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ABSTRACT

In recent years, incomplete multi-view clustering has been widely regarded as
a challenging problem. The missing views inevitably damage the effective in-
formation of the multi-view data itself. To date, existing methods for incom-
plete multi-view clustering usually bypass invalid views according to prior miss-
ing information, which is considered as a second-best scheme based on evasion.
Other methods that attempt to recover missing information are mostly applica-
ble to specific two-view datasets. To handle these problems, we design a general
structure-aware missing view completion network (SMVC) for incomplete multi-
view clustering. Concretely, we build a two-stage autoencoder network with the
self-attention structure to synchronously extract high-level semantic representa-
tions of multiple views and recover the missing data. In addition, we develop
a recurrent graph reconstruction mechanism that cleverly leverages the restored
views to promote the representation learning and the further data reconstruction.
Sufficient experimental results confirm that our SMVC has obvious advantages
over other top methods.

1 INTRODUCTION

Missing Views

Recovered Views

Figure 1: Missing view com-
pletion

It is well known that multi-view data depicts the observed objects
from different perspectives (Tsai et al., 2020; Han et al., 2020; Li
et al., 2021; Wang et al., 2015). Compared with traditional single-
view data, this heterogeneous data retains multi-level semantic in-
formation (Wen et al., 2020a). In the past few years, multi-view
clustering, as a novel representation learning method, has aroused
extensive research enthusiasm and has been widely used in related
fields such as data analysis (Zhang et al., 2019). However, con-
ventional multi-view clustering methods usually assume that ob-
taining complete multi-view data is a matter of course, which ob-
viously goes against practical experience. Therefore, a number
of incomplete multi-view clustering (IMC) approaches have been
developed to fit the increasingly common incomplete multi-view
datasets, which is also the focus of our paper.

In the area of incomplete multi-view learning, there are two main
technical approaches to missing multi-view data, i.e., detour–skip
unavailable views by prior missing information or completion–
recover missing data according to existing information. In general,
it is more difficult to get good recovery quality because the information content is indeed incom-
plete, so most methods choose to skip these missing data to avoid a bad impact. Classical partial
multi-view clustering (PMVC) (Li et al., 2014) is one of the most representative IMC methods,
which tries to connect different view spaces employing the samples with all views. On this ba-
sis, IMG (incomplete multi-modality grouping) (Zhao et al., 2016) constructs a complete Laplacian
graph with the common representation in the latent space to provide the global property to subspace
learning. However, both of these two grouping methods require at least one complete sample in
the multi-view database. Online multi-view clustering (OMVC) (Shao et al., 2016) and One-pass
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IMC (OPIMVC) (Hu & Chen, 2019b) introduce a weight matrix with missing prior information to
perform multi-view weighted matrix factorization, assigning low weights to missing views to reduce
the negative impact caused by mean padding or zero padding.

However, such detour or neglect is only the second-best solution to the incomplete issue. Some
researchers attempt to recover missing information in various ways to perform complete multi-view
clustering. Rai et al. (2010) proposed the kernel canonical correlation analysis with incomplete
views (KCCA-IV) to restore the kernel matrix of incomplete view based on the complete kernel,
which requires at least one view to be intact. The multiple kernel k-means with incomplete kernels
(MKKM-IK-MKC) (Liu et al., 2019) fuses kernel completion and clustering into one framework.
Wen et al. (2019) proposed an IMC framework named unified embedding alignment framework
(UEAF), which emphasizes the importance of recovering missing views, and introduces both for-
ward and reverse graph regularization to facilitate view recovery and cross-view consistent repre-
sentation learning.

Considering the above issues, in this paper, we aim to propose a general IMC framework, called
Structure-aware Missing View Completion network (SMVC), which can handle arbitrary view-
missing situations and enhance the performance of representation learning through efficient view
completion. Meanwhile, inspired by the successful application of deep learning, especially the
transformer (Vaswani et al., 2017), we combine the characteristics of the multi-head self-attention
mechanism and multi-view learning to design a transformer-style cross-view autoencoder network.
Compared with a simple linear encoder, it can extract high-level semantic features and support cross-
view information interaction, which is conducive to mining the complementarity of multiple views.
At the same time, we skillfully integrate multi-view fusion representation learning and missing view
recovery into a unified framework. More importantly, we propose a structure-aware module (recur-
rent graph constraint) to push the reconstructed data inversely to participate in the representation
learning process, where they are allowed to collaborate with each other to achieve better clustering.
Finally, our contributions are summarized as follows:

• We design a general IMC framework named SMVC, which includes an encoder module
that integrates cross-view information interaction and high-level semantic feature extrac-
tion, and a multi-view reconstruction and recovery module based on controlled coding.

• We propose an innovative recurrent graph embedding constraint whose core, an approxi-
mately complete graph generated from imputation data, cyclically facilitates reliable fea-
ture extraction and view recovery.

