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Abstract
Task-oriented dialogue (TOD) systems help001
users execute well-defined tasks across a va-002
riety of domains (e.g., flight booking or food003
ordering), with their Natural Language Un-004
derstanding (NLU) components being dedi-005
cated to the analysis of user utterances, pre-006
dicting users’ intents (Intent Detection, ID)007
and extracting values for informational slots008
(Value Extraction, VE). In most domains, la-009
belled NLU data is scarce, making sample-010
efficient learning – enabled with effective trans-011
fer paradigms – paramount. In this work, we012
introduce SQATIN, a new framework for dia-013
log NLU based on (i) instruction tuning and (ii)014
question-answering-based formulation of ID015
and VE tasks. According to the evaluation on016
established NLU benchmarks, SQATIN sets017
the new state of the art in dialogue NLU, sub-018
stantially surpassing the performance of cur-019
rent models based on standard fine-tuning ob-020
jectives in both in-domain training and cross-021
domain transfer, and it also surpasses off-the-022
shelf large language models for the same task,023
both in terms of performance and inference ef-024
ficiency. Furthermore, SQATIN yields particu-025
larly large performance gains in cross-domain026
transfer, owing to the fact that our QA-based in-027
struction tuning leverages similarities between028
natural language descriptions of classes (i.e.,029
slots and intents) across domains.030

1 Introduction031

Task-oriented dialogue (TOD) systems support032

users in execution of specific, well-defined tasks033

through natural language interaction (e.g., order-034

ing food or purchasing tickets) (Young, 2002;035

Budzianowski et al., 2018). Fine-grained under-036

standing of user’s utterances, commonly referred037

to as (dialogue) natural language understanding038

(NLU) is necessary for successful TOD (Larson039

et al., 2019; Casanueva et al., 2022). NLU mod-040

ules of TOD systems typically solve two comple-041

mentary tasks: (1) Intent detection (ID) aims to042

recognise the purpose (i.e., intent) of the user’s 043

utterance, classifying utterances into a set of pre- 044

defined classes (e.g., the intent lost_luggage in 045

flight booking); (2) Value extraction (VE) aims to 046

extract spans that express values for any of the pre- 047

defined informational slots (e.g., a dialog system 048

for booking flights would have slots such as origin, 049

destination, time, maximal_price). Realistic 050

TOD setups for both ID and VE typically involve a 051

relatively large number of labels (e.g., >100 differ- 052

ent intent classes), commonly with a limited num- 053

ber of labelled instances per class. Successfully 054

addressing these tasks thus amounts to enabling 055

sample-efficient learning by means of transferring 056

knowledge from other tasks (Gao et al., 2019), lan- 057

guages (Hung et al., 2022b; Moghe et al., 2023), or 058

domains (Hung et al., 2022a; Moghe et al., 2023). 059

In recent years – in line with general NLP trends 060

– most NLU models (Budzianowski and Vulić, 061

2019; Hosseini-Asl et al., 2020; Henderson and 062

Vulić, 2021, inter alia) were obtained via standard, 063

task-specific fine-tuning of pretrained Transformer- 064

based language models (PLMs) (Devlin et al., 2019; 065

Radford et al., 2019). Standard fine-tuning comes 066

with task-specific (discriminative) objectives – dif- 067

ferent from LM-ing as the pretraining objective – 068

which in principle impedes both knowledge trans- 069

fer (1) from pretraining to downstream tasks and 070

(2) between different downstream tasks. Prompt- 071

ing in contrast (Liu et al., 2023b) recasts down- 072

stream tasks into language modelling, making them 073

more aligned with the models’ pretraining. Finally, 074

instruction-tuning (Sanh et al., 2022; Chung et al., 075

2022) – supervised training in which prompts cre- 076

ated from instances are prepended with natural lan- 077

guage descriptions of the tasks – facilitate the trans- 078

fer between arbitrary tasks, leveraging the generali- 079

sation over task descriptions for zero-shot inference 080

(i.e., inference for tasks unseen in training). De- 081

spite the impressive zero-shot and in-context few- 082

shot inference abilities of the more recent Large 083
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LMs (LLMs) (Brown et al., 2020; Chowdhery et al.,084

