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Abstract
Modern Hopfield networks have enjoyed recent
interest due to their connection to attention in
transformers. Our paper provides a unified frame-
work for sparse Hopfield networks by establishing
a link with Fenchel-Young losses. The result is a
new family of Hopfield-Fenchel-Young energies
whose update rules are end-to-end differentiable
sparse transformations. We reveal a connection
between loss margins, sparsity, and exact memory
retrieval. We further extend this framework to
structured Hopfield networks via the SparseMAP
transformation, which can retrieve pattern associ-
ations instead of a single pattern. Experiments on
multiple instance learning and text rationalization
demonstrate the usefulness of our approach.

1. Introduction
Hopfield networks are a kind of biologically-plausible neu-
ral network with associative memory capabilities (Hopfield,
1982). Their attractor dynamics makes them suitable for
modeling the retrieval of episodic memories in humans and
animals (Tyulmankov et al., 2021; Whittington et al., 2021).
The limited storage capacity of classical Hopfield networks
was recently overcome through new energy functions and
continuous state patterns (Krotov & Hopfield, 2016; Demir-
cigil et al., 2017; Ramsauer et al., 2021), leading to expo-
nential storage capacities and sparking renewed interest in
“modern” Hopfield networks. In particular, Ramsauer et al.
(2021) revealed striking connections to transformer atten-
tion, but their model is incapable of exact retrieval and may
require a low temperature to avoid metastable states (states
which mix multiple input patterns).

In this paper, we bridge this gap by making a connection
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between Hopfield energies and Fenchel-Young losses (Blon-
del et al., 2020). We extend the energy functions of Ram-
sauer et al. (2021) and Hu et al. (2023) to a wider family
induced by generalized entropies. The minimization of
these energy functions leads to sparse update rules which
include as particular cases α-entmax (Peters et al., 2019),
α-normmax (Blondel et al., 2020), and SparseMAP (Nicu-
lae et al., 2018), where a structural constraint ensures the
retrieval of k patterns. Unlike Ramsauer et al. (2021)’s
Hopfield layers, our update rules pave the way for exact
retrieval, leading to the emergence of sparse association
among patterns while ensuring end-to-end differentiability.

This endeavour aligns with the strong neurobiological moti-
vation to seek new Hopfield energies capable of sparse and
structured retrieval. Indeed, sparse neural activity patterns
forming structured representations underpin core principles
of cortical computation (Simoncelli & Olshausen, 2001;
Tse et al., 2007; Palm, 2013). With respect to memory for-
mation circuits, the sparse firing of neurons in the dentate
gyrus (DG), a distinguished region within the hippocampal
network, underpins its proposed role in pattern separation
during memory storage (Yassa & Stark, 2011; Severa et al.,
2017). Evidence suggests that such sparsified activity aids in
minimizing interference, however an integrative theoretical
account linking sparse coding and attractor network func-
tionality to clarify these empirical observations is lacking
(Leutgeb et al., 2007; Neunuebel & Knierim, 2014). Our
main contributions are:

• We introduce Hopfield-Fenchel-Young energy functions
as a generalization of modern Hopfield networks (§3.1).

• We leverage properties of Fenchel-Young losses which
relate sparsity and margins to obtain new theoretical
results for exact memory retrieval, proving exponential
storage capacity in a stricter sense than prior work (§3.2).

• We propose new structured Hopfield networks via the
SparseMAP transformation, which return pattern associa-
tions instead of single patterns. We show that SparseMAP
has a structured margin and provide sufficient conditions
for exact retrieval of pattern associations (§4).

Experiments on synthetic and real-world tasks (multiple in-
stance learning and text rationalization) showcase the useful-
ness of our proposed models using various kinds of sparse
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Figure 1: Overview of the Hopfield networks proposed in this paper: sparse transformations (entmax and normmax) aim to
retrieve the closest pattern to the query, and they have exact retrieval guarantees. Structured variants find pattern associations.
The k-subsets transformation returns a mixture of the top-k patterns, and sequential k-subsets favors contiguous retrieval.

and structured transformations (§5). An overview of the
utility of our methods can be seen in Fig. 1.1

Notation. We denote by△N the (N − 1)th-dimensional
probability simplex, △N := {p ∈ RN : p ≥ 0, 1⊤p =
1}. The convex hull of a set Y ⊆ RM is conv(Y) :=

{
∑N

i=1 piyi : p ∈ △N , y1, ...,yN ∈ Y, N ∈ N}. We
have △N = conv({e1, ..., eN}), where ei ∈ RN is the
ith basis (one-hot) vector. Given a convex function Ω :
RN → R̄, where R̄ = R ∪ {+∞}, we denote its domain
by dom(Ω) := {y ∈ RN : Ω(y) < +∞} and its Fenchel
conjugate by Ω∗(θ) = supy∈RN y⊤θ − Ω(y). We denote
by IC the indicator function of a convex set C, defined as
IC(y) = 0 if y ∈ C, and IC(y) = +∞ otherwise.

2. Background
2.1. Hopfield Networks

Let X ∈ RN×D be a matrix whose rows hold a set of
examples x1, ...,xN ∈ RD (“memory patterns”) and let
q(0) ∈ RD be a query vector (or “state pattern”). Hopfield
networks iteratively update q(t) 7→ q(t+1) for t ∈ {0, 1, ...}
according to a certain rule, eventually converging to a fixed
point attractor state q∗ which either corresponds to one of

1Our code is available on https://github.com/
deep-spin/SSHN

the memorized examples, or to a mixture thereof. This
update rule correspond to the minimization of an energy
function, which for classic Hopfield networks (Hopfield,
1982) takes the form E(q) = − 1

2q
⊤Wq, with q ∈ {±1}D

and W = X⊤X ∈ RD×D, leading to the update rule
q(t+1) = sign(Wq(t)). A limitation of this classical net-
work is that it has only N = O(D) memory storage capac-
ity, above which patterns start to interfere (Amit et al., 1985;
McEliece et al., 1987).

Recent work sidesteps this limitation through alternative en-
ergy functions (Krotov & Hopfield, 2016; Demircigil et al.,
2017), paving the way for a class of models known as “mod-
ern Hopfield networks” with superlinear (often exponential)
memory capacity. In Ramsauer et al. (2021), q ∈ RD is
continuous and the following energy is used:

E(q) = − 1

β
log

N∑
i=1

exp(βx⊤
i q) +

1

2
∥q∥2 + const. (1)

Ramsauer et al. (2021) revealed an interesting relation be-
tween the updates in this modern Hopfield network and
the attention layers in transformers. Namely, the minimiza-
tion of the energy (1) using the concave-convex procedure
(CCCP; Yuille & Rangarajan 2003) leads to the update rule:

q(t+1) = X⊤softmax(βXq(t)). (2)

When β = 1√
D

, each update matches the computation per-
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formed in the attention layer of a transformer with a single
attention head and with identity projection matrices. This
triggered interest in developing variants of Hopfield layers
which can be used as drop-in replacements for multi-head
attention layers (Hoover et al., 2023).

While Ramsauer et al. (2021) have derived useful theoretical
properties of these networks (including their exponential
storage capacity under a relaxed notion of retrieval), the
use of softmax in (2) prevents exact convergence and may
lead to undesirable metastable states. Recently (and closely
related to our work), Hu et al. (2023) introduced sparse Hop-
field networks and proved favorable retrieval properties, but
still under an approximate sense, where attractors are close
but distinct from the stored patterns. We overcome these
drawbacks in our paper, where we provide a unified treat-
ment of sparse and structured Hopfield networks along with
theoretical analysis showing that exact retrieval is possible
without sacrificing exponential storage capacity.

2.2. Sparse Transformations and Fenchel-Young Losses

Our construction and results flow from the properties of
Fenchel-Young losses, which we next review.

Given a strictly convex function Ω : RN → R̄ with domain
dom(Ω), the Ω-regularized argmax transformation (Niculae
& Blondel, 2017), ŷΩ : RN → dom(Ω), is:

ŷΩ(θ) := ∇Ω∗(θ) = argmax
y∈dom(Ω)

θ⊤y − Ω(y). (3)

Let us assume for now that dom(Ω) = △N (the proba-
bility simplex). One instance of (3) is the softmax trans-
formation, obtained when the regularizer is the Shannon
negentropy, Ω(y) =

∑N
i=1 yi log yi + I△N

(y). Another
instance is the sparsemax transformation, obtained when
Ω(y) = 1

2∥y∥
2 + I△N

(y) (Martins & Astudillo, 2016).
The sparsemax transformation is the Euclidean projection
onto the probability simplex. Softmax and sparsemax are
both particular cases of α-entmax transformations (Peters
et al., 2019), parametrized by a scalar α ≥ 0 (called the en-
tropic index), which corresponds to the following choice of
regularizer, called the Tsallis α-negentropy (Tsallis, 1988):

ΩT
α(y) =

−1 + ∥y∥αα
α(α− 1)

+ I△N
(y). (4)

When α→ 1, the Tsallis α-negentropy ΩT
α becomes Shan-

non’s negentropy, leading to the softmax transformation,
and when α = 2, it becomes the ℓ2-norm (up to a constant)
and we recover the sparsemax. Another example is the
norm α-negentropy (Blondel et al., 2020, §4.3),

ΩN
α (y) = −1 + ∥y∥α + I△N

(y), (5)

which, when α → +∞, is called the Berger-Parker domi-
nance index (May, 1975). We call the resulting transforma-
tion α-normmax. While the Tsallis and norm negentropies

Figure 2: Sparse and structured transformations used in this
paper and their regularization path. In each plot, we show
ŷΩ(βθ) = ŷβ−1Ω(θ) as a function of the temperature β−1

where θ = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425]⊤.
Additional examples can be found in App. E.1.

have similar expressions and the resulting transformations
both tend to be sparse, they have important differences, as
suggested in Fig. 2: normmax favors distributions closer to
uniform over the selected support.