• A cluster-friendly two-stage training strategy is presented in detail, and extensive experi-
ments and intuitive visualization results demonstrate the effectiveness of our SMVC.

2 PRELIMINARY

2.1 PROBLEM DEFINITION AND NOTATIONS

For ease of expression, we first give a formal definition of the investigated problem. Given the
multi-view data {X(v) ∈ Rn×dv}mv=1 with m views and n samples, our goal is to divide them
into c cluster centroids. dv is the dimension of view v and the dimension of embedding feature is
de. In our method, a missing indicator matrix is introduced, i.e., W , whose element Wi,j = 1

denotes the j-th view of i-th sample is available, otherwiseWi,j = 0. X̄(v) ∈ Rn×dv represents the
reconstructed view v including missing instances andX ′(v) ∈ Rn×dv is the imputation view v filled
with recovered data. Z ∈ Rn×m×de is the extracted embedding tensor and its fusion representation
Z̄ ∈ Rn×de is our objective matrix. Following Goodfellow et al. (2016), all subscript representations
of matrices or tensors conform to the recommended criteria.

2.2 RELATED WORK: UEAF

In this subsection, we simply introduce a related IMC method: UEAF (Wen et al., 2019). Like most
IMC methods, UEAF aims to learn a consensus representation (P in this work) for all views. To do
this, Wen et al. developed a complex framework that integrates view recovery, consensus learning,
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Figure 2: Main framework of our model. The FC module means Fully Connected layer.
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Such a complex model contains many variables, so we only explain the core parts in detail. E(v) is
the error matrix used to model the missing instances and M is the transition matrix from missing
instances to complete views. U (v) andP (v) are the basis matrix and low-dimensional representation
of view v. The most commendable part is the two Laplacian constraint terms, i.e., the Laplacian
matrix L(v) constructed by the incomplete graph is introduced to constrain the inference of missing
views and another nearest neighbor graph S is utilized reversely to align all recovered incomplete
views. Υ is the optimization objective concerning the above variables.

3 METHOD

3.1 MOTIVATION

As mentioned in the introduction, recovering the missing data must be based on existing informa-
tion. We consider this question from the key property of multi-view data. As we know, different
views enjoy same high-level semantic information in the clustering task, i.e., they’re different de-
scriptions of the same abstract target. If we can capture the shared high-level semantic information,
then it becomes possible to infer the missing information backwards based on the learned patterns.
From another perspective, missing data inference can be regarded as a generation task, which is
usually implemented via autoencoder networks. Inspired by above analysis, we design a cross-view
autoencoder as our main framework, whose encoder learns the high-level semantic representations
and decoder attempts to recover the missing views from a fusion representation.

Another thing that should not be ignored is that the intrinsic structure of the data is crucial for
unsupervised learning, which has been demonstrated by numerous studies. The classical nearest
neighbor graph constraint, widely used in various traditional machine learning methods, enables
the extracted semantic representation to maintain the original topology of data, which not only
facilitates the learning of clustering structure to a large extent but also drives the model to ‘guess’
the missing data in a more reasonable direction. Nevertheless, it should be noted that it is hard for us
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to directly obtain a complete graph from the incomplete data unless we can provide approximately
intact data. So far, re-examining the above motivations, our idea to missing data imputation is
gradually blossomed, that is, fusing approximate graph construction and missing view recovery in
an unified autoencoder framework.

At the same time, it must be considered that our downstream task is unsupervised multi-view clus-
tering, which means that view imputation serves the complete multi-view clustering. To do this, a
2-Stage training strategy is applied in our network, i.e., Stage 1: missing view recovery and Stage
2: complete multi-view clustering based on recovered data. In Stage 1, the noisy data in missing
positions must be addressed to avoid the negative influence, but in Stage 2, the new imputed data
(approximately complete data), generated by the recovered views of Stage 1 and raw incomplete
data, is used as the input, i.e.,X ′(v) = diag(W:,v)X

(v) + diag(1−W:,v)X̄
(v), so the entire model

can be treated as a common multi-view clustering network without any extra measures in Stage 2.
It is worth noting that the input to Stage 2, X ′(v), is fixed after the training is completed in Stage 1
because frequent changes of input make it difficult for the model to converge. The remainder of this
section elaborates on the details of our model and the main framework is shown in Figure 2.

