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ABSTRACT

Test-Time Adaptation (TTA) enhances model robustness by enabling adaptation
to target distributions that differ from training distributions, improving real-world
generalizability. However, most existing TTA approaches focus on adjusting the
conditional distribution and therefore exhibit poor calibration, as they rely on uncer-
tain predictions in the absence of labels. Energy-based TTA frameworks provide an
alternative by modeling the marginal distribution of target data without depending
on label predictions, but their reliance on costly sampling hinders scalability in
real-world scenarios where decisions must be made without latency. In this work,
we propose Contrastive Residual Energy Test-time Adaptation (CRETTA), a prac-
tical solution for reliable adaptation. We first redefine the marginal distribution of
target data using residual energy function and embed it into contrastive objective.
This design prevents overfitting through adaptive gradient reweighting mechanism
that leverages the relative residual energy while eliminating the sampling pro-
cess. Extensive experiments demonstrate that CRETTA achieves scalable and
well-calibrated adaptation under real-world computational constraints.

1 INTRODUCTION

Deep learning models can achieve high accuracy on training and testing data from the same distribu-
tion. However, when the distribution of the test data diverges from the original training dataset, the
performance of the deep learning models deteriorates. This distribution shift refers to changes in the
underlying data statistics, such as feature distributions or environmental conditions, between training
and deployment. It is a major challenge in real-world scenarios, where test samples are often drawn
from a distribution that deviates from the training data.

To address distribution shifts during testing, test-time adaptation (TTA) strategy aims to adapt trained
model instantly, thereby maintaining robust performance on unexpected out-of-distribution samples.
Since ground-truth labels are unavailable at test-time, existing approaches such as Pseudo-labeling
(Lee et al., 2013) and SHOT (Liang et al., 2020) use the model’s own predictions as pseudo-labels.
Likewise, TENT (Wang et al., 2020) operates similarly by using the model’s predicted probability
distribution as a surrogate ground-truth distribution within an entropy-minimization objective.

Formally, the entropy minimization objective for a test sample xt is expressed as �
PC

k=1 p✓(ŷk |
xt) log p✓(ŷk | xt), where C is the number of classes and p✓(ŷk | xt) is the predicted probability of
class ŷk. While this approach demonstrates promising accuracy, it relies on uncertain predictions
without ground-truth supervision. As a result, optimizing the entropy minimization objective often
drives the predicted probabilities to collapse to extreme values of 0 or 1, leading to overconfident
predictions (Press et al., 2024). This behavior increases calibration error as illustrated in Figure 10.
In high-stakes real-world scenarios, such overconfidence can be detrimental, underscoring the need
for alternative TTA strategies beyond simple entropy minimization. In such settings, well-calibrated
adaptation is critical to avoid overconfident errors and ensure safe, reliable model behavior in
real-world scenarios.

Adaptation with marginal distribution leads to better calibration. Rather than learning from the
conditional distribution p✓(ŷ|x) with unreliable model predictions, some approaches instead focus on
modeling the marginal distribution p✓(x) by directly maximizing its likelihood. This formulation
avoids dependence on predicted labels and mitigates the overconfidence issues often associated with
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entropy minimization. TEA (Yuan et al., 2024) applies maximum likelihood estimation (MLE) in
the TTA setting and leverages contrastive divergence (CD) loss, an energy-based objective (Hinton,
2002; LeCun et al., 2006; Song & Kingma, 2021), to align the model with unseen target distributions.
Achieving better calibration while maintaining strong classification accuracy, TEA provides experi-
mental evidence of stable and reliable adaptation, extending beyond the theoretical insights of earlier
works (He et al., 2021; Wang et al., 2021; Schröder et al., 2024).

Despite its strengths, energy-based models with MLE methods for TTA still face two critical limita-
tions: (i) Unresolvable approximation error: The normalization approximation relies on short-run
Markov chains, which yield biased gradient estimates. As a result, parameter updates at test time
can be unstable or converge to suboptimal solutions (Song & Kingma, 2021; Yair & Michaeli, 2021),
particularly during few-shot adaptation or when dealing with high-dimensional data as shown in
Figure 1. (ii) High computational cost due to sampling-based approximation: It requires repeated
sampling to re-estimate the normalization constant for every incoming test batch, incurring substantial
computational overhead during adaptation. This burden grows with model sizes, since each sampling
step entails expensive gradient computations, thereby making real-time or resource-constrained TTA
deployment infeasible, highlighting the need for methods that reduce overhead while maintaining
strong performance.