The Ω-Fenchel-Young loss (Blondel et al., 2020) is

LΩ(θ,y) := Ω(y) + Ω∗(θ)− θ⊤y. (6)

When Ω is Shannon’s negentropy, we have Ω∗(θ) =

log
∑N

i=1 exp(θi), and LΩ is the cross-entropy loss, up
to a constant. Intuitively, Fenchel-Young losses quantify
how “compatible” a score vector θ ∈ RN (e.g., logits) is to
a desired target y ∈ dom(Ω) (e.g., a probability vector).

Fenchel-Young losses have relevant properties (Blondel
et al., 2020, Prop. 2): (i) they are non-negative, LΩ(θ,y) ≥
0, with equality iff y = ŷΩ(θ); (ii) they are convex on θ
and their gradient is ∇θLΩ(θ,y) = −y + ŷΩ(θ). But,
most importantly, they have well-studied margin properties,
which, as we shall see, will play a pivotal role in this work.

Definition 1 (Margin). A loss function L(θ;y) has a
margin if there exists a finite m ≥ 0 such that

∀i ∈ [N ], L(θ, ei) = 0⇐⇒ θi −max
j ̸=i

θj ≥ m. (7)

The smallest such m is called the margin of L. If LΩ is a
Fenchel-Young loss, (7) is equivalent to ŷΩ(θ) = ei.

A famous example of a loss with a margin of 1 is the hinge
loss of support vector machines. On the other hand, the
cross-entropy loss does not have a margin. Blondel et al.
(2020, Prop. 7) have shown that Tsallis negentropies ΩT

α

with α > 1 have a margin of m = (α − 1)−1, and that
norm-entropies ΩN

α with α > 1 have a margin m = 1,
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independently of α. We will use these facts in the sequel.

3. Sparse Hopfield-Fenchel-Young Energies
We now use Fenchel-Young losses (6) to define a new class
of energy functions for modern Hopfield networks.

3.1. Definition and update rule

We start by assuming that the regularizer Ω has domain
dom(Ω) = △N and that it is a generalized negentropy,
i.e., null when y is a one-hot vector, strictly convex, and
permutation-invariant (see Appendix A for details). These
conditions imply that Ω ≤ 0 and that Ω(y) is minimized
when y = 1/N is the uniform distribution (Blondel et al.,
2020, Prop. 4). Tsallis negentropies (4) for α ≥ 1 and norm
negentropies (5) for α > 1 both satisfy these properties.

We define the Hopfield-Fenchel-Young (HFY) energy as

E(q) = −β−1LΩ(βXq;1/N)︸ ︷︷ ︸
Econcave(q)

+
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)︸ ︷︷ ︸

Econvex(q)

, (8)

where µX := X⊤1/N ∈ RD is the empirical mean of
the patterns, and M := maxi ∥xi∥. This energy extends
that of (1), which is recovered when Ω is Shannon’s negen-
tropy. The concavity of Econcave holds from the convexity
of Fenchel-Young losses on its first argument and from the
fact that composition of a convex function with an affine
map is convex. Econvex is convex because it is quadratic.2

These two terms compete when minimizing the energy (8):

• Minimizing Econcave is equivalent to maximizing
LΩ(βXq;1/N), which pushes q to be as far as possi-
ble from a uniform average and closer to a single pattern.

• Minimizing Econvex serves as a proximity regularization,
encouraging the state pattern q to stay close to µX .

The next result, proved in App. D.1, establishes bounds and
derives the Hopfield update rule for energy (8), generalizing
Ramsauer et al. (2021, Lemma A.1, Theorem A.1).

Proposition 1 (Update rule of HFY energies). Let the
query q be in the convex hull of the rows of X , i.e.,
q = X⊤y for some y ∈ △N . Then, the energy (8) sat-
isfies 0 ≤ E(q) ≤ min

{
2M2, −β−1Ω(1/N) + 1

2M
2
}

.
Furthermore, minimizing (8) with the CCCP algorithm

2Up to constants, for this choice of Ω our convex-concave
decomposition is the same as Ramsauer et al. (2021).

(Yuille & Rangarajan, 2003) leads to the updates:

q(t+1) = X⊤ŷΩ(βXq(t)). (9)

In particular, when Ω = ΩT
α (the Tsallis α-negentropy (4)),

the update (9) corresponds to the adaptively sparse trans-
former of Correia et al. (2019). The α-entmax transforma-
tion can be computed in linear time for α ∈ {1, 1.5, 2} and
for other values of α an efficient bisection algorithm was
proposed by Peters et al. (2019). The case α = 2 (sparse-
max) corresponds to the sparse modern Hopfield network
recently proposed by Hu et al. (2023).

When Ω = ΩN
α (the norm α-negentropy (5)), we obtain the

α-normmax transformation. This transformation is harder to
compute since ΩN

α is not separable, but we derive in App. B
an efficient bisection algorithm which works for any α > 1.

3.2. Margins, sparsity, and exact retrieval

Prior work on modern Hopfield networks (Ramsauer et al.,
2021, Def. 1) defines pattern storage and retrieval in an
approximate sense: they assume a small neighbourhood
around each pattern xi containing an attractor x∗

i , such that
if the initial query q(0) is close enough, the Hopfield updates
will converge to x∗

i , leading to a retrieval error of ∥x∗
i −xi∥.

For this error to be small, a large β may be necessary.

We consider here a stronger definition of exact retrieval,
where the attractors coincide with the actual patterns (rather
than being nearby). Our main result is that zero retrieval
error is possible in HFY networks as long as the correspond-
ing Fenchel-Young loss has a margin (Def. 1). Given that
ŷΩ being a sparse transformation is a sufficient condition
for LΩ having a margin (Blondel et al., 2020, Prop. 6), this
is a general statement about sparse transformations.3

Definition 2 (Exact retrieval). A pattern xi is exactly
retrieved for query q(0) iff there is a finite number of steps
T such that iterating (9) leads to q(T ′) = xi ∀T ′ ≥ T .

The following result gives sufficient conditions for exact re-
trieval with T = 1 given that patterns are well separated and
that the query is sufficiently close to the retrieved pattern. It
establishes the exact autoassociative property of HFY net-
works: if all patterns are slightly perturbed, the Hopfield dy-
namics are able to recover the original patterns exactly. Fol-
lowing Ramsauer et al. (2021, Def. 2), we define the separa-
tion of pattern xi from data as ∆i = x⊤

i xi−maxj ̸=i x
⊤
i xj .

Proposition 2 (Exact retrieval in a single iteration). As-
sume LΩ has margin m, and let xi be a pattern outside
the convex hull of the other patterns. Then, xi is a station-

3At first sight, this might seem a surprising result, given that
both queries and patterns are continuous. The reason why exact
convergence is possible hinges crucially on sparsity.
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ary point of the energy (8) iff ∆i ≥ mβ−1. In addition, if
the initial query q(0) satisfies q(0)⊤(xi − xj) ≥ mβ−1

for all j ̸= i, then the update rule (9) converges to xi

exactly in one iteration. Moreover, if the patterns are
normalized, ∥xi∥ = M for all i, and well-separated
with ∆i ≥ mβ−1 + 2Mϵ, then any q(0) ϵ-close to xi

(∥q(0) − xi∥ ≤ ϵ) will converge to xi in one iteration.

The proof is in Appendix D.2. For the Tsallis negentropy
case Ω = ΩT

α with α > 1 (the sparse case), we have m =
(α−1)−1 (cf. Def. 1), leading to the condition ∆i ≥ 1

(α−1)β .
This result is stronger than that of Ramsauer et al. (2021)
for their energy (which is ours for α = 1), according to
which memory patterns are only ϵ-close to stationary points,
where a small ϵ = O(exp(−β)) requires a low temperature
(large β). It is also stronger than the retrieval error bound
recently derived by Hu et al. (2023, Theorem 2.2) for the
case α = 2, which has an additive term involving M and
therefore does not provide conditions for exact retrieval.

For the normmax negentropy case Ω = ΩN
α with α > 1, we

have m = 1, so the condition above becomes ∆i ≥ 1
β .

Given that exact retrieval is a stricter definition, one may
wonder whether requiring it sacrifices storage capacity. Re-
assuringly, the next result, inspired but stronger than Ram-
sauer et al. (2021, Theorem A.3), shows that HFY networks
with exact retrieval also have exponential storage capacity.