3.2 CROSS-VIEW ENCODER

It is well known that the feature dimensions of raw data are diverse, so it is difficult for a model
to fuse multi-view features in the original feature space. Traditional approaches usually utilize the
autoencoders, mainly composed of Fully Connected (FC) layers, to extract view-specific features,
which not only aligns the different dimensions in a common space, but also maps high-dimensional
features to a relatively low-dimensional space to facilitate subsequent representation learning. How-
ever, such high-level features only extracted from their corresponding raw views lack information
interaction among views. Specifically, different views describe the objects from different perspec-
tives, so each view can be considered both unique and biased. These differences (i.e., complemen-
tary information) naturally make multi-view data more expressive than single-view data, and how
to make full use of complementary information is always one of the key problems in the field of
multi-view learning. To do this, we design a transformer-style cross-view encoder with multi-view
information aggregation. At first, we need a group of low-level feature extractors to project various
views into a common feature space, which allows subsequent modules to process the representations
of all views in parallel. For simplicity, we select m Fully Connected layers as the low-level feature
extractors:

{
Φv(X

(v);θv) = X̂(v) ∈ Rn×de
}m
v=1

, where θv denotes the parameters of extractor

Φv . Notably, X̂ =
{
X̂(v) ∈ Rn×de

}m
v=1
∈ Rn×m×de is the input tensor of the subsequent self-

attention module with no information interaction. And then, the transformer-style view aggregation
module is defined as follows: Given the number of heads h and the embedding X̂i,:,: of sample i,
we utilize h groups of linear layers with weights

{
W qt ,W kt ,W vt

}h
t=1

to obtain corresponding
query, key, and value maps {Qt,Kt,V t}ht=1 ∈ Rm×dh . An entire embedding feature is split into
h segments with dimension dh = de/h. For head t of sample i, we compute their score matrix as
follows:

St = softmax(Qt(Kt)T /
√
dh). (2)

We need to highlight that this St ∈ Rm×m is for the complete views used in Stage 2. As for the
incomplete views in missing view inference stage (i.e. Stage 1), we define the masked attention
scores Ŝt ∈ Rm×m by:

Ŝt = softmax(zerofill(Qt(Kt)T /
√
dh)�W T

i,:Wi,:), (3)
where the zerofill represents the operation to fill zero value with -1e9 and � is the Hadamard prod-
uct. This aims to ignore the missing views in the computation of cross-view attentions. Then, we
aggregate all views by:

At =

{
ŜtV t,Stage 1

StV t,Stage 2
, (4)

where At ∈ Rm×dh is the new embedding features with information interaction of head t. Similar
to the multi-head transformer, the final embedding features of m views can be calculated as A =
Concat(A1,A2, ...,Ah) ∈ Rm×de . Besides, we sequentially input the A into a linear layer, layer
norm module, and a multilayer perceptrons to get final embedding features Z ∈ Rm×de for each
sample (Z ∈ Rn×m×de for all samples), i.e., cross-view encoder E : {X(v)}mv=1 → Z.
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3.3 VIEW RECOVERY BASED ON CONTROLLED ENCODING

As mentioned in the previous subsection, all views exchange information in the extraction of high-
level semantic representations. However, no appropriate constraint be imposed in the extraction
of encoder, which means that the encoding process is uncontrolled. To solve this problem, we
exploit a simple but effective approach, named multi-view weighted fusion, to obtain a common
representation of all views, which is expected to comprehensively characterize the sample across
views. Specifically, our multi-view weighted fusion is formulated as follows:

Z̄i,: =

m∑
v=1

Zi,v,:Wi,v∑
vWi,v

, (5)

where vector Z̄i,: denotes the i-th sample of the fusion matrix Z̄ ∈ Rn×de . Obviously, Z̄ in Eq.
(5) is designed for Stage 1, and Z̄ can be simply calculated by Z̄i,: = 1

m

∑
v Zi,v,: in Stage 2.

Furthermore, the common representation Z̄ is required to contain all information of multiple views.
To the end, a symmetrical cross-view decoder module D is concatenated to Z̄ to reconstruct all the
data including missing views, i.e., D : {Z̄}m ∈ Rn×m×de → {X̄(v) ∈ Rn×dv}mv=1. But in fact,
due to the lack of supervisory information to directly discriminate the recovered data, we can only
leverage the available original data to impose a partial reconstruction constraint. In other words, this
recovery is a natural but necessary byproduct of the proposed autoencoder framework that aims to
learn the common representation shared by the available views. As a result, we introduce a weighted
reconstruction loss Lre:

Lre =
1

mn

m∑
v=1

n∑
i=1

1

dv

∥∥X̄(v)
i,: −X

(v)
i,:

∥∥2
2
Wi,v, (6)

where X̄i,: is the i-th sample of the reconstructed data X̄ . And in Stage 2, the Lre degenerates into

L′re =
1

mn

m∑
v=1

n∑
i=1

1

dv

∥∥X̄(v)
i,: −X

′(v)
i,:

∥∥2
2
. (7)

3.4 RECURRENT GRAPH CONSTRAINT

In recent years, researchers have been accustomed to adding graph constraints to traditional multi-
view learning methods, which help preserve the original intrinsic structure of data by constructing
a prior adjacency matrix. This is based on this basic manifold assumption: if two samples are close
to each other in original feature space, then they are also close in the embedding space. But in
the case of incomplete data, some existing methods simply skip the missing views to construct the
adjacency graph, which is obviously biased, especially on the databases with lager missing rates.
Therefore, we expect to obtain an approximately complete adjacency graph to guide the encoder
for the extraction of high-level semantic features. On the other hand, more discriminative semantic
features can also facilitate the recovery of missing views and thus help to construct a more realistic
graph. Combining these two points, we innovatively propose the recurrent graph constraint:

Lrg =
1

mn2

m∑
v=1

n∑
i=1

n∑
j=1

∥∥Zi,v,:|k − Zj,v,:|k
∥∥2
2
G(v)i,j |k−1, (8)

where
{
G(v) ∈ Rn×n

}m
v=1

are the approximately complete graphs generated by imputation data of
last epoch, i.e., G(v)|k−1 = knn(X ′(v)|k−1,K) and ‘|k’ denotes the k-th epoch. K is the number
of nearest neighbors. G(v)i,j = 1 means instance j is one of the K-neighbors of instance j in view v.
The Lrg is executed only if k > 0. In fact, deep learning models are usually trained in mini-batch
iterations to reduce memory overhead, and ours is no exception. But in doing so, the neighbor graph
contains only a small batch of samples, which means that the graph constraint is local rather than
global. In order to balance the mini-batch training approach and the intact graph constraint, we
rewrite Eq. (8) in the case of mini-batch training as follows:

Lbatchrg =
1

mnb

m∑
v=1

b∑
i=1

n∑
j=1

∥∥Zbatchi,v,: |k − Zj,v,:|k−1
∥∥2
2
G(v)i,j |k−1, (9)
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where the size of mini-batch is b, and Zbatch ∈ Rb×m×de is the output of the cross-view encoder
corresponding to each mini-batch data. In the computation of graph loss, to maximize the use of
global structural information, we preserve all the embedded features Z obtained in the last epoch and
update its corresponding part after the current batch is processed. Similarly, in Stage 2, the graph G
from Stage 1 is fixed rather than updated by last output, i.e., G(v)|k−1 = G(v)|k.

3.5 OVERALL LOSS FUNCTION AND CLUSTERING

To sum up, our overall loss function in Stage 1 is:

L = Lre + βLrg, (10)

β is penalty parameter to balance the two losses. And the loss function in Stage 2 is:

L′ = L′re + βLrg. (11)

As mentioned above, we conduct complete multi-view clustering in Stage 2, and the fusion em-
bedding feature Z̄ ∈ Rn×de obtained in Stage 2 is regarded as our clustering indicator matrix.
For simplicity, we perform K-means (MacQueen, 1967) on the Z̄ to obtain final clustering results
p ∈ Rc.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Databases: In order to evaluate the performance of our model, we adopt five popular databases in
our comparison experiments: (1) Handwritten digit (Asuncion & Newman, 2007), a dataset widely
used in various fields, contains 2000 handwritten digital images with ten classes from ’0’ to ’9’.
There are five categories of features as 5 views selected in our experiments. The first view represents
a linear combination of pixels from the original picture with the size of 16× 15. (2) Caltech7 (Cai
et al., 2013) is a subset of the Caltech101 database (Fei-Fei et al., 2004), and we select 1474 images
covering seven categories from it. Each image is extracted with 6 types of features, i.e, LBP, Gist,
Hog, Cenhist, Gabor, and wavelet-moments. (3) NH face (Cao et al., 2015), as a subset of the NH
database, is composed of 4660 images belonging to five persons in the movie ’Notting Hill’ (Wu
et al., 2013). 3 views in terms of Gabor, gray pixels (size of 40 × 50), and LBP are included in
the NH face database. (4) Animal (Fei-Fei et al., 2004; Zhang et al., 2019) is a larger dataset with
up to 10158 images and 50 categories, whose features are extracted by DECAF (Krizhevsky et al.,
2017) and Vgg19 (Simonyan & Zisserman, 2014). All samples and features are adopted in our
experiments. (5) Aloi deep is a new multi-view database proposed by this paper, which is derived
from the Aloi database (Geusebroek et al., 2005). The original Aloi database contains 110250
images of 1000 small objects. We select 100 objects as 100 categories, each with about 108 images,
for a total of 10800 images. And we utilize three typical deep neural networks, i.e., ResNet50 (He
et al., 2016), Vgg16 (Simonyan & Zisserman, 2014), and Inception-v3 (Szegedy et al., 2016) with
pre-trained weights, to extract the three-view features. Detailed information about the five datasets
is listed in Table 7.

Preprocessing of incomplete datasets: To generate the incomplete datasets to simulate the missing-
view case, following Wen et al. (2020b), we randomly disable [10%,30%,50%,70%] of the instances
of each view but keep at least one view available for each sample. As for the Animal dataset with
only two views, we randomly select [10%,30%,50%] of all samples as the paired samples with two
views. The first view is removed for half of the remaining samples, and the second view is removed
for the other half.