Figure 1: ImageNet-C (Sev 5) ECE(#) and Acc(")
over batch progress. CRETTA maintains stable
calibration performance, while TEA experiences
approximation error accumulation.

To this end, we propose CRETTA, a novel resid-
ual energy-based test-time adaptation method
that optimizes with marginal distribution while
eliminating the normalization constant approxi-
mation, achieving high computational efficiency
and scalability for real-world deployment.

First, we redesign the TTA task as learning the
residual component of the distribution shift that
the pretrained model has not yet captured and
model the discrepancy with a residual energy
function. Then, we embed the residual energy
function into the contrastive learning objective,
offsetting the normalization constant for the
marginal distribution which typically requires
extensive computations for approximation.

The primary contributions of our work can be summarized as follows:

• We introduce CRETTA, a novel sampling-free residual energy-based test-time adaptation (TTA)
framework, offering computational efficiency and scalability for practical applications.

• Our method mathematically redefines the target marginal distribution with a residual energy
function and optimizes it with contrastive learning objective. Consequently, this formulation
enables TTA without costly normalization constant approximation and mitigates overfitting,
thereby ensuring stable adaptation.

• CRETTA is well-calibrated and achieves strong performance across various distribution shifts.

2 PRELIMINARIES

Problem Setup Let Q denote the marginal distribution of the source training data xs. Consider a
classifier f�(x) with parameters �, which is pretrained on a labeled source dataset {(x(i)

s , y(i)
s )}M

i=1. Al-
though this pretrained model performs well on in-distribution test data (i.e., xs ⇠ Q), its performance
can degrade substantially when tested on data from a different distribution P ( 6= Q), commonly
referred to as out-of-distribution data.

Test-time adaptation (TTA) aims to mitigate this issue by adapting the pretrained parameters �
to better align with the target marginal distribution P . In this setting, we are given a set of N
unlabeled target samples {x(i)

t }N
i=1 drawn from P , which arrive in online batches. To cope with the

absence of label information, existing methods often rely on unsupervised objectives, particularly
entropy minimization. EATA (Niu et al., 2022) and SAR (Niu et al., 2023) build on this foundation
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by incorporating surrogate objectives and sample selection mechanisms to filter out unreliable
predictions. However, these enhancements still fundamentally depend on uncertain model outputs, as
dictated by the nature of entropy-based objectives.

Moving beyond entropy-based methods, recent work by TEA (Yuan et al., 2024) demonstrates the
promise of energy-based modeling for TTA, where the central idea is to represent the test data
marginal distribution through an energy function. Within this framework, TEA employs MLE on
the marginal distribution of test samples {x(i)

t }N
i=1, so that the energy function is learned to assign

lower energy (i.e., higher likelihood) to observed test inputs. By directly modeling and adapting to
the marginal distribution, TEA mitigates distribution shifts without requiring labeled data or relying
heavily on potentially unreliable model predictions. Building on this insight, our proposed method,
CRETTA, approaches test-time adaptation not merely as an MLE procedure, but as effective learning
of an energy function that represents an unnormalized marginal distribution.

Energy-based Models (EBMs) LeCun et al. (2006) express the marginal distribution in the
energy-based model framework using Gibbs distribution, which can be formulated as q�(x) =
exp(�E�(x))/Z(�), where � 2 �, with � representing the parameter space and Z(�) =R
x exp(�E�(x))dx is the normalizing constant (partition function). The energy function E�(x) :

Rd ! R maps a d-dimensional data point to a scalar energy value, thereby defining an unnormalized
density over the data space. The fundamental principle of EBMs is to represent the likelihood of
a sample through this energy landscape: lower energy corresponds to higher likelihood and vice
versa. A well-trained EBM thus learns to assign low energy values (i.e., high likelihood) to samples
drawn from the in-distribution (source) Q, while assigning high energy (i.e., low likelihood) to
out-of-distribution samples, such as those from a shifted target distribution P , where P 6= Q.