Proposition 3 (Storage capacity with exact retrieval). As-
sume patterns are placed equidistantly on the sphere of
radius M . The HFY network can store and exactly re-
trieve N = O((2/

√
3)D) patterns in one iteration under

a ϵ-perturbation as long as M2 > 2mβ−1 and

ϵ ≤ M

4
− m

2βM
. (10)

Assume patterns are randomly placed on the sphere with
uniform distribution. Then, with probability 1−p, the HFY
network can store and exactly retrieve N = O(√pζ D−1

2 )
patterns in one iteration under a ϵ-perturbation if

ϵ ≤ M

2

(
1− cos

1

ζ

)
− m

2βM
. (11)

The proof is in Appendix D.3.

4. Structured Hopfield Networks
In §3, we considered the case where y ∈ dom(Ω) = △N ,
the scenario studied by Ramsauer et al. (2021) and Hu et al.
(2023). We now take one step further and consider the more
general structured case, where y is a vector of “marginals”
associated to some given structured set. This structure can
reflect pattern associations that we might want to induce

when querying the Hopfield network with q(0). Possible
structures include k-subsets of memory patterns, potentially
leveraging sequential memory structure, tree structures,
matchings, etc. In these cases, the set of pattern associations
we can form is combinatorial, hence it can be considerably
larger than the number N of memory patterns.

4.1. Unary scores and structured constraints

We consider first a simpler scenario where there is a pre-
defined set of structures Y ⊆ {0, 1}N and N unary scores,
one for each memory pattern. We show in §4.2 how this
framework can be generalized for higher-order interactions
modeling soft interactions among patterns.

Let Y ⊆ {0, 1}N be a set of binary vectors indicating the un-
derlying set of structures, and let conv(Y) ⊆ [0, 1]N denote
its convex hull, called the marginal polytope associated to
the structured set Y (Wainwright et al., 2008).

Example 1 (k-subsets). We may be interested in retrieving
subsets of k patterns, e.g., to take into account a k-ary
relation among patterns or to perform top-k retrieval. In
this case, we define Y = {y ∈ {0, 1}N : 1⊤y = k},
where k ∈ [N ]. If k = 1, we get Y = {e1, ..., eN} and
conv(Y) = △N , recovering the scenario studied in §3.
For larger k, |Y| =

(
N
k

)
≫ N . With a simple rescaling,

the resulting marginal polytope is equivalent to the capped
probability simplex described by Blondel et al. (2020, §7.3).

Given unary scores θ ∈ RN , the structure with the largest
score is y∗ = argmaxy∈Y θ⊤y = argmaxy∈conv(Y) θ

⊤y,
where the last equality comes from the fact that conv(Y) is
a polytope, therefore the maximum is attained at a vertex.
As in (3), we consider a regularized prediction version of
this problem via a convex regularizer Ω : conv(Y)→ R:

ŷΩ(θ) := argmax
y∈conv(Y)

θ⊤y − Ω(y). (12)

By choosing Ω(y) = 1
2∥y∥

2 + Iconv(Y)(y), we obtain
SparseMAP, a structured version of sparsemax which can
be computed efficiently via an active set algorithm as long
as an argmax oracle is available (Niculae et al., 2018).

4.2. General case: factor graph, high order interactions

In general, we may want to consider soft interactions among
patterns, for example due to temporal dependencies, hierar-
chical structure, etc. These interactions can be expressed as
a bipartite factor graph (V, F ), where V = {1, ..., N} are
variable nodes (associated with the patterns) and F ⊆ 2V

are factor nodes representing the interactions (Kschischang
et al., 2001). A structure can be represented as a bit vec-
tor y = [yV ;yF ], where yV and yF indicate configu-
rations of variable and factor nodes, respectively. The
SparseMAP transformation has the same form (12) with
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Ω(y) = 1
2∥yV ∥2 + Iconv(Y)(y) (note that only the unary

variables are regularized). Full details are given in App. C.
Example 2 (sequential k-subsets). Consider the k-subset
problem of Example 1 but now with a sequential structure.
This can be represented as a pairwise factor graph (V, F )
where V = {1, ..., N} and F = {(i, i+ 1)}N−1

i=1 . The bud-
get constraint forces exactly k of the N variable nodes to
have the value 1. The set Y contains all bit vectors satis-
fying these constraints as well as consistency among the
variable and factor assignments. To promote consecutive
memory items to be both retrieved or neither retrieved, one
can define attractive Ising higher-order (pairwise) scores
θ(i,i+1), in addition to the unary scores. The MAP infer-
ence problem can be solved with dynamic programming in
runtime O(Nk), and the SparseMAP transformation can
be computed with the active set algorithm (Niculae et al.,
2018) by iteratively calling this MAP oracle.

4.3. Structured Fenchel-Young losses and margins

The notion of margin in Def. 1 can be extended to the struc-
tured case (Blondel et al., 2020, Def. 5):
Definition 3 (Structured margin). A loss L(θ;y) has a
structured margin if ∃0 ≤ m <∞ such that ∀y ∈ Y:

θ⊤y ≥ max
y′∈Y

(
θ⊤y′ +

m

2
∥y − y′∥2

)
⇒ L(θ;y) = 0.

The smallest such m is called the margin of L.

Note that this generalizes the notion of margin in Def. 1,
recovered when Y = {e1, ..., eN}. Note also that, since
we are assuming Y ⊆ {0, 1}L, the term ∥y − y′∥2 is a
Hamming distance, which counts how many bits need to be
flipped to transform y′ into y. A well-known example of
a loss with a structured separation margin is the structured
hinge loss (Taskar et al., 2003; Tsochantaridis et al., 2005).

We show below that the SparseMAP loss has a structured
margin (our result, proved in App. D.4, extends that of Blon-
del et al. (2020), who have shown this only for structures
without high order interactions):

Proposition 4. Let Y ⊆ {0, 1}L be contained in a sphere,
i.e., for some r > 0, ∥y∥ = r for all y ∈ Y . Then:

1. If there are no high order interactions, then the
SparseMAP loss has a structured margin m = 1.

2. If there are high order interactions and, for some rV
and rF with r2V + r2F = r2, we have ∥yV ∥ = rV
and ∥yF ∥ = rF for any y = [yV ;yF ] ∈ Y , then the
SparseMAP loss has a structured margin m ≤ 1.

The assumptions above are automatically satisfied with the
factor graph construction in §4.2, with r2V = |V |, r2F = |F |,
and r2 = |V | + |F |. For the k-subsets example, we have

r2 = k, and for the sequential k-subsets example, we have
r2V = N , r2F = N − 1, and r2 = 2N − 1.

4.4. Guarantees for retrieval of pattern associations

We now consider a structured HFY network using
SparseMAP. We obtain the following updates:

q(t+1) = X⊤SparseMAP(βXq(t)). (13)

In the structured case, we aim to retrieve not individual
patterns but pattern associations of the form X⊤y, where
y ∈ Y . Naturally, when Y = {e1, ..., eN}, we recover
the usual patterns, since xi = X⊤ei. We define the
separation of pattern association yi ∈ Y from data as
∆i = y⊤

i XX⊤yi−maxj ̸=i y
⊤
i XX⊤yj . The next propo-

sition, proved in App. D.5, states conditions for exact con-
vergence in a single iteration, generalizing Prop. 2.

Proposition 5 (Exact structured retrieval). Let Ω(y) be
the SparseMAP regularizer and assume the conditions of
Prop. 4 hold. Let yi ∈ Y be such that ∆i ≥ D2

i

2β , where
Di = max ∥yi − yj∥ ≤ 2r. Then, X⊤yi is a stationary
point of the Hopfield energy. In addition, if q(0) satisfies
q(0)⊤X⊤(yi − yj) ≥ D2

i

2β for all j ̸= i, then the update
rule (13) converges to the pattern association X⊤yi in
one iteration. Moreover, if

∆i ≥
D2

i

2β
+ ϵmin{σmax(X)Di,MD2

i },

where σmax(X) is the spectral norm of X and M =
maxk ∥xk∥, then any q(0) ϵ-close to X⊤yi will converge
to X⊤yi in one iteration.

Note that the bound above on ∆i includes as a particular
case the unstructured bound in Prop. 2 applied to sparsemax
(entmax with α = 2, which has margin m = 1/(α−1) = 1),
since for Y = △N we have r = 1 and Di =

√
2, which

leads to the condition ∆i ≥ β−1 + 2Mϵ.

For the particular case of the k-subsets problem (Example 1),
we have r =

√
k and Di =

√
2k, leading to the condition

∆i ≥ k
β + 2Mkϵ. This recovers sparsemax when k = 1.

For the sequential k-subsets problem in Example 2, we have
r = 2N − 1. Noting that any two distinct y and y′ differ in
at most 2k variable nodes, and since each variable node can
affect 6 bits (2 for yV and 4 for yF ), the Hamming distance
between y and y′ is at most 12k, therefore we have Di =√
12k, which leads to the condition ∆i ≥ 6k

β + 12Mkϵ.

