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ABSTRACT

Multi-Task Learning (MTL) has achieved great success in various fields, however,
how to balance different tasks to avoid negative effects is still a key problem. To
achieve the task balancing, there exist many works to balance task losses or gra-
dients. In this paper, we unify eight representative task balancing methods from
the perspective of loss weighting and provide a consistent experimental compar-
ison. Moreover, we surprisingly find that training a MTL model with random
weights sampled from a distribution can achieve comparable performance over
state-of-the-art baselines. Based on this finding, we propose a simple yet effective
weighting strategy called Random Loss Weighting (RLW), which can be imple-
mented in only one additional line of code over existing works. Theoretically, we
analyze the convergence of RLW and reveal that RLW has a higher probability
to escape local minima than existing models with fixed task weights, resulting
in a better generalization ability. Empirically, we extensively evaluate the pro-
posed RLW method on six image datasets and four multilingual tasks from the
XTREME benchmark to show the effectiveness of the proposed RLW strategy
when compared with state-of-the-art strategies.

1 INTRODUCTION

Multi-Task Learning (MTL) (Zhang & Yang, 2021; Vandenhende et al., 2021) aims to jointly train
several related tasks to improve their generalization performance by leveraging common knowledge
among them. Since this learning paradigm can not only significantly reduce the model size and
increase the inference speed but also improve the performance, it has been successfully applied in
various fields of deep learning, such as Computer Vision (CV) (Vandenhende et al., 2021), Natural
Language Processing (NLP) (Chen et al., 2021), reinforcement learning (Zhang & Yang, 2021) and
so on. However, when all the tasks are not related enough, which may be reflected via conflicting
gradients or dominating gradients (Yu et al., 2020), it is more difficult to train a multi-task model
than training them separately because some tasks dominantly influence model parameters, leading
to unsatisfactory performance for other tasks. This phenomenon is related to the task balancing
problem (Vandenhende et al., 2021) in MTL. Recently, several works focus on tackling this issue
from an optimization perspective via balancing task losses or gradients.

In this paper, we investigate eight State-Of-The-Art (SOTA) task balancing approaches and unify
them as loss weighting strategies. According to the way of generating loss weights, those methods
can be divided into three types, including the solving approach such as directly solving a quadratic
optimization problem in a multi-objective formulation as weights (Sener & Koltun, 2018), the cal-
culating approach such as projecting conflict gradients (Yu et al., 2020), and the learning approach
such as learning weights in a gradient descent manner (Chen et al., 2018b). On the other hand,
since there are some discrepancies of the implementation details such as using different backbone
networks for training or different metrics for the evaluation among those SOTA weighting meth-
ods, leading to inconsistent comparisons, we provide a unified testbed on six CV datasets and four
multilingual problems from the XTREME benchmark (Hu et al., 2020) for those SOTA weighting
strategies to show a fair comparison.

In addition, inspired by dynamic weighting processes in those SOTA strategies where loss weights
vary over training iterations or epochs, we have a sudden whim: what will happen if a MTL model
is trained with random loss weights? Specifically, in each training iteration, we first sample the
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loss weights from a distribution with some normalization and then minimize the aggregated loss
weighted by the normalized random weights. Surprisingly, this seemingly unreliable method can
not only converge but also achieve comparable performance with the SOTA weighting strategies.
Based on this observations, we proposed a simple yet effective weighting strategy for MTL, called
Random Loss Weighting (RLW). It is very easy to implement RLW by adding only one line of code
and this strategy does not incur any additionally computational cost. An implementation example of
RLW in PyTorch (Paszke et al., 2019) is shown below.

1 outputs = model(inputs)
2 loss = criterion(outputs, labels) # [1, task_num] vector
3 weight = F.softmax(torch.randn(task_num), dim=-1) # RLW is only this!
4 loss = torch.sum(loss*weight)
5 optimizer.zero_grad()
6 loss.backward()
7 optimizer.step()

To show the effectiveness of RLW, we provide both theoretical analyses and empirical evaluations.
Firstly, the objective function of RLW can be considered as a doubly stochastic optimization problem
when optimizing by stochastic gradient descent or its variants, where the randomness is from both
the mini-batch sampling of the data for each task and the random sampling of loss weights. From
this perspective, we give a convergence analysis for RLW. Besides, we can show that RLW has a
higher probability to escape local minima when compared with fixing loss weights, resulting in a
better generalization performance. Empirically, as described before, we compare RLW with SOTA
weighting approaches on six CV datasets and four multilingual problems to show its competitive
performance.

In summary, the main contributions of this paper are four-fold.

• We provide a unified testbed on six multi-task computer vision datasets and four multilin-
gual problems from the XTREME benchmark for a fair comparison among eight SOTA
weighting methods and the proposed RLW method.

• We propose a simple yet effective RLW strategy, which we think is an ignored baseline in
MTL.

• We provide the convergence guarantee and effectiveness analysis for RLW.
• Experiments show that RLW can achieve comparable performance with SOTA weighting

methods without bringing any additionally computational cost.

2 PRELIMINARY

Suppose there are T tasks and task t has its corresponding dataset Dt. An MTL model usually
contains two parts of parameters: task-sharing parameters θ and task-specific parameters {ψt}Tt=1.
For example, in CV, θ usually denotes parameters in the feature extractor shared by all tasks and
ψt represents the task-specific output module for task t. Let `t(·; θ, ψt) denotes a task-specific loss
function for task t. Then the objective function of a MTL model can be formulated as

LMTL =

T∑
t=1

λt`t(Dt; θ, ψt), (1)

where `t(Dt; θ, ψt) denotes the average loss on Dt for task t and {λt}Tt=1 are task-specific loss
weights with a constraint that λt ≥ 0 for all t. When minimizing Eq. (1) by Stochastic Gradient
Descent (SGD) or its variants, the task-specific parameters {ψt}Tt=1 are simply updated based on
the corresponding task gradient ∇ψt

`t(Dt; θ, ψt), while the task-sharing parameters θ should be
updated by all the task losses jointly as

θ = θ − η
T∑
t=1

λt∇θ`t(Dt; θ, ψt), (2)

where η is a learning rate. Obviously, for the update of task-sharing parameters θ, the loss weight-
ing (i.e., {λt}Tt=1 in Eq. (1)) influences θ via the aggregated gradient essentially and the gradient
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weighting in Eq. (2) during the backward process has the same effect as the loss weighting when
they are using the same weights. Therefore, we can ignore the level on which the weights act and
focus on the generation of weights. For simplicity, these two types of weighting are all referred to
as loss weighting in the following sections.

Apparently, the most simple method for loss weighting is to set a same weight for every tasks, i.e.,
without loss of generality, λt = 1

T for all t. This approach is a common baseline in MTL and
it is called Equally Weighting (EW) in this paper. To tackle the task balancing problem and im-
prove the performance of MTL model, there are several works to study how to generate appropriate
weights. In this paper, we investigate eight SOTA weighting strategies, i.e. Gradient Normaliza-
tion (GradNorm) (Chen et al., 2018b), Uncertainty Weights (UW) (Kendall et al., 2018), MGDA
(Sener & Koltun, 2018), Dynamic Weight Average (DWA) (Liu et al., 2019a), Projecting Conflict-
ing Gradient (PCGrad) (Yu et al., 2020), Gradient sign Dropout (GradDrop) (Chen et al., 2020),
Impartial Multi-Task Learning (IMTL) (Liu et al., 2021), and Gradient Vaccine (GradVac) (Wang
et al., 2021).

According to different ways of generating loss weights, we categorize those loss weighting strate-
gies into three types: the learning approach, the solving approach, and the calculating approach.
Both GradNorm and UW consider the loss weights {λt}Tt=1 in Eq. (1) as learnable parameters and
explicitly optimize them by gradient descent. MGDA casts MTL as a multi-objective optimization
problem and directly solves the loss weights {λt}Tt=1 in Eq. (1) by solving a quadratic program-
ming problem. DWA, PCGrad, GradDrop and GradVac directly compute the weights {λt}Tt=1 by
combining gradients and/or losses of all the tasks. IMTL is a hybrid strategy, which combines the
learning and the calculating approaches. We summarize those strategies from the perspective of loss
weighting in Table 5 in Appendix A.

We now unify those eight SOTA methods as loss weighting strategies, i.e., generating loss weights
{λt}Tt=1 in Eq. (1). Noticeably, almost all the existing strategies except EW need to incur intensive
computation to generate loss weights in every iteration, such as solving a quadratic optimization
problem in MGDA, and operating on high-dimensional gradients in PCGrad, GradDrop, IMTL, and
GradVac. Different from those strategies, the proposed RLW strategy generates loss weights in a
sampling way, thus it is as efficient as EW without bringing additionally computational costs.