Grathwohl et al. (2019) and Yang & Ji (2021) present an innovative perspective on reframing
discriminative models within the EBM framework. In their formulation, the energy function for a
given input-label pair (x, y) is defined as E�(x, y) = �f�(x)[y], where f�(x)[y] denotes the logit
corresponding to label y in the discriminative model f� (i.e., classifier). Furthermore, the energy
function derived from a discriminative model for a single input x can be expressed as the negative
log-sum-exp of the logits across all classes in the final classifier layer:

E�(x) = �T · log
CX

k=1

ef�(x)[k]/T , (1)

where T is a temperature parameter that controls the sharpness of the distribution (Liu et al., 2020).
Finally, using a discriminative model within the EBM framework allows one to express the marginal
probability of a data sample x. The main challenge in optimization stems from the normaliza-
tion constant Z, which requires integrating over the entire input space, a task that is generally
intractable. Consequently, EBMs often rely on specialized training methods such as contrastive
divergence (Carreira-Perpinan & Hinton, 2005) or Markov chain Monte Carlo (MCMC) sampling to
approximate or avoid the direct computation of Z.

3 METHODS

A Residual Perspective on Distribution Shift To characterize the distribution shift at test-time,
we utilize a residual energy function that captures the discrepancy between the source and target
distributions. Formally, let Q denote the source distribution and P the target distribution. We can
express P in terms of Q via an exponential factor encoding the residual energy: P = Q exp(�R)/Z,
where R is a residual energy function, and Z is a normalization constant.

By analogy, the marginal distribution of the target data p✓ can be written as the product of the
pretrained source model q� and an exponential residual term:

p✓(x) =
1

Z(✓)
q�(x) exp

✓
� 1

�
Ẽ✓(x)

◆
, (2)

where the residual energy function Ẽ✓ is designed to model only the discrepancy between the fixed
source model and the target distribution. Moreover, � > 0 is a temperature parameter and logZ(✓)
is constant across samples. During TTA, the source model q� remains frozen, and Ẽ✓ is learned to
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capture only the distributional differences that arise under domain shift. In other words, Ẽ✓ focuses
exclusively on the distribution-shift-induced residuals, refining the energy landscape so that the
combined model aligns more closely with the true target distribution while preserving the original
source knowledge.

Our residual interpretation of distribution shift can be viewed as an extension of the architectural
constraints commonly employed in standard TTA setup. Building on the observation that updating
only a subset of model parameters, such as the batch-normalization (BN) layers, enables efficient and
stable adaptation by mitigating overfitting to severe distribution changes (Wang et al., 2020; Wu et al.,
2024; Zhao et al., 2023), numerous TTA methods adopt such restricted update strategies. From a
mathematical perspective, we extend this idea by recasting TTA as the problem of learning the residual
component of the distribution shift that the pretrained model has not yet captured. This formulation
serves as an implicit regularizer: it constrains the target model to learn only the unmodeled portion
of the shift, thereby limiting deviation from the source distribution and preventing overfitting, as
discussed in subsection 4.3.

Learning the Residual Energy via Contrastive Objective Energy-based models (EBMs) trained
with maximum-likelihood estimation (MLE) often suffer from biased gradients and prohibitive
sampling costs, primarily due to the need to approximate the intractable partition function Z (Song &
Kingma, 2021). These limitations render conventional MLE approaches fundamentally ill-suited for
practical TTA, where efficiency and stability are critical.

To overcome these challenges, we propose a contrastive learning framework that directly learns
the residual energy function without any estimation or approximation of the partition function Z.
Instead of optimizing likelihoods, we operate entirely on pairwise energy differences between source
and target samples. This eliminates the need for sampling from the model distribution, making our
method both tractable and scalable for TTA.

Our method shares conceptual similarities with Noise Contrastive Estimation (NCE) (Gutmann &
Hyvärinen, 2010), in that both use contrastive objectives to bypass normalization. However, unlike
NCE, which retains an implicit dependence on Z through the requirement of globally normalized
densities, our formulation dispenses with Z entirely, as it only requires relative energies for learning.

Formally, we reinterpret the residual energy function Ẽ✓(x) as arising from the density ratio between
the target distribution p✓(x) and the fixed source model q�(x):

Ẽ✓(x) = ��

✓
log

p✓(x)

q�(x)
+ logZ(✓)

◆
.

