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Abstract

The cost of ranking becomes significant in the new stage of deep learning. We pro-
pose STk, a fully differentiable module with a single trainable parameter, designed
to solve the Top-k problem without requiring additional time or GPU memory.
Due to its fully differentiable nature, STk can be embedded end-to-end into neural
networks and optimize the Top-k problems within a unified computational graph.
We apply STk to the Average Top-k Loss (ATk), which inherently faces a Top-k
problem. The proposed STk Loss outperforms ATk Loss and achieves the best
average performance on multiple benchmarks, with the lowest standard deviation.
With the assistance of STk Loss, we surpass the state-of-the-art (SOTA) on both
CIFAR-100-LT and Places-LT leaderboards.

1 Introduction

The ranking problem is quite common in the field of AI. For imbalanced datasets, the Average Top-k
(ATk) Loss is more suitable than the conventional Average Loss [Lyu et al., 2020]. In the context
of ambiguous classification tasks, Top-k Learning allows the ground truth to fall within the largest
k probabilities, enhancing the model’s generalizability [Lapin et al., 2017, Berrada et al., 2018,
Petersen et al., 2022]. For language models, the Top-k sampling method helps the models select the
top k most probable words during text generation, producing more fluent and coherent sentences.
Distributed learning systems employ Top-k sparsification with error compensation (Top-k SGD) to
reduce communication traffic without noticeably impacting model accuracy [Chen et al., 2018, Lin
et al., 2018, Shi et al., 2019]. However, as deep learning models continue to grow in size, the cost of
the ranking process becomes increasingly significant. For example, on a single NVIDIA H800
GPU, tuning a Llama-8B model using the LoRA [Hu et al., 2022] method with a batch size of 4096
and 1000 iterations takes 990.14 seconds. In particular, performing QuickSort on the individual
losses consumes 86.33 seconds.

In this work, we propose STk (Smoothed Top-k), a scalable module for Top-k problems. By adding
only a single trainable parameter, STk is able to solve the Top-k problem in O(n + k) steps. Due
to the fully differentiable nature of STk, it can be embedded end-to-end as a layer. Experiments
show that we can even add λ to the computational graph for unified optimization using Stochastic
Gradient Descent (SGD), which means that we do not need to consider the time cost of solving
the Top-k problems within the computational graph. However, we can still enjoy the performance
improvements that Top-k optimization provides. The contributions of this work are summarized as
follows:
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• We propose a uniformly convergent approximation of the ReLU function.

• We propose an efficient and robust Smoothed Top-k module, STk.

• We apply STk Module to smooth ATk Loss, resulting in performance improvement and
refreshing the state-of-the-art methods on two long-tailed learning leaderboards.

• We design an imbalanced classification dataset with a theoretical decision boundary.

For experiments, by applying the STk Module, we smooth the ATk Loss into STk Loss. The compu-
tation time of STk Loss is almost identical to that of the average aggregating method, significantly
faster than the sorting-required ATk Loss, and it exhibits the best performance. Experiments on
synthetic datasets demonstrate that models trained with STk Loss most closely approximate the
theoretical decision boundary. On benchmarks of imbalanced binary classification, models trained
by STk Loss exhibit the lowest average misclassification rate and the lowest standard deviation. On
regression datasets, models trained with STk Loss exhibit the lowest (RMSE). Experiments on large
real-world datasets demonstrate that STk Loss, as an aggregating trick for individual losses, is a
scalable technique that improves accuracy on long-tailed benchmarks. With the help of STk Loss, we
surpass the state-of-the-art (SOTA) on both the CIFAR-100-LT and Places-LT leaderboards.

1.1 Related Work

In current research, although there are many studies on individual loss, the general characteristics
of aggregate loss are often overlooked. In the existing machine learning literature, a related line of
work is the data subset selection problem [Wei et al., 2015], which aims to select a subset from a
large training dataset for model training while minimizing average loss. Curriculum learning [Bengio
et al., 2009] and self-paced [Kumar et al., 2010] learning are two recent learning schemes. They
organized the training process into several iterative stages, gradually including training data from
easy to difficult to learn, where the difficulty level is measured by individual loss. Therefore, each
training session in these methods corresponds to the average aggregate loss in the selected subset.
The difficulties encountered by the Average Loss when dealing with imbalanced data, as discussed in
[Shalev-Shwartz and Wexler, 2016, Huang et al., 2020], prompted the exploration of more robust
aggregate losses. Among these, Lyu et al. [2020] introduced the ATk loss, which averages the k
largest individual losses, and exhibits advanced performance on imbalanced datasets.