3 THE RLW METHOD

In this section, we introduce the proposed RLW method. The RLW method is a simple loss weight-
ing strategy and it considers the loss weights λ = (λ1, · · · , λT ) ∈ RT as random variables. For-
mally, the objective function of the RLW method is formulated as

LRLW(θ) = Eλ

[
λ>`(D; θ)

]
= Eλ[λ]>`(D; θ), (3)

where E[·] denotes the expectation and `(D; θ) = (`1(D1; θ), · · · , `T (DT ; θ)) where we omit the
task-specific parameters {ψt}Tt=1 in Eq. (3) for brevity. To guarantee loss weights in λ to be non-
negative, we can first sample λ̃ = (λ̃1, · · · , λ̃T ) from any distribution p(λ̃) and then normalize λ̃
into λ via a mapping f , where f : RT → ∆T is a normalization function for example softmax
function and ∆T denotes a convex hull in RT , i.e. λ ∈ ∆T means

∑T
t=1 λt = 1 and λt ≥ 0 for all

t. Note that in most cases p(λ) is different from p(λ̃).

In Eq. (3), p(λ) is usually too complex to compute its expectation Eλ[λ], thus a stochastic ap-
proximation scheme is adopted to minimize Eq. (3). When the mini-batch SGD (Bottou, 1991) or
its variants is used to minimize Eq. (3) as most deep learning models did, Eq. (3) can be viewed
as a doubly stochastic optimization problem, where the randomness is from both the mini-batch
data sampling for each task and the randomly sampling of the loss weights. In the following, we
show that the approximated gradient ∇θλ>`(D̃; θ) is an unbiased estimation of the true gradient
of LRLW(θ), where D̃ denotes a mini-batch data sampled from all the tasks. Specifically, as D̃t is
a mini-batch data sampled from Dt to calculate the stochastic gradient ∇θ`t(D̃t; θ) to approximate
the full gradient ∇θ`t(Dt; θ) for task t, we have ED̃[∇θ`(D̃; θ)] = ∇θ`(D; θ). Therefore, when
we further randomly sample a weight vector λ, we have

Eλ

[
ED̃[∇θλ>`(D̃; θ)]

]
= Eλ[λ]>∇θ`(D; θ) = ∇θLRLW(θ),
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which verifies that∇θλ>`(D̃; θ) is an unbiased estimation.

In practice, it is very easy to implement the RLW method without modifying network architecture
or bringing additionally computational costs. Specifically, in each iteration, we first sample λ̃ from
p(λ̃) and normalize it to obtain λ via appropriate normalization function f , and then minimize the
aggregated loss weighted by λ. The entire algorithm of RLW (i.e., minimizing Eq. (3)) via SGD is
shown in Algorithm 1. Apparently, the only difference between the proposed RLW strategy and the
widely used EW strategy is Line 7 in Algorithm 1 and it is very easy to implement with only one
line of code.

Algorithm 1 Optimization Algorithm for RLW
by SGD
Input: numbers of iterations K, numbers of tasks

T , learning rate η, dataset {Dt}Tt=1, weight dis-
tribution p(λ̃)

1: Randomly initialized θ0;
2: for k = 1 to K do
3: for t = 1 to T do
4: Sample a mini-batch data D̃t from Dt;
5: Compute loss `t(D̃t; θk);
6: end for
7: Sample weights λ̃ from p(λ̃) and normalize

it into λ via f ; . RLW is only this
8: θk+1 = θk − η∇θ

∑T
t=1 λt`t(D̃t; θk);

9: end for

In this paper, we use six different distributions
for p(λ̃) in the proposed RLW method, includ-
ing uniform distribution between 0 and 1 (de-
noted by Uniform), standard normal distribution
(denoted by Normal), Dirichlet distribution with
α = 1 (denoted by Dirichlet), Bernoulli distribu-
tion with probability 1/2 (denoted by Bernoulli),
Bernoulli distribution with probability 1/2 and a
constraint

∑T
t=1 λ̃t = 1 (denoted by constrained

Bernoulli), and normal distribution with a random
mean and a random variance both sampling from a
uniform distribution U(0, 1) for each task (denoted
by random Normal). We set f as a function of
f(λ̃) = λ̃/(

∑T
t=1 λ̃t) if p(λ̃) is the Bernoulli dis-

tribution or the constrained Bernoulli distribution
and a softmax function for the other types of dis-
tribution. When sampling from the first five types of distribution, E[λ] is simply proportional to
( 1
T , · · · ,

1
T ), thus it is fair to compare with the EW strategy. When p(λ̃) is a random Normal dis-

tribution, it means each λ̃t is sampled from a normal distribution with random mean and variance,
thus it is intractable to compute the expectation for p(λ) and combining with such distribution can
further show the effectiveness of RLW.

When sampling from a Bernoulli distribution, the weights for all tasks are either 0 or 1, i.e., λt ∈
{0, 1} for all t. In this way, just a subset of tasks contributes to updating the task-sharing parameters
θ. This manner can be viewed as the mini-batch sampling on the task level. If considering an
additional constraint that

∑T
t=1 λ̃t = 1, it implies only one task is involved in the update of the task-

sharing parameters in each iteration. Although there are some works (Dong et al., 2015; Liu et al.,
2015a; Søgaard & Goldberg, 2016; Subramanian et al., 2018; Sanh et al., 2019; Liu et al., 2019b)
adopting this strategy to train a MTL model, it is a special case in the proposed RLW strategy
and beyond existing works, we also provide theoretical analyses to show the effectiveness of the
proposed RLW method.

4 ANALYSIS

As the optimization procedure of the RLW method can be viewed as the doubly stochastic op-
timization, this strategy increases the randomness compared with the fixed loss weights methods
optimizing via SGD (denoted by FW), where EW is a special case. In this section, we focus on
analyzing how the extra randomness from the loss weights sampling affects the convergence and
effectiveness of RLW compared with FW.

In the case of without misunderstanding, we simply use `t(θ) instead of `t(Dt; θ) to denote the loss
function of task t for brevity in this section and Appendix B. For the ease of the analysis, we need
to make the following assumption.

Assumption 1. The loss function `t(θ) of task t is Lt-Lipschitz continuous w.r.t θ, and that
EDt

[‖`t(Dt; θ)‖2] = σ2
t . Loss weights in λ satisfy Eλ[λ] = µ.

In the following theorem, we analyze the convergence property of Algorithm 1 for RLW.
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Theorem 1. Suppose the loss function `t(θ) of task t is ct-strongly convex. We define θ∗ =
arg minθ LRLW(θ) and denote by θk the solution in the k-th iteration. When η, the step size or
equivalently the learning rate in SGD, satisfies η ≤ 1/2c, where c = min1≤t≤T {ct}, under As-
sumption 1 we have

E[‖θk − θ∗‖2] ≤ (1− 2ηc)k‖θ0 − θ∗‖2 +
ηκ

2c
, (4)

where κ =
∑T
t=1 σ

2
t . Then for any positive ε, E[‖θk − θ∗‖2] ≤ ε can be achieved after k =

κ
2εc2 log

(
ε0
ε

)
iterations with η = εc

κ , where ε0 = E[‖θ0 − θ∗‖2].

Theorem 1 shows that the RLW method with the fixed step size has a linear convergence up to a
radius around the optimal solution, which is similar to FW according to the property of the standard
SGD method (Moulines & Bach, 2011; Needell et al., 2016). Although RLW has a larger κ than
FW, i.e., κFW =

∑T
t=1 µ

2
t ·
∑T
t=1 σ

2
t ≤ κ, possibly requiring more iterations for RLW method to

reach the same accuracy with FW, our empirical experiments in Appendix C.1 show that this does
not cause much impact in practice.

We next analyze the effectiveness of the RLW method from the perspective of stochastic optimiza-
tion. It is observed that the SGD method can escape sharp local minima and converge to a better
solution than Gradient Descent (GD) techniques under various settings with the help of noisy gra-
dients (Hardt et al., 2016; Kleinberg et al., 2018). Inspired by those works, we first provide the
following Theorem 2 and then leverage this theorem to show that the extra randomness in the RLW
method can help RLW to better escape sharp local minima and achieve a better generalization per-
formance than FW.

For the ease of presentation, we introduction some notations. Here we consider the update step of
these stochastic methods as θk+1 = θk−η(∇µ>`(θk)+ξk), where ξk is a noise with E[ξk] = 0 and
‖ξk‖2 ≤ r. Here r denotes the intensity of the noise. For the analysis, we construct an intermediate
sequence ϕk = θk − η∇µ>`(θk). Then we get Eξk [ϕk+1] = ϕk − η∇Eξk [µ>`(ϕk − ηξk)].
Therefore, the sequence {ϕk} can be regarded as an approximation of using GD to minimize the
function Eξk [µ>`(ϕ− ηξk)].

Theorem 2. Suppose ∇`t(θ) is Mt-Lipschitz continuous and ‖ξk‖2 ≤ r. If the loss function `t(θ)
of task t is ct-one point strongly convex w.r.t a local minimum θ∗ after convolved with noise ξ, i.e.,
〈∇Eξ`t(ϕ− ηξ), ϕ− θ∗〉 ≥ ct‖ϕ−θ∗‖2, then under Assumption 1 we have ‖ϕK−θ∗‖2 ≤ 2β

ρδ with

probability at least 1−δ afterK = 1
ρ log

(
ρε0
β

)
iterations with η ≤ c

M2 , where ε0 = E[‖ϕ0−θ∗‖2],

c = min1≤t≤T {ct}, M = max1≤t≤T {Mt}, ρ = 2ηc− η2M2 and β = η2r2(1 + ηM)2.