Assuming that the residual energy function Ẽ✓ should favor target samples xt over source samples
xs (i.e., assigning lower energy to xt than to xs), we model the probability that the residual energy of
a target sample is lower than that of a source sample, as:

P
⇣
Ẽ✓(xt) < Ẽ✓(xs)

⌘
=

1

1 + exp
⇣
�Ẽ✓(xs) + Ẽ✓(xt)

⌘ =
1

1 + exp
⇣
� log p✓(xs)

q�(xs)
� � log p✓(xt)

q�(xt)

⌘ ,

During optimization, this objective drives the residual energy function Ẽ✓ to consistently reflect the
distribution shift by lowering the relative energy of target samples with respect to source samples,
thereby aligning the model with the target distribution while keeping the source model fixed.

Finally, we derive the optimization objective for learning the target model p✓ with the source model
q�. Given a set of source and target pairs (xs, xt), the objective can be formulated as minimizing the
negative log-likelihood of the probability:

L(✓;�,B) = � 1

|B|
X

(xs,xt)⇠B

log �
⇣
�
�
log p✓(xt)

q�(xt)
� log p✓(xs)

q�(xs)

�

| {z }
l

⌘
,

where l = �(E✓(xt)� E✓(xs)) + (E�(xt)� E�(xs)).

(3)
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Crucially, as a consequence of our pairwise contrastive objective, the partition function Z cancels
out completely, and no sampling is required unlike in MLE or NCE settings. Instead, we leverage a
minimal buffer of source samples Bs = {x(i)

s | i = 1, . . . , |Bs|}, to guide optimization and enable
stable contrastive adaptation under test-time distribution shift. Despite its critical role in stabilizing
optimization, the buffer size is negligibly small, imposing virtually no burden in modern memory
settings and introducing no practical limitations in real-world deployment.

To optimize our objective (Equation 3), we construct a pairwise mini-batch B = {(x(i)
s , x(i)

t )}, where
each pair consists of a target sample x(i)

t 2 Bt from the current target stream and a corresponding
source sample x(i)

s 2 Bs randomly drawn from the source buffer Bs. We demonstrate that our method
maintains consistent performance even when the source buffer size |Bs| is reduced to as little as 1%
of the source dataset, significantly lowering memory overhead. The robustness of our approach is
further validated through an ablation study, as presented in Table 5.

Our proposed objective effectively aligns the model with the target distribution while avoiding the
explicit estimation of the residual energy function. Furthermore, we reformulate both the source and
target models as energy-based models, denoted as E� and E✓, respectively, following Equation 1,
with the target one initialized as ✓ = �. This reformulation allows us to express the objective
solely in terms of energy functions, eliminating the need for explicit normalization constants through
algebraic simplifications. For a detailed derivation, we provide the full mathematical formulation in
subsubsection A.1.1.

Why Does Contrastive Residual Learning Yield Stable Adaptation? The stable adaptation
achieved by contrastive residual learning can be clarified through a gradient analysis. The gradient of
our objective in Equation 3 is computed as follows:

r✓L(✓;�,B) = � 1

|B|
X

(xs,xt)⇠B

� · w(xt, xs) ·
�
r✓ log p✓(xt)�r✓ log p✓(xs)

�
,

where w(xt, xs) = �

✓
� log

p✓(xs)

q�(xs)
� � log

p✓(xt)

q�(xt)

◆

= �
�
� ·

�
E✓(xt)� E�(xt)

�
� � ·

�
E✓(xs)� E�(xs)

��
.

(4)

In this context, the term contrastive does not merely imply decreasing the energies of target samples
or increasing those of source samples. Rather, the gradient weights are modulated by the relative
energy levels of paired source-target samples, which promotes stable adaptation (see subsection 4.3
for further analysis).

If we remove the residual assumption, the pairwise contrastive learning objective reduces to the form
in subsection C.1. In this case, there are no bias terms parameterized by �, so the gradient magnitude
depends solely on the target model’s energies, making the method more prone to overfitting, as
illustrated in Figure 3. A more detailed mathematical discussion of the residual assumption and the
pairwise contrastive approach is provided in Appendix B and Appendix C.

4 EXPERIMENT

In this section, we present a comprehensive analysis of our proposed method, CRETTA, and conduct
a detailed comparison against state-of-the-art approaches using widely adopted benchmark datasets.