5. Experiments
We now present experiments using synthetic and real-world
datasets to validate our theoretical findings and illustrate the
usefulness of sparse and structured Hopfield networks.
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1-entmax
q0
qt

xi

1.5-entmax 2-entmax 2-normmax 5-normmax

Figure 3: Left: contours of the energy function and optimization trajectory of the CCCP iteration (β = 1). Right: attraction
basins associated with each pattern. (White sections do not converge to a single pattern but to a metastable state; β = 10 (a
larger β is needed to allow for the 1-entmax to get ϵ-close to a single pattern); for α = 1 we allow a tolerance of ϵ = .01).
Additional plots for different β can be found in App. E.2.

5.1. Hopfield dynamics and basins of attraction

Fig. 3 shows optimization trajectories and basins of attrac-
tion for various queries and artificially generated pattern
configurations for the two families of sparse transforma-
tions, α-entmax and α-normmax. We use α ∈ {1, 1.5, 2}
for α-entmax and α ∈ {2, 5} for α-normmax (where we
apply the bisection algorithm described in App. B). As α in-
creases, α-entmax converges more often to a single pattern,
whereas α-normmax tends to converge towards an attractor
which is a uniform average of some patterns.

5.2. Metastable state distributions in MNIST

We next investigate how often our Hopfield networks con-
verge to metastable states, a crucial aspect for understand-
ing the network’s dynamics. To elucidate this, we examine
ŷΩ(βXq(t)) for the MNIST dataset, probing the number of
nonzeros of these vectors. We set a threshold > 0.01 for the
softmax method (1-entmax). For the sparse transformations
we do not need a threshold, since they have exact retrieval.

Results in Tab. 1 suggest that α-entmax is capable of re-
trieving single patterns for higher values of α. Despite
α-normmax’s ability to induce sparsity, we observe that it
tends to stabilize in small but persistent metastable states
as α is increased, whereas SparseMAP with k-subsets is
capable of retrieving associations of k patterns, as expected.

5.3. Multiple instance learning

In multiple instance learning (MIL), instances are grouped
into “bags” and a bag is labeled as positive if it contains at
least one instance from a given class. We also consider a ex-
tended variant, denoted K-MIL, where bags are considered
positive if they contain K or more positive instances.

Ramsauer et al. (2021) tackle MIL via a Hopfield pool-
ing layer, where the query q is learned and the keys X
are instance embeddings. We experiment with sparse Hop-
field pooling layers using our proposed α-entmax and α-
normmax transformations (§3), as well as structured Hop-
field pooling layers using SparseMAP with k-subsets (§4),
varying α and k in each case. Note that 1-entmax recov-
ers Ramsauer et al. (2021) and 2-entmax recovers Hu et al.
(2023). We run these models for K-MIL problems in the
MNIST dataset (choosing ‘9’ as target) and in three MIL
benchmarks: Elephant, Fox, and Tiger (Ilse et al., 2018).
Further details can be found in App. F.1 and F.2.

Tab. 2 shows the results. We observe that for MNIST,
K = 1, 1-entmax surprisingly outperforms the remaining
methods. Normmax shows consistent results across datasets
achieving near optimal performance, arguably due to its abil-
ity to adapt to near-uniform metastable states of varying size.
We also observe that, for K > 1, the k-subsets approach
achieves top performance when k = K, as expected. We
also see that, in the MIL benchmarks, SparseMAP pooling
surpasses sparse pooling variants for 2 out of 3 datasets.

5.4. Structured Rationalizers

We experiment with rationalizer models in sentiment predic-
tion tasks, where the inputs are sentences or documents in
natural language and the rationales are text highlights (see
Fig. 4). These models, sometimes referred as select-predict
or explain-predict models (Jacovi & Goldberg, 2021; Zhang
et al., 2021), consist of a rationale generator and a predictor.
The generator processes the input text and extracts the ratio-
nale as a subset of words to be highlighted, and the predictor
classifies the input based solely on the extracted rationale,
which generally involves concealing non-rationale words
through the application of a binary mask. Rationalizers
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Table 1: Distribution of metastable state (in %) in MNIST. The training set is memorized and the test set is used as queries.

Metastable β = 0.1 β = 1
State α-entmax α-normmax k-subsets α-entmax α-normmax k-subsets
Size 1 1.5 2 2 5 2 4 8 1 1.5 2 2 5 2 4 8

1 3.5 69.2 88.1 81.4 51.4 0.0 0.0 0.0 97.8 99.9 100.0 100.0 99.8 0.0 0.0 0.0
2 2.1 8.6 5.2 6.7 31.4 87.3 0.0 0.0 0.9 0.1 0.0 0.0 0.2 99.9 0.0 0.0
3 1.6 3.9 2.6 1.9 7.0 6.1 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.0 0.0
4 1.2 2.3 1.6 1.0 2.1 2.5 80.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 99.3 0.0
5 1.2 1.6 1.1 0.9 1.5 2.0 11.9 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.7 0.0
6 0.9 0.9 0.8 0.5 1.5 1.1 4.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
7 1.1 0.6 0.4 0.4 1.3 0.6 2.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.8 0.6 0.1 0.8 1.0 0.2 1.0 60.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 95.0
9 1.0 0.3 0.0 0.5 0.8 0.1 0.4 26.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 4.7

10 1.1 0.1 0.0 0.5 0.6 0.0 0.1 9.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2
10+ 85.5 11.9 0.1 5.4 1.4 0.1 0.0 4.8 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Table 2: Results for MIL. We show accuracies for MNIST and ROC AUC for MIL benchmarks, averaged across 5 runs.

MNIST MIL benchmarks

Methods K=1 K=2 K=3 K=5 Fox Tiger Elephant

1-entmax (softmax) 98.4± 0.2 94.6± 0.5 91.1± 0.5 89.0± 0.3 66.4± 2.0 87.1± 1.6 92.6± 0.6
1.5-entmax 97.6± 0.8 96.0± 0.9 90.4± 1.1 92.4± 1.4 66.3± 2.0 87.3± 1.5 92.4± 1.0
2.0-entmax (sparsemax) 97.9± 0.2 96.7± 0.5 92.9± 0.9 91.6± 1.0 66.1± 0.6 87.7± 1.4 91.8± 0.6
2.0-normmax 97.9± 0.3 96.6± 0.6 93.9± 0.7 92.4± 0.7 66.1± 2.5 86.4± 0.8 92.4± 0.7
5.0-normmax 98.2± 0.5 97.2± 0.3 95.8± 0.4 93.2± 0.5 66.4± 2.3 85.5± 0.6 93.0± 0.7
SparseMAP, k = 2 97.9± 0.3 97.7± 0.3 95.1± 0.5 92.6± 1.1 66.8± 2.7 85.3± 0.5 93.2± 0.7
SparseMAP, k = 3 98.0± 0.6 96.1± 1.0 96.5± 0.5 92.2± 1.2 67.4± 2.0 86.1± 0.8 92.6± 1.7
SparseMAP, k = 5 98.2± 0.4 96.2± 1.4 95.1± 1.1 95.1± 1.5 67.0± 2.0 86.3± 0.8 91.2± 1.0

are usually trained end-to-end, and the discreteness of the
latent rationales is either handled with stochastic methods
via score function estimators or the reparametrization trick
(Lei et al., 2016; Bastings et al., 2019), or with deterministic
methods via structured continuous relaxations (Guerreiro &
Martins, 2021). In either case, the model imposes sparsity
and contiguity penalties to ensure rationales are short and
tend to extract adjacent words. Our model architecture is
adapted from SPECTRA (Guerreiro & Martins, 2021), but
the combination of the generator and predictor departs from
prior approaches (Lei et al., 2016; Bastings et al., 2019;
Guerreiro & Martins, 2021) in which the predictor does not
“mask” the input tokens; instead, it takes as input the pooled
vector that results from the Hopfield pooling layer (either a
sequential or non-sequential SparseMAP k-subsets layer).
By integrating this Hopfield pooling layer into the predictor,
we transform the sequence of word embeddings into a single
vector from which the prediction is made. The rationale is
formed by the pattern associations (word tokens) extracted
by the Hopfield layer.

Tab. 3 shows the results in the downstream task (classifi-
cation for SST, AgNews, IMDB; regression for BeerAdvo-
cate) as well as the F1 overlap with human rationales for the
BeerAdvocate dataset (McAuley et al., 2012). Compared to
strong baselines (Bastings et al., 2019; Guerreiro & Martins,

2021), our proposed methods achieve equal or slightly supe-
rior performance for all datasets. Moreover, our sequential
k-subsets model outperforms the baselines in terms of over-
lap with human rationales. This is explained by the fact that
human rationales tend to contain adjacent words, which is
encouraged by our sequential model. Additional details and
results with other baselines are shown in App. F.3.