Comparison methods: In our experiments, eight state-of-the-art methods are selected to evaluate
the performance of the proposed SMVC, of which OMVC (Shao et al., 2016), OPIMC (Hu & Chen,
2019b), MKKM-IK-MKC (Liu et al., 2019), and UEAF (Wen et al., 2019) have been described in
the introduction. The other four comparison methods are as follows: (1) BSV (Zhao et al., 2016),
a simple baseline method, fills missing views with the average vector and performs K-means on
each view to obtain the best result. (2) Concat (Zhao et al., 2016) is another popular baseline
method, which aligns all views with the same imputation strategy as BSV and simply concatenates
them to conduct single-view clustering. (3) MIC (Shao et al., 2015), based on non-negative matrix
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factorization technology, also introduces the prior missing information to help learn robust latent
representations. (4) DAIMC (Hu & Chen, 2019a) not only introduces a prior matrix to avoid the
negative impact of missing instances, but also additionally introduces a regression coefficient matrix
to align the basis matrix of individual views in the latent space.

Evaluation: Following Wen et al. (2021; 2019); Liu et al. (2020), we still select the clustering accu-
racy (ACC), normalized mutual information (NMI), and purity as our three metrics to evaluate these
methods. The higher the values of the three metrics, the better the clustering performance. Besides,
all comparison methods are performed multiple times to reduce randomness and their parameters
are set as suggested in their papers or codes for a fair comparison.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 1: Results on Handwritten database with different incomplete rates. The 1st and 2nd best
results are marked in bold and underline.

Method ACC (%) NMI (%) Purity (%)
30% 50% 70% 30% 50% 70% 30% 50% 70%

BSV 51.49±2.29 38.24±2.25 27.15±1.31 47.01±1.71 32.21±1.00 19.48±0.69 53.69±1.54 39.54±2.04 27.76±1.09
Concat 55.48±1.57 42.19±0.99 28.31±0.75 51.66±0.99 38.24±1.59 23.50±0.95 57.32±1.15 44.21±0.98 30.45±0.80
MIC 73.29±3.41 61.27±3.16 41.34±2.69 65.39±2.08 52.95±1.33 34.71±2.11 74.31±3.15 62.89±3.08 43.25±2.86

DAIMC 86.73±0.79 81.92±0.88 60.44±6.87 76.65±1.07 68.77±0.99 47.10±4.79 86.73±0.79 81.92±0.88 61.24±0.42
OMVC 55.00±5.06 36.40±4.93 29.80±4.63 44.99±4.56 35.16±4.62 25.83±8.37 55.89±4.72 38.51±4.87 31.95±5.22
OPIMC 76.45±5.15 69.50±6.54 56.66±10.06 73.74±3.42 66.57±4.18 51.86±7.97 78.96±3.37 72.00±6.39 58.16±10.35

MKKM-IK-MKC 69.07±0.73 66.08±3.25 55.55±1.39 65.42±0.61 59.04±2.69 47.36±1.78 73.12±0.61 66.58±3.26 56.26±1.07
UEAF 76.11±7.74 65.39±5.09 61.11±1.41 69.37±3.31 55.09±2.05 50.56±1.11 76.51±7.17 66.49±4.18 61.60±1.09
Ours 93.07±0.41 91.74±0.43 84.43±1.18 86.12±0.64 83.39±0.91 72.23±1.08 93.07±0.41 91.74±0.43 84.43±1.18

Table 2: Results on Caltech7 database with different incomplete rates. The 1st and 2nd best results
are marked in bold and underline.

Method ACC (%) NMI (%) Purity (%)
10% 30% 50% 10% 30% 50% 10% 30% 50%

BSV 43.89±1.37 39.06±1.26 38.31±1.68 39.66±2.23 31.63±1.51 26.81±1.38 84.08±1.23 75.25±0.71 68.97±0.49
Concat 41.25±1.67 40.55±1.89 38.06±0.88 43.48±0.92 37.99±2.17 30.28±0.66 84.91±0.50 82.54±1.12 77.56±0.98
MIC 44.07±4.97 38.01±2.12 35.80±2.34 33.71±2.66 27.35±1.69 20.44±0.98 78.12±1.76 73.31±0.72 68.26±1.40

DAIMC 48.29±6.76 47.46±3.42 44.89±4.88 44.61±3.88 38.45±2.88 36.28±2.34 83.32±1.31 76.83±3.23 75.50±1.17
OMVC 40.88±1.54 36.82±1.65 33.28±4.40 28.13±2.54 25.32±1.03 18.76±4.22 79.21±1.77 77.73±1.35 74.05±4.74
OPIMC 49.24±2.89 48.34±4.36 44.12±5.85 42.98±1.02 41.54±2.38 35.98±2.77 84.89±0.69 83.70±1.80 80.64±2.06

MKKM-IK-MKC 36.54±0.51 34.87±1.53 36.05±0.45 24.09±0.98 23.45±0.52 22.91±0.67 72.98±0.80 73.82±0.53 72.52±1.55
UEAF 50.82±4.05 42.71±0.84 36.32±4.22 39.44±2.07 31.07±1.99 24.02±1.37 81.49±1.78 78.26±2.12 76.29±1.93
Ours 53.13±2.65 51.42±1.57 51.23±3.32 54.56±2.68 52.48±0.83 50.29±1.37 85.17±0.91 84.02±0.69 83.79±0.45

Table 3: Results on NH face database with different incomplete rates. The 1st and 2nd best results
are marked in bold and underline.