Many classification tasks in the real world have inherent label confusion, as mentioned in Berrada
et al. [2018]. This confusion may arise from various factors, such as incorrect labels, incomplete
annotations, or some fundamental ambiguities that even confuse the true labels for human experts.
Therefore, some works proposed the concept of Top-k Learning in the field of image classification to
address the issues of multiple semantics and semantic confusion in images [Lapin et al., 2017].

Berrada et al. [2018] proposed a method to partially smooth the Top-k Learning loss function, but did
not completely solve the sorting problem in the loss function and introduced a sorting computation
of Ck

n. Petersen et al. [2022] proposed a Split Selection Network (SSN) based on sorting networks,
which made the Top-k process differentiable and achieved the state of the art on ImageNet-1K at that
time. However, the computation required by this method is cumbersome and multilayered. Sorting
networks are similar to algorithms like QuickSort with time complexities of O(n log n).

1.2 Notational Conventions

Let Nn denotes the set {1, ..., n} and I{a} denotes the indicator function (which is 1 when the
proposition a is true and 0 otherwise). Thus, the sign function can be defined as: sign(x) =
I{x>0} − I{x<0}. The Hinge function can be defined as: [x]+ = max {0, x}. We use ∥x∥1, ∥x∥2,
and ∥x∥∞ to represent the ℓ1, ℓ2, and ℓ∞ norms of x, respectively. For the set L = ℓ1, ℓ2, ..., ℓn,
ℓ[k] denotes the k-th largest element, so we have ℓ[1] ≥ ℓ[2] ≥ ... ≥ ℓ[n]. In supervised learning
problems, our training set typically contains an input set and a target set, the input set coming from
the input domain X , and the target set from the target domain Y , and we use their joint domain
Z = X × Y to represent the range of the dataset. The training set S = z1, z2, ..., zn is a subset
of Z , where zi = (xi, yi). Our task is to find a predictor f : X → Y from the function family H
that can predict the corresponding target y based on the new input x. To evaluate the effect of the
predictor, we need to introduce an individual loss function ℓ : Y × Y → R+, where ℓ = ℓ(f(x), y)
usually reflects some distance between the prediction ŷ = f(x) and the true value y. The training
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process of the predictor can be described as using the gradient descent algorithm to optimize an
objective function (usually minimizing the loss function). The objective function can generally be
written as L(f, S) + Ω(f), where L(f, S) is the aggregated individual loss function, and Ω(f) is a
regularization term (ℓ1 or ℓ2 regularization term). The loss function L(f, S) is usually Average Loss,
that is, Lavg(f, S) =

1
n

∑n
i=1 ℓ(f(xi), yi). However, recent works, have shown some drawbacks of

the average loss in adapting to imbalanced data distributions [Shalev-Shwartz and Wexler, 2016], and
explored choices other than the average loss for the aggregate loss formed from individual losses,
e.g., the maximum (aggregate) loss, Lmax(f, S) = maxi∈Nn

ℓ(f(xi), yi).

2 STk Architecture

Smoothed Top-k Module

Figure 1: STk Architecture. For any layer of neurons in a neural network, to solve the Top-k problem
for its weights, insert an STk Module. The trainable parameter λ will gradually approximate the k-th
largest element during the optimization process. And this λ can be used to filter neurons.

Suppose we have a set of elements {ei}ni=1, then the Top-k problem can be describe as:

1. find the k-th largest element e[k];

2. find the sum of top-k largest elements
∑k

i=1 e[k].

This process can certainly be achieved through conventional sorting and summation. However, in the
worst-case scenario, the cost of solving the Top-k problem can reach O(n2). Ogryczak and Tamir
[2003] proposed an equivalent optimization form to solve the Top-k problem and proved its linear
convergence.

k∑
i=1

e[k] = min
λ≥0

{
n∑

i=1

[ei − λ]+ + kλ

}
, (1)

However, this surrogate objective function suffers from a non-differentiable point at ei = λ, which
makes it challenging to optimize. The key to solving this problem lies in designing a function
approximating [·]+, which can be regarded as a rectified linear unit (ReLU) function. Here, we
introduce the Smoothed ReLU (SReLU).

SReLU(x) =
1

2

[
x+ δ

(√
x2

δ2
+ 1− 1

)]
, (2)

where δ is a hyperparameter (usually we set δ = 0.01). It can be observed from Figure 2 that as δ
decreases, SReLU increasingly approximates the ReLU function. In fact, SReLU converges uniformly
to ReLU as δ → 0+; a detailed proof of this uniform convergence is provided in Proposition 1 of
Appendix A.1. With the help of SReLU, the objective function (1) can be smoothed as:

k∑
i=1

e[k] ≈ min
λ≥0

{
1

2

n∑
i=1

[
(ei − λ) + δ

(√
(ei − λ)2

δ2
+ 1− 1

)]
+ kλ

}
, (3)

the optimal λ∗ = e[k] which is the k-th largest element. In the following section, we will introduce
an application scenario for STk.
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Figure 2: ReLU and SReLU with various smoothing coefficients δ.