6. Related Work
Recent research on modern Hopfield networks and dense
associative memories includes (Krotov & Hopfield, 2016;
Demircigil et al., 2017; Ramsauer et al., 2021; Millidge
et al., 2022; Hoover et al., 2023, inter alia). The closest to
our work is Hu et al. (2023), who proposed sparse Hopfield
networks (equivalent to our 2-entmax, i.e., sparsemax) and
derived retrieval error bounds tighter than the dense analog.
Concurrently to our work, Wu et al. (2024) further proposed
a “generalized sparse Hopfield model”, which corresponds
to α-entmax with learnable α, and applied it successfully
to time series prediction problems. However, neither Hu
et al. (2023) or Wu et al. (2024) seem to have realized the
possibility of exact retrieval enabled by sparse transforma-
tions. Our paper fills this gap by providing a unified frame-
work for sparse Hopfield networks with stronger theoretical
guarantees for retrieval and coverage (cf. Prop. 2–3). Our
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Table 3: Text rationalization results. We report mean and min/max F1 scores across five random seeds on test sets for all
datasets but Beer, where we report MSE. HardKuma and SPECTRA results are taken from (Guerreiro & Martins, 2021). We
also report human rationale overlap (HRO) as F1 score. We bold the best-performing system(s).

SST↑ AgNews↑ IMDB↑ Beer (MSE) ↓ Beer (HRO) ↑
HardKuma (Bastings et al., 2019) .80 (.80/.81) .90 (.87/.88) .87 (.90/.91) .019 (.016/.020) .37 (.00/.90)
SPECTRA (Guerreiro & Martins, 2021) .80 (.79/.81) .92 (.92/.93) .90 (.89/.90) .017 (.016/.019) .61 (.56/.68)

SparseMAP k-subsets (ours) .81 (.81/.82) .93 (.92/.93) .90 (.90/.90) .017 (.017/.018) .42 (.29/.62)
SparseMAP seq. k-subsets (ours) .81 (.80/.83) .93 (.93/.93) .90 (.90/.90) .020 (.018/.021) .63 (.49/.70)

Sequential k-subsets k-subsets
a darkish golden pour from tap 
with a small white lacing 
around glass . you can't miss 
the sweet smell . the word 
snappy fits this beer well . it is a 
winter warmer but not from 
the usual alcohol burn . the 
alcohol is almost completely 
hidden . the warm comes from 
the mix of cinnamon , hops , 
and most of all spiciness . the 
alcohol must be there because i 
sure did feel it after finishing 
the glass .

a darkish golden pour from tap 
with a small white lacing 
around glass . you can't miss 
the sweet smell . the word 
snappy fits this beer well . it is a 
winter warmer but not from 
the usual alcohol burn . the 
alcohol is almost completely 
hidden . the warm comes from 
the mix of cinnamon , hops , 
and most of all spiciness . the 
alcohol must be there because i 
sure did feel it after finishing 
the glass .

Figure 4: Example of human rationale overlap for the aspect
“appearance”. The yellow highlight indicates the model’s
rationale, while italicized and bold font represents the hu-
man rationale. Red font identifies mismatches with human
annotations. SparseMAP with sequential k-subsets prefers
more contiguous rationales, which better match humans.
Additional examples are shown in App. F.3.

framework generalizes their constructions and widens the
scope to new families, such as α-normmax, for which we
provide an effective bisection algorithm (Alg. 1 in App. B).

The link with Fenchel-Young losses (Blondel et al., 2020) is
a key dimension of our work. Many results derived therein,
such as the margin conditions, were found to have direct
application to sparse Hopfield networks. In our paper, we
extend some of their results, such as the structured margin
of SparseMAP (Prop. 4), key to establish exact retrieval of
pattern associations (Prop. 5). Our k-subsets example relates
to the top-k retrieval model of Davydov et al. (2023): their
model differs from ours as it uses an entropic regularizer
not amenable to sparsity, making exact retrieval impossible.

Our sparse and structured Hopfield layers with sparsemax
and SparseMAP involve a quadratic regularizer, which re-
lates to the differentiable layers of Amos & Kolter (2017).
The use of SparseMAP and its active set algorithm (Niculae
et al., 2018) allows to exploit the structure of the problem to
ensure efficient Hopfield updates and implicit derivatives.

7. Conclusions
We presented a unified framework for sparse and structured
Hopfield networks. Our framework hinges on a broad family
of energy functions written as a difference of a quadratic reg-
ularizer and a Fenchel-Young loss, parametrized by a gener-
alized negentropy function. A core result of our paper is the
link between the margin property of certain Fenchel-Young
losses and sparse Hopfield networks with provable condi-
tions for exact retrieval. We further extended this framework
to incorporate structure via the SparseMAP transformation,
which is able to retrieve pattern associations instead of a
single pattern. Empirical evaluation confirmed the useful-
ness of our approach in multiple instance learning and text
rationalization problems.

Impact Statement
Hopfield networks are increasingly relevant for practical
applications and not only as theoretical models. While our
work is mostly a theoretical advancement, promising exper-
imental results signal potentially wider impact. Sparse HFY
networks are applicable in the same scenarios where mod-
ern Hopfield networks would be, and we do not foresee any
specific societal consequences of sparse transformations or
exact retrieval in such cases. In the structured case, the prac-
ticioner has more hands-on control for encoding inductive
biases through the design of a factor graph and the choice
of its parameters (e.g., k). These choices may in turn reflect
human biases and have societal implications: for example,
contiguous rationales might be well suited for English but
not for other languages. We encourage care when designing
such methods for practical applications.
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A. Generalized Negentropies
We recall here the definition of generalized negenetropies from Blondel et al. (2020, §4.1):

Definition 4. A function Ω : △N → R is a generalized negentropy iff it satisfies the following conditions:

1. Zero negentropy: Ω(y) = 0 if y is a one-hot vector (delta distribution), i.e., y = ei for any i ∈ {1, . . . , N}.
2. Strict convexity: Ω ((1− λ)y + λy′) < (1− λ)Ω(y) + λΩ(y′) for λ ∈ ]0, 1[ and y,y′ ∈ △N with y ̸= y′.

3. Permutation invariance: Ω(Py) = Ω(y) for any permutation matrix P (i.e., square matrices with a single 1 in each
row and each column, zero elsewhere).

This definition implies that Ω ≤ 0 and that Ω is minimized when y = 1/N is the uniform distribution (Blondel et al., 2020,
Prop. 4). This justifies the name “generalized negentropies.”

B. Bisection Algorithm for the Normmax Transformation
We derive here expressions for the normmax transformation along with a bisection algorithm to compute this transformation
for general α.

Letting Ω(y) = −1 + ∥y∥α + I△N
(y) be the norm entropy, we have

(∇Ω∗)(θ) = arg max
y∈△N

θ⊤y − ∥y∥q. (14)

The Lagrangian function is L(y,λ, µ) = −θ⊤y + ∥y∥α − λ⊤y + µ(1⊤y − 1). Equating the gradient to zero and using

the fact that∇∥y∥α =
(

y
∥y∥α

)α−1

, we get:

0 = ∇yL(y,λ, µ) = −θ +

(
y

∥y∥α

)α−1

− λ+ µ1. (15)

The complementarity slackness condition implies that, if yi > 0, we must have λi = 0, therefore, we have for such
i ∈ supp(y):

−θi +
(

yi
∥y∥α

)α−1

+ µ = 0 ⇒ yi = (θi − µ)
1

α−1 ∥y∥α. (16)

Since we must have
∑

i∈supp(y) yi = 1, we obtain:

1 =
∑

i∈supp(y)

(θi − µ)
1

α−1 ∥y∥α =⇒ ∥y∥α =
1∑

i∈supp(y)(θi − µ)
1

α−1

. (17)

Combining the two last equations and noting that, from (15), we have θi < µi for i /∈ supp(y), we get, for i ∈ [N ]:

yi =
(θi − µ)

1
α−1

+∑
j∈supp(y)(θj − µ)

1
α−1

+

. (18)

Moreover, since
∑

i∈supp(y) y
α
i = ∥y∥αα, we obtain from (16):

∥y∥αα =
∑

i∈supp(y)

(θi − µ)
α

α−1 ∥y∥αα ⇒
∑

i∈supp(y)

(θi − µ)
α

α−1 = 1. (19)

In order to compute the solution (18) we need to find µ satisfying (19). This can be done with a simple bisection algorithm
if we find a lower and upper bound on µ.

We have, from (18), that µ = θi − (yi/∥y∥α)α−1 for any i ∈ supp(y). Letting θmax = maxi θi and ymax = maxi yi,
we have in particular that µ = θmax − (ymax/∥y∥α)α−1. We also have that ymax = ∥y∥∞ ≤ ∥y∥α, which implies

12
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Algorithm 1 Compute α-normmax by bisection.