2023; Touvron et al., 2023), supervised fine-tuning085

still brings substantial performance gains for dialog086

NLU (Hudeček and Dusek, 2023).087

As generalisation to new domains (with limited088

in-domain annotation effort) is one of the main089

desiderata of TOD, some recent work on dialog090

NLU (Fuisz et al., 2022; Casanueva et al., 2022) has091

recognised that ID and VE can be cast as question092

answering (QA) tasks: this facilitates transfer from093

models trained on large QA datasets (Rajpurkar094

et al., 2016a; Lee et al., 2020), allowing also to095

capitalise on other large datasets previously recast096

as QA (McCann et al., 2018; Wang et al., 2022b).097

These efforts, however, amount to sequential trans-098

fer with standard fine-tuning for QA and thus (i) do099

not align their fine-tuning with the models’ pretrain-100

ing objective; and without an LM-based objective101

they (ii) cannot benefit from cross-task transfer via102

natural language task formulations.103

Contributions. Motivated by the above observa-104

tions, we propose a new framework for dialogue105

NLU driven by QA-based instruction tuning. In106

SQATIN (Supervised Question Answering Tun-107

ing on INstructions for dialogue NLU), we re-108

formulate ID and VE into QA-based natural lan-109

guage instructions and, starting from a massively110

instruction-tuned PLM (Chung et al., 2022), fine-111

tune it for our tasks relying on a small number of in-112

domain examples. The rationale behind SQATIN113

is two-pronged: (1) transfer with a model that was114

previously instruction-tuned at scale improves the115

efficiency of learning from task-specific samples116

– this is highly desirable in most TOD domains,117

where one typically deals with only a handful of118

labelled utterances; (2) while small-scale ID/VE119

instruction-tuning specialises the model for a par-120

ticular TOD domain (e.g., restaurant booking), the121

negligible size of in-domain training (compared to122

model’s massive instruction-“pretraining”) should123

prevent overfitting to the TOD training domain and124

allow for effective cross-domain transfer.125

Our results strongly support both of the above126

assumptions: SQATIN yields state-of-the-art per-127

formance on two prominent dialogue NLU bench-128

marks both in in-domain and cross-domain eval-129

uations. SQATIN brings particularly large gains130

in transfer between close TOD domains: classes131

in these domains have similar prompt descriptions,132

unlike the existing approaches based on standard133

fine-tuning. The code is available at [URL].134

2 SQATIN: Methodology 135

Standard Classification vs. Instruction Tuning 136

for Dialog NLU. ID and VE are two tasks that 137

comprise most Dialogue NLU modules. Both tasks 138

are commonly cast as classification tasks: ID as a 139

sequence classification task (i.e., one or more intent 140

labels assigned for the whole utterance) and VE as a 141

span extraction task, i.e., token-level classification. 142

In standard classification with pretrained LMs, 143

a task-specific classifier ct : X ∈ Rh 7→ P(Ct) 144

converts h-dimensional sequence or token repre- 145

sentations (output by the LM) into a multinomial 146

probability distribution over the set of task classes 147

Ct. This means that a classifier ct, trained for task t 148

with classes Ct, cannot be used to make predictions 149

for any other classification task t′ with a different 150

set of classes Ct′ : thus, transfer between tasks can 151

only occur indirectly through the parameters of the 152

LM. This is particularly unfortunate for domain 153

transfer in dialog NLU, where different domains 154

often have semantically overlapping ID and VE 155

classes (e.g., intent confirm_order is essentially 156

the same intent in flight booking and in food order- 157

ing). In contrast, instruction-tuning recasts classi- 158

fication as a language modelling (i.e., generation) 159

task LM : x ∈ Rh 7→ P(Vt), with Vt as the subset 160

of the LM’s vocabulary where each token vt ∈ Vt 161

represents one class ct. This removes the need for 162

a task-specific classifier (on top of the LM) and 163

facilitates transfer between tasks, especially those 164

with semantically overlapping class tokens. 165

QA-Based Instruction Tuning in SQATIN. For 166

the above reasons, we adopt an instruction tuning 167

approach to ID and VE. We start from models that 168

have been instruction-tuned at scale (Wang et al., 169

2022a; Chung et al., 2022), since these models 170

come with a strong inductive bias to complete any 171

new task expressed as an instruction, exhibiting 172

impressive generalisation abilities (i.e., good per- 173

formance on new tasks). 174

As illustrated in Figure 1, we formulate both 175

ID and VE as text-to-text tasks, with our instruc- 176

tion input consisting of (i) context, (ii) instance, 177

and (ii) prompt. Context (e.g., “The user says:”) 178

is the additional natural language description that 179

is added (in our case, prepended) to the instance, 180

a user’s utterance; Prompt is the text that follows 181

the instance and describes the actual task, that is, 182

what is to be predicted from the instance. We for- 183

mulate prompts as questions for both tasks. The 184

motivation for this is the fact that the instruction- 185
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Intent classification Slot labelling

The user says: How much in advance do I 
have to book a table for 8 people?
Question: did the user intend to to talk 
about some booking?

yes

The user says: How much in advance do I 
have to book a table for 8 people?
Question: did the user intend to to ask 
about check in?

no

The user says: How much in advance do I 
have to book a table for 8 people?
Question: what is the number of people 
mentioned in this sentence?

8

The user says: How much in advance do I 
have to book a table for 8 people?
Question: what is the specific time in the 
day mentioned in this sentence?

unanswerable

Figure 1: Instruction examples for ID and VE: for each
we show one example where the class matches the ut-
terance (i.e., for ID: correct intent class; for VE: a value
for the slot class present) and one where it does not.

tuned model from which we start (Chung et al.,186

2022) has been pretrained on QA formulations of187

various tasks and thus comes with an inductive188

bias for answering questions. For each training ut-189

terance, we create one instruction-based training190

example for each of the intent and slot classes:191

(1) for ID, the question incorporates a natural lan-192

guage description of the intent class (e.g., did193

the user intend to talk about some booking? corre-194

sponds to the intent class booking) and requires a195

binary answer (yes or no); (2) for VE, the question196

incorporates a natural language description of an in-197

formational slot (e.g., what is the number of people198

mentioned? corresponds to the slot num_guests)199

– the expected answer is the value for that slot, as200

expressed in the instance or unanswerable if the201

instance does not contain a value for the slot.202

A possible alternative to this “one instruction per203

instance and class” approach would be the more204

common prompt-based classification approach in205

which we create only one instruction per instance206

(e.g., with the question prompt “what is the intent207

of this sentence?”) and the model is expected to208

generate the token of the correct intent, choosing209

between tokens of all intent classes. This, however,210

comes with two major drawbacks: (i) ID tasks com-211

monly come with a large number of classes (e.g.,212

more than 50) – incorporating descriptions of all213

intent classes into a single prompt might thus sur-214

pass the input size of most models or they might215

struggle with memorizing all the options (Liu et al.,216

2023a); (ii) ID is, in principle, a multi-label, rather217

than multi-class problem, which means that utter-218

ances can express more than just one intent – this219

would require the model to output the text that220

somehow combines the tokens of more than one221

class, which is not something that instruction-based222

None

Descriptive

what time do the cleaning personel come? when, housekeeping

User utterance Intents

Intent: wifi what time do the cleaning personel come?
Did the user intend to ask something related to wifi or wireless? No

Intent: 
housekeeping

what time do the cleaning personel come?
Did the user intend to talk about housekeeping issues?

Yes

Intent: wifi
The user says: what time do the cleaning personel come?
Question: did the user intend to ask something related to wifi or 
wireless?

No

Intent: 
housekeeping

The user says: what time do the cleaning personel come?
Question: did the user intend to talk about housekeeping issues?

Yes

Figure 2: An annotated utterance from NLU++ trans-
formed into corresponding SQATIN instruction in-
stances. For brevity, we display the transformation for
only two intents (wifi and housekeeping), but the
same transformation was applied for all intents.

models have been pretrained for. 223

We experimented with two different instruction 224

formulations: (1) without context (None), in which 225

the instruction consists only of the instance and 226

prompt; and (2) with descriptive context (Desc., 227

where we prepend the utterance with “The user 228

says:” and the question prompt with “Question:”, 229

as illustrated Figure 2. We selected these two par- 230

ticular instruction formulations (None and Desc.) 231

based on their performance in a pilot study, which 232

we describe in detail in the Appendix (A). 233

3 Experimental Setup 234

We rely on the Flan-T5 instruction-pretrained mod- 235

els (Chung et al., 2022). Unless stated otherwise, 236

the main model is the Base variant. Training hyper- 237

parameters are described in detail in Appendix D. 238

Dialogue NLU Datasets. We run our experiments 239

on two prominent dialogue NLU benchmarks: 240

NLU++ (Casanueva et al., 2022) and CLINC-150 241

(Larson et al., 2019). NLU++ contains user ut- 242

terances from real conversations in two domains: 243

banking and hotels. NLU++ differs from most other 244

TOD datasets in two important aspects: (i) it encom- 245

passes both generic (i.e., domain-universal) intents 246

(e.g., booking) and slots (e.g., date) as well as the 247

domain-specific ones (e.g., intent credit_card in 248

the banking domain or slot no_rooms in the ho- 249

tels domain) and (ii) its intents are “factorized” 250

into “atomic” labels, with utterances then being as- 251

signed multiple intents (e.g., an utterance “wanna 252

change my room reservation” is labelled with three 253

atomic intents – change, room, and booking – rather 254

than one complex intent change_room_booking). 255

CLINC-150 encompasses over 20K utterances 256

from 10 versatile domains (e.g., travel, small talk). 257

Each domain has 15 intent labels, resulting in 150 258

intents in total. CLINC also contains utterances 259
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that do not belong to any of the 150 intents (la-260