4.1 EXPERIMENTAL SETUP

Benchmark Datasets and Metrics To evaluate corruption robustness in test-time adaptation, we
selected three benchmark datasets: (i) CIFAR10-C, (ii) CIFAR100-C, and (iii) TinyImageNet-
C (Hendrycks & Dietterich, 2019). Each dataset contains 15 unique corruption types, categorized into
5 severity levels. In our evaluation, we reported the performance as the average across all 15 corruption
types to provide a comprehensive measure of robustness. To rigorously evaluate the practical
applicability of the proposed TTA method, we used three evaluation metrics: (i) Accuracy (ACC),
(ii) Expected Calibration Error (ECE), and (iii) Giga Floating-Point Operations (GFLOPs).

5
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Table 1: Comparison of classification accuracy (Acc ") and expected calibration error (ECE #) on
the CIFAR10-C, CIFAR100-C, and TinyImageNet-C datasets at corruption severity level 5 and the
average across severity levels 1-5. The best results are emphasized in BOLD, while the second-best
results are UNDERLINED.

CIFAR-10-C CIFAR-100-C TinyImageNet-C
Severity L5 Severity Avg Severity L5 Severity Avg Severity L5 Severity Avg

Method Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#) Acc(") ECE(#)

Source 81.73% 10.18% 88.82% 5.45% 53.25% 17.71% 64.11% 11.73% 35.12% 16.17% 43.16% 13.46%

Normalization
BN Adapt 85.46% 4.85% 89.12% 3.15% 60.74% 8.32% 65.83% 6.88% 39.60% 13.66% 44.72% 12.12%

Pseudo Labeling
PL 84.85% 10.10% 90.09% 6.20% 56.33% 23.81% 65.72% 16.66% 35.40% 30.95% 43.79% 23.47%
SHOT 87.91% 5.42% 90.78% 3.86% 64.41% 8.93% 68.80% 7.44% 39.84% 13.81% 44.95% 12.24%

Entropy Minimization
TENT 87.84% 5.49% 90.74% 3.89% 64.31% 8.93% 68.73% 7.47% 39.83% 13.82% 44.94% 12.24%
ETA 85.46% 4.85% 89.12% 3.15% 61.77% 8.54% 66.66% 7.10% 39.67% 13.70% 44.79% 12.16%
EATA 85.46% 4.85% 89.12% 3.15% 61.79% 8.54% 66.65% 7.11% 39.68% 13.70% 44.79% 12.16%
SAR 86.54% 4.79% 89.80% 3.13% 62.71% 8.31% 67.36% 6.91% 39.66% 13.72% 44.77% 12.16%
AEA 88.27% 5.09% 90.88% 3.73% 64.40% 9.16% 68.75% 7.61% 39.87% 13.82% 44.97% 12.25%

Energy-based Models
TEA 88.06% 3.83% 90.67% 2.68% 63.66% 7.68% 67.93% 6.33% 39.96% 13.84% 45.08% 12.24%
CRETTA 88.30% 4.15% 91.01% 2.88% 64.52% 7.99% 69.05% 6.82% 40.30% 13.52% 45.75% 11.85%

Baselines We compared our method with state-of-the-art approaches. (i) Source: The pre-
trained classifier from the source data which performs inference on test data without adaptation.
(ii) Normalization-based: BN-Adapt (Schneider et al., 2020) updates batch normalization statistics
for test samples. (iii) Pseudo-labeling-based: Pseudo-Labeling (PL) (Lee et al., 2013) and SHOT
(Liang et al., 2020) where test samples are filtered based on a confidence threshold, and the model is
optimized using these pseudo-labels. (iv) Entropy-based: TENT (Wang et al., 2020), ETA, EATA
(Niu et al., 2022), SAR (Niu et al., 2023), and AEA (Choi et al., 2025) aim to minimize entropy on
test samples to achieve alignment with the target distribution. (v) Energy-based: TEA (Yuan et al.,
2024) adapts to the marginal probability of the target distribution using energy-based learning with
SGLD sampling.