Method ACC (%) NMI (%) Purity (%)
10% 30% 50% 10% 30% 50% 10% 30% 50%

BSV 69.09±4.76 56.82±2.28 46.54±1.90 56.26±4.07 39.29±2.63 26.20±1.09 73.59±2.96 60.13±1.52 50.15±1.28
Concat 85.87±2.64 63.14±2.78 52.99±1.84 81.46±1.70 59.12±1.14 47.42±1.29 87.39±1.57 87.39±1.57 62.21±1.04
MIC 78.83±4.07 77.22±0.76 75.77±4.05 73.04±2.78 66.82±0.80 62.84±3.20 82.54±1.66 78.83±0.64 77.40±3.48

DAIMC 87.42±4.15 85.35±3.44 84.57±3.49 78.37±3.42 74.71±2.91 70.09±5.08 87.03±2.74 85.66±2.91 84.66±3.41
OMVC 75.35±2.11 72.85±3.17 70.61±2.77 68.45±3.22 65.44±2.89 63.34±4.36 80.89±3.05 77.96±2.33 74.52±3.55
OPIMC 79.82±8.32 74.57±3.81 71.25±6.27 69.92±6.36 66.87±1.86 64.65±6.94 81.56±5.12 79.02±1.27 78.21±4.01

MKKM-IK-MKC 74.34±0.34 75.92±0.93 71.22±1.19 65.21±0.32 66.83±1.24 65.27±1.66 78.96±0.07 79.18±0.16 79.94±1.03
UEAF 80.36±0.10 71.22±0.68 64.37±1.13 67.11±0.52 55.52±2.55 47.97±1.50 81.67±0.13 73.32±0.70 68.49±1.21
Ours 97.10±1.02 96.40±2.17 95.40±4.82 93.62±1.49 92.03±3.80 92.01±4.24 97.10±1.02 96.40±2.17 95.48±4.66

As shown in Table 1-5, the values of ACC, NMI, and Purity are listed and corresponding standard
deviations are given after the sign ’±’. We report the nine methods on each dataset with different
incomplete rates or paired rates in these tables and mask the best or second-best results in bold
or underline. Looking closely at these data, we can easily get a few points: (1) Our approach
shines brightly, beating other state-of-the-art methods in almost all metrics. For instance, our SMVC
exceeds the second-best DAIMC in the ACC metric by approximately 10, 11, and 11 percentage
points on NH face dataset with three different incomplete rates, respectively. The good performance
of our method on the clustering demonstrates that the high-level semantic representation extracted
by it is effective and solid. (2) Comparing all results horizontally, we conclude that the harm of
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Table 4: Results on Animal database with different paired rates. The 1st and 2nd best results are
marked in bold and underline.

Method ACC (%) NMI (%) Purity (%)
30% 50% 70% 30% 50% 70% 30% 50% 70%

BSV 42.05±1.20 48.63±1.89 56.22±1.20 48.16±0.44 55.91±0.58 63.99±0.38 45.20±0.88 52.26±1.19 60.31±0.78
Concat 42.79±0.67 49.34±1.39 53.99±0.99 55.46±0.16 59.31±0.38 63.88±0.35 48.12±0.45 53.24±0.88 59.26±0.81
MIC 43.38±0.63 45.88±0.34 49.15±0.88 52.79±0.77 55.69±0.36 59.30±0.54 49.21±0.78 52.31±0.34 55.33±0.64

DAIMC 50.18±2.18 53.87±1.36 56.42±1.37 55.03±1.03 59.36±1.16 62.76±0.46 54.82±1.57 59.51±1.65 62.12±1.04
OMVC 42.51±0.89 43.98±0.77 46.39±1.02 50.77±0.63 53.11±0.83 55.38±0.46 47.33±0.66 50.42±0.91 52.97±0.76
OPIMC 46.33±2.14 53.14±1.38 53.88±1.26 52.34±0.69 58.51±0.46 62.04±0.26 49.49±1.41 56.23±1.20 57.91±0.43

MKKM-IK-MKC 51.77±0.48 57.75±0.38 61.18±0.59 56.54±0.33 61.66±0.22 66.28±0.27 56.14±0.48 62.14±0.41 66.40±0.53
UEAF 45.73±12.9 51.86±6.48 58.19±3.04 51.61±12.87 58.43±7.53 64.92±3.95 49.10±0.27 55.36±0.36 63.02±0.47
Ours 52.90±0.50 56.00±0.72 59.20±0.43 59.65±0.30 63.32±0.92 66.49±0.77 57.78±0.11 61.28±0.71 64.12±1.07

Table 5: Results on Aloi deep database with different incomplete rates. The 1st and 2nd best results
are marked in bold and underline.