3 From ATk Loss to STk Loss

In the training process of a neural network, we first choose a form of individual loss (e.g., logistic
loss, hinge loss, mean square loss, or cross-entropy loss). Then, we aggregate all individual losses
to calculate their average, which is the most common aggregate loss function: Average Loss. The
Average Loss is widely used in a myriad of deep learning tasks. This widespread application stems
from the robust theoretical foundations [Bartlett et al., 2006, De Vito et al., 2005]. However, Average
Loss tends to overfit the training data, especially on imbalanced datasets [Shalev-Shwartz and Wexler,
2016, Huang et al., 2020]. This has inspired the motivation to find other forms of aggregate loss, such
as the maximum value among individual losses (referred to as Maximum Loss). The Average Top-k
(ATk) Loss was introduced by Lyu et al. [2020]:

Lat−k =
1

k

k∑
i=1

ℓ[k], (4)

which represents the average of the largest k individual losses. According to the derivation in
[Ogryczak and Tamir, 2003], this ranking loss can be written in the following equivalent form:

Lmat−k =
1

n

n∑
i=1

[ℓi − λ]+ +
k

n
λ. (5)

With the help of the STk Module, Lmat−k(f, S) can be reconstructed as

Lst−k =
1

2n

n∑
i=1

[
(ℓi − λ) + δ

(√
(ℓi − λ)2

δ2
+ 1− 1

)]
+

k

n
λ, (6)

where ℓi = ℓ(fwmodel(xi), yi) is the individual loss of sample i, and wmodel represents the set of
parameters of the predictor f . It is easy to verify that limδ→0+ Lst−k = Lmat−k, given Proposition
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1 in Appendix A.1.[
kλ

n
+

1

n

n∑
i=1

[ℓi − λ]+

]
−

[
kλ

n
+

1

n

n∑
i=1

1

2

[
(ℓi − λ) + δ

(√
(ℓi − λ)2

δ2
+ 1− 1

)]]

=

n∑
i=1

1

2n

[√
(ℓi − λ)2 −

√
(ℓi − λ)2 + δ2 + δ

]
=

n∑
i=1

1

2n

[
δ − δ2√

(ℓi − λ)2 +
√
(ℓi − λ)2 + δ2

]

=

n∑
i=1

1

2n

δ
1− 1√

(ℓi−λ)2

δ2 +
√

(ℓi−λ)2

δ2 + 1


<

δ

2

The approximation error between the smoothed loss function and the original loss function can be
uniformly bounded by δ/2,∀ℓ.
When ℓ is convex, Equation (6) exhibits joint convexity with respect to the parameters (wmodel, λ),
making the problem a special case of the non-linear multiple choice knapsack problem [Zemel, 1984],
which has at most q = 2 roots. These roots can be found in constant time, allowing the problem to be
solved in O(n · ln q) = O(n) time when q is fixed [Megiddo, 1984]. Therefore, it can be iteratively
updated using relatively simple algorithms. For example, in the case of batch learning, the block
coordinate descent (BCD) method [Nocedal and Wright, 1999] can be employed, where wmodel and λ
are updated alternately after initialization.

BCD-STk:
λ(t+1) ← argmin

λ
Lst−k;

w(t+1) ← argmin
w
Lst−k. (7)

The convergence of the above coordinate descent algorithms can be found in Luo and Tseng [1992],
Saha and Tewari [2013], Tseng [2001].

Furthermore, empirical evidence suggests that we do not need to spend extra time optimizing λ
separately, incorporating λ into the computational graph of wmodel for unified optimization using
Stochastic Gradient Descent (SGD) [Bottou and Bousquet, 2008, Shamir, 2011, Srebro and Tewari,
2010], performance improvements can still be achieved.

SGD-STk:
λ(t+1) ← λ(t) − η · ∂λLst−k;

w(t+1) ← w(t) − η · ∇wLst−k.

where ηt is the size of the update step, and when ηt ∼ 1√
t′

, the stochastic gradient descent method
can ensure convergence to a local minimum of Equation (6) [Shamir, 2011, Srebro and Tewari, 2010].
By eliminating points where the gradients are discontinuous, the training process becomes more
stable, and converges faster, as experimentally demonstrated by the standard deviations reported in
Tables 3, 4, and 9, and the time cost reported in Table 2.