Implementation Details In our experiments, we employed WRN-40-2 (Zagoruyko, 2016) for
CIFAR10-C and CIFAR100-C datasets, and WRN-28-10 for TinyImageNet-C as backbones. Pre-
trained weights were sourced from RobustBench (Croce et al., 2020). If unavailable, models were
trained from scratch. We conduct online adaptation and evaluation following TENT (Wang et al.,
2020) and TEA (Yuan et al., 2024) employing the Adam optimizer (Kingma, 2014) and reported
results over three different random seeds. To further enhance robustness during adaptation, we
incorporated data augmentation into the source buffer, which contained only 10% of the original
source dataset. For more detailed information, please refer to the appendices.

4.2 PERFORMANCE COMPARISON

Classification Accuracy and Calibration Error Table 1 reports accuracy, focusing on the highest
severity level 5 and the average across severity levels (1-5) across all datasets and corruption severities.
Our proposed method consistently outperformed all other baselines under corrupted settings, notably
achieving accuracy of 40.30% at the highest severity (level 5) on TinyImageNet-C. This consistent
improvement highlights CRETTA’s adaptability and effectiveness in handling larger and more
complex datasets, reinforcing its suitability for real-world test-time adaptation scenarios.

In TTA, model calibration is crucial for quantifying the prediction uncertainty, ensuring reliability
under domain shifts and unlabeled data scenarios. We evaluated calibration performance using
Expected Calibration Error (ECE) with 10 bins. While TEA performs well on CIFAR datasets, it fails
to maintain the same level of superiority on TinyImageNet-C. In contrast, CRETTA demonstrates
strong overall performance across all datasets (Table 1). Specifically, on TinyImageNet-C, CRETTA
consistently outperforms other methods on most of corruption types in calibration as reported in
Table 9.
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Table 2: Classification accuracy (Acc ") on PACS.

Source
Domain

Method Target Domain Avg
Photo Art Cartoon Sketch

Photo
Source - 55.39 22.61 23.17 33.72
TENT - 57.89 63.82 32.84 51.52
TEA - 53.16 50.33 33.17 45.55

CRETTA - 64.45 64.83 29.89 53.06

Art
Source 88.58 - 49.26 35.06 57.64
TENT 92.10 - 63.18 35.23 63.50
TEA 83.95 - 53.38 36.52 57.95

CRETTA 91.52 - 65.90 40.99 66.13

Cartoon
Source 70.52 62.52 - 50.44 61.16
TENT 82.34 64.63 - 41.47 62.81
TEA 76.01 53.40 - 33.30 54.24

CRETTA 83.65 68.86 - 40.04 64.18

Sketch
Source 13.89 14.50 19.03 - 15.81
TENT 31.88 30.99 49.60 - 37.49
TEA 18.60 25.47 48.34 - 30.80

CRETTA 26.63 30.19 51.35 - 36.06

Table 3: ECE (#) on each source domain of PACS.
Method P A C S AVG

TENT 44.41 35.20 34.69 58.63 43.23
TEA 41.71 34.62 35.02 50.26 40.40
CRETTA 37.42 28.22 26.65 51.68 35.99

Scalability We further evaluate
CRETTA on PACS and ImageNet-C
datasets. On PACS, CRETTA maintains
competitive classification accuracy (Ta-
ble 2) while achieving the lowest average
ECE, outperforming the entropy-based
method TENT and the existing energy-
based method TEA by a significant margin
(Table 3). On ImageNet-C, CRETTA
achieved substantially lower ECE(2.69%)
with higher accuracy, whereas TEA’s ECE
was 7.21% (Table 12).

We interpret TEA’s weaker performance
on both datasets as a consequence of
approximation errors when estimating
the normalization constant during sam-
pling. These results underscore that
CRETTA generalizes well to large-scale,
style shifted datasets, achieving strong pre-
dictive performance and superior calibra-
tion.

Figure 2: Comparison of GFLOPs, ECE
and Acc against competitive baselines on
TinyImageNet-C at the average across
severity levels 1-5.

Computational Efficiency A major challenge for pre-
vious energy-based TTA methods was the high computa-
tional cost for SGLD sampling. This makes them imprac-
tical for real-time TTA scenarios that demand rapid adap-
tation. This computational burden becomes even more
pronounced as the input sample size increases. More
precisely, TEA not only incurs approximately six times
the computational cost (213K GFLOPs) compared to
CRETTA (34K GFLOPs) but also struggles to main-
tain competitive performance. In contrast, CRETTA en-
ables adaptation without explicitly tracking the normal-
ization constant within a pair-wise contrastive learning
framework. As shown in Figure 2, CRETTA consistently
outperforms comparison methods, including TENT and
BN-Adapt, while maintaining relatively low GFLOPs,
demonstrating its efficiency for real-time TTA.