belled as out_of_scope). The fact that all CLINC261

domains have 15 intents, with the same number262

of instances per intent, allows for direct perfor-263

mance comparison across domains.1 With few-shot264

fine-tuning in focus, we evaluate the models in265

a folded cross-validation setup. NLU++ already266

comes with predefined splits for 10-fold and 20-267

fold cross-validation.2 Analogously, we split data268

from each CLINC domain in 10 folds, resulting in269

150 training examples per fold.270

Baselines. We compare SQATIN against two types271

of state-of-the-art models for dialogue NLU. For272

brevity, we provide training and model selection273

details for both baselines in the appendix.274

Classification from Sentence Embeddings (CL-SE).275

Recent work on ID (Gerz et al., 2021; Casanueva276

et al., 2022) resorts to classifying – with a shal-277

low feed-forward classifier – fixed sentence embed-278

dings produced by of-the-shelf sentence encoders279

(SE). This avoids expensive fine-tuning of base280

LMs (e.g., RoBERTa) and yields comparable (or281

better) performance. We use LaBSE (Feng et al.,282

2022) as a state-of-the-art (SotA) SE.283

Standard QA Fine-Tuning (QA-FT). Similar to us,284

these models adopt a QA-based formulation of dia-285

logue NLU but exclude the instruction component286

(Namazifar et al., 2021; Casanueva et al., 2022;287

Fuisz et al., 2022). The key aspect is that the QA-288

based fine-tuning for ID and VE starts from the289

model that has previously been fine-tuned on large-290

scale QA datasets (e.g., SQUAD, Rajpurkar et al.291

(2016b, 2018)). To maximise comparability (given292

that SQATIN is based on Flan-T5), we obtain our293

QA-FT baseline by fine-tuning the T5 model (Raf-294

fel et al., 2020) previously trained on SQUAD 2.0.3295

We report the standard micro-F1 scores. VE pre-296

dictions are considered correct only if they exactly297

match the gold value span.298

4 Main Evaluation299

Preliminary Study: Zero-Shot ID & VE. The300

key hypothesis behind SQATIN is that instruction-301

1Prior work has mostly used CLINC-150 as a single-
domain dataset with 150 intents, rather than multi-domain
with domain-specific intents. In contrast, we are interested in
cross-domain dialogue NLU performance and thus split the
examples by domains. To ensure the replicability of results,
we will make public the exact dataset splits that we used.

2In the 20-fold setup, one fold contains ≈ 100 utterances
in the banking domain and ≈ 50 in the hotels domain.

3We use the checkpoint at https://huggingface.co/
mrm8488/t5-base-finetuned-squadv2.

Model ID VE

20-Fold 10-Fold 20-Fold 10-Fold

BANKING

QA-T5 0.6 0.6 12.5 12.5
Flan-T5 21.9 21.9 3.2 3.2

HOTELS

QA-T5 0.4 0.4 0.0 0.0
Flan-T5 20.9 21.9 5.9 5.8

Table 1: Zero-shot results for ID and VE on NLU++.

Model Templ. ID VE

20-F 10-F 20-F 10-F

BANKING

CL-SE 58.1 68.8 N/A N/A
QA-FT: RoBERTa 80.3 85.6 50.5 56.7
QA-FT: mDeBERTa 80.8 85.0 59.7 66.5
QA-FT: T5 82.7 86.8 61.5 73.5

SQATIN None 85.6 88.5 64.9 75.4
Desc. 85.8 88.4 66.3 76.3

HOTELS

CL-SE 51.9 61.8 N/A N/A
QA-FT: RoBERTa 67.4 73.3 48.1 52.4
QA-FT: mDeBERTa 66.9 73.2 61.6 67.3
QA-FT: T5 69.2 76.5 57.2 67.9

SQATIN None 73.1 78.0 58.0 67.7
Desc. 73.4 78.1 58.7 67.0

Table 2: In-domain ID and VE performance for
SQATIN and SotA baselines (CL-SE and QA-FT with
different base models). Bold: best column score.

tuned models have stronger inductive bias for dia- 302

logue NLU than models fine-tuned in the standard 303

manner, including those trained for QA (Namazifar 304

et al., 2021; Fuisz et al., 2022). We thus prelimi- 305

narily compare zero-shot ID/VE performance of 306

(1) the instruction-trained Flan-T5 and (2) T5 fine- 307

tuned for QA on SQUAD2.0 (denoted QA-T5) on 308

NLU++. The results in Table 1 show that Flan-T5 is 309

much more robust “out of the box”. While QA-T5 310

has better VE performance in the banking domain, 311

it yields near-zero performance in all other setups. 312

This validates our selection of the instruction-tuned 313

Flan-T5 as the starting point for SQATIN. 314

In-Domain Results. We next compare the super- 315

vised in-domain performance (i.e., training and 316

test instances from the same domain) of SQATIN 317

against the CL-SE and QA-FT baselines. Tables 2 318

and 3 display the results on NLU++ and CLINC- 319

150, respectively. On NLU++, we additionally pro- 320

vide QA-FT results with two other base models, 321

RoBERTa (Liu et al., 2019) and mDeBERTa (He 322

et al., 2022), copied directly from (Casanueva et al., 323

2022) and (Moghe et al., 2023), respectively. 324

SQATIN consistently and considerably outper- 325

forms the baseline models, on both tasks and on 326

both datasets. These results confirm that instruction- 327

based models have stronger inductive biases than 328

QA-fine-tuned models: these biases are propagated 329
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Model Template AUTO BANKING
CREDIT
CARD HOME

KITCHEN
&DINING META

SMALL
TALK TRAVEL UTILITY WORK AVG

CL-SE 92.74 92.30 90.48 88.58 91.19 90.19 90.90 95.29 94.53 91.93 91.81
QA-FT: T5 90.42 94.38 94.42 89.23 93.22 90.10 81.36 97.67 94.66 89.99 91.54

None 94.47 96.04 95.64 91.92 95.01 90.55 93.10 97.77 95.72 91.56 94.18SQATIN Desc. 94.47 96.11 95.85 92.66 95.36 91.52 93.12 96.97 96.07 92.01 94.42

Table 3: In-domain ID results on CLINC-150 for SQATIN and the baselines (CL-SE and QA-FT).