Method ACC (%) NMI (%) Purity (%)
10% 30% 50% 10% 30% 50% 10% 30% 50%

BSV 64.14±1.23 50.63±2.20 37.37±1.34 81.29±0.65 63.15±0.62 45.36±0.59 69.89±1.13 55.10±1.76 40.18±1.07
Concat 71.07±2.90 59.60±1.26 41.39±1.30 89.75±1.24 77.47±0.46 68.63±0.97 76.52±2.39 64.44±0.88 44.99±1.54
MIC 43.69±2.30 35.54±1.19 27.96±1.39 72.18±2.29 66.16±2.68 59.10±2.82 44.77±0.31 36.30±0.25 28.35±0.18

DAIMC 84.07±1.27 81.99±1.32 69.00±2.75 95.66±0.38 94.78±0.23 87.70±1.63 87.65±0.85 85.64±0.82 72.61±0.63
OMVC 63.13±1.43 51.02±1.45 35.18±0.62 80.99±1.37 69.54±0.87 57.91±0.80 67.58±1.30 55.59±1.36 39.37±0.72
OPIMC 47.09±1.77 35.07±1.99 33.97±1.64 77.56±1.01 69.05±0.79 67.62±1.71 51.17±0.37 36.51±0.29 34.73±0.28

MKKM-IK-MKC 83.23±1.16 83.80±1.86 83.56±1.54 95.52±0.26 95.44±0.43 95.03±0.46 86..90±1.06 87.06±1.56 86.58±1.42
UEAF 82.74±1.44 75.69±2.00 72.11±1.91 93.92±0.28 87.45±0.51 88.87±0.49 85.91±0.82 78.71±0.59 75.85±0.65
Ours 93.03±0.36 91.53±0.74 90.89±1.15 98.54±0.07 98.19±0.11 97.72±0.19 94.78±0.33 93.60±0.44 92.88±0.77

missing views to multi-view learning is definite and the higher missing rates lead to worse learning
outcomes in most cases, which is intuitive and comprehensible. Besides, different IMC methods
have different immunity to data incompleteness, such as, UEAF and our approach are relatively
insensitive to the missing views due to its powerful view recovery capability.

(a) Missing views on NH face and Handwritten databases

(b) Recoverd views on NH face and Handwritten databases

Figure 3: The visual example pairs about missing views and their restoration results. The (a) shows
the missing views sampling from the NH face and Handwritten databases; The (b) denotes corre-
sponding views recovered by our SMVC.

In Figure 3, we give the six visual recovery results by reshaping the pixel feature in the first view
of Handwritten database and the second view of NH face database. The first row is the raw missing
views, and the second row denotes the recovery results of our method. As we can see, our SMVC has
an amazing recovery effect on missing views, which is very beneficial for the subsequent generation
of approximately complete graph.

4.3 ABLATION STUDY

To confirm the effectiveness of each component of our SMVC, we respectively remove the cross-
view en-decoder module leaving only the FC layers, recurrent graph constraint, and missing indica-
tor matrix to form new models. Results of these methods on Handwritten and NH face databases
with a 50% missing ratio are shown in Table 6. From the table, it is clear that the full version
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of SMVC achieves the best performance. Furthermore, we find that the introduction of missing
prior matrix is crucial for the recovery phase of SMVC, which well avoids the negative influence of
missing data.

Table 6: The ablation experiments on two datasets with a 50% missing ratio. B is the backbone
with only linear layers; C denotes the cross-view en-decoder module; G represents the current graph
constraint; and incomplete mask means the missing prior matrix introduced in SMVC.

method Handwritten NH face
ACC NMI PUR ACC NMI PUR

B 85.80 77.43 85.80 49.61 27.70 54.29
B + C 89.85 80.02 89.85 82.81 77.24 84.70
B + G 88.05 77.99 88.05 79.98 73.05 82.85

B+ C + G 91.74 83.39 91.74 95.40 92.01 95.48
w/o incomplete mask 55.40 47.92 55.50 58.78 48.62 64.29

4.4 T-SNE VISUALIZATION RESULTS
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(d) DAIMC
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(e) OMVC
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(f) MKKM-IK-MKC
-50 -40 -30 -20 -10 0 10 20 30 40 50

-50

-40

-30

-20

-10

0

10

20

30

40

1
2
3
4
5
6
7
8
9
10

(g) UEAF
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(h) SMVC

Figure 4: Feature space visualization of final clustering representations of different methods via t-
SNE on the Handwritten dataset with a 30% incomplete rate.