4.3 RESISTANCE MECHANISM TO OVERFITTING

In this subsection, we further analyze how the residual interpretation on distribution shift introduced
in section 3 inherently provides a mechanism to mitigate overfitting and catastrophic forgetting.

Table 4: Gradual distribution shift on
CIFAR10(-C) and CIFAR100(-C).

Domain CIFAR10 CIFAR100

OURS TEA OURS TEA

Source (Q) 93.46 93.45 73.97 73.88
1 92.88 92.80 71.90 71.41
2 92.03 91.92 71.57 70.40
3 91.63 91.29 69.99 67.71
4 90.25 89.81 67.99 65.23

5 (P ) 89.47 88.78 65.47 60.26

Source (Q) 94.03 93.58 75.70 69.25

Performance Under Gradual Distribution Shift To
validate this mechanism, we conducted an experiment
under a gradual distribution shift scenario. In this setting,
the model continuously adapts from the source distribu-
tion Q through increasing shift intensities (1 ! 5), where
severity 5 corresponds to the final target distribution P .
After the model had fully adapted to P , we further froze
the model and evaluated its classification accuracy on the
original source distribution to observe if the target model
remembers the original source distribution.

As summarized in Table 4, CRETTA demonstrates robust
adaptation to progressively diverging target distributions,
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outperforming TEA with classification accuracy on both datasets. Notably, the model’s accuracy on
Q improved after adaptation to P (+1.73%). This improvement provides empirical evidence that
CRETTA’s residual-energy formulation acts as a regularizer that prevents forgetting and facilitates
robust adaptation. In contrast, MLE-based method TEA lacks this regularization mechanism and
sometimes suffers from forgetting, with performance degradation (-4.63%) after adaptation.

Benefits of Contrastive Residual Energy Learning CRETTA tends to reduce target-sample
energy during adaptation across severities as shown in Figure 3, enhancing robustness to strong
distribution shifts (Yuan et al., 2024). Notably, CRETTA achieves this with up to 8⇥ reduction of
the computational cost compared to existing energy-based method TEA.

Figure 3: Energy trajectories of target samples across severi-
ties (left) and the effect of relative residual energy learning
on stable adaptation (right) in CIFAR100-C.

While the observed energy reduction
is meaningful, the core strengths of
CRETTA lie in contrastive residual
energy learning to prevent conver-
gence to trivial solutions as discussed
in section 3. The bias terms with re-
spect to E� in Equation 3 prevent E✓

from becoming excessively small or
large, thereby stabilizing the adapta-
tion process. As shown in Figure 3,
the energy of target samples increases
drastically after adaptation without
bias terms, resulting in performance
degradation.

Consequently, optimization proceeds
adaptively based on the relative energy difference between source and target samples. When the
energy difference between source and target is already aligned with the desired preference (i.e,
E✓(xt) < E✓(xs)), the gradient weight w(xt, xs) in Equation 4 decreases, leading to weaker updates.
On the other hand, when the energy difference exists in the opposite direction of the target preference
(i.e., E✓(xt) > E✓(xs)), the gradient weight w(xt, xs) increases to enforce stronger corrections.
By letting gradient updates depend on these relative energy differences, CRETTA automatically
modulates learning strengths through the weighting term, enabling dynamic and stable adaptation.

4.4 ABLATION STUDIES

Table 5: Effectiveness of buffer size.

Buffer Ratio CIFAR10-C CIFAR100-C TinyImageNet-C

1% 88.00% 64.21% 40.18%
2% 88.17% 64.42% 40.24%
10% 88.30% 64.52% 40.30%

Other critical concerns regarding the replay buffer
can be summarized in two folds: (1) Can the source
data in the replay buffer be replaced with samples
unseen during the pretraining phase? and (2) Does
the model maintain its performance regardless of the
quality of the samples included in the buffer?

Table 6: Effectiveness of source buffer con-
tent on CIFAR10-C.

Buffer Type Sev 5 Sev 1-5 Avg.