Firstly, Theorem 2 only requires that `t(θ) is ct-one point strongly convex w.r.t θ∗ after convolved
with noise ξ, which is much weak than the convexity assumption and can hold for deep neural
networks. Moreover, this theorem implies that for both RLW and FW methods, their solutions have
a high probability to get close to a local minimum θ∗ depending on the noise ξ. Note that by adding
extra noise, the sharp local minimum will disappear and only the flat local minimum with a large
diameter will still exist (Kleinberg et al., 2018). On the other hand, those flat local minima may
satisfy one point strongly convexity assumption in Theorem 2, thus the diameter of the converged
flat local minimum is affected by the noise intensity. Due to the extra randomness from loss weights
sampling, the RLW method can provide a stronger noise (i.e. a larger r) than FW (referred to
Appendix B.3). Hence RLW can better escape sharp local minima and converge to a flatter local
minimum than FW, resulting in better generalization performance.

5 EXPERIMENTS

In this section, we empirically evaluate the proposed RLW method by conducting experiments on
six computer vision datasets (i.e., NYUv2, CityScapes, CelebA, PASCAL-Context, Office-31, and
Office-Home) and four multilingual problems from the XTREME benchmark (Hu et al., 2020). Due
to page limit, experimental results of the CityScapes, CelebA, Office-31, Office-Home datasets and
two multilingual problems are put in Appendix C.
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5.1 DATASETS

The NYUv2 dataset (Silberman et al., 2012) is an indoor scene understanding dataset, which consists
of video sequences recorded by the RGB and Depth cameras in the Microsoft Kinect. It contains 795
and 654 images with ground-truths for training and validation, respectively. This dataset includes
three tasks: 13-class semantic segmentation, depth estimation, and surface normal prediction.

The PASCAL-Context dataset (Mottaghi et al., 2014) is an annotation extension of the PASCAL
VOC 2010 challenge. It contains 10,103 images, which are divided into two parts: 4,998 for training
and 5,105 for validation. We consider two tasks with annotations in this dataset: 21-class semantic
segmentation and 7-class human part segmentation. By following (Maninis et al., 2019), we gen-
erate two additional tasks, including the saliency estimation and surface normal estimation tasks
where their ground-truth labels are computed by the label distillation using pretrained state-of-the-
art models (Bansal et al., 2017; Chen et al., 2018a).

The XTREME benchmark (Hu et al., 2020) is a large-scale multilingual multi-task benchmark for
cross-lingual generalization evaluation, which covers fifty languages and contains nine tasks. We
conduct experiments on four tasks containing Named Entity Recognition (NER), Part-Of-Speech
(POS) tagging, Natural Language Inference (NIL), and Paraphrase Identification (PI) from this
benchmark. On each task, we construct a multilingual problem by choosing the four languages
with the largest number of data. The more details are provided in Appendix C.6.

5.2 IMPLEMENTATION DETAILS

The network architecture used adopt the hard-parameter sharing pattern (Caruana, 1993), which
shares bottom layers of the network for all tasks and uses separate top layers for each task. Other
architectures with more parameter sharing manners are provided in Section 5.7. The implementation
details on each dataset are introduced in the following.

For the NYUv2 dataset, the DeepLabV3+ architecture (Chen et al., 2018a) is used. Specifically, a
ResNet-50 network pretrained on the ImageNet dataset with dilated convolutions (Yu et al., 2017) is
used as a shared encoder among tasks and the Atrous Spatial Pyramid Pooling (ASPP) (Chen et al.,
2018a) module is used as task-specific head for each task. Input images are resized to 288 × 384.
The Adam optimizer (Kingma & Ba, 2015) with the learning rate as 10−4 and the weight decay as
10−5 is used for training and the batch size is set to 8. We use the cross-entropy loss, L1 loss and
cosine loss as the loss function of the semantic segmentation, depth estimation and surface normal
prediction tasks, respectively. For the PASCAL-Context dataset, the network architecture is similar
to that on NYUv2 dataset with a shallower ResNet-18 network used as the shared encoder due to
constraints of computing resources. All input images are resized to 512×512. The Adam optimizer
with both the learning rate and weight decay as 10−4 is applied for training and the batch size is
set to 12. The cross-entropy loss is used for two segmentation tasks and saliency estimation task,
while the normal estimation task uses the L1 loss. For each multilingual problem in the XTREME
benchmark, a pretrained multilingual BERT (mBERT) model (Devlin et al., 2019) implemented
via the open source transformers library (Wolf et al., 2020) is used as the shared encoder among
languages and a fully connected layer is used as the language-specific output layer for each language.
The Adam optimizer with the learning rate as 2 × 10−5 and the weight decay as 10−8 is used for
training and the batch size is set to 32. The cross-entropy loss is used for the four multilingual
problems.

5.3 EVALUATION METRIC

To measure the performance of MTL models in a scalar metric, for homogeneous MTL problems
(e.g., the Office-31 dataset) which contain tasks of the same type such as the classification task, we
directly average the performance metrics among tasks. For heterogeneous MTL problems (e.g., the
NYUv2 dataset) that contain tasks of different types, by following (Maninis et al., 2019; Vanden-
hende et al., 2021), we compute the average of the relative improvement over the EW method on
each metric of each task as

∆p = 100%× 1

T

T∑
t=1

1

Nt

Nt∑
n=1

(−1)pt,n(Mt,n −MEW
t,n )

MEW
t,n

,
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where Nt denotes the number of metrics in task t, Mt,n denotes the performance of a task balancing
strategy for the nth metric in task t, MEW

t,n is defined similarly for the EW strategy, and pt,n is set to
1 if a higher value indicates better performance for the nth metric in task t and otherwise 0.

5.4 RESULTS ON THE NYUV2 DATASET

The results on the NYUv2 validation dataset are shown in Table 1. It is noticeable that the proposed
RLW strategy can achieve comparable performance with SOTA baseline methods. Firstly, RLW
with six weight distributions can always outperform EW, which implies that training in a doubly
stochastic manner can have a better generalization ability. Secondly, RLW can achieve a balanced
improvement on all tasks. That is, RLW has comparable or better performance on each metric in
each task when compared with EW, resulting in a large ∆p. Different from RLW, many baseline
methods achieve unbalanced performance on all the tasks. For example, IMTL significantly out-
performs other methods on the normal prediction task but has unsatisfactory performance on the
other two tasks. Hence, this can be one advantage of the proposed RLW strategy since MTL aims
to improve the generalization performance of each task as much as possible. Thirdly, RLW with
some distributions (i.e., “constrained Bernoulli” and “Normal”) can improve the generalization per-
formance by more than 1%, which is significantly better than baseline methods. Even, RLW with
the constrained Bernoulli distribution can entirely dominate not only the EW method but also some
baseline methods such as GradNorm, UW, DWA, and GradDrop, on each task, which demonstrates
the effectiveness of the RLW method.

Moreover, we compare the average time of training one epoch for each loss weighting strategy with
the same batch size (i.e., 8) on a single NVIDIA GeForce RTX 3090 GPU. The relative training
speed of each method over the EW method is reported as ∆t in Table 1. Noticeably, the proposed
RLW strategy is as computationally efficient as EW, while some baseline methods are compute-
intensive. For example, PCGrad and GradVac take about twice the time of EW for each epoch
because of computing the gradients of parameters. MGDA spends a lot of time to solve a complex
quadratic programming problem. Furthermore, ∆t of those baseline methods will increase as the
network becomes deeper, while the proposed RLW strategy is architecture-agnostic and always as
efficient as EW.

By combining the above analysis, we think that the proposed RLW method is an effective and
efficient loss weighting strategy for MTL.

Table 1: Performance on the NYUv2 validation dataset with three tasks: 13-class semantic seg-
mentation, depth estimation, and surface normal prediction. The best results for each task on each
measure are highlighted in bold. ↑ (↓) indicates that the higher (lower) the result, the better the
performance.

