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ABSTRACT

We present an approach to detect and segment tumorous regions of the brain by es-
tablishing three varied segmentation architectures for multiclass semantic segmen-
tation along with data specific customizations like residual blocks, soft attention
mechanism, pyramid pooling, linked architecture and 3D compatibility to work
with 3D brain MRI images. The proposed segmentation architectures namely, At-
tention Residual UNET 3D also referred to as AR-UNET 3D, LinkNet 3D and
PSPNet 3D, segment the MRI images and succeed in isolating three classes of
tumors. By assigning pixel probabilities, each of these models differentiates be-
tween pixels belonging to tumorous and non-tumorous regions of the brain. By
experimenting and observing the performance of each of the three architectures
using metrics like Dice loss and Dice score, on the BraTS2020 dataset, we suc-
cessfully establish quality results.

1 INTRODUCTION

Over the years, manual segmentation of brain tumors has turned out to be tedious for the radiologists
and doctors alike due to the amount of time and precision it requires to identify such tumors. Hence,
making use of an automated system employing Deep Learning and Computer Vision will reduce the
operator fatigue and manual errors.

Brain tumor segmentation involves identifying the tumorous region in the brain (pixels indicating
the tumorous cells in the MRI scans). Hence, for the purpose of segmenting brain tumors, we present
three novel 3D architectures.

Figure 1: View of the coronal, sagittal and axial planes of the brain

The Attention Residual UNET 3D or AR-UNET 3D is a modification upon the existing Residual
U-Net (Zhang et all 2017) and Attention U-Net (Oktay et al.| 2018)), both of which operate in
2D. AR-UNET 3D makes use of the residual blocks from ResNet (He et al., |2016)) which help in
maintaining skip connections using identity mappings while the proposed soft attention mechanism
provides an added advantage by weighing the more important features, heavily.

The LinkNet 3D is a modification upon the existing LinkNet (Chaurasia & Culurciello) 2017) in
2D. LinkNet 3D makes use of residual blocks from ResNet18 3D (He et al.,[2016) in its encoder for
feature extraction, and links the output from each encoder block to its corresponding decoder block
to account for lost spatial information due to multiple downsampling.
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The PSPNet 3D is a modification upon the existing PSPNet (Zhao et al.| [2017) in 2D. PSPNet 3D
makes use of a 3D Pyramid Pooling Module for interpolating the 3D feature maps into different
resolutions that facilitates efficient extraction of spatial information and global context capturing.
This helps the model learn about the spatial context associated with different classes of the image.

In the field of 3D MRI Brain Tumor Segmentation, many architectures like 3D UNET (Ozgiin Cigek
et al., 2016), VNET (Milletari et al.l [2016), AutoEncoder (Bank et al., [2020)), etc. have been used
to achieve state-of-the-art results. We propose 3D advancements of established models which are
well-known for their segmentation tasks in 2D.

2 RELATED WORKS

Global context capturing in 2D has always been an important aspect of semantic segmentation.
Various deep learning techniques such as dynamic context-aware kernels (He et al. (2019)),
attention mechanisms (Zhao et al.|(2018)) and Laplacian Pyramids (Ghiasi et al.| (2016)) have been
adopted in the past to explore this aspect of semantic segmentation. Tumor segmentation using
Deep Learning by Type Specific Sorting of Images (Sobhaninia et al.[{(2018)) was trained separately
for sagittal, axial and coronal views by using LinkNet (Chaurasia & Culurciello| (2017)). All these
aforementioned methods have shown impressive results for 2D image segmentation while there has
been a need of extensive research to incorporate the same for 3D images.

Some of the 3D architectures like the 3D AGSE-VNet (Guan et al.|(2021)), nnU-Net (Isensee et al.
(2020)), KiU-Net (Valanarasu et al.| (2020)), etc. have achieved state-of-the-art results in 3D seg-
mentation. The 3D AGSE-VNet (Guan et al.|(2021))) uses Squeeze and Excite (SE) module (Sultana
et al.| (2018))) in each of its encoder and Attention Guided Filter (Zhang et al.| (2019)) in each of
its decoder and has achieved a Dice score (Sudre et al.| (2017) of 0.68 for the whole tumor. The
nnU-Net (Isensee et al.|(2020)) makes use of a 3D U-Net (Ozgﬁn Cicek et al.|(2016)) as its baseline
and normalized input images to perform segmentation and it is further modified by updating cer-
tain aspects like region based training, batch size, augmentation techniques and more. This model
achieved mean Dice score (Sudre et al.|(2017)) of 0.8529. We propose this paper to establish results
for brain tumor segmentation in 3D.