Model Templ. ID VE

20-F 10-F 20-F 10-F

BANKING → HOTELS

QA-FT: T5 66.70 69.68 30.86 38.09
SQATIN None 66.68 68.18 33.24 39.48

Desc. 67.04 68.48 33.24 37.41

HOTELS → BANKING

QA-FT: T5 59.76 66.12 35.08 44.60
SQATIN None 65.35 67.34 44.72 52.05

Desc. 66.44 68.56 45.69 51.87

Table 4: Domain transfer results for SQATIN and the
QA-FT (T5) baseline on NLU++ (between BANKING
and HOTELS). Bold: best score in each column.

in task-specific instruction-based fine-tuning, re-330

sulting in SotA performance. The gains seem more331

pronounced in setups with less training data (i.e.,332

20-Fold in Table 2) rendering instruction-tuning333

more sample efficient than (QA-based) fine-tuning.334

Overall, SQATIN seems to work slightly better335

with descriptive context prompts added to the in-336

struction (compare Desc. vs. None).337

Domain Transfer Results. We next train SQATIN338

in one (source) domain and apply it in another339

(target) domain. Table 4 and Figure 3 summarize340

the domain transfer results for NLU++ and CLINC-341

150 (all domain pairs), respectively.342

Much like in in-domain training, SQATIN con-343

sistently outperforms the SoTA baseline QA-FT344

in domain transfer (the only exception is BANK-345

ING→HOTELS transfer for ID in the 10-Fold setup),346

only now by much wider margins for VE (e.g., by347

over 10 points in HOTELS→BANKING transfer in348

the 20-Fold setup). On CLINC-150, the results re-349

veal not only that SQATIN consistently outper-350

forms QA-FT (consistently lighter heatmap cells351

for SQATIN variants than for QA-T5) but that it is352

also able to better exploit label similarity between353

domains: e.g., for CREDIT CARD as the target do-354

main, SQATIN obtains best performance when355

transferring from the BANKING domain, whereas356

QA-FT, in this case, finds AUTO as the best source.357

Similarity of Intent Class Descriptions. Observ-358

ing that SQATIN yields best transfer performance359

between intuitively related domains, we now inves-360

tigate more closely what type of similarity between361

domains drives the transfer: (i) similarity of exam-362

ples (sim-E) or (ii) similarity of intent class descrip- 363

tions, incorporated in SQATIN’s prompts (sim-C). 364

We quantify sim-E as the average similarity across 365

all pairs of utterances between the domains: with 366

similarity of two utterances computed as cosine 367

between their sentence embeddings, obtained with 368

mpnet (Song et al., 2020) as the sentence encoder. 369

Analogously, sim-C is computed as the average sim- 370

ilarity of pairs of class prompts between the two 371

domains. We then measure the correlation (Pear- 372

son’s ρ) between the transfer performance and sim- 373

E or sim-C. Table 5 shows these correlations for 374

each CLINC-150 domain as transfer target. Corre- 375

lations are largest for domains that do have related 376

domains in the dataset (e.g., BANKING and CREDIT 377

CARD) and lowest for domains that are quite differ- 378

ent from all other (e.g., AUTO or UTILITY). Impor- 379

tantly, sim-C shows higher average correlation with 380

transfer performance than sim-E: this suggests that 381

SQATIN’s instruction-based tuning with class de- 382

scriptions in prompts truly captures similarities sets 383

of intents and, consequently, especially improves 384

transfer between related domains. 385

5 Further Analyses and Discussion 386

Cross-Task Generalisation. We next hypothesise 387

that SQATIN facilitates transfer between the two 388

dialogue NLU tasks, given that SQATIN’s QA for- 389

mulation conceptually allows for such cross-task 390

transfer and presents both tasks to the model in 391

the same format. Table 6 compares the zero-shot 392

ID performance of the off-the-shelf Flan-T5 (Non- 393

tuned) against the variant we SQATIN-fine-tune 394

for VE. We observe substantial improvements in ID 395

after instruction-tuning for VE (around 5% in the 396

BANKING domain and over 10% in the HOTELS do- 397

main), proving effective cross-task generalisation 398

of SQATIN in dialogue NLU. 399

We then fine-tune the models jointly on ID and 400

VE. Table 7 compares single-task training vs. multi- 401

task training on both tasks. While multi-task train- 402

ing yields no clear gains for ID (as the easier of 403

the two tasks), it gives consistent gains for VE (0.5- 404

1.5 F1 points). This again indicates that SQATIN 405

facilitates transfer between the dialog NLU tasks. 406
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Template AUTO BANKING
CREDIT
CARD HOME

KITCHEN
&DINING META

SMALL
TALK TRAVEL UTILITY WORK AVG

In-Domain Training Examples

None -0.1443 0.5476 0.4268 0.1318 0.0204 0.0970 0.3279 0.0890 -0.2613 0.5451 0.2591
Desc. -0.1069 0.5710 0.4695 -0.1121 0.1649 0.0929 0.1304 -0.3360 -0.35 0.6086 0.2942

Intent Descriptions

None -0.2600 0.6260 0.5076 0.3059 0.1208 0.2454 0.6019 0.1633 0.1388 0.3830 0.3353
Desc. -0.3376 0.5533 0.5327 0.2319 -0.1091 0.3165 0.4884 0.1076 0.0449 0.4860 0.3208

Table 5: Correlation (Pearson’s ρ) between domain transfer performance and domain similarity, measured in terms
(i) of examples (sim-E) and (ii) class prompts (sim-C): shown for every CLINC-150 domain as the target.

Au
to

Ba
nk

in
g

Cr
ed

it 
Ca

rd
Ho

m
e

K 
an

d DM
eta

Sm
all

 T
alk

Tr
av

el
Ut

ili
ty

W
or

k

Auto
Banking

Credit Card
Home

K and D
Meta

Small Talk
Travel
Utility
Work

QA-FT

Au
to

Ba
nk

in
g

Cr
ed

it 
Ca

rd
Ho

m
e

K 
an

d DM
eta

Sm
all

 T
alk

Tr
av

el
Ut

ili
ty

W
or

k

SQATIN: None
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Figure 3: Cross-domain transfer results for ID on CLINC-150 for SQATIN and the SotA QA-FT baseline. Full
results in the tabular format are in Appendix B. Diagonal values correspond to in-domain results. Source domains
shown along the vertical axis and target domains along the horizontal axis.