Weighting
Segmentation Depth Surface Normal

∆p↑ ∆t↓Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓
Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 53.91 75.56 0.3840 0.1567 23.6338 17.2451 34.94 60.65 71.81 +0.00 ×1.00

GradNorm 53.81 75.35 0.3863 0.1556 23.6106 17.2565 34.98 60.58 71.76 −0.06 ×1.82
UW 53.15 75.41 0.3817 0.1576 23.6487 17.2040 34.98 60.71 71.80 −0.24 ×1.01

MGDA 53.66 75.37 0.3864 0.1610 23.4757 16.9912 35.44 61.17 72.16 −0.35 ×2.64
DWA 53.33 75.42 0.3834 0.1556 23.5806 17.1242 35.18 60.88 71.91 +0.07 ×1.00

PCGrad 53.34 75.43 0.3857 0.1600 23.2293 16.6966 36.09 61.80 72.66 +0.12 ×2.10
GradDrop 53.80 75.56 0.3857 0.1587 23.8726 17.1406 35.10 60.72 71.60 −0.33 ×1.84

IMTL 52.90 74.88 0.3883 0.1632 23.0534 16.5304 36.30 62.20 73.08 −0.35 ×1.82
GradVac 53.52 75.43 0.3840 0.1559 23.2892 16.8601 35.67 61.53 72.46 +0.48 ×2.11

RLW (Uniform) 54.09 75.78 0.3826 0.1563 23.6272 17.2711 34.73 60.67 71.87 +0.17

×1.00

RLW (Normal) 54.19 75.98 0.3789 0.1570 23.1984 16.7944 35.71 61.74 72.77 +1.02
RLW (Dirichlet) 53.54 75.45 0.3834 0.1547 23.6392 17.0715 35.28 60.92 71.88 +0.27
RLW (Bernoulli) 53.72 75.62 0.3850 0.1610 23.1413 16.6591 36.08 61.98 72.86 +0.28

RLW (constrained Bernoulli) 54.32 75.78 0.3779 0.1533 23.2101 16.9354 35.41 61.44 72.58 +1.29
RLW (random Normal) 54.08 75.77 0.3815 0.1581 23.5598 16.9577 35.53 61.20 72.13 +0.39

5.5 RESULTS ON THE PASCAL-CONTEXT DATASET

The results on the PASCAL-Context validation dataset are shown in Table 2. The empirical observa-
tions are similar to those on the NYUv2 dataset. Specifically, RLW with different distributions can
outperform EW, which means RLW has a better generalization ability. Most baseline methods have
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unsatisfactory performance on this dataset and the best baseline, i.e., MGDA, achieves the largest ∆p

of 0.18%. Thus, RLW outperforms many baseline methods. Moreover, RLW with the constrained
Bernoulli distribution achieves the highest improvement of 0.46%. Furthermore, RLW does achieve
more balanced improvement than some baseline methods. For example, GradNorm performs not
so good on the saliency estimation task, leading to the lowest ∆p. Although IMTL significantly
improves the performance of the surface normal estimation task, it performs unsatisfactorily on the
other tasks especially the semantic segmentation task. Moreover, the relative training speed of each
method over the EW method is similar to the NYUv2 dataset and hence we omit it in Table 2.

Table 2: Performance on the PASCAL-Context validation dataset with four tasks: 21-class se-
mantic segmentation (abbreviated as SS), 7-class human parts segmentation (abbreviated as HPS),
saliency estimation, and surface normal prediction. The best results for each task on each measure
are highlighted in bold. ↑ (↓) indicates that the higher (lower) the result, the better the performance.

Weighting
SS HPS Saliency Surface Normal

∆p↑Strategy mIoU↑ mIoU↑ mIoU↑ maxF↑
Angle Distance Within t◦

Mean↓ RMSE↓ 11.25↑ 22.5↑ 30↑
EW 64.52 58.71 64.31 77.11 17.6444 26.1634 42.24 75.93 86.97 +0.00

GradNorm 64.13 58.49 61.64 72.46 18.0455 26.4642 41.03 74.90 86.26 −1.94
UW 63.72 59.13 64.47 77.26 17.4962 26.0463 42.64 76.48 87.35 +0.09

MGDA 63.34 58.86 64.79 77.54 17.3070 25.8584 43.30 77.14 87.79 +0.18
DWA 64.32 58.61 64.30 77.15 17.4065 25.9242 42.72 76.71 87.59 +0.14

PCGrad 63.58 58.68 63.79 76.71 17.2376 25.8572 43.69 77.11 87.70 −0.08
GradDrop 64.04 59.36 62.31 73.10 17.3246 25.8966 43.29 76.92 87.63 −0.58

IMTL 62.67 58.35 62.92 73.21 16.8026 25.4852 45.02 78.49 88.65 −0.81
GradVac 62.99 58.63 64.30 77.15 17.1852 25.7621 43.55 77.41 88.00 −0.10

RLW (Uniform) 63.52 59.03 63.75 76.71 17.0261 25.6528 44.21 77.77 88.24 +0.27
RLW (Normal) 64.14 58.43 64.05 76.86 17.1794 25.7734 43.69 77.31 87.91 +0.16

RLW (Dirichlet) 63.97 58.88 64.30 77.19 17.2147 25.8093 43.67 77.33 87.89 +0.37
RLW (Bernoulli) 64.34 58.35 64.28 77.03 17.3379 25.9016 43.18 76.93 87.66 +0.11

RLW (constrained Bernoulli) 65.07 58.52 64.19 76.96 17.3377 25.9005 43.30 77.04 87.69 +0.46
RLW (random Normal) 64.09 59.15 63.84 76.76 17.3860 25.9472 42.98 76.73 87.54 +0.16

5.6 RESULTS ON THE XTREME BENCHMARK

Table 3: Performance on two multilingual problems, i.e. POS and PI from the XTREME bench-
mark. The best results for each language are highlighted in bold.

Weighting POS (F1 Score) PI (Accuracy)
Strategy en zh te vi Avg en zh de es Avg

EW 95.02 88.89 91.16 87.11 90.55 94.09 84.59 89.44 90.24 89.59
GradNorm 95.01 88.91 91.88 87.06 90.71 94.39 85.94 90.99 91.44 90.69

UW 94.89 88.77 90.96 87.12 90.44 93.74 85.44 90.24 91.29 90.18
MGDA 95.08 88.97 92.35 87.12 90.88 94.64 84.99 89.84 90.89 90.09
DWA 95.02 89.03 91.87 87.27 90.80 94.69 84.99 89.49 91.44 90.15

PCGrad 94.85 88.42 90.72 86.71 90.18 94.19 85.49 89.09 91.24 90.00
GradDrop 95.08 89.06 90.65 87.17 90.49 94.29 84.44 89.69 90.94 89.84

IMTL 94.87 88.80 92.18 86.72 90.65 94.54 84.79 90.14 90.99 90.12
GradVac 94.87 88.41 90.62 86.47 90.09 94.29 84.94 89.19 90.89 89.83

RLW (Uniform) 95.06 89.00 92.31 86.93 90.83 94.69 85.79 90.29 91.94 90.68
RLW (Normal) 95.01 88.87 92.86 86.85 90.90 94.39 85.34 90.04 91.84 90.40

RLW (Dirichlet) 95.16 88.96 91.64 87.24 90.75 94.24 84.39 89.99 90.99 89.90
RLW (Bernoulli) 95.13 89.10 91.13 87.03 90.60 95.09 85.89 90.24 91.99 90.80

RLW (constrained Bernoulli) 94.98 89.05 92.33 86.87 90.81 94.69 85.49 90.19 90.99 90.34
RLW (random Normal) 95.07 89.00 91.10 87.25 90.60 94.79 84.94 89.54 90.99 90.07

We study four multilingual problems from the XTREME benchmark (Hu et al., 2020) and show
experimental results of POS and PI in Table 3. Due to the page limit, the results of NLI and NER are
placed in Table 12 in the Appendix. Different from heterogeneous MTL problems on the NYUv2
and PASCAL-Context datasets, in these multilingual problems, each language has its own input
data, which is usually called homogeneous MTL problems (Zhang & Yang, 2021). According to
the results in Tables 3, RLW with diverse distributions still outperforms EW in all the two multilin-
gual problems, which further shows the effectiveness of RLW on different type of MTL problem.
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Besides, RLW achieves comparable and even better performance than those baseline methods. For
example, on the POS multilingual problem, RLW has the highest average F1 score and it achieves
the best average accuracy on the PI problem.

5.7 RLW WITH DIFFERENT ARCHITECTURES

The proposed RLW strategy can be seamlessly combined with other MTL network architectures
without increasing additional computation cost. To see this, we combine the RLW strategy with
three SOTA MTL architectures, i.e., cross-stitch network (Misra et al., 2016), Multi-Task Attention
Network (MTAN) (Liu et al., 2019a), and CNN with Neural Discriminative Dimensionality Reduc-
tion layer (NDDR-CNN) (Gao et al., 2019) and evaluate all the methods on the NYUv2 dataset.
Experimental results when using the MTAN architecture are shown in Table 4. Due to page limit,
the results for the cross-stitch and NDDR-CNN networks are put in Tables 6 and 7 in the Appendix,
respectively.

According to the results, we have some observations. Firstly, compared with the performance when
using the DMTL architecture (i.e., the results on Table 1), the performance of each loss weighting
strategy with the deeper MTAN architecture is improved, especially on the surface normal estimation
task, which is due to the larger capacity of the MTAN. Secondly, the RLW strategy with different
distributions can outperform EW, which indicates the effectiveness of RLW with more advanced
and deeper architectures. Thirdly, compared with baseline methods, the proposed RLW method
can achieve competitive performance. For example, RLW with the random normal distribution can
improve over EW by 0.76% and is among the top-3 methods.

