

V
m , (14)

F̂s = Concat(H1, . . . ,Hm), (15)

the Fmasked
s is initialized with the same shape as Fs. We then match the predicted F̂s and the ground

truth Fs as the supervision of the PDEs-solving.
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B ABLATION ON TRAINING SETTINGS

Our two-stage training process is designed to first allow the network to learn robust spatio-temporal
features from the encoder and then to refine this representation using the classification head in the
second stage. In this way, we can keep our encoder as lightweight as possible while still enforcing
its strong learning ability. To further demonstrate the effectiveness of our proposed method, we add
two baseline comparisons below. The experiments are conducted on the MSR-Action3D Dataset
with 24 frames.

Table 9: Ablation of different training settings for the Motion PointNet. Experiments are conducted
on the MSRAction-3D benchmark with 24 frames.

Settings Accuracy(%)

pretrain + finetune 97.52
setting 1 − 1.77
setting 2 − 1.41

Here setting 1 indicates training our encoder with the classification head using the same number of
iterations of two-stage training. Setting 2 indicates finetuning the classification head while freezing
the encoder to evaluate the pretrained representation.

C VISUALIZATION

We also report the feature response from PointNet++ (Qi et al., 2017) as further comparison with
our Motion PointNet. The observation reveals that the PointNet++ model exhibits a response to
regions where geometric features are distinctly pronounced, such as the head, shoulders, and arms,
irrespective of whether these areas constitute the primary focus of the action.

GOLF SWING SIDE KICK BEND

Left: PointNet++    Right: Our Motion PointNet

Figure 4: Visualization comparison between PointNet++ and our Motion PointNet. High response
points are marked in orange, which are selected based on the magnitude of the feature response. We
choose binary representation for clarity in visualization.
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