1: Input: Scores θ = [θ1, ..., θN ]⊤ ∈ RN , parameter α > 1.
2: Output: Probability vector y = [y1, ..., yN ]⊤ ∈ △N .
3: Define θmax ← maxi θi
4: Compute µmin ← θmax − 1
5: Compute µmax ← θmax −N1−α

6: for t ∈ 1, . . . , T do
7: µ← (µmin + µmax)/2

8: Z ←
∑

j(θj − µ)
α

α−1

+

9: if Z < 1 then µmax ← µ else µmin ← µ
10: end for

11: Return y = [y1, ..., yN ]⊤ with yi =
(θi−µ)

1
α−1
+∑

j(θj−µ)
1

α−1
+

.

ymax/∥y∥α ≤ 1. Since 1/N ≤ ymax ≤ 1 and ∥y∥α ≤ 1 for any y ∈ △N , we also obtain ymax/∥y∥α ≥ (1/N)/1 = N−1.
Therefore we have

θmax − 1︸ ︷︷ ︸
µmin

≤ µ ≤ θmax −N1−α︸ ︷︷ ︸
µmax

. (20)

The resulting algorithm is shown as Alg. 1.

C. Structured Prediction with Factor Graphs
We define our notation and setup for structured prediction with factor graph representations, based on Niculae et al. (2018).

We assume the interactions among patterns (for example due to temporal dependencies, hierarchical or link structure, etc.)
can be expressed as a bipartite factor graph (V, F ), where V is a set of variable nodes and F are factor nodes (Kschischang
et al., 2001). Each factor f ∈ F is linked to a subset of variable nodes Vf ⊆ V . We assume each variable v ∈ V can take one
of Nv possible values, and we denote by yv ∈ {0, 1}Nv a one-hot vector indicating a value for this variable. Likewise, each
factor f ∈ F has Nf possible configurations, with Nf =

∏
v∈Vf

Nv , and we associate to it a one-hot vector yf ∈ {0, 1}Nf

indicating a configuration for that factor. The global configuration of the factor graph is expressed through the bit vectors
yV = [yv : v ∈ V ] ∈ {0, 1}NV and yF = [yf : f ∈ F ] ∈ {0, 1}NF , with NV =

∑
v∈V Nv and NF =

∑
f∈F Nf . A

particular structure is expressed through the bit vector y = [yV ;yF ] ∈ {0, 1}NV +NF . Finally, we define the set of valid
structures Y ⊆ {0, 1}NV +NF – this set contains all the bit vectors which correspond to valid structures, which must satisfy
consistency between variable and factor assignments, as well as any additional hard constraints.

We associate unary scores θV = [θv : v ∈ V ] ∈ RNV to configurations of variable nodes and higher-order scores
θF = [θf : f ∈ F ] ∈ RNF to configurations of factor nodes. We denote θ = [θV ;θF ] ∈ RNV +NF . The problem of
finding the highest-scoring structure, called the maximum a posteriori (MAP) inference problem, is

y∗ = argmax
y∈Y

θ⊤y = argmax
y∈conv(Y)

θ⊤
V yV + θ⊤

F yF . (21)

As above, we consider regularized variants of (21) via a convex regularizer Ω : conv(Y)→ R. SparseMAP corresponds to
Ω(y) = 1

2∥yV ∥2 (note that only the unary variables are regularized), which leads to the quadratic optimization problem
(12). Niculae et al. (2018) developed an effective and computationally efficient active set algorithm for solving this problem,
which requires only a MAP oracle to solve instances of the problem (21).

D. Proofs of Main Text
D.1. Proof of Proposition 1

We start by proving that E(q) ≥ 0. We show first that for any Ω satisfying conditions 1–3 above, we have

LΩ(θ;1/N) ≤ max
i

θi − 1⊤θ/N. (22)

13
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From the definition of Ω∗ and the fact that Ω(y) ≥ Ω(1/N) for any y ∈ △N , we have that, for any θ, Ω∗(θ) =
maxy∈△N

θ⊤y − Ω(y) ≤ maxy∈△N
θ⊤y − Ω(1/N) = maxi θi − Ω(1/N), which leads to (22).

Let now k = argmaxi q
⊤xi, i.e., xk is the pattern most similar to the query q. We have

E(q) = −β−1LΩ(βXq;1/N) +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

≥ −β−1(βmax
i

q⊤xi − β1⊤Xq/N) +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

= −q⊤xk + q⊤µX +
1

2
∥q − µX∥2 +

1

2
(M2 − ∥µX∥2)

= −q⊤xk +
1

2
∥q∥2 + 1

2
M2

≥ −q⊤xk +
1

2
∥q∥2 + 1

2
∥xk∥2

=
1

2
∥xk − q∥2 ≥ 0.

The zero value of energy is attained when X = 1q⊤ (all patterns are equal to the query), in which case µX = q,
M = ∥q∥ = ∥µX∥, and we get Econvex(q) = Econcave(q) = 0.

Now we prove the two upper bounds. For that, note that, for any y ∈ △N , we have 0 ≤ LΩ(θ,y) = LΩ(θ,1/N) −
Ω(1/N) + Ω(y)− (y − 1/N)⊤θ ≤ LΩ(θ,1/N)− Ω(1/N)− (y − 1/N)⊤θ, due to the assumptions 1–3 which ensure
Ω is non-positive. That is, LΩ(θ,1/N) ≥ Ω(1/N) + (y − 1/N)⊤θ. Therefore, with q = X⊤y, we get

Econcave(q) ≤ −β−1Ω(1/N)− y⊤Xq + q⊤µX = −β−1Ω(1/N)− ∥q∥2 + q⊤µX ,

and E(q) = Econcave(q) + Econvex(q) ≤ −β−1Ω(1/N) − ∥q∥2 + q⊤µX + 1
2∥q − µX∥2 + 1

2 (M
2 − ∥µX∥2) =

−β−1Ω(1/N)− 1
2∥q∥

2 + 1
2M

2 ≤ −β−1Ω(1/N) + 1
2M

2.

To show the second upper bound, use the fact that Econcave(q) ≤ 0, which leads to E(q) ≤ Econvex(q) =
1
2∥q − µX∥2 +

1
2 (M

2 − ∥µX∥2) = 1
2∥q∥

2 − q⊤µX + 1
2M

2. Note that ∥q∥ = ∥X⊤y∥ ≤
∑

i yi∥xi∥ ≤ M and that, from the Cauchy-
Schwarz inequality, we have −q⊤µX ≤ ∥µX∥∥q∥ ≤ M2. Therefore, we obtain E(q) ≤ 1

2∥q∥
2 − q⊤µX + 1

2M
2 ≤

1
2M

2 +M2 + 1
2M

2 = 2M2.

We now turn to the update rule. The CCCP algorithm works as follows: at the tth iteration, it linearizes the concave function
Econcave by using a first-order Taylor approximation around q(t),

Econcave(q) ≈ Ẽconcave(q) := Econcave(q
(t)) +

(
∂Econcave(q

(t))

∂q

)⊤

(q − q(t)).

Then, it computes a new iterate by solving the convex optimization problem q(t+1) := argminq Econvex(q) + Ẽconcave(q),
which leads to the equation ∇Econvex(q

(t+1)) = −∇Econcave(q
(t)). Using the fact that ∇LΩ(θ,y) = ŷΩ(θ)− y and the

chain rule leads to

∇Econcave(q) = −β−1∇qLΩ(βXq;1/N) = X⊤(1/N − ŷΩ(βXq))

= µX −X⊤ŷΩ(βXq)

∇Econvex(q) = q − µX , (23)

giving the update equation (9).

D.2. Proof of Proposition 2

A stationary point is a solution of the equation −∇Econcave(q) = ∇Econvex(q). Using the expression for gradients (23),
this is equivalent to q = X⊤ŷΩ(βXq). If xi = X⊤ei is not a convex combination of the other memory patterns, xi is a
stationary point iff ŷΩ(βXxi) = ei. We now use the margin property of sparse transformations (7), according to which the
latter is equivalent to βx⊤

i xi −maxj ̸=i βx
⊤
i xj ≥ m. Noting that the left hand side equals β∆i leads to the desired result.
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If the initial query satisfies q(0)⊤(xi −xj) ≥ m
β for all j ̸= i, we have again from the margin property that ŷΩ(βXq(0)) =

ei, which combined to the previous claim ensures convergence in one step to xi.

Finally, note that, if q(0) is ϵ-close to xi, we have q(0) = xi + ϵr for some vector r with ∥r∥ = 1. Therefore, we have

(q(0))⊤(xi − xj) = (xi + ϵr)⊤(xi − xj)

≥ ∆i + ϵr⊤(xi − xj)

≥ ∆i − ϵ ∥r∥︸︷︷︸
=1

∥xi − xj∥, (24)

where we invoked the Cauchy-Schwarz inequality in the last step. Since the patterns are normalized (with norm M ),4 we
have from the triangle inequality that ∥xi − xj∥ ≤ ∥xi∥+ ∥xj∥ = 2M ; using the assumption that ∆i ≥ m

β + 2Mϵ, we

obtain q(0)⊤(xi − xj) ≥ m
β , which from the previous points ensures convergence to xi in one iteration.