Table 4: Performance under the MTAN architecture on the NYUv2 validation dataset with three
tasks: 13-class semantic segmentation, depth estimation, and surface normal prediction. The best
results for each task on each measure are highlighted in bold. ↑ (↓) indicates that the higher (lower)
the result, the better the performance.

Weighting
Segmentation Depth Surface Normal

∆p↑Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓
Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 53.77 75.79 0.3789 0.1546 22.8344 16.6021 36.37 62.45 73.32 +0.00

GradNorm 54.75 75.89 0.3797 0.1537 22.6295 16.2829 37.09 63.12 73.87 +0.83
UW 54.80 75.97 0.3767 0.1536 22.6744 16.3050 36.90 63.14 73.87 +0.95

MGDA 53.94 75.97 0.3788 0.1573 22.6157 16.1395 37.24 63.38 73.94 +0.37
DWA 53.71 75.72 0.3801 0.1539 23.1560 16.8354 35.95 61.85 72.79 −0.39

PCGrad 53.83 75.70 0.3823 0.1568 22.9481 16.3528 37.05 62.76 73.37 −0.16
GradDrop 53.83 75.85 0.3754 0.1530 22.7846 16.4156 36.77 62.74 73.51 +0.57

IMTL 53.39 75.20 0.3807 0.1549 22.2571 15.8336 38.04 64.11 74.59 +0.72
GradVac 54.52 75.68 0.3755 0.1546 22.9389 16.5692 36.48 62.33 73.20 +0.34

RLW (Uniform) 54.27 75.51 0.3820 0.1548 22.9640 16.4375 36.89 62.65 73.29 +0.08
RLW (Normal) 53.70 75.62 0.3791 0.1551 22.8395 16.3328 37.05 62.82 73.44 +0.16

RLW (Dirichlet) 53.36 75.08 0.3778 0.1514 22.8803 16.3579 36.99 62.80 73.40 +0.35
RLW (Bernoulli) 53.46 75.74 0.3820 0.1517 22.5642 16.2013 37.21 63.29 73.96 +0.61

RLW (constrained Bernoulli) 54.11 75.47 0.3821 0.1558 22.7969 16.2204 36.93 62.90 73.56 +0.10
RLW (random Normal) 54.10 75.77 0.3802 0.1554 22.4400 16.0336 37.74 63.68 74.17 +0.76

6 CONCLUSIONS

In this paper, we have unified eight state-of-the-art task balancing methods from the loss weighting
perspective. Based on randomly sampling task weights from distributions, we propose a simple
RLW strategy that can achieve comparable performance with state-of-the-art baselines. We analyze
the convergence property of the proposed RLW method and the double stochasticity that can help
escape sharp local minima. Finally, we provide a consistent and comparative comparison to show
the effectiveness of the proposed RLW method on six computer vision datasets and four multilingual
tasks from the XTREME benchmark. In our future studies, we will apply the proposed RLW method
to more fields such as reinforcement learning.
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ETHICS STATEMENT

In this paper, we propose the RLW method, a simple yet effective loss weighting strategy for multi-
task learning. This method is a general machine learning algorithm and we do not apply it to any
specific applications. Thus there is no any negative ethics impacts in our paper.

REPRODUCIBILITY STATEMENT

For the experiments in this paper, all the datasets we used are publicly available and implementation
details including data splits and hyperparameters (i.e., the learning rate, the weight decay, and the
batch size) are provided in Section 5.2 and Appendix C. Besides, the source code is put in the
supplementary material. For the theoretical results in this paper, we have stated the full set of
assumptions in Section 4 and the complete proofs are provided in Appendix B.
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APPENDIX

A SUMMARY OF LOSS WEIGHTING STRATEGIES

In this section, we summarize the eight SOTA methods introduced in Section 2 from a perspective
of loss weighting. We define G = [g1, · · · , gT ] and ut = gt/‖gt‖, where gt = ∇θ`t(Dt; θ)
denotes the gradient of `t(Dt; θ) with respect to θ. Let RT+ denote the non-negative subspace in
the T -dimensional space RT , 1 denote (1, · · · , 1), I denote an identity matrix, diag(a) denote a
diagonal matrix with its principal diagonal a, [·]+ be the ReLU operation, sgn(·) represent the sign
function, and I(·) denote the indicator function. The summary of different methods is in Table 5.

Table 5: A summary of SOTA weighting strategies from a perspective of loss weighing. ∗ means
whether a convergence analysis (abbreviated as Conv.) is provided in the original paper. † denotes
that the corresponding weighting strategy needs not to compute gradients (abbreviated as Not Grad.)
for generating loss weights λ.

Approach Strategy Weight λ (k-th iteration) Conv.∗ Not Grad.†

EW ( 1
T , · · · ,

1
T ) ! !

Learning

GradNorm
minλ

∑T
t=1

∣∣λt‖gt‖ − grαt ∣∣,
% %where g = (

∑T
t=1 λt‖gt‖)/T, rt = ˜̀

t/(
1
T

∑T
j=1

˜̀
j)

˜̀
t = `t/`

0
t , and α is pre-defined

UW minλ (λ>`+ 1 log(λ>)/2), s.t. λ ∈ RT+ % !

IMTL-L minλ(λ>`− 1 log(λ)>), s.t. λ ∈ RT+ % %

Solving MGDA arg minλ

{
‖λ>G‖2 | λ ∈ ∆T

}
! %

Calculating

DWA T × softmax(`k−1/`k−2) % !

PCGrad

1(I +CN),

! %
whereN = diag(1/‖g1‖, · · · , 1/‖gT ‖),

C = [Cpq]T×T , Cpp = 0,

Cpq =
[
−
(
gp +

∑
p′<q Cpp′up′

)
u>q

]
+

GradDrop

1
>s+ (I− diag(s))M ,

% %

where s ∈ [0, 1]T is pre-defined,

M = diag
(
I(d > e)

)
I(G̃ > 0)+

diag
(
I(d < e)

)
I(G̃ < 0),

d = (1/2)
(
1 + 1G/(

∑T
t=1 ‖gt‖)

)
,

e ∼ Uniform(0, 1), G̃ = sgn(θ)�G

IMTL-G
[1− 1α>2:T ,α2:T ],

% %where α2:T = g1N
>(DN>)−1,

N = 1
>u1 −U2:T ,D = 1

>g1 −G2:T

GradVac

1(I +CN),

! %

whereN = diag(1/‖g1‖, · · · , 1/‖gT ‖),
C = [Cpq]T×T , Cpp = 0,

Cpq = sgn(φ̂pq − φpq) ∗
[
‖ĝp‖ ∗A(φ̂pq, φpq)

]
,

A(φ̂pq, φpq) =
φ̂pq

√
1−(φpq)2−φpq

√
1−(φ̂pq)2√

1−(φ̂pq)2
,

φpq = (ĝp · gq)/(‖ĝp‖‖gq‖),
ĝp = gp +

∑
p′<q Cpp′up′ ,

φ̂pq = (1− β)φ̂pq + βφpq,

β is pre-defined, and φ̂pq is initialized as 0

Sampling RLW (ours) f(λ̃),where λ̃ ∼ p(λ̃) and f is a normalization function ! !
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B PROOF OF SECTION 4

B.1 PROOF OF THEOREM 1

Since `t is ct-strongly convex w.r.t θ, for LRLW(θ) = λ>`(θ), for any two points θ1 and θ2 in Rd,
we have 〈

∇λ>`(θ1)−∇λ>`(θ2), θ1 − θ2
〉

=

T∑
t=1

λt 〈∇`t(θ1)−∇`t(θ2), θ1 − θ2〉

≥
T∑
t=1

ctλt‖θ1 − θ2‖2. (5)

Since 0 ≤ λt ≤ 1, we have
∑T
t=1 ctλt ≥ c, where c = min1≤t≤T {ct}. Then for any λ, LRLW(θ)

is c-strongly convex.

With notations in Theorem 1, we have

‖θk+1 − θ∗‖2 = ‖θk − θ∗ − η∇λ>`(D̃; θk)‖2

= ‖θk − θ∗‖2 − 2η
〈
θk − θ∗,∇λ>`(D̃; θk)

〉
+ η2‖∇λ>`(D̃; θk)‖2.

Note that Eλ

[
ED̃[∇λ>`(D̃; θk)]

]
= ∇µ>`(D; θk) and

Eλ

[
ED̃[‖∇λ>`(D̃; θk)‖2]

]
≤ Eλ

[
ED̃[‖λ>‖2‖∇`(D̃; θk)‖2]

]
≤ Eλ

[ T∑
t=1

λ2t

]
·
T∑
t=1

σ2
t

≤
T∑
t=1

σ2
t ,

where the first inequality is due to the Cauchy-Schwarz inequality and the third inequality is due to
0 ≤ λt ≤ 1. Then, by defining κ =

∑T
t=1 σ

2
t , we obtain

Eλ

[
ED̃[‖θk+1 − θ∗‖2]

]
≤ ‖θk − θ∗‖2 − 2η

〈
θk − θ∗,∇µ>`(θk)

〉
+ η2κ

≤ (1− 2ηc)‖θk − θ∗‖2 + η2κ. (6)

If 1− 2ηc > 0, we recursively apply the inequality (6) over the first k iterations and we can obtain

E[‖θk+1 − θ∗‖2] ≤ (1− 2ηc)k‖θ0 − θ∗‖2 +

k−1∑
j=0

(1− 2ηc)jη2κ

≤ (1− 2ηc)k‖θ0 − θ∗‖2 +
ηκ

2c
.