3 METHOD

3.1 ATTENTION RESIDUAL UNET (AR-UNET) 3D:
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Figure 2: AR-UNET 3D

The AR-UNET 3D, as depicted in and described in is a 3D advancement of the
Residual U-Net (Zhang et al.,[2017) and Attention U-Net (Oktay et al.l 2018 models that segment
in 2D. The AR-UNET 3D makes use of residual blocks based on the ResNet (He et al., 2016]) archi-
tecture and possesses the added advantage of soft attention mechanism. This attention mechanism
helps the model learn more important features from previous layers by assigning weights that cancel
out less relevant ones while maintaining the importance of features that can help the model learn
better.
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The encoder passes a given image through convolutional and residual blocks for downsampling
it. The image ends up with 256 channels after a pass through the encoder. The bridge, which is
a residual block, connects the encoder module to the decoder module. The decoder consists of
upsampling layers through which the image is passed before being concatenated with respective
encoder outputs. Weighted matrices obtained from the attention module are also multiplied to the
features to help the model determine which important features need to be considered while learning
the weights.

Further, a final output block produces the segmented image which consists of the 4 channel mask
that represents the foreground (tumorous) region with 3 classes and the background region with the
no-tumor class.
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Figure 3: Input, residual and attention blocks in AR-UNET 3D

Residual block: The second block in consists of (3x3x3) convolutional layers with skip
connections that aid in retaining important features by using identity mappings and learning the
residuals similar to the ResNet (He et al., 2016) architecture which uses such residual blocks. Each
block consists of two modules as can be seen|Figure 3|and a final skip connection which is summed
to the former combination.

Attention block: The third block in takes in 2 inputs; one from the encoder and another
from the previous layer’s decoder. Both are passed through (1x1x1) convolutions and are further
summed up. This combination is passed through another convolutional module which produces a 1
channel output or a singular weight matrix. This aids in obtaining a combined weight value which
is then multiplied to the original input. Such a process of calculating weight and implementing soft
attention guarantees a higher level of importance to relevant features.

Final block: Further, the obtained output is passed through a (1x1x1) convolutional layer and
softmax activation function. Thus, the output is condensed into the desired result which represents
a segmented mask with pixel probabilities.

Table 1: AR-UNET 3D - Modules and blocks

Modules Blocks Action Out channels

Encoder Initial input block + skip  Input block with skip connection 64

Residual block 1 and 2 1st and 2nd block in the Encoder 128,256
Bridge Bridge residual block Connects Encoder to Decoder 512
using residual block

Decoder x 3 Upsample Upsamples the image 512,256, 128
Attention blocks Weighs inputs 512, 256, 128
Residual blocks Converts concatenated channels 256, 128, 64

to required size

Final Final output block Produces a segmented mask 4
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3.2 LINKNET 3D:

The proposed architecture, as can be seen in[Figure 4 and described in[Table 2]is a 3D modification
upon the LinkNet architecture (Chaurasia & Culurciello, [2017) for semantic segmentation in 2D
space. The ‘conv’ here refers to a convolution operation in 3D space. Batch Normalization (loffe &
Szegedyl [2015)) is used between each convolutional layer, followed by ReLU (Nair & Hinton, 2010)
activation to introduce non-linearity as has been mentioned in (Chaurasia & Culurciello} 2017). The
LinkNet 3D network comprises of an Encoder network which is effectively a 3D variation of the 18
layer Residual Network or ResNet18 (He et al.| 2016)), and a Decoder network which is a modified
3D variation of the decoder architecture mentioned in (Chaurasia & Culurciellol |2017)).

Encoder Block 4 Decoder Block 4

Encoder Block 3 Decoder Block 3

Encoder Block 2 Decoder Block 2

Encoder Block 1 Decoder Block 1
max-pool [(3x3x3), /2] conv [(3x3x3), (64, 32)]

RelU Upsample ['trilinear’, *2]
BatchNormalization conv [(3x3x3), (32, N)I
conv [(7x7x7), (3, 64), /2] Softmax

Figure 4: LinkNet 3D

Encoder: The encoder network comprises an initial block and 4 residual blocks (He et al., [2016)
for feature extraction purposes.