In Figure 4, we show the final clustering representation of different methods on the Handwritten
database with a 30% missing rate via the t-SNE (Van der Maaten & Hinton, 2008) technology. The
result of OPIMC is ignored in the figure because it obtains the clustering result directly without
producing any clustering indicator matrix. Comparing all t-SNE results, it’s easy to find that our
SMVC enjoys the best discrimination performance than other state-of-the-art methods.

5 CONCLUSION

In this paper, we propose a general IMC model with a two-stage training strategy that can handle
all kinds of random missing datasets. Distinct from most existing methods, our approach focuses on
cleverly recovering missing views and performing complete multi-view clustering. To do this, we
design a transformer-style cross-view autoencoder and propose a structure-aware recurrent graph
constraint that circularly promotes the restoration of incomplete views and the preservation of ge-
ometry structure within the views, which help to obtain more discriminative semantic fusion infor-
mation. Sufficient experimental results confirm that our SMVC has obvious advantages over other
top methods. At the same time, our model can be easily extended to other multi-view classification
or regression models, which can provide more solid data support for incomplete multi-view learning
just by inputting the consistent representation into the classifier or regression layer.
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A APPENDIX

A.1 HYPERPARAMETERS SENSITIVITY STUDY

In our SMVC, there are two key hyperparameters that need to be set, i.e., β and K. In order to study
the sensitivity of our SMVC to the two parameters, we perform a mesh search in different parameter
combinations and plot the results in Figure 5. From the figure, it is not difficult to choose a pair of
appropriate parameters for our SMVC. For instance, we can select parameters β and K from the
range of [10−3, 10] and [5, 15] separately for the Handwritten database, and the range of [1, 10] and
[5, 15] separately for the Caltech7 database.
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Figure 5: Results involving different parameter combinations on the Handwritten dataset and Cal-
tech7 dataset with a 50% missing rate.

Algorithm 1 Training process of SMVC

Input: Incomplete multi-view data
{
X(v)

}m
v=1

with view-presence information, hyperparameters
β and K.
Initialization: Construct

{
W (v)

}m
v=1

according to the view-presence information. Initialize pa-
rameters of model. Set training epochs e1 and e2 for two stages.

1: while k ≤ e1 do . Stage 1
2: Compute multi-view embedding tensor Z.
3: if k > 1 then
4: Compute graph loss Lrg by Eq. (9).
5: end if
6: Compute reconstructed data

{
X̄(v)

}m
v=1

by decoder and reconstruction loss Lre by Eq. (6).
7: Impute miss data in

{
X(v)

}m
v=1

with
{
X̄(v)

}m
v=1

to get new data
{
X ′(v)

}m
v=1

.
8: Generate graph {G(v)}mv=1 using

{
X ′(v)

}m
v=1

.
9: Compute total loss L by Eq. (10) and update network parameters.

10: end while
11: Update

{
X(v)

}m
v=1

with
{
X ′(v)

}m
v=1

.
12: while k ≤ e2 do . Stage 2
13: Compute multi-view embedding tensor Z.
14: Compute graph loss Lrg by Eq. (9).
15: Compute fusion representation Z̄ by Eq. (5).
16: Compute reconstructed data

{
X̄(v)

}m
v=1

by decoder and reconstruction loss L′re by Eq. (7).
17: Impute miss data in

{
X(v)

}m
v=1

with
{
X̄(v)

}m
v=1

to get new data
{
X ′(v)

}m
v=1

.
18: Compute total loss L′ by Eq. (11) and update network parameters.
19: end while
20: Run K-means on Z̄ to obtain final prediction p.
Output: p

A.2 ALGORITHM

A.3 CONVERGENCE STUDY

In order to study the convergence of our SMVC, in Figure 6, we plot two ACC-Loss curves on the
Handwritten dataset and Caltech7 dataset with a 50% missing rate for Stage 2. From the figure,
thanks to good data recovery, the loss value decreases steadily while the ACC keeps a slow upward
trajectory, which demonstrates that our model has a good convergence.
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Figure 6: The ACC and Loss curves on the Handwritten dataset and Caltech7 dataset with a 50%
missing rate in Stage 2.

A.4 DETAILED INFORMATION OF DATABASES

Table 7: Detailed information about five multi-view databases.

Database # Class # View # Samples # Features

Handwritten 10 5 2000 76/216/64/240/47
Caltech7 7 6 1474 48/40/254/1984/512/928
NH face 5 3 4660 6750/2000/3304
Animal 50 2 10158 4096/4096

Aloi deep 100 3 10800 2048/4096/2048

A.5 IMPLEMENTATION DETAILS

In this subsection, we mainly present the implementation details of our model and experimental
environment. The two transformer-style cross-view en-decoders are set as one layer with 4 heads.
The learning rate is 0.001 and we select the Adaptive Moment Estimation (Adam) as our optimizer.
For all databases, we set 50 epochs for each of the two stages. All experiments are performed on a
personal computer with an Intel 10700k CPU, RTX2080s GPU, Ubuntu 20.04, PyTorch 1.12.1, and
python 3.10.4.
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