4 Synthetic Experiments

4.1 Time Cost

We first perform experiments to compare the time costs of two standard sorting algorithms, ATk, and
STk, in calculating the ranking average. The experimental setup involves finding the Top-k (k=5)
sum from 10,000 standard normally distributed samples. For both ATk and STk, we iterate until the
error is less than 10−2. For each algorithm, we run 50 experiments and record the average time taken.
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Algorithm Complexity Average Time(s)

BubbleSort O(n2) 20.42196± 3.7015
HeapSort O(n log(n)) 0.1243± 0.0446
ATk O(n+ k) 0.2167± 0.1528
STk (Ours) O(n+ k) 0.0127± 0.0020

Table 1: Performance comparison of different sorting algorithms and our method.

As shown in Table 1, STk indeed demonstrates linear time complexity while also exhibiting a stable
optimization process.

4.2 Gaussian Distributed Dataset

To illustrate the capability of STk Loss in approximating the ideal decision boundary, we design a
Gaussian-distributed dataset. The dataset is generated by a pre-set covariance matrix Σ ∈ Rd×d, and
mean vectors µ1,µ2 ∈ Rd corresponding to two categories. We set d = 200, Σjk = 0.250.5+|j−k|,
µ1 = 0d and µ2 = (1, 1, ..., 1, 0, 0, ..., 0)⊤, which has 10 ones. For the predictor, we use a Logistic
Regression (LR) model f(x) = sigmoid(ω⊤x+ b). The detailed derivation process of the decision
boundary can be found in the Appendix A.2. Here, we present the conclusion directly. For two
normal populations with a given covariance matrix Σ, and means µ1 and µ2, the LR model has a
theoretical decision boundary:

ω∗ = (µ1 − µ0)
⊤Σ−1; b∗ =

1

2

[
µ⊤

0 Σ
−1µ0 + µ⊤

1 Σ
−1µ1

]
+ ln

[
Pr(Y = 1)

Pr(Y = 0)

]
. (8)

Figure 3 provide an example on 2D plane, we set Σ(j,k) = 0.8|j−k|,µ1 = [0, 0]⊤,µ2 = [2, 2]⊤, thus
according to our derivation above, ω∗ = [1.111, 1.111]⊤, b∗ = −0.836, where the black dashed line
is the theoretical boundary.

We use ParaF1 [Tian and Gu, 2017] to measure the overlap of estimated supports and true supports:

ParaF1 = 2 · precision · recall
precision + recall

,

2 0 2 4
4

2

0

2

4

6 Positive
Negative
Decision Boundary

Figure 3: A Synthetic Example on 2D-Plain.

where precision = |support(ω̂)∩support(ω∗)|
|support(ω̂)| ,

recall = |support(ω̂)∩support(ω∗)|
|support(ω∗)| , where ω̂ is

the estimated value of the parameters obtained
by the predictor, and ω∗ is the theoretical value
of the parameters mentioned above. The opera-
tor | · | is used to find the cardinality of the set,
which is the number of elements, and support(·)
is the support set of the vector, which refers to
the set of indices of its non-zero elements.

Other basic settings are as follows. The loss
function we use is the binary cross-entropy loss.
To obtain a sparse solution, we add an ℓ1 regular-
ization term. The number of samples is 10,000
for the training set and 2,500 each for the vali-
dation set and the test set. We implement early
stopping of the iteration based on the accuracy
curve in the validation set; that is, we break when the increase in validation accuracy within 200 steps
is less than 10−4. For each meta-experiment, we repeat it 50 times and take the average. Now we
conduct two groups of experiments as follows.

Aggregate Losses and ReLU Varients. In these experiments, we set the ratio of positive to negative
samples at 8:2 for the training set, while the validation set and the test set remain 1:1. We also
compare SReLU with other variants of ReLU. The smoothing coefficient for SReLU is set to 0.01,
and the settings for the other ReLU variants remain at their defaults. We use Adam as our optimizer,
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setting the batch size to 512, while keeping the other hyperparameters as default. According to
Equation (8), we could compute the theoretical value of ω∗, which is a vector with only the first 10
elements non-zero. Sensitive Analysis. In these experiments, we only adjust the positive-negative
ratio and retain the rest of the settings from the previous experiment.

Aggregate Loss Average Maximum ATk MATk
STk

ELU SoftPlus Leaky-ReLU SReLU (Ours)

Accuracy (%) 72.864 65.448 73.013 73.180 72.988 70.968 73.864 76.10476.10476.104
ParaF1-Score 0.1904 0.0909 0.1986 0.2063 0.1925 0.1592 0.2441 0.34460.34460.3446
Time (s) 16.525 6.145 19.271 15.774 15.572 16.233 15.525 15.436

Table 2: Accuracy and ParaF1-Score on the synthetic dataset.
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Figure 4: Accuracy and ParaF1-Score vs Negative Sample Ratio.