Model BANKING HOTELS

20-Fold 10-Fold 20-Fold 10-Fold

Non-tuned 21.91 21.93 20.85 21.94
Tuned for VE 26.28 26.85 30.77 33.39

Table 6: SQATIN’s (Desc. cross-task transfer perfor-
mance on NLU++; VE→ID.

Model Template ID VE

20-F 10-F 20-F 10-F

BANKING

SQATIN
None Single-task 85.55 88.53 64.92 75.41

Multi-task 85.69 88.34 66.89 76.08
Desc. Single-task 85.78 88.41 66.32 76.26

Multi-task 85.79 88.42 67.88 76.76

HOTELS

SQATIN
None Single-task 73.11 78.04 57.99 67.71

Multi-task 72.70 77.73 61.27 68.66
Desc. Single-task 73.35 78.11 58.74 66.94

Multi-task 73.15 77.74 61.74 68.66

Table 7: Cross-task transfer: comparison between (in-
domain) single-task (ID or VE) and multi-task training
(ID and VE) on NLU++.

Model Size. To analyse the impact of the underly-407

ing instruction-tuned model’s size on performance,408

we also train SQATIN on top of the following409

Flan-T5 models: SMALL (80M parameters), BASE410

(250M) and LARGE (780M), with the scores pro-411

vided in Appendix E. SQATIN yields strong in-412

domain performance even on top of the SMALL413

Flan-T5. The margin between LARGE and BASE is414

substantially smaller than that between BASE and415

SMALL; for in-domain ID, the gap between LARGE416

and BASE is negligible. The SMALL models per-417

forms notably worse than its larger siblings only418

in cross-domain transfer, especially for VE. Cross- 419

domain performance of LARGE almost reaches the 420

in-domain performance of SMALL, which is in line 421

with observations that generalisation abilities of 422

instruction-tuned models generally improve with 423

their size (Chung et al., 2022). 424

Sample Efficiency. Due to large-scale instruction 425

pretraining, we expect SQATIN to be more sam- 426

ple efficient than QA-FT and CL-SE. To test this, 427

we train the models on training data of different 428

sizes. The process is as follows: i) first, 1000 exam- 429

ples are randomly chosen for the test set; ii) from 430

the rest we sample a random subset of N training 431

examples; iii) models are then trained on training 432

set from step ii) and evaluated on test set from 433

step i). This ensures that models trained on sets 434

of different sizes are evaluated on the same test 435

set, making the performances comparable. We use 436

the same hyperparameter configuration from §3 for 437

all training sizes. Results in Figure 4 demonstrate 438

that the scarcer the resources are, the more benefits 439

SQATIN brings over the baselines (QA-FT and es- 440

pecially CL-SE). Another observation is that both 441

QA-based approaches, QA-FT as well as SQATIN 442

drastically outperform CL-SE in few-shot scenarios 443

(cf. results for 32 and 64 training examples): this 444

result justifies QA formulation for intent detection 445

and value extraction in low-data setups. 446

Independent QA versus Multiple-Choice. By 447

design SQATIN involves asking an independent 448
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Figure 4: Comparison of ID models on BANKING do-
main on NLU++ for different training data sizes. The
results are averages over 3 random seeds.

question about every intent (for ID) and every slot449

(VE) from the ontology for each user utterance: this450

decomposition might impact inference efficiency.451

A more efficient alternative might be a common452

multiple-choice prompt-based approach, where we453

create one instruction per utterance and provide the454

model with all possible intent classes or slots. The455

model is then expected to generate all intents or slot456

values that apply to the given utterance in a single457

response. We use the same instruction formulations458

to ensure comparability and represent possible in-459

tent classes with natural language descriptions (e.g.,460

“to deny something”, “to greet someone”); see an in-461

put example in Appendix F. Similarly to SQATIN,462

we finetune an instruction-tuned model, namely,463

Flan-T5 (BASE), on the MC-style input. Training464

hyperparameters are provided in Appendix D.465

While offering potential benefits with inference466

speed, there are known deficiencies of this multiple-467

choice formulation (MC), as previously discussed468

in §2. For instance, the average length (in tokens)469

of input of the independent, binary SQATIN for-470

mualation for NLU++ ID and the MC formulation471

is 29.85 and 310.13, respectively. The difference472

might become even more salient with larger ontolo-473

gies. The results for NLU++ in Table 8 demonstrate474

that the MC approach is considerably behind the475

independent-QA SQATIN both in in-domain and476

cross-domain setups, regardless of the training data477

size or template formulation. This indicates that the478

per-intent or per-slot independent question formula-479

tion is necessary for sample-efficient generalisation480

of SQATIN. We hypothesise that this is due to the481

data augmentation effects achieved this way.482

SQATIN versus In-Context Learning with483

ChatGPT. One alternative to supervised tuning484

of smaller models is in-context learning (ICL) with485

much larger instruction-tuned language models.486

ICL could be more computationally efficient at487

Model Templ. In-Domain Cross-Domain

20-F 10-F 20-F 10-F

BANKING

ChatGPT ZS N/A 38.2 38.2 – –
ChatGPT ICL N/A 67.5 67.6 – –

SQATIN None 85.6 88.5 66.7 68.2
Desc. 85.8 88.4 67.0 68.5

MC None 62.0 67.9 39.3 46.1
Desc. 63.9 68.5 42.5 47.7

HOTELS

ChatGPT ZS N/A 39.1 39.2 – –
ChatGPT ICL N/A 63.1 67.9 – –

SQATIN None 73.1 78.0 65.4 67.3
Desc. 73.4 78.1 66.4 68.6

MC None 45.5 58.2 37.3 50.8
Desc. 50.0 59.7 41.3 51.9

Table 8: Standard SQATIN versus prompt-based
multiple-choice (MC) task formulation for in-domain
and cross-domain setups (ID on NLU++).