Thus the inequality (4) holds if µ ≤ 1
2c .

According to inequality (6), the minimal value of a quadratic function gε(η) = (1− 2ηc)ε+ η2κ is
achieved at η∗ = εc

κ . By setting ‖θ0 − θ∗‖2 = ε0, we have

E[‖θk+1 − θ∗‖2] ≤ g‖θk−θ∗‖2(η∗)

= (1− 2‖θk − θ∗‖2c2

κ
)‖θk − θ∗‖2

≤ (1− 2εc2

κ
)‖θk − θ∗‖2

≤ (1− 2εc2

κ
)kε0.

Then if E[‖θk+1 − θ∗‖2] ≥ ε, we have ε ≤ (1− 2εc2

κ )kε0. Therefore, k ≤ κ
2εc2 log

(
ε0
ε

)
.
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B.2 PROOF OF THEOREM 2

Since ϕk = θk − η∇µ>`(θk) and θk+1 = θk − η(∇µ>`(θk) + ξk), we have

ϕk+1 = ϕk − ηξk −∇µ>`(ϕk − ηξk).

Since the loss function `t(θ) of task t is ct-one point strongly convex w.r.t a given point θ∗ after
convolved with noise ξ, similar to inequality (5), we have〈

∇Eξ[µ>`(ϕ− ηξ)], ϕ− θ∗
〉
≥ c‖ϕ− θ∗‖2,

where c = min1≤t≤T {ct}. Since ∇`t(θ) is Mt-Lipschitz continuous, for any two points θ1 and θ2
in Rd, we have

‖∇µ>`(θ1)−∇µ>`(θ2)‖ =

T∑
t=1

µt‖∇`t(θ1)−∇`t(θ2)‖ ≤
T∑
t=1

Mtµt‖θ1 − θ2‖. (7)

Note that
∑T
t=1Mtµt ≤ M , where M = max1≤t≤T {Mt}. Therefore, ∇µ>`(θ) is M -Lipschitz

continuous. Then we can get

E[‖ϕk+1 − θ∗‖2] = E[‖ϕk − ηξk −∇µ>`(ϕk − ηξk)− θ∗‖2]

≤ E[‖ϕk − θ∗‖2 + ‖ηξk‖2 + ‖∇µ>`(ϕk − ηξk)‖2 − 2 〈ϕk − θ∗, ηξk〉
− 2

〈
ϕk − θ∗,∇µ>`(ϕk − ηξk)

〉
+ 2

〈
∇µ>`(ϕk − ηξk), ηξk

〉
]

≤ ‖ϕk − θ∗‖2 + η2r2 + E[‖∇µ>`(ϕk − ηξk)‖2]− 2ηc‖ϕk − θ∗‖2

+ 2E[
〈
∇µ>`(ϕk − ηξk)−∇µ>`(ϕk), ηξk

〉
]

≤ (1− 2ηc)‖ϕk − θ∗‖2 + η2r2 + η2E[‖M(θ∗ − (ϕk − ηξk))‖2] + 2η3r2M

≤ (1− 2ηc)‖ϕk − θ∗‖2 + η2r2 + η2M2‖ϕk − θ∗‖2 + E[〈ϕk − θ∗, ηξk〉]
+ η2M2E[‖ηξk‖2] + 2η3r2M

≤ (1− 2ηc+ η2M2)‖ϕk − θ∗‖2 + η2r2(1 + ηM)2,

where the second inequality is due to the convexity assumption and E[ξk] = 0, the third and forth
inequalities are due to the Lipschitz continuity. We set ρ = 2ηc− η2M2 and β = η2r2(1 + ηM)2.
If ρ ≥ 0, we have η ≤ c

M2 , then we get

E[‖ϕk+1 − θ∗‖2] ≤ (1− ρ)‖ϕk − θ∗‖2 + β

≤ (1− ρ)k‖ϕ0 − θ∗‖2 +

k−1∑
j=0

(1− ρ)jβ

≤ (1− ρ)k‖ϕ0 − θ∗‖2 +
β

ρ
.

So if k ≤ 1
ρ log

(
ρε0
β

)
, we have E[‖ϕk+1 − θ∗‖2] ≤ 2β

ρ . Then by the Markov inequality, with
probability at least 1− δ, we have

‖ϕK − θ∗‖2 ≤
2β

ρδ
.

B.3 NOISE UPPER BOUND

Suppose the noise produced by the FW method is ξ̄ = ‖∇µ>`(D̃; θ)−∇µ>`(D; θ)‖ and ‖ξ̄‖2 ≤
R. The noise produced by the RLW method is ξ = ‖∇λ>`(D̃; θ)−∇µ>`(D; θ)‖. We have

‖ξ‖2 = ‖∇λ>`(D̃; θ)−∇µ>`(D̃; θ) +∇µ>`(D̃; θ)−∇µ>`(D; θ)‖2

= ‖(λ> − µ>)∇`(D̃; θ)‖2 + 2
〈

(λ> − µ>)`(D̃; θ), ξ̄
〉

+ ‖ξ̄‖2.

Because the noise ξ̄ can be any direction, there exists a constant s > 0 such that ‖ξ̄‖2 = R and
ξ̄ = s(λ> −µ>)∇`(D̃; θ). Then, we have ‖ξ‖2 ≤ (1 + 2s)‖λ−µ‖2‖∇`(D̃; θ)‖2 +R. Thus, the
norm of the noise provided by the RLW method has a larger least upper bound than FW.
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B.4 CONVERGENCE WITH DECREASING LEARNING RATE

In the following theorem, we show the convergence analysis and generalization bound of the RLW
method under the strong convexity case with decreasing step sizes.

Theorem 3. Suppose the loss function `t(θ) of task t is ct-strongly convex and Assumption 1 holds.
Then if we choose ηk = α/k and α > 1/2c, we have

E[‖θk − θ∗‖2] ≤ max{2α2κ(2αc− 1)−1, ‖θ0 − θ∗‖2}
k

,

where κ =
∑T
t=1 σ

2
t and c = min1≤t≤T {ct}. Moreover, by defining the optimal loss function as

LRLW(θ∗), we can obtain the following generalization bound as

E[‖LRLW(θk)− LRLW(θ∗)‖] ≤
max{α2Lκ(2αc− 1)−1, L‖θ0 − θ∗‖2}

k
,

where L = max1≤t≤T {Lt}.

Proof. According to inequality (6), by setting η = α/k, we have

E[‖θk+1 − θ∗‖2] ≤ (1− 2αc

k
)‖θk − θ∗‖2 +

α2κ

k2
.

Then by induction we can get

E[‖θk+1 − θ∗‖2] ≤ Q

k
,

where Q = max{2α2κ(2αc− 1)−1, ‖θ0 − θ∗‖2}.
Since `t(θ) is Lt-Lipschitz continuous, similar to inequality (7), for any two points θ1 and θ2 in Rd,
we have

‖∇LRLW(θ1)−∇LRLW(θ2)‖ ≤
T∑
t=1

Ltµt‖θ1 − θ2‖.

Therefore, LRLW(θ) is L-Lipschitz continuous, where L = max1≤t≤T {Lt}. Then we can get

E[‖LRLW(θk)− LRLW(θ∗)‖] ≤
L

2
E[‖θk − θ∗‖2] ≤ LQ

2k
,

where we reach the conclusion.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 EXPERIMENTS ON CONVERGENCE

In Figure 1, we empirically compare the convergence speed of the EW and RLW methods in terms
of the performance curve on both the NYUv2 and CelebA validation datasets.

On the NYUv2 dataset with three tasks, the performance curves of the RLW method with three
different distributions are both consistent with the EW method, which indicates the RLW method
has a similar convergence property to the EW method. As the number of tasks increases, i.e., on
the CelebA dataset with forty tasks, we find that the RLW method with the Normal and Bernoulli
distributions still converges as fast as the EW method, while the RLW method with the constrained
Bernoulli distribution converges slower. One reason for this phenomenon is that only one task is
used for updating the parameters in each training iteration.

In summary, the proposed RLW strategy combined with all the distributions except the constrained
Bernoulli distribution has similar training efficiency to the EW method.
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Figure 1: Comparison on the convergence speed of EW and the proposed RLW strategy on the
NYUv2 dataset (Left) and the CelebA dataset (Right), respectively.