Table 2 presents the Accuracy and ParaF1 score achieved when different aggregate loss functions
are combined with the LR model and the cross-entropy loss, trained to convergence. With the help
of SReLU, STk Loss achieves performance that surpasses that of all other aggregate losses. Due to
its property of being a real uniformly convergent approximation (not just similar in shape), SReLU
outperforms other ReLU variants in this scenario. Figure 4 shows the relationship between accuracy,
ParaF1-score, and negative sample ratio (negative ratio). STk is less sensitive to the imbalance ratio,

5 Real World Applications

5.1 Binary Classification

We select binary classification datasets from the KEEL2 and UCI3 databases; see Table 9.

Dataset Average Maximum ATk MATk STk(Ours)

appendicitis 13.778±6.601 32.815±11.306 13.630±6.400 14.667±7.114 13.406±5.49113.406±5.49113.406±5.491
australian 13.549±1.025 46.89±8.779 14.428±1.056 14.324±1.058 13.358±0.98213.358±0.98213.358±0.982
german 26.328±2.069 45.832±5.465 26.808±2.347 26.392±2.431 25.561±1.98825.561±1.98825.561±1.988

phoneme 20.823±2.801 45.83±10.819 21.420±2.732 17.828±2.709 16.427±2.49416.427±2.49416.427±2.494
spambase 6.972±1.519 45.777±19.418 6.955±1.535 6.687±1.577 6.610±1.3336.610±1.3336.610±1.333

titanic 22.613±1.226 48.065±11.338 22.468±1.441 22.211±1.095 21.801±0.91121.801±0.91121.801±0.911
wisconsin 3.275±0.814 34.468±9.306 3.205±0.773 3.046±0.570 2.936±0.6652.936±0.6652.936±0.665

Table 3: Misclassification Rate(%) and Standard Derivation of Various Aggregate Losses Combined
with Individual Logistic Loss.

Next, we tested the performance of different forms of aggregate loss on binary classification bench-
marks. The individual loss function can generally be chosen as Logistic or Hinge, which are defined

2http://sci2s.ugr.es/keel/datasets.php
3https://archive.ics.uci.edu/ml/datasets.html
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Dataset Average Maximum ATk MATk STk(Ours)

appendicitis 15.852±8.082 28.000±12.443 16.148±7.436 15.481±5.577 14.667±5.73614.667±5.73614.667±5.736
wisconsin 3.240±1.014 12.000±10.760 3.158±1.085 2.936±1.212 2.889±1.0692.889±1.0692.889±1.069
australian 13.225±2.35113.225±2.35113.225±2.351 36.347±9.576 13.896±2.671 14.243±2.343 13.746±1.966
german 26.912±2.694 43.864±12.432 26.776±3.010 26.232±2.190 25.928±2.97325.928±2.97325.928±2.973
titanic 22.152±1.862 47.691±18.858 22.316±1.490 22.116±1.567 21.966±1.28921.966±1.28921.966±1.289

phoneme 21.543±1.358 44.656±16.805 20.733±1.093 17.335±1.125 17.152±0.95517.152±0.95517.152±0.955
spambase 7.463±0.742 33.986±8.955 7.197±0.695 6.645±0.677 6.342±0.5896.342±0.5896.342±0.589

Table 4: Misclassification Rate (%) and Standard Derivation of Various Aggregate Losses Combined
with Individual Hinge Loss.

as follows:

Logistic : ℓ(f(x), y) = log(1 + exp(−yf(x)));
Hinge : ℓ(f(x), y) = [1− yf(x)]+.

The prediction model is a two-layer MLP with 10 nodes in the hidden layer, activated by the ReLU
function between the two fully connected layers. To increase the stability of the training process, we
added an ℓ2 regularization term to the loss function Ω(w) = 1

2C ∥w∥
2
2. We divided the datasets into

training, validation, and test sets in a 0.5 : 0.25 : 0.25 ratio. Nowadays, SGD is generally replaced by
the mini-batch method instead of stochastic gradient descent with a single sample point, which is
faster and more robust. To accommodate datasets of varying sizes in the article, we set the batch size
to 16.