Initial Block: The initial block of the encoder performs convolution operation on the input image,
with a (7x7x7) kernel and a stride of 2. This is followed by Batch Normalization (loffe & Szegedy,
2015) and ReL.U activation (Nair & Hinton, 2010) before a spatial max-pooling operation with a
kernel size of (3x3x3) and a stride of 2.

Residual Blocks: Following the initial block of the encoder are the residual blocks (He et al.,|2016),
used for feature extraction. They are represented in[Figure 4 as Encoder Block (i).

Each layer within the residual blocks is shown in[Figure 5|in detail. Each residual block has a strided
convolution operation followed by 3 convolutional operations with a (3x3x3) kernel accompanied
by skip connections (Orhan & Pitkow} 2017).
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Figure 5: Each Encoder(left) and Decoder(right) block (convolutional modules)
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Linked Architecture: The linking of each encoder to each decoder has been performed exactly as
mentioned in (Chaurasia & Culurciello, [2017), in order to recover the lost spatial information which
is lost due to multiple downsampling operations in the encoder. To enable the linking operation,
strided convolutions are used in the encoder.

Decoder: The decoder network takes the output from the encoder as its input. It comprises 4 decoder
blocks and a final segmentation block for performing the main segmentation task.

Decoder Blocks: The decoder blocks are represented as Decoder Block (i) in Each layer
within the decoder block is shown in in detail. Each decoder block has 2 convolutional
operations with a (1x1x1) kernel and an Upsample operation in trilinear mode with scale-factor 2,
between them. The decoder blocks are followed by the final segmentation block.

Final Segmentation Block: The final segmentation block of the decoder performs the main seg-
mentation task on the output received from the Decoder Block 1. A convolution operation with
kernel size (3x3x3) is performed on the decoder output, followed by an Upsample operation with
scale-factor 2 in trilinear mode. Finally, another convolution operation with kernel size (3x3x3) is
performed before passing it through a softmax layer to get the final segmentation mask with pixel
probabilities.

Table 2: LinkNet 3D - Modules and blocks

Modules Blocks Action Out channels
Initial Input block Convolution and max-pooling 64
Encoder Residual blocks 4 blocks following the initial input 64, 128, 256, 512
block for ‘Feature extraction’
Decoder Decoder Blocks Converts concatenated channels 256, 128, 64, 64

(512, 256, 128, 64) to required channel size

Final Block Produces the final segmentation mask 4

3.3 PYRAMID SCENE PARSING NETWORK (PSPNET) 3D:

The proposed architecture as can be seen in [Table 3] namely PSPNet-3D is a three-dimensional
adaptation of the original PSPNet paper (Zhao et al., 2017) which was used for 2D segmentation.
PSPNet-3D is specialized to work on 3 dimensional images by utilizing the techniques of global
context aggregation and local level predictions.

The methodology follows extracting spatial features from a 3D encoder network which uses
dilated convolutions (Yu & Koltun|, |2016) followed by a decoder network that performs the required
semantic segmentation.

3D Dilated Residual Blocks: These act as the feature extractor backbones which use dilated
convolutions (Yu & Koltun, [2016) with wider receptive fields that allow enhanced extraction of
spatial information. Here, the dilated Resnet50-3D (Hara et al.l [2017) which is a modification of
the original ResNet50 (He et all 2016)), serves as the encoder network with dilations of 2 and 4
introduced in the last two residual blocks of the network. The output from the initial input block
is passed sequentially through 4 residual blocks to generate it’s feature representation. [Figure 6|
below represents the residual blocks of the encoder along with their respective kernel sizes, output
dimensions, stride and dilations.
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Figure 6: Residual blocks 1, 2, 3 and 4
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Decoder: The decoder network comprises of the 3D Pyramid Pooling Module and the Final
Segmentation Block

3D Pyramid Pooling Module: The 3D pyramid pooling module is at the core of the PSPNet-3D
architecture. The feature map from the final residual block of the encoder is passed into the 3D
pyramid pooling network which then uses four 3D adaptive average pooling layers for feature
pooling at four different resolutions (1, 2, 3 and 6). This allows the model to learn the context of the
overall image at four different levels while retaining the spatial information of the image. The 3D

pyramid pooling blocks are demonstrated in

Figure 7: 3D Pyramid Pooling Module

The pooled feature maps are then upsampled through a convolution layer and are concatenated with
the original feature map before passing it to the final segmentation block.