C.2 ADDITIONAL RESULTS OF RLW ON DIFFERENT ARCHITECTURES

The results of different loss weighting strategies with the cross-stitch and NDDR-CNN networks
are put in Tables 6 and 7, respectively. The empirical observations are similar to those with the
MTAN architecture (i.e., Table 4). Firstly, the performance of each loss weighting strategy with
the deeper NDDR-CNN architecture is improved on the three tasks, while only the surface normal
estimation task can be improved with the cross-stitch network. Secondly, the RLW strategy signif-
icantly outperform EW on both architectures. Thirdly, compared with the baseline methods, RLW
can achieve comparable or even better performance than all the baseline methods except IMTL on
both two architectures. For example, RLW with the constrained Bernoulli distribution has an im-
provement of 1.79% on the cross-stitch architecture, which is slightly lower than the best performed
method, IMTL. Besides, RLW with the Normal distribution is among the top-2 methods based on
the NDDR-CNN network.

Table 6: Performance of different loss weighting strategies with the cross-stitch architecture on the
NYUv2 validation dataset with three tasks: 13-class semantic segmentation, depth estimation, and
surface normal prediction. The best results for each task on each measure are highlighted in bold. ↑
(↓) means the higher (lower) the result, the better the performance.

Weighting
Segmentation Depth Surface Normal

∆p↑Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓
Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 53.39 75.06 0.3822 0.1595 23.1939 16.6749 35.99 61.79 72.69 +0.00

GradNorm 53.92 75.39 0.3833 0.1547 22.7461 16.2463 37.15 63.02 73.57 +1.42
UW 53.88 75.76 0.3820 0.1587 23.1397 16.4221 36.61 62.30 72.91 +0.71

MGDA 53.33 75.07 0.3877 0.1584 23.1588 16.6327 36.41 61.75 72.57 −0.05
DWA 52.62 75.02 0.3801 0.1563 23.4577 16.7667 36.13 61.51 72.24 +0.02

PCGrad 53.83 75.58 0.3853 0.1568 22.5621 16.0502 37.80 63.43 73.89 +1.45
GradDrop 52.23 74.96 0.3855 0.1583 22.7940 15.9848 37.79 63.25 73.53 +0.56

IMTL 54.16 75.83 0.3833 0.1571 22.3801 15.9137 37.81 63.97 74.46 +1.89
GradVac 52.93 75.22 0.3871 0.1559 22.4499 15.8148 38.31 63.96 74.21 +1.42

RLW (Uniform) 53.23 75.19 0.3870 0.1576 22.8859 16.3011 37.06 62.55 73.17 +0.53
RLW (Normal) 53.34 75.32 0.3804 0.1577 22.9278 16.2227 37.25 62.68 73.27 +0.95

RLW (Dirichlet) 52.86 75.30 0.3859 0.1604 22.9058 16.0335 37.66 62.98 73.31 +0.47
RLW (Bernoulli) 53.44 75.33 0.3782 0.1558 22.8759 16.1796 37.27 62.79 73.29 +1.33

RLW (constrained Bernoulli) 53.25 75.28 0.3819 0.1530 22.5622 15.9059 37.80 63.39 73.78 +1.79
RLW (random Normal) 53.22 75.21 0.3861 0.1607 22.6981 15.8673 37.97 63.44 73.73 +0.79

C.3 RESULTS ON THE CITYSCAPES DATASET

Dataset The CityScapes dataset (Cordts et al., 2016) is a large-scale urban street scenes under-
standing dataset and it is comprised of a diverse set of stereo video sequences recorded from 50
different cities in fine weather during the daytime. It contains 2,975 and 500 annotated images for
training and validation, respectively. This dataset includes two tasks: 7-class semantic segmentation
and depth estimation.
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Table 7: Performance of different loss weighting strategies with the NDDR-CNN architecture on
the NYUv2 validation dataset with three tasks: 13-class semantic segmentation, depth estimation,
and surface normal prediction. The best results for each task on each measure are highlighted in
bold. ↑ (↓) means the higher (lower) the result, the better the performance.

Weighting
Segmentation Depth Surface Normal

∆p↑Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓
Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 53.93 75.56 0.3835 0.1566 22.7908 16.1512 37.16 63.14 73.65 +0.00

GradNorm 54.47 75.37 0.3882 0.1551 22.4295 15.9649 37.89 63.76 74.22 +0.51
UW 54.16 75.60 0.3795 0.1541 22.6800 16.2123 37.19 63.05 73.66 +0.52

MGDA 53.65 75.19 0.3841 0.1579 22.7391 16.0227 37.48 63.29 73.70 −0.19
DWA 54.24 75.50 0.3835 0.1600 22.6793 16.0649 37.40 63.33 73.83 −0.13

PCGrad 53.83 75.08 0.3867 0.1575 22.5083 15.9023 38.03 63.73 74.10 +0.07
GradDrop 53.82 75.40 0.3841 0.1536 22.8330 16.4121 36.85 62.78 73.36 −0.02

IMTL 54.49 75.68 0.3808 0.1531 21.9939 15.3531 39.42 65.10 75.18 +2.00
GradVac 53.99 75.62 0.3874 0.1546 22.5202 15.9511 37.96 63.68 74.05 +0.47

RLW (Uniform) 53.90 75.47 0.3859 0.1579 22.5236 15.8438 37.94 63.77 74.11 +0.18
RLW (Normal) 53.93 75.31 0.3828 0.1532 22.4460 15.7951 38.04 63.93 74.24 +0.88

RLW (Dirichlet) 53.17 74.88 0.3814 0.1561 22.5713 15.8921 37.88 63.64 73.99 +0.14
RLW (Bernoulli) 54.04 75.13 0.3818 0.1563 22.4328 15.8549 37.99 63.76 74.10 +0.53

RLW (constrained Bernoulli) 53.77 75.24 0.3816 0.1531 22.7075 16.0182 37.50 63.24 73.75 +0.49
RLW (random Normal) 53.90 75.60 0.3847 0.1592 22.5007 16.0155 37.82 63.62 74.03 +0.02

Implementation Details The network architecture and optimizer on the CityScapes dataset are
the same as those of the NYUv2 dataset. We resize all the images to 128 × 256 and set the batch
size as 64 for training. The Adam optimizer (Kingma & Ba, 2015) with the learning rate as 10−4

and the weight decay as 10−5 is used. We use the cross-entropy loss and L1 loss for the semantic
segmentation and depth estimation tasks, respectively.

Results According to the results shown in Table 8, we can see that all the loss weighting strategies
except the GradDrop method outperform EW. Especially, the PCGrad and MGDA methods can
achieve a significant improvement of 2.79% and 2.60% in terms of ∆p, respectively. Compared
with those baseline methods, the RLW strategy not only outperforms EW by using the six different
distributions but also achieves comparable performance with those baseline methods. For example,
RLW with the Dirichlet distribution can improve over EW by 1.95% and is among the top-3 methods.

Table 8: Performance on the CityScapes validation dataset with two tasks: 7-class semantic seg-
mentation and depth estimation. The best results for each task on each measure are highlighted in
bold. ↑ (↓) means the higher (lower) the result, the better the performance.

Weighting Segmentation Depth
∆p↑Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓

EW 68.72 91.50 0.0134 46.5974 +0.00
GradNorm 68.70 91.41 0.0133 45.6962 +0.64

UW 68.72 91.48 0.0134 45.0403 +0.83
MGDA 68.36 91.17 0.0123 45.1606 +2.60
DWA 68.62 91.45 0.0132 47.1341 +0.04

PCGrad 70.16 91.93 0.0128 44.6817 +2.79
GradDrop 68.53 91.46 0.0134 47.1396 −0.37

IMTL 68.74 91.50 0.0128 45.8279 +1.54
GradVac 69.89 91.94 0.0126 47.2281 +1.70

RLW (Uniform) 68.74 91.54 0.0132 45.2453 +1.12
RLW (Normal) 68.82 91.53 0.0132 46.1333 +0.67

RLW (Dirichlet) 69.37 91.75 0.0132 44.2218 +1.95
RLW (Bernoulli) 69.59 91.81 0.0130 47.0400 +0.91

RLW (constrained Bernoulli) 69.49 91.81 0.0128 46.9825 +1.28
RLW (random Normal) 68.59 91.51 0.0132 46.7122 +0.27

19



Under review as a conference paper at ICLR 2022

C.4 RESULTS ON THE CELEBA DATASET

Dataset The CelebA dataset (Liu et al., 2015b) is a large-scale face attributes dataset with 202,599
face images, each of which has 40 attribute annotations. It is split into three parts: 162,770, 19,867
and 19,962 images for training, validation and test, respectively. This dataset contains 40 tasks and
each task is a binary classification problem for one attribute.

Implementation Details We use the ResNet-18 network as a sharing feature extractor and a fully
connected layer with two output units as a task-specific head for each task. All the input images are
resized to 64 × 64. The Adam optimizer with the learning rate as 10−3 is applied for training and
the batch size is set to 512. The cross-entropy loss is used for the 40 tasks.