Default(Random) 88.30% 91.01%
CIFAR100-trainset 88.20% 91.02%
CIFAR100-valset 88.21% 91.03%

The first question becomes particularly important
from a data privacy perspective when the original
source data is unavailable. To address this, we eval-
uate the performance of CRETTA on CIFAR10-C
with the replay buffer composed of CIFAR100 that
we assume is distributionally similar but was not seen
during the pretraining phase. As shown in Table 6,
no performance drop is observed when the buffer is
constructed from either CIFAR100 training or validation set. These findings suggest that CRETTA
can operate effectively even without access to the original source data.

We further examined the performance of CRETTA in extreme cases where the source buffer com-
position is biased. Specifically, the buffer was constructed using high confidence (top 10%) and
low confidence (bottom 10%) samples respectively based on the source model’s confidence score.
The results summarized in Table 7, indicate that adaptation performance remains unaffected by such
variation in buffer content.
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Table 7: Effectiveness of source buffer confidence.

Buffer Type CIFAR10-C CIFAR100-C TinyImageNet-C

Default (Random) 88.30% 64.52% 40.30%
High Confidence 86.92% 64.10% 40.18%
Low Confidence 88.02% 64.65% 40.92%

These comprehensive findings highlight that
a small and randomly sampled buffer suffices
for effective adaptation, regardless of its size
or composition. This insensitivity to buffer
configuration underscores the practicality of
CRETTA, enabling deployment in real-world
scenarios with minimal memory overhead and
flexible buffer sourcing.

5 RELATED WORKS

Test-time Adaptation TTA is an emerging paradigm that has demonstrated immense potential in
adapting pretrained models to unlabeled test data during testing phase. Early methods such as batch
normalization adaptations (BN Adapt) (Schneider et al., 2020) leveraged test-batch statistics, while
techniques like TTT (Sun et al., 2020) and TTT++ (Liu et al., 2021) utilized image augmentations.
TENT (Wang et al., 2020), minimizes entropy to update BN layers, aiming for improved adaptation
but often resulting in overconfident ‘that impair model calibration. EATA (Niu et al., 2022) and SAR
(Niu et al., 2023) incorporates instance selection to filter unreliable samples, preserving performance,
especially in continual test settings.

Energy-based Models Energy-based models (EBMs) are non-normalized probabilistic models
widely used in classification and generative tasks (Grathwohl et al., 2019; Guo et al., 2023; Kim &
Bengio, 2016). Energy provides a non-probabilistic scalar value capturing the density of the data
distribution, making EBMs effective for capturing distribution shifts (Du & Mordatch, 2019). Due
to this property, energy-based approaches are utilized in out-of-distribution (OOD) detection and
unsupervised domain adaptation (Herath et al., 2023). Recent works such as AEA (Choi et al., 2025)
and TEA (Yuan et al., 2024) extend energy to test-time adaptation scenario.

Learning by Comparison Noise-Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2010)per-
forms maximum-likelihood estimation through nonlinear logistic regression, distinguishing real data
from artificially generated noise. Although it provides insightful ideas as an optimization strategy,
NCE still relies on the normalization constant implicitly, which can be difficult to handle in practice.
By contrast, pairwise comparison removes the need for this constant by using linear logistic regression.
Methods such as RLHF (Ouyang et al., 2022) and DPO (Rafailov et al., 2024) adopt this idea within
autoregressive text-generation models to better align generated responses with human preferences.

6 CONCLUSION

In test-time adaptation, the entropy minimization objective often suffers from poor calibration due to
the overconfidence problem, while existing energy-based methods incur significant computational
overhead from extensive sampling to approximate the normalization constant for the marginal target
distribution. In contrast, CRETTA achieves reliable and efficient adaptation by redefining the
distribution shift with a residual energy function while optimizing a contrastive objective that avoids
the sampling.

CRETTA provides two key benefits. First, it inherently mitigates overfitting by adaptively reweight-
ing gradient signals based on relative energy differences, thereby ensuring stable adaptation. Second,
by embedding the residual energy function into the contrastive objective, CRETTA eliminates the
need for normalization constant approximation. Through comprehensive experiments and abla-
tions CRETTA confirms that it bridges the gap between calibration-aware adaptation and practical
feasibility, offering a scalable solution previously unattainable with conventional TTA frameworks.
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