The hyperparameters in the experiment include k in MATk and ATk, the coefficient of the regular-
ization term C, the initial learning rate η, and the smoothing coefficient δ. These hyperparameters
will be selected based on their convergence accuracy performance on the validation set (for each
combination of hyperparameters, we repeat the experiment fifty times and take the average of their
prediction accuracy on the validation set as the basis for parameter selection). The search spaces for
several hyperparameters are as follows: k ∈ {1}∪ [0.1 : 0.1 : 1]; C ∈ {100, 101, 102, 103, 104, 105};
η ∈ {0.1, 0.05, 0, 01, 0.005, 0.001}; δ ∈ {0.1, 0.01, 0.001, 0.0001}.
Since traditional gradient descent is too sensitive to the choice of step size, which is not conducive
to our pure comparison of the convergence speed and accuracy of the loss function, we use the
AdaGrad algorithm to iteratively update the learning rate. During the learning process, to avoid
overfitting the model, we record the accuracy of the MLP predictor on the validation set after each
iteration, and perform an early stop when the accuracy does not increase (the increase in the accuracy
of the predictor on the validation set is less than 10−6 after 50 steps) and roll back the model to
the checkpoint with the highest accuracy on the validation set during the entire training process;
otherwise, we continue training until convergence. Tables 3 and 4, respectively, show the average
probability of misclassification (%) of the models trained to convergence in 50 experiments in the test
set under individual Logistic and Hinge loss (the standard deviation of the 50 experiments is listed in
parentheses).

In the results shown in Tables 3 and 4. Almost all the lowest misclassification rates appear in the STk

trained models. Furthermore, models trained with STk Loss exhibit the lowest standard deviation,
which to some extent demonstrates the robustness of the training process.

5.2 Long-Tailed Classification

The interest in long-tailed classification tasks has increased with the advent of large vision-language
models such as contrastive language-image pre-training (CLIP) Radford et al. [2021]. Long-tailed
versions of recognized datasets were built by the community. Using the Pareto distribution (α = 6),
the ImageNet-1K and Places datasets can be sampled to create ImageNet-LT and Places-LT datasets,
as described in [Liu et al., 2019]. Consider two types of imbalance [Cui et al., 2019, Buda et al.,
2018], Cao et al. [2019] built CIFAR-10-LT (ρ = 10) and CIFAR-100-LT (ρ = 100), where ρ =
maxi{ni}/mini{ni} represents the imbalance ratio, defined as the ratio between the sample sizes of
the most frequent and least frequent class. Due to varying word frequencies, machine translation, or
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more generally, text generating, can inherently be considered as long-tailed classification tasks. We
choose the WMT20174 and IWSLT20145 datasets for the experiments.

Figure 5: ImageNet-LT.

Settings For visual classification tasks, we use Parameter-Efficient Long-Tailed (PEL) Recognition
[Shi et al., 2023], which primarily leverages information from a text encoder to adjust classification
probabilities. The text encoder in PEL is derived from the pre-trained CLIP model, and the backbone
is a Vision Transformer (ViT-Base) [Dosovitskiy et al., 2021] pre-trained in ImageNet-21K. We
freeze the backbone and train the branch model of Parameter Efficient Fine-Tuning (PEFT) [Jia
et al., 2022, Hu et al., 2022, Houlsby et al., 2019]. We simply replaced the Average aggregation of
individual losses in the Logit Adjust (LA) [Menon et al., 2021] loss with ATk or STk. For k, we set
it at 0.9 × batch size, and δ = 0.01. Then we report the accuracy of the balanced test sets. Visual
classification experiments can be implemented on a single L20 GPU, with varying durations ranging
from 20 to 200 minutes.

For translation tasks, we use the training workflows provided by OpenNMT6 [Klein et al., 2018]
and FAIR-Seq7 [Ott et al., 2019], which are very easy to reproduce. Models are essentially different
sizes of Transformers (see the footnotes). In the training process of language models, the actual
batch size, calculated as the sequence length multiplied by the number of sequences, is often
dynamic. Consequently, we set k/batch size = 0.96. We simply replaced the Average aggregation
of individual losses in the Cross Entropy (CE) loss with ATk or STk. We calculate the bilingual
evaluation understudy (BLEU) scores for the models. The BLEU for IWSLT2014-trained models
are derived from their test set, while for the WMT2017-trained models, we evaluate their BLEU on
the Newstest2016 test set. Training these Transformer-based models would take about 10 hours on a
single RTX 4090.

Overall Results STk Loss, as an aggregating trick for individual losses, is a scalable technique that
improves accuracy on long-tailed benchmarks. The models trained by STk Loss surpass SOTA on
the CIFAR-100-LT and Places-LT leaderboards.

4https://www.statmt.org/wmt17/
5https://workshop2014.iwslt.org/
6https://github.com/OpenNMT/OpenNMT-py/blob/master/docs/source/examples/wmt17/Translation.md
7https://fairseq.readthedocs.io/en/latest/_modules/fairseq/models/transformer/transformer_legacy.html
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CIFAR-100-LT ImageNet-LT Place-LT IWSLT2014 WMT2017

Average 89.1∗ 78.3 52.2∗ 35.27 35.21
ATk 89.3 78.1 52.3 35.45 35.05
STk 89.889.889.8 79.179.179.1 53.753.753.7 35.8035.8035.80 35.4235.4235.42

Table 5: Results on large long-tailed datasets are presented, where the first three columns indicate
accuracy, and the last two columns show the BLEU scores. Values marked with an “*” represent the
state-of-the-art (SOTA) on the leaderboard.