D.3. Proof of Proposition 3

For the first statement, we follow a similar argument as the one made by Ramsauer et al. (2021) in the proof of their Theorem
A.3—however their proof has a mistake, which we correct here.5 Given a separation angle αmin, we lower bound the number
of patterns N we can can place in the sphere separated by at least this angle. Estimating this quantity is an important open
problem in combinatorics, related to determining the size of spherical codes (of which kissing numbers are a particular
case; Conway & Sloane 2013). We invoke a lower bound due to Chabauty (1953), Shannon (1959), and Wyner (1965) (see
also Jenssen et al. (2018) for a tighter bound), who show that N ≥ (1 + o(1))

√
2πD cosαmin

(sinαmin)D−1 . For αmin = π
3 , which

corresponds to the kissing number problem, we obtain the bound

N ≥ (1 + o(1))

√
3πD

8

(
2√
3

)D

= O

((
2√
3

)D
)
.

In this scenario, we have ∆i = M2(1 − cosαmin) by the definition of ∆i. From Proposition 2, we have exact retrieval
under ϵ-perturbations if ∆i ≥ mβ−1 + 2Mϵ. Combining the two expressions, we obtain ϵ ≤ M

2 (1 − cosαmin) − m
2βM .

Setting αmin = π
3 , we obtain ϵ ≤ M

2

(
1− 1

2

)
− m

2βM = M
4 −

m
2βM . For the right hand side to be positive, we must have

M2 > 2m/β.

Assume now patterns are placed uniformly at random in the sphere. From Brauchart et al. (2018) we have, for any δ > 0:

P (N
2

D−1αmin ≥ δ) ≥ 1− κD−1

2
δD−1, with κD :=

1

D
√
π

Γ((D + 1)/2)

Γ(D/2)
. (25)

Given our failure probability p, we need to have

P (M2(1− cosαmin) ≥ mβ−1 + 2Mϵ) ≥ 1− p, (26)

which is equivalent to

P

N
2

D−1αmin ≥ N
2

D−1 arccos

(
1− m

βM2
− 2ϵ

M

)
︸ ︷︷ ︸

:=δ

 ≥ 1− p. (27)

Therefore, we set

p =
κD−1

2
δD−1 =

κD−1

2
N2

[
arccos

(
1− m

βM2
− 2ϵ

M

)]D−1

. (28)

4In fact, the result still holds if patterns are not normalized but have their norm upper bounded by M , i.e., if they lie within a ball of
radius M and not necessarily on the sphere.

5Concretely, Ramsauer et al. (2021) claim that given a separation angle αmin, we can place N = (2π/αmin)
D−1 patterns equidistant

on the sphere, but this is not correct.
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Choosing N =
√

2p
κD−1

ζ
D−1

2 patterns for some ζ > 1, we obtain

1 =

[
ζ arccos

(
1− m

βM2
− 2ϵ

M

)]D−1

. (29)

Therefore the failure rate p is attainable provided the perturbation error is

ϵ ≤ M

2

(
1− cos

1

ζ

)
− m

2βM
. (30)

For the right hand side to be positive, we must have cos 1
ζ < 1− m

βM2 , i.e., ζ < 1

arccos
(
1− m

βM2

) .

D.4. Proof of Proposition 4

The first statement in the proposition is stated and proved by Blondel et al. (2020) as a corollary of their Proposition 8. We
prove here a more general version, which includes the second statement as a novel result.

Using Blondel et al. (2020, Proposition 8), we have that the structured margin of LΩ is given by the following expression,

m = sup
y∈Y

µ∈conv(Y)

Ω(y)− Ω(µ)

r2 − µ⊤y
,

if the supremum exists. For SparseMAP, using Ω(µ) = 1
2∥µV ∥2 = 1

2∥µ∥
2 − 1

2∥µF ∥2 for any µ ∈ conv(Y), and using the
fact that ∥y∥ = r for any y ∈ Y , we obtain:

m = sup
y∈Y

µ∈conv(Y)

1
2r

2 − 1
2∥µ∥

2 +

≤0︷ ︸︸ ︷
1

2
∥µF ∥2 −

1

2
r2F

y⊤(y − µ)

≤(†) sup
y∈Y

µ∈conv(Y)

1
2r

2 − 1
2∥µ∥

2

y⊤(y − µ)

= 1− inf
y∈Y

µ∈conv(Y)

1
2∥y − µ∥2

y⊤(y − µ)

≤(‡) 1,

where the inequality (†) follows from the convexity of 1
2∥ · ∥

2, which implies that 1
2∥µF ∥2 ≤ 1

2∥yF ∥2 = 1
2r

2
F ; and the

inequality (‡) follows from the fact that both the numerator and denominator in the second term are non-negative, the latter
due to the Cauchy-Schwartz inequality and the fact that ∥µ∥ ≤ r. This proves the second part of Proposition 4.

To prove the first part, note first that, if there are no higher order interactions, then rF = 0 and µF is an “empty vector”,
which implies that (†) is an equality. We prove now that, in this case, (‡) is also an equality, which implies that m = 1. We
do that by showing that, for any y ∈ Y , we have infµ∈conv(Y)

1
2∥y−µ∥2

y⊤(y−µ)
= 0. Indeed, choosing µ = ty′ + (1− t)y for an

arbitrary y′ ∈ Y \ {y}, and letting t→ 0+, we obtain
1
2∥y−µ∥2

y⊤(y−µ)
=

t
2∥y−y′∥2

y⊤(y−y′)
→ 0.

D.5. Proof of Proposition 5

A point q is stationary iff it satisfies q = X⊤ŷΩ(βXq). Therefore, X⊤yi is guaranteed to be a stationary point if6

ŷΩ(βXX⊤yi) = yi, which is equivalent to zero loss, i.e., to the existence of a margin βy⊤
i XX⊤(yi − yj)︸ ︷︷ ︸

≥β∆i

≥ 1
2∥yi−yj∥2

6But not necessarily “only if” – in general, we could have X⊤yi in the convex hull of the other pattern associations.
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Figure 5: Sparse and structured transformations used in this paper and their regularization path. In each plot, we show
ŷΩ(βθ) = ŷβ−1Ω(θ) as a function of the temperature β−1 where θ = [1.0716,−1.1221,−0.3288, 0.3368, 0.0425]⊤.

for all j. Since we are assuming ∆i ≥ D2
i

2β ≥
∥yi−yj∥2

2β for all j, we have β∆i ≥ ∥yi−yj∥2

2 for all j, which implies the
margin condition above.

If the initial query satisfies q⊤X⊤(yi−yj) ≥ D2
i

2β for all j ̸= i, we have again from the margin property that ŷΩ(βXq) = yi,
which ensures convergence in one step to X⊤yi.

If q is ϵ-close to X⊤yi, then we have q = X⊤yi + ϵr for some vector r with ∥r∥ = 1. Therefore, we have

q⊤X⊤(yi − yj) = (X⊤yi + ϵr)⊤X⊤(yi − yj)

≥ ∆i + ϵr⊤X⊤(yi − yj). (31)

We now bound −r⊤X⊤(yi − yj) in two possible ways. Using the Cauchy-Schwarz inequality, we have −r⊤X⊤(yi −
yj) ≤ ∥Xr∥∥yi − yj∥ ≤ σmax(X)Di, where σmax(X) denotes the largest singular value of X , i.e., the spectral
norm of X . On the other hand, denoting Ri := maxj ∥yi − yj∥1, we can also use Hölder’s inequality to obtain
−r⊤X⊤(yi−yj) ≤ ∥Xr∥∞∥yi−yj∥1 ≤MRi, where we used the fact that ∥Xr∥∞ = maxk |x⊤

k r| ≤ ∥xk∥∥r∥ = M .
Combining the two inequalities, we obtain q⊤X⊤(yi − yj) ≥ ∆i − ϵmin{σmax(X)Di,MRi}. Using the assumption

that ∆i ≥ D2
i

2β + ϵmin{σmax(X)Di,MRi}, we obtain q⊤X⊤(yi − yj) ≥ D2
i

2β , which from the previous points ensures
convergence to X⊤yi in one iteration. The result follows by noting that, since Y ⊆ {0, 1}D, we have Ri = D2

i .

E. Additional Details and Experiments
E.1. Sparse and structured transformations

We show additional sparse and structured transformations and their regularization paths in Figure 5. The difference
between the entmax and normmax regularizers is subtle but important: when α → ∞, the entmax regularizer vanishes
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Figure 6: Top: Contours of the energy function and optimization trajectory of the CCCP iteration (left) alongside the
attraction basins associated with each pattern (right) for β = 4. (Note that white sections do not converge to a single pattern
but to a metastable state.) Bottom: Similar representation for β = 10.

and entmax becomes argmax, returning a one-hot vector. However, when α → ∞, the normmax regularizer becomes
ΩN

∞(y) = −1 +maxi(yi) and the transformation returns a uniform distribution with a sparse support, as shown in Figure 5,
rightmost middle plot. On the other hand, when α→ 1, entmax becomes softmax, but the normmax regularizer vanishes
and normmax becomes argmax. SparseMAP with k-subsets, as β increases, tends to return a k-hot vector, where for k = 1
it corresponds to entmax with α = 2 (sparsemax).

E.2. Hopfield dynamics and basins of attraction

In Figure 6, additional plots with varying β values are provided. Particularly, as β increases, the optimization trajectories
exhibit a tendency to converge towards a single pattern, contrasting with the prevalence of metastable states observed
for smaller β values. Moreover, the basins of attraction become increasingly colorful with higher β values, suggesting a
convergence behaviour similar to what was previously described.