Final Segmentation Block: Three successive convolution operations are performed on the
concatenated feature block with a 1x1x1 filter. This helps the network to interpret the encoded
contextual information of the image previously captured at different levels. The generated output is
then passed through a softmax layer to produce the final mask.

The complete architecture is a sequential combination of all the aforementioned sub-parts.
The encoder and the decoder are jointly used to efficiently extract both contextual and spatial
information from 3D images and perform segmentation on the same. depicts the complete
model architecture.

Table 3: PSPNet 3D - Modules and blocks

Modules Blocks Action Out channels
Initial Input block 3 convolutions and a max-pooling block. 128
Encoder 3D Dilated 4 residual blocks for feature extraction 256, 512,
Residual blocks following the initial input block 1024, 2048
Decoder 3D Pyramid 4 pooling blocks of 4 different reolutions 1024

Pooling Module  generating the final concatenated feature map.

Final Block Produces the final segmentation mask 4

4 EXPERIMENTS

4.1 DATASET

The (Brain Tumor Segmentation) BraTS 2020 dataset (Menze et all [2015) (Bakas et al.l [2017)
(Bakas et al.l 2018)) with a total of 250 brain MRI 3D images belonging to flair modality, in which
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eight percent of the training data has been substituted with 3D augmentations (Nalepa et al.|, [2019)
based on time tested augmentation techniques like affine transforms and flips for each of the respec-
tive models.

Figure 8: Flipped and affine transformed images

Pre-processing techniques like resize, normalization and standardization have been performed along
with augmentations like 3D flip and affine transformations. All images with 64 slices were processed
to contain zero mean and unit standard deviation as a part of the normalization procedure.

The normalized images were first flipped along the lateral axis followed by affine transformation
applied over them which included re-scaling, rotation and linear interpolation over the pixel intensi-
ties.

Further, the masks were processed to contain one hot encoded representations of four classes of
tumors; 0: no tumor, 1: non enhancing tumor core, 2: edema and 3: enhancing tumor, thereby
making it a multiclass segmentation task.

4.2 METRICS
4.2.1 DICE SCORE AND LOSS

We have adopted the Dice Loss (Sudre et all, [2017) as the primary evaluation metric for our seg-
mentation task. We consider the ground truth and the predicted label as the two vectors. The dice
coefficient was computed using the following formula -

2|T N P
T|+ |P|

Here, T and P denote the vectors corresponding to the true and the predicted classes respectively.

Dice coef ficient =

The generalized loss function is formulated from the dice score by subtracting the dice coefficient
from 1. The dice loss is minimized to simultaneously maximize the dice coefficient since a higher
dice coefficient implies a better overlap.

Dice Loss = 1 — Dice coef ficient

4.3 EXPERIMENT RESULTS

4.3.1 TRAINING

All 3 segmentation models were trained using the PyTorch (Paszke et al 2019) framework on the
Tesla P100 PCle GPU with 250 images of batch size 4, for 200 iterations using the RMSProp
optimization algorithm.
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Figure 9: Training results from AR-UNET 3D, LinkNet 3D and PSPNet 3D (left to right)
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Table 4: Training details

Models Parameters Learning Rate Mean Dice Loss  Best Dice Score
AR-UNET 3D 35838349 0.0001 0.3270 0.8500
LinkNet 3D 32925860 0.00001 0.3431 0.8041
PSPNet 3D 74352202 0.0001 0.3334 0.8087

Test results for all 3 models are given below.
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Figure 10: Test results from AR-UNET 3D, LinkNet 3D and PSPNet 3D (top to bottom)

5 CONCLUSION AND FUTURE WORKS

Due to computational shortcomings, each model was trained on a restricted amount of data.
Exposing the models to higher level of augmentations, more slices and full volumes will help the
models segment even better. We recommend using higher configuration GPUs and stable training
environments for achieving full capacity of these models.

With available resources and computational power, the successful segmentation of 3D MRI
images has been performed using 3 distinct architectures namely, AR-UNET 3D, LinkNet 3D
and PSPNet 3D. The results have been inferred along with test results consisting of accurate
segmentation by each of the three models.
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