5.3 Regression Tasks

For descriptions of the four regression datasets, see Table 9. In regression tasks, the individual loss is
generally the distance (ℓ1 or ℓ2 distance) between the predicted value and the ground truth. Next, we
present the specific settings of the experiment. For the Housing, Abalone, and Cpusmall datasets, we
normalize the output to between [0, 1]; for the Sinc dataset, we first randomly sample 1000 points
(xi, yi) from the function, where xi ∈ [−10, 10], then we use the Radial Basis Function (RBF) kernel
to map xi into the kernel space. We select 10 RBF kernels, resulting in a 10-dimensional input
x = [k(x, c1), ..., k(x, c10)], where k(x, cj) = exp

(
−(x− cj)

2
)
. Furthermore, we add Gaussian

noise N (0, 0.22) to the target output y.

Datasets
Square Individual Loss Absolute Individual Loss

Average MATk STk (Ours) Average MATk STk (Ours)

Sinc 0.1603±0.0065 0.1591±0.0068 0.1446±0.00700.1446±0.00700.1446±0.0070 0.1686±0.0064 0.1560±0.0067 0.1457±0.00430.1457±0.00430.1457±0.0043
Housing 0.0896±0.0083 0.0816±0.0100 0.0810±0.00960.0810±0.00960.0810±0.0096 0.0781±0.0099 0.0670±0.0083 0.0626±0.00890.0626±0.00890.0626±0.0089
Abalone 0.0739±0.0018 0.0739±0.0018 0.0523±0.00140.0523±0.00140.0523±0.0014 0.0740±0.0018 0.0733±0.0018 0.0517±0.00210.0517±0.00210.0517±0.0021
Cpusmall 0.0613±0.0012 0.0313±0.0005 0.0296±0.00050.0296±0.00050.0296±0.0005 0.0613±0.0012 0.0313±0.0005 0.0244±0.00060.0244±0.00060.0244±0.0006

Table 6: Comparison of Average RMSE and Standard Deviation for Different Aggregate Losses
Combined with Square and Absolute Loss.

For individual losses, we choose the absolute value loss (ℓ1) and the squared loss (ℓ2). The prediction
model is the same as above, a two-layer MLP with 10 nodes in the hidden layer, activated by the
ReLU function between the two fully connected layers. As in binary classification experiments, we
randomly divide the dataset into training, validation, and test sets, with hyperparameters chosen based
on the performance in the validation set, repeated 50 times, and statistics on the test set are reported.

Tables 6 show the average RMSE and standard deviation of 50 experiments in regression datasets
with different aggregate losses combined with absolute individual loss and squared individual loss
(given the experience of the previous experiment, we no longer compare with Maximum Loss here),
and STk shows further performance improvement after smoothing.

6 Conclusion and Limitation

The proposed STk Module can effectively solve the Top-k problem within neural networks, with no
additional GPU memory or ranking time. Due to its fully differentiable nature, the training process
are stable. By applying STk Module to the Average Top-k Loss, we achieve significant improvements
across numerous benchmarks.

The limitation of this study is that we have not yet evaluated the STk Module for additional application
scenarios. The effectiveness of the STk Module is only demonstrated in smoothing ATk loss. We
hope that future research will further explore the potential utility of the STk Module.
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A Appendix: Proposition Proof

A.1 Uniform Convergence

[Proposition 1][Proposition 1][Proposition 1] We have that SReLU uniformly converges to ReLU as δ → 0+, that is,
limδ→0+ supx |SReLUδ(x)− [x]+| = 0.

Proof.Proof.Proof.

ReLU(x) = [x]+ =
1

2
(x+ |x|);

SReLU(x) =
1

2

[
x+ δ

(√
x2

δ2
+ 1− 1

)]
.

Note that D(x) = 2(ReLU(x)− SReLU(x)) = |x| − δ

(√
x2

δ2 + 1− 1

)
, we have

D(x) =
√
x2 −

√
x2 + δ2 + δ

= δ − δ2√
x2 +

√
x2 + δ2

= δ

(
1− 1√

x2

δ2 +
√

x2

δ2 + 1

)
.

For any x and δ, the form 0 < 1− 1√
x2

δ2
+
√

x2

δ2
+1

< 1, therefore, for any ϵ > 0, if δ < ϵ, then ∀x we

shall have D(x) < ϵ.