F. Experimental Details
F.1. MNIST K-MIL

For K-MIL, we created 4 datasets by grouping the MNIST examples into bags, for K ∈ {1, 2, 3, 5}. A bag is positive if it
contains at least K targets, where the target is the number “9” (we chose “9” as it can be easily misunderstood with “7”
or “4”). The embedding architecture is the same as Ilse et al. (2018), but instead of attention-based pooling, we use our
α-entmax pooling, with α = 1 mirroring the pooling method in (Ramsauer et al., 2021), and α = 2 corresponding to the
pooling in (Hu et al., 2023). Additionally, we incorporate α-normmax pooling and SparseMAP pooling with k-subsets.
Further details of the K-MIL datasets are shown in Table 4.

We train the models for 5 different random seeds, where the first one is used for tuning the hyperparameters. The reported
test accuracies represent the average across these seeds. We use 500 bags for testing and 500 bags for validation. The

18



Sparse and Structured Hopfield Networks

Table 4: Dataset sample details for the MNIST K-MIL experiment. The size Li of the ith bag is determined through
Li = max{K,L′

i} where L′
i ∼ N (µ, σ2). The number of positive instances in a bag is uniformly sampled between K and

Li for positive bags and between 0 and K − 1 for negative bags.

Dataset µ σ Features Pos. training bags Neg. training bags

MNIST, K = 1 10 1 28 × 28 1000 1000
MNIST, K = 2 11 2 28 × 28 1000 1000
MNIST, K = 3 12 3 28 × 28 1000 1000
MNIST, K = 5 14 5 28 × 28 1000 1000

Table 5: Hyperparameter space for the MNIST MIL experiment. Hidden size is the dimension of keys and queries and γ is a
parameter of the exponential learning rate scheduler (Li & Arora, 2020).

Parameter Range

learning rate {10−5, 10−6}
γ {0.98 , 0.96}
hidden size {16, 64}
number of heads {8, 16}
β {0.25, 0.5, 1.0, 2.0, 4.0, 8.0}
bag dropout {0.0, 0.75}

hyperparameters are tuned via grid search, where the grid space is shown in Table 5. We consider a dropout hyperparameter,
commonly referred to as bag dropout, to the Hopfield matrix due to the risk of overfitting (as done by Ramsauer et al.
(2021)). All models were trained for 50 epochs. We incorporated an early-stopping mechanism, with patience 5, that selects
the optimal checkpoint based on performance on the validation set.

F.2. MIL benchmarks

The MIL benchmark datasets (Fox, Tiger and Elephant) comprise preprocessed and segmented color images sourced from
the Corel dataset (Ilse et al., 2018). Each image is composed of distinct segments or blobs, each defined by descriptors such
as color, texture, and shape. The datasets include 100 positive and 100 negative example images, with the negative ones
randomly selected from a pool of photos featuring various other animals.

The HopfieldPooling layers (α-entmax; α-normmax; SparseMAP, k-subsets) take as input a collection of embedded
instances, along with a trainable yet constant query. This query pattern is used for the purpose of averaging class-indicative
instances, thereby facilitating the compression of bags of variable sizes into a consistent representation. This compression is
important for effectively discriminating between different bags. To tune the model, a manual hyperparameter search was
conducted on a validation set.

In our approach to tasks involving Elephant, Fox and Tiger, we followed a similar architecture as (Ramsauer et al., 2021):

1. The first two layers are fully connected linear embedding layers with ReLU activation.

2. The output of the second layer serves as the input for the HopfieldPooling layer, where the pooling operation is executed.

3. Subsequently, we employ a single layer as the final linear output layer for classification with a sigmoid as the classifier.

During the hyperparameter search, various configurations were tested, including different hidden layer widths and learning
rates. Particular attention was given to the hyperparameters of the HopfieldPooling layers, such as the number of heads,
head dimension, and the inverse temperature β. To avoid overfitting, bag dropout (dropout at the attention weights) was
implemented as the chosen regularization technique. All hyperparameters tested are shown in Table 6. We trained for
50 epochs with early stopping with patience 5, using the Adam optimizer (Loshchilov & Hutter, 2017) with exponential
learning rate decay. Model validation was conducted through a 10-fold nested cross-validation, repeated five times with
different data splits where the first seed is used for hyperparameter tuning. The reported test ROC AUC scores represent the
average across these repetitions.
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Table 6: Hyperparameter space for the MIL benchmark experiments. Hidden size is the space in which keys and queries are
associated and γ is a parameter of the exponential learning rate scheduler.

Parameter Range

learning rate {10−3, 10−5}
γ {0.98 , 0.96}
embedding dimensions {32 , 128}
embedding layers {2}
hidden size {32, 64}
number of heads {12}
β {0.1, 1, 10}
bag dropout {0.0, 0.75}

Table 7: Text rationalization results. We report mean and min/max F1 scores across five random seeds on test sets for all
datasets but Beer, where we report MSE. All entries except SparseMAP are taken from (Guerreiro & Martins, 2021). We
also report human rationale overlap (HRO) as F1 score. We bold the best-performing rationalized model(s).

Method Rationale SST↑ AgNews↑ IMDB↑ Beer↓ Beer(HRO)↑

SFE top-k .76 (.71/.80) .92 (.92/.92) .84 (.72/.88) .018 (.016/.020) .19 (.13/.30)
contiguous .71 (.68/.75) .86 (.85/.86) .65 (.57/.73) .020 (.019/.024) 35 (.18/.42)

SFE w/Baseline top-k .78 (.76/.80) .92 (.92/.93) .82 (.72/.88) .019 (.017/.020) .17 (.14/.19)
contiguous .70 (.64/.75) .86 (.84/.86) .76 (.73/.80) .021 (.019/.025) .41(.37/.42)

Gumbel top-k .70 (.67/.72) .78 (.73/.84) .74 (.71/.78) .026 (.018/.041) .27 (.14/.39)
contiguous .67 (.67/.68) .77 (.74/.81) .72 (.72/.73) .043 (.040/.048) .42 (.41/.42)

HardKuma - .80 (.80/.81) .90 (.87/.88) .87 (.90/.91) .019 (.016/.020) .37 (.00/.90)

Sparse Attention sparsemax .82 (.81/.83) .93 (.93/.93) .89 (.89/.90) .019 (.016/.021) 48 (.41/.55)
fusedmax .81 (.81/.82) .92 (.91/.92) .88 (.87/.89) .018 (.017/.019) 39 (.29/.53)

SPECTRA sequential k-subsets .80 (.79/.81) .92 (.92/.93) .90 (.89/.90) .017 (.016/.019) .61 (.56/.68)

SparseMAP k-subsets .81 (.81/.82) .93 (.92/.93) .90 (.90/.90) .017 (.017/.018) .42 (.29/.62)
sequential k-subsets .81 (.80/.83) .93 (.93/.93) .90 (.90/.90) .020 (.018/.021) .63 (.49/.70)

F.3. Text Rationalization

We use the same hyperparameters reported by Guerreiro & Martins (2021). We used a head dimension of 200, to match the
dimensions of the encoder vectors (the size of the projection matrices associated to the static query and keys) and a head
dropout of 0.5 (applied to the output of the Hopfield layer). We used a single attention head to better match the SPECTRA
model. Aditionally we use a transition score of 0.001 and a train temperature of 0.1.

We present in Table 7 an extended version of Table 3 with additional baselines, corresponding to prior work in text
rationalization. We show additional examples of rationales extracted by our models in Figure 7.
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poured from a 12oz bottle into a delirium tremens glass . this is so hard to 
find in columbus for some reason , but i was able to get it in toledo ... 
murky yellow appearance with a very thin white head . the aroma is 
bready and a little sour . the flavor is really complex , with at least the 
following tastes : wheat , spicy hops , bread , bananas , and a toasty after-
taste . it was really outstanding . i 'd recommend this to anyone, go out and 
try it . i think it 's the best so far from this brewery .
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pours a rather crisp yellow almost orange with a thin head . the aroma is 
dominated by sweet malts with just a slight hoppiness dancing in the 
background . the taste does have a surprising amount of hoppiness for a 
pilsner . there is a good maltiness to it as well , but citrus hops just slightly 
overpower . the beer is very light and refreshing . this makes for an 
excellent summer session beer .
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a darkish golden pour from tap with a small white lacing around glass . 
you can't miss the sweet smell . the word snappy fits this beer well . it is a 
winter warmer but not from the usual alcohol burn . the alcohol is almost 
completely hidden . the warm comes from the mix of cinnamon , hops , 
and most of all spiciness . the alcohol must be there because i sure did 
feel it after finishing the glass .
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Sequential k-subsets k-subsets

Figure 7: Examples of human rationale overlap for the aspect “appearance”. The yellow highlight indicates the model’s
rationale, while italicized and bold font represents the human rationale. Red font identifies mismatches with human
annotations. SparseMAP with sequential k-subsets prefers more contiguous rationales, which better match humans.
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