training time as it does not require fine-tuning the 488

model while being more demanding at inference 489

time, as the model size is considerably larger. To 490

compare the performance of ICL with SQATIN, 491

we evaluate ChatGPT in two standard scenarios: 492

(i) zero-shot (ZS), when the provided instruction 493

includes task description with all possible options 494

(intent descriptions in our case); and (ii) ICL, when 495

in addition to the above, the instruction also in- 496

cludes training examples which were used for su- 497

pervised training in the models in every respective 498

setting.4 We evaluate GPT-3.5-turbo-instruct 499

as the underlying model due to its strong ICL capa- 500

bilities (Ye et al., 2023). 501

Results in Table 8 demonstrate that SQATIN 502

performs consistently better than ChatGPT in both 503

ZS and ICL scenarios. This suggests that even 504

large models with ICL (and higher inference de- 505

mands and cost) cannot surpass smaller highly spe- 506

cialised SQATIN models for the fine-grained dia- 507

logue NLU tasks such as the NLU++ ones. 508

Parameter Efficiency. Next, we also investigate 509

whether the performance benefits of SQATIN 510

extend when we replace full-model fine-tuning 511

with the standard parameter-efficient fine-tuning 512

(PEFT) methods (Ruder et al., 2022) such as 513

adapters (Houlsby et al., 2019; Pfeiffer et al., 2021). 514

In our case, relying on the standard bottleneck 515

adapters with the reduction factor of 16 (Poth et al., 516

2023), for Flan-T5 BASE, the number of tunable 517

parameters is ≈ 250× smaller than the size of the 518

original model. The hyperparameters and training 519

procedure are the same (see §3), except for the 520

4For the 10-Fold setup including all examples was impos-
sible due to the context length limit. In this case, we fitted as
many examples as possible by the context length.
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Figure 5: Full-model fine-tuning (≈ 248M tunable pa-
rameters) versus PEFT with Adapters (≈ 1.8M tunable
parameters) in in-domain ID and VE.

learning rate which was increased to 5e-4.5 Fig-521

ure 5 displays the performance of adapter-based522

fine-tuning on NLU++. The results render adapters523

extremely effective, yielding results comparable to524

those of full fine-tuning, indicating that the bene-525

fits of SQATIN are not limited to full-model fine-526

tuning only.527

6 Related Work528

Pretraining for TOD Dialogue. LLMs, trained on529

large web-scale corpora, revolutionised NLP, bring-530

ing massive performance gains to most NLP tasks.531

Besides general corpora, the most successful pre-532

trained LMs for dialogue have have been addition-533

ally trained on more specialised, conversation-like534

data (e.g., from Reddit or Twitter). These models535

have been increasingly successful in both open-536

domain (Adiwardana et al., 2020; Bao et al., 2021;537

Thoppilan et al., 2022; Dettmers et al., 2023, in-538

ter alia) and task-oriented dialogue (Budzianowski539

and Vulić, 2019; Lin et al., 2020; Ham et al., 2020;540

Zhao et al., 2020). Compared to general-purpose541

LM pretraining (e.g., BERT), dialogic pretraining542

has been shown to lead to higher performance in543

cross-domain transfer for dialogue NLU tasks (Mi544

et al., 2021; Lin et al., 2021; Hung et al., 2022a,545

interalia) due to the versatility of texts used in pre-546

training. Another stand of work incestigated multi-547

task learning setups for dialogue NLU (Hosseini-548

Asl et al., 2020; Liu et al., 2021; Su et al., 2022).549

In this work, in contrast, we resorted to models pre-550

trained on multiple tasks with instruction-based ob-551

jectives, resulting with stronger inductive biases for552

cross-domain and cross-task settings. To the best553

of our knowledge, this work is the first to propose554

a unified (QA- and instruction-based) framework555

for both dialogue NLU tasks (ID and VE).556

Instruction Tuning for Dialogue NLU. Instruc-557

tion tuning is an emergent framework in NLP558

5Grid search over the set {5e-5, 5e-4, 5e-3} was run.

where a generative model completes a task by fol- 559

lowing natural language instructions, possibly in- 560

cluding few labelled instances following the in- 561

struction to make the whole prompt. These models 562

generalise particularly well to tasks unseen dur- 563

ing training (Chung et al., 2022; Chowdhery et al., 564

2023) due to their ability to leverage the infor- 565

mation about a task during inference (Liu et al., 566

2023b). The performance, especially in zero-shot 567

setup, is highly dependent on task definitions (Liu 568

et al., 2023b) or providing several training exam- 569

ples (Min et al., 2022) in the instruction text (com- 570

monly known as in-context learning). Dialogue fol- 571

lows the same trend: recent work (Gupta et al., 572

2022) demonstrated the zero-shot effectiveness of 573

instruction-tuned models on dialogue tasks. Instruc- 574

tion engineering (Gupta et al., 2022; Ruder et al., 575

2023) and increasing the number of in-context in- 576

stances can further improve the models’ perfor- 577

mance (Madotto et al., 2021; Mi et al., 2022). The 578

input (context) size of the models, however, puts 579

a limit on the number of (1) training examples (2) 580

classes (i.e., their descriptions) one can include in 581

the prompt. SQATIN deals with the issue in two 582

ways: a) by recasting the dialogue NLU tasks as 583

independent QA, at inference time we remove the 584

need for the model to see all class descriptions at 585

once; and b) we allow the model to learn from 586

training examples in supervised fashion (versus in- 587

context) thus not being limited by the base model’s 588

input length. We empirically validate that both have 589

strong positive impact on task performance. 590

7 Conclusion 591

We have introduced a novel framework for dialogue 592

NLU, SQATIN, which combined (i) supervised in- 593

struction tuning and (ii) question-answering formu- 594

lation of intent detection and value extraction. We 595

evaluated SQATIN on two established dialogue 596

NLU benchmarks, demonstrating that SQATIN 597

brings substantial and consistent improvements 598

over the existing SoTA approaches. The perfor- 599

mance gains are especially pronounced in cross- 600

domain transfer, as SQATIN can leverage simi- 601

larities between classes across domains via their 602

descriptions. SQATIN also performs well in cross- 603

task transfer, enabling the two dialogue NLU tasks 604

to benefit from one another. We also show that 605

SQATIN supports parameter-efficient fine-tuning 606

and that it largely outperforms ICL with much 607

larger (and more expensive) language models. 608
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Limitations609