A.2 Decision Boundary

[Proposition 2][Proposition 2][Proposition 2] For two normal populations with known (denote as Σ) and equal covariance matrices,
and means µ1 and µ2, the LR model f(x) = sigmoid(ω⊤x+ b) has a theoretical decision boundary:

ω∗ = (µ1 − µ0)
⊤Σ−1;

b∗ =
1

2

[
µ⊤

0 Σ
−1µ0 + µ⊤

1 Σ
−1µ1

]
+ ln

[
Pr(Y = 1)

Pr(Y = 0)

]
.

Proof.Proof.Proof. Usually, we estimate the parameters ω and b by maximizing the likelihood function

1

n

n∑
i=1

ln[Pr(yi|xi)].

This is to estimate parameters in the “most data-fitting manner” when the distribution is unknown.
Now we know that two classes are normally distributed, we even know their mean and covariance
matrix.

In Logistic Regression

Pr(Y = 1|x) = 1

1 + e−(ω⊤x+b)
;

Pr(Y = 0|x) = e−ω⊤x+b

1 + e−(ω⊤x+b)
.

So we have

ln

[
Pr(Y = 1|x)
Pr(Y = 0|x)

]
= ω⊤x+ b. (9)
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And by Bayes’ theorem, we can derive

ln

[
Pr(Y = 1|x)
Pr(Y = 0|x)

]
= ln

[
Pr(x|Y = 1)Pr(Y = 1)

Pr(x|Y = 0)Pr(Y = 0)

]
.

Here, since we inherently know the data is normally distributed, we have

ln

[
Pr(Y = 1|x)
Pr(Y = 0|x)

]
= (µ1 − µ0)

⊤Σ−1x+
1

2

[
µ⊤

0 Σ
−1µ0 + µ⊤

1 Σ
−1µ1

]
+ ln

[
Pr(Y = 1)

Pr(Y = 0)

]
.

(10)
Then, comparing Equation (10) with Equation (9), we’ll have the answer.

A.3 More Experiments

We conduct an ablation study on "how STk complements other long-tailed learning algorithms." The
backbone here is a Vision Transformer (ViT) pre-trained by MAE / CLIP [He et al., 2022, Radford
et al., 2021]. "CS" represents cost-sensitive learning, and “PEL” refers to the method provided by
[Shi et al., 2023]. The batch size was set to 2048 and the models were trained in 30,000 steps.

Pretrained By CS PEL STk ImageNet-LT CIFAR-100-LT

MAE – – – 65.701 78.572
MAE ✓ – – 69.884 82.135
MAE ✓ – ✓ 70.140 83.048
CLIP – ✓ – 78.296 89.103
CLIP – ✓ ✓ 79.148 89.833

Table 7: Ablation Study on Long-Tailed Learning Algorithms.

The smoothing coefficient δ, 0.01, is a grid search determined value for all datasets in Section 5.1
(see page 7) and was adopted in all other experiments. We conducted an ablation study on the five
real-world datasets with all other settings remaining unchanged, except for δ.

δ CIFAR-100-LT ImageNet-LT Place-LT IWSLT2014 WMT2017

0.1 88.78 76.11 51.06 33.12 32.07
0.05 89.44 78.96 53.80 34.82 35.28
0.01 89.83 79.09 53.69 35.80 35.42
0.005 89.80 79.16 53.75 35.67 35.25

Table 8: Sensitive Analysis of the Smoothing Coefficient δ.

A.4 Benchmarks Detailed Information

Regression Datasets Binary Classification Datasets

Sinc Housing Abalone Cpusmall Appendicitis Australian German Phoneme Spambase Titanic Wisconsin

n 1000 506 4177 8192 106 690 1000 5404 4601 2201 683
d 10 13 8 12 7 14 24 5 57 3 9
c – – – – 2 2 2 2 2 2 2

Table 9: Statistics of Benchmarks.

In Table 9, we provide the statistical information for two benchmark sets discussed in Section 5,
where c, n, d are the number of classes, samples and features, respectively. The left part provides
the information of four regression datasets in Section 5.3. The “Sinc” dataset is a synthetic dataset,
sampled from the sinc function y = sin(x)/x. The right part provides the information of seven binary
classification datasets in Section 5.1.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and/or introduction clearly state the claims made.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations can be found in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The proof can be found in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Every experiment can be easily reproduced, and the code will be available
soon.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Main results can be reproduced by supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper has specified all the training and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the Std of the results, where the proposed method exhibits the
lowest Std and surpasses other methods in terms of mean performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resource requirements of experiments on large real-world
datasets can be found in 5.2, while the remaining experiments can be produced on CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Sure about that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We ensure that the creators or original owners of assets used in the paper are
properly credited, and the license and terms of use are explicitly mentioned and properly
respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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