Our experiments are based on the Flan collection610

of models as they were pretrained on a wide collec-611

tion of tasks. However, we note that there are other612

instruction-based models (Ouyang et al., 2022;613

Sanh et al., 2022; Zhang et al., 2022, inter alia),614

with more getting published almost on a daily ba-615

sis, which could be used with the proposed method616

and the choice of the instruction-based model is617

orthogonal to the proposed methodology. We leave618

wider exploration in this direction as future work.619

Additionally, we have focused on a single-source620

transfer across domains, i.e., a model trained on621

one domain was expected to be able to transfer to a622

multitude of others. Future work will also explore623

the multi-source cross-domain transfer where the624

model would be finetuned on combined data from625

several domains and tested on data from domains626

not included in training.627

In the evaluation, we rely on available standard628

dialogue NLU benchmarks built specifically to629

test few-shot in-domain and cross-domain gener-630

alisation abilities of the models. It is important631

to note that the benchmarks are only for English632

dialogue NLU. We opt to confirm the effective-633

ness of SQATIN in multilingual settings in future634

work. Exploration of SQATIN in multilingual set-635

tings would be also dependent on the availability of636

strong multilingually pretrained instruction-based637

models.638

Lastly, due to the computational cost of finetun-639

ing instruction-based models we largely rely on640

instruction wordings and training hyperparameters641

from prior work. We hope to perform a more de-642

tailed hyperparameter search in both wording of643

the instructions and training hyperparameters in the644

future.645
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A Different Instruction Formulations1071

Choosing the right instruction formulation is often1072

crucial (or at least important) to obtain strong per-1073

formance from the instruction-based models. Thus,1074

we conducted a pilot study for picking an optimal1075

one. We experiment with 4 context options, 4 op-1076

tions of text preceding a question and 3 prompt op-1077

tions. The options (shown in Table 9) were adapted1078

from the templates used to train the Flan models1079

(Chung et al., 2022). We use Fold-0 of 10-Fold in-1080

domain setting for intent detection to determine the1081

best instruction formulation.1082

The results of the preliminary study are shown1083

in Table 10. Although the range of results is not1084

that large, we focus on two instruction formula-1085

tions in further experiments: none-none-none and1086

usersaid-question-none. The former is picked1087

for similarity with the simple question answer-1088

ing formulation, although it leads to a lower1089

performance. This enables direct comparison to1090

QA-based models. As this formulation contains1091

only the input sentence and the questions (no de-1092

scription of the task or its context), we denote1093

it as None. The former instruction formulation1094

(usersaid-question-none) is used as it contains1095

the description of the context of the task and it led1096

to the highest performance in the pilot study. As it1097

contains a short description of the task, we denote1098

it as Descriptive (Desc.).1099

B Full Cross-Domain Results on1100

CLINC-150 for Different Base Models1101

The cross-domain results on CLINC-150 for QA-1102

FT and different versions of SQATIN are provided1103

in Tables 11, 12 and 13.1104

C Comparison of Single-Task and1105

Multi-Task Models for Cross-Domain1106

Setups1107

Comparison of cross-domain results of models1108

trained with SQATIN in single-task and multi-task1109

Context

• “” [none]
• “Given the following sentence: ” [given]
• “Sentence: ” [sent]
• “The user says: ” [usersaid]

Pre-question

• “” [none]
• “Question: ” [question]
• “Based on the question: ” [based]
• “Based on the question above: ” [basedabove]

Prompt

• “” [none]
• “Answer: ” [answer]
• “Options: -yes -no

Answer:” [answeroptions]

Table 9: Variants of instruction formulation.

setings is shown in Table 14. 1110

D Fine-tuning and Hyperparameters 1111

The classifier of the CL-SE baseline is a feed- 1112

forward network with a single hidden layer of di- 1113

mensionality 512 and tanh as the non-linear acti- 1114

vation function. With multi-label formulations of 1115

classification tasks (because instances in NLU++ 1116

can have multiple labels and those in CLINC-150 1117

none), we apply sigmoid as an output activation 1118

and train with the binary cross-entropy loss. At in- 1119

ference, we consider an intent class to be predicted 1120

if its probability, output of the sigmoid activation, 1121

is above the threshold θ = 0.3. 1122

The models are implemented using Transform- 1123

ers library (Wolf et al., 2020). The models are 1124

loaded with sequence-to-sequence language model- 1125

ing head. Baseline QA-based models and SQATIN 1126

are fine-tuned with the same protocol and hyperpa- 1127

rameters as in prior work (Casanueva et al., 2022; 1128

Fuisz et al., 2022; Moghe et al., 2023). They are 1129

trained for 10 epochs with the batch size of 8, with 1130

Adam optimizer (Kingma and Ba, 2015) and the 1131

learning rate of 5e-5. Unless stated differently, we 1132

report the average cross-validation performance 1133

across all 10 or 20 folds the results are averages of 1134

10 and 20 runs for 10- and 20-Fold setups, respec- 1135

tively.6 1136

6We focus on the pre-defined few-shot 10-Fold and 20-
Fold setups, as the baselines already demonstrate saturated
performance on Large training data setups (Casanueva et al.,
2022).
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Context Pre-question Prompt Banking Hotels AVG

none none none 77.2 67.3 72.25
sent none none 81.31 76.45 78.88
none none answer 80.96 77.14 79.05
given none none 81.4 76.96 79.18
none none answer-options 81.22 77.26 79.24
none based-above answer 82.65 75.9 79.28
usersaid none none 81.72 77.35 79.54
given none answer 81.49 77.69 79.59
sent none answer 81.36 78.06 79.71
none based answer 82.1 77.33 79.72
none based answer-options 82.1 77.37 79.74
sent based none 82.13 77.38 79.76
sent based-above none 82.68 77 79.84
sent based-above answer 82.73 77.06 79.90
sent based answer 82.15 77.74 79.95
none based-above answer-options 82.67 77.24 79.96
sent none answer-options 81.4 78.63 80.02
none based none 82.08 78.1 80.09
usersaid based none 82.34 77.92 80.13
usersaid none answer-options 82.05 78.28 80.17
given none answer-options 81.7 78.63 80.17
given question answer 83.49 76.94 80.22
sent based-above answer-options 82.8 77.65 80.23
none based-above none 82.57 77.93 80.25
none question answer 83.17 77.35 80.26
sent question none 83.25 77.27 80.26
usersaid based answer 82.39 78.15 80.27
sent question answer 83.39 77.29 80.34
usersaid based none 82.99 77.72 80.36
usersaid based answer 83.05 77.68 80.37
none question answer-options 83.22 77.61 80.42
given question answer-options 83.6 77.39 80.50
usersaid none answer 81.83 79.17 80.5
sent based answer-options 82.29 78.78 80.56
given question none 83.42 77.66 80.54
usersaid based answer-options 82.42 78.67 80.55
sent question answer-options 83.4 77.7 80.55
usersaid based answer-options 83.08 78.44 80.76
none question none 83.08 78.5 80.79
usersaid question answer 83.88 77.74 80.81
usersaid question answer-options 84.2 77.43 80.82
usersaid question none 83.85 78.07 80.96

Table 10: Performance of SQATIN with different in-
struction wordings. The options are ordered in ascend-
ing average order.
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Figure 6: ID and VE performance (BANKING domain
of NLU++, 20-Fold setup) for SQATIN trained on top
of Flan-T5 models of different sizes. Similar trends are
observed in the HOTELS domain, see Figure 7.

SMALL BASE LARGE
Model size

20

30

40

50

60

70

80

F-
1 

Sc
or

e

Task
Intents
Slots
Domain
In
Cross

Figure 7: ID and VE performance (HOTELS domain of
NLU++, 20-Fold setup) for SQATIN trained on top of
Flan-T5 models of different sizes.

The user says: we will arrive tomorrow at 25 to 7 
p.m.

Question: what did the user intend to ask? 
Include all applicable options. Split the outputs 
with $$.

Options: 
to affirm something
to deny something
to say I don’t know
to acknowledge what was said
to greet someone
<...>
to ask something related to wifi or wireless
to ask something related to gym
to ask something related to spa or beauty services
to ask something related to some room amenities
to talk about housekeeping issues
to talk about room service

Answer:

Figure 8: Input example for the multiple-choice formu-
lation in the ID task.

E Results for Different Model Sizes 1137

The results for different model sizes for the two 1138

domains of NLU++ are plotted in Figure 6 and 1139

Figure 7. 1140

F Instructions with the Multiple Choice 1141

Formulation 1142

Figure 8 shows an example of the multiple choice 1143

formulation for the ID task, including the instruc- 1144

tion text, user query example and all possible op- 1145

tions for the answers. 1146
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QA-FT pretrained on SQUAD 2.0

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

AUTO 90.42 71.08 65.22 42.03 61.23 61.78 65.64 77.04 66.7 60.5
BANKING 34.67 94.38 62.16 43.35 62.51 49.43 50.35 74.33 58.96 61.45
CREDIT
CARD

35.19 66.94 94.42 41.28 64.05 55.86 61.13 76.54 64.14 66.92

HOME 26.68 60.4 46.07 89.23 55.95 48.64 43.35 76.05 56.65 68.08
K AND D 35.96 66.85 67.75 46.98 93.22 54.52 68.6 80.95 71.08 65.5
META 32.51 58.92 45.94 41.11 51.25 90.1 61.68 74.11 67.33 58.19
SMALL
TALK

27.2 49.17 39.61 30.69 49.17 52.4 81.36 64.59 58.16 51.62

TRAVEL 32.96 58.54 38.89 39.71 50.6 46.53 39.46 97.67 61.13 59.72
UTILITY 32.61 63.12 42.76 35.91 46.87 52.67 65.77 73.62 94.65 60.08
WORK 36.32 62.9 55.93 41.05 58.24 53.14 58.62 81.83 69.13 89.99

Table 11: Cross-domain intent detection using QA-based model on CLINC-150 (Larson et al., 2019). K AND D
stands for KITCHEN AND DINING domain. The rows are source domains while columns show target domains.

SQATIN: None

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

AUTO 94.47 70.87 67.26 39.75 54.96 52.2 61.57 85.01 67.09 65.71
BANKING 71.2 96.04 74.53 46.92 58.31 52.81 58.3 86.02 65.58 70.27
CREDIT
CARD

70.08 77.44 95.64 48.97 58.71 57 58.4 84.3 65.53 71.68

HOME 65.8 76.24 68.91 91.91 63.3 49.18 56.1 89.59 66.98 72.51
K AND D 77.25 77.38 79.84 52.53 95.01 56.22 67.09 88.01 72.75 69.7
META 66.5 70.49 67.33 46.85 59.05 90.55 71.51 85.98 67.26 65.47
SMALL
TALK

67.36 67.07 63.8 41.52 57.04 51.12 93.1 83.94 61.43 62.68

TRAVEL 62.8 66.26 63.34 41.94 50.58 47.71 55.97 97.77 67.35 64.58
UTILITY 64.6 70.71 64.35 45.68 55.88 61.6 70.91 88.28 95.72 67.97
WORK 68.68 77.19 73.12 50.89 58.03 48.63 54.5 83.31 67.05 91.56

Table 12: Cross-domain intent detection using SQATIN on CLINC-150 (Larson et al., 2019) with None templates.
K AND D stands for KITCHEN AND DINING domain. The rows are source domains while columns show target
domains.

SQATIN: Desc.

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

auto 94.47 75.69 70.47 41.68 56.88 50.47 59.61 82.45 68.54 67.51
banking 72.43 96.11 75.91 46.77 59.13 51.44 55.68 81.96 65.14 69.08
credit
card 73.62 80.39 95.85 49.55 61.13 54.34 60.59 80.81 66.01 70.23

home 65.04 76.7 66.99 92.66 62.81 49.83 54.21 88.98 66.03 72.07
k and d 66.79 73.88 66.92 47.91 95.36 57.31 65.57 87.18 72.71 69.37
meta 66.73 73.66 67.55 47.56 59.12 91.52 68.59 86.31 67.01 63.85
small
talk 67.08 69.89 61.95 41.26 55.93 51.33 93.12 84.28 62.62 62.97

travel 64.5 73.05 63.56 46 54.73 48.81 59.14 96.97 68.92 66.66
utility 65.39 73.03 64.25 45.66 55.26 59.82 68.29 87.59 96.07 67.09
work 67.8 79.15 71.26 50.41 58.86 47.48 53.41 82.07 67.15 92.01

Table 13: Cross-domain intent detection using SQATIN on CLINC-150 (Larson et al., 2019) with Descriptive
templates. K AND D stands for KITCHEN AND DINING domain. The rows are source domains while columns show
target domains.
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Model Template ID VE

20-Fold 10-Fold 20-Fold 10-Fold

BANKING → HOTELS

SQATIN
None Single-Task 66.61 68.18 33.24 39.48

Multi-Task 66.73 68.59 33.81 39.77

Desc. Single-Task 67.04 68.48 33.25 37.41
Multi-Task 67.28 68.15 33.08 36.18

HOTELS → BANKING

SQATIN
None Single-Task 65.35 67.34 44.72 52.05

Multi-Task 64.68 67.06 45.38 51.44

Desc. Single-Task 66.44 68.56 45.69 51.87
Multi-Task 66.86 68.08 46.02 52.04

Table 14: Comparison of single-task and multi-task mod-
els for cross-domain intent detection and value extrac-
tion on NLU++.
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