Results Since the number of tasks is large, we only report the average classification accuracy on
the forty tasks in the CelebA dataset and the results are shown in Table 9. The proposed RLW
strategy slightly outperforms EW and performs comparable with all the baseline methods.

Table 9: Average classification accuracy (%) of different methods on the CelebA dataset with forty
tasks. The best results for each task on each measure are highlighted in bold.

Weighting Avg AccStrategy
EW 90.70

GradNorm 90.77
UW 90.84

MGDA 90.73
DWA 90.77

PCGrad 90.85
GradDrop 90.71

IMTL 90.91
GradVac 90.75

RLW (Uniform) 90.86
RLW (Normal) 90.73
RLW (Dirichlet) 90.89
RLW (Bernoulli) 90.71

RLW (constrained Bernoulli) 90.81
RLW (random Normal) 90.88

C.5 RESULTS ON THE OFFICE-31 AND OFFICE-HOME DATASETS

Datasets The Office-31 dataset (Saenko et al., 2010) consists of three domains: Amazon (A),
DSLR (D), and Webcam (W), where each domain contains 31 object categories. The Office-31
dataset contains 4,110 labeled images and we randomly split these samples with 60% for training,
20% for validation, and the rest 20% for test. The Office-Home dataset (Venkateswara et al., 2017)
has four domains: artistic images (Ar), clip art (Cl), product images (Pr), and real-world images
(Rw). It has 15,500 labeled images in total and each domain contains 65 classes. We divide the
entire data in the same proportion as Office-31. For both two datasets, we consider the multi-class
classification problem on each domain as a task. Similar to multilingual tasks from the XTREME
benchmark, each task in both Office-31 and Office-Home datasets has its own input images, thus
MTL problems in these two datasets are homogeneous MTL problems (Zhang & Yang, 2021).

Implementation Details We use the same configuration for both Office-31 and Office-Home
datasets. Specifically, the ResNet-18 network pretrained on the ImageNet dataset is used as a sharing
backbone among tasks and a fully connected layer is applied as a task-specific output layer for each
task. All the input images are resized to 224 × 224. We use the Adam optimizer with the learning
rate as 10−3 and set the batch size to 64 for training. The cross-entropy loss is applied for all tasks
of both two datasets.
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Table 10: Classification accuracy (%) of different methods on the Office-31 and Office-Home
datasets. The best results for each task are highlighted in bold.

Weighting Office-31 Office-Home
Strategy A D W Avg Ar Cl Pr Rw Avg

EW 87.17 98.36 99.44 94.99 68.88 80.93 91.73 81.72 80.81
GradNorm 86.66 99.18 98.89 94.91 68.88 80.49 91.73 82.70 80.95

UW 87.35 99.18 98.89 95.13 69.63 82.55 91.20 81.08 81.12
MGDA 87.52 99.18 99.44 95.38 69.44 79.30 91.63 81.72 80.52
DWA 87.52 99.18 99.44 95.38 70.39 79.95 90.36 82.05 80.69

PCGrad 87.00 98.36 98.33 94.56 68.31 80.71 90.57 81.94 80.38
GradDrop 87.17 98.36 98.89 94.80 68.50 81.47 91.41 81.40 80.69

IMTL 87.52 98.36 98.89 94.92 67.93 80.49 91.94 82.05 80.60
GradVac 88.71 98.36 98.89 95.32 67.93 82.01 91.84 81.72 80.87

RLW (Uniform) 88.71 98.36 98.89 95.32 70.01 81.79 90.88 80.97 80.92
RLW (Normal) 88.03 99.18 98.89 95.36 69.44 80.93 90.36 82.70 80.86

RLW (Dirichlet) 88.37 99.18 98.89 95.48 70.01 81.69 91.31 81.18 81.05
RLW (Bernoulli) 88.20 99.18 98.89 95.42 68.69 82.23 91.73 81.72 81.09

RLW (constrained Bernoulli) 88.37 100 99.44 95.94 70.77 81.69 91.41 82.05 81.48
RLW (random Normal) 88.37 98.36 98.89 95.20 68.88 82.12 91.41 81.72 81.03

Results According to the results on Office-31 and Office-Home datasets shown in Table 10, it is
noticeable that RLW with six different types of distributions outperforms EW on both datasets. In
addition, the RLW method performs better than most baseline methods. Moreover, the RLW method
with the constrained Bernoulli distribution achieves the best average classification accuracy on both
Office-31 and Office-Home datasets, and this strategy achieve 100% accuracy on the DSLR domain
in the Office-31 dataset.

C.6 ADDITIONAL RESULTS ON XTREME BENCHMARK

Datasets The datasets used in the NER, POS, and PI tasks are the Wikiann dataset (Pan et al.,
2017), Universal Dependency v2.5 treebanks (Nivre et al., 2020), and PAWS-X dataset (Yang et al.,
2019), respectively. For the NIL task, the MultiNLI dataset (Williams et al., 2018) and the XNLI
dataset (Conneau et al., 2018) are used for training and evaluation, respectively. For the NER, NIL,
and PI tasks, the same four languages including English (en), Mandarin (zh), German (de), and
Spanish (es), are used. For the POS task, Telugu (te) and Vietnamese (vi) instead of German and
Spanish are used. The numbers of data for all the tasks are summarized in Table 11.

Table 11: The numbers of training, validation, and test data for each language in each task from the
XTREME benchmark.

NER POS NIL PI
en 20.0K+10.0K+10.0K 6.9K+1.8K+3.2K 392.7K+2.5K+5.0K 49.4K+2.0K+2.0K
zh 20.5K+10.3K+10.3K 4.0K+0.5K+2.9K 392.7K+2.5K+5.0K 49.4K+2.0K+2.0K
de 20.0K+10.0K+10.0K - 392.7K+2.5K+5.0K 49.4K+2.0K+2.0K
es 20.0K+10.0K+10.0K - 392.7K+2.5K+5.0K 49.4K+2.0K+2.0K
te - 1.0K+0.1K+0.1K - -
vi - 1.4K+0.8K+0.8K - -

Results The results on the NLI and NER multilingual tasks are shown in Table 12. The empirical
observations are similar to those on the POS and PI tasks shown in Table 3. Specifically, the RLW
method with all the distributions outperforms EW in the two multilingual problems. In addition,
RLW achieves comparable and even better performance than those baseline methods. For example,
on the NLI multilingual problem, RLW achieve the highest average accuracy.
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Table 12: Performance on two multilingual problems, i.e., NLI and NER from the XTREME bench-
mark. The best results for each language are highlighted in bold.

Weighting NLI (Accuracy) NER (F1 Score)
Strategy en zh de es Avg en zh de es Avg

EW 82.05 77.04 77.80 78.48 78.84 85.21 83.61 90.73 92.89 88.11
GradNorm 83.33 77.34 78.20 79.54 79.60 85.70 84.16 91.13 93.17 88.54

UW 82.93 77.58 77.96 79.72 79.55 85.59 84.42 91.14 93.24 88.60
MGDA 83.11 77.32 77.84 79.02 79.32 85.68 84.13 90.99 93.28 88.52
DWA 83.17 77.52 78.06 79.56 79.58 85.55 84.42 90.91 93.22 88.53

PCGrad 82.55 77.06 78.84 79.24 79.42 84.69 82.26 90.17 92.72 87.46
GradDrop 82.15 76.10 77.36 78.22 78.46 85.92 84.45 91.06 93.29 88.68

IMTL 82.63 77.78 76.56 79.28 79.06 84.97 83.92 90.82 92.79 88.12
GradVac 81.39 76.74 76.94 78.50 78.39 84.38 82.54 90.03 92.29 87.31

RLW (Uniform) 83.21 78.14 78.04 79.58 79.74 85.48 84.18 90.92 93.30 88.47
RLW (Normal) 82.63 76.36 77.26 79.24 78.87 85.25 83.79 91.24 93.30 88.40

RLW (Dirichlet) 82.99 76.92 77.40 78.56 78.97 85.31 83.97 91.06 93.18 88.38
RLW (Bernoulli) 83.11 77.52 78.10 78.84 79.39 85.59 83.84 91.09 93.01 88.38

RLW (constrained Bernoulli) 82.69 76.54 77.74 78.70 78.92 85.56 83.31 90.98 92.86 88.18
RLW (random Normal) 83.65 77.72 77.78 79.16 79.58 85.15 84.09 90.94 93.22 88.35

C.7 RESULTS OF DIFFERENT BACKBONES ON NYUV2 DATASET

Those loss weighting strategies are agnostic to both architectures (or sharing pattern) and backbone
networks. Tables 13 and 14 show consistent results when applying the SOTA methods and the pro-
posed RLW strategy on different backbone networks, i.e., ResNet-18 and ResNet-101, respectively.

Compared the results of the Tables 13, 1 (or 15), and 14, we can find that with the depth of the
backbone network increasing, the performance of each loss weighting strategy is improved. In
addition, the proposed RLW method can always outperform EW on all backbones. On the other
hand, the performance of those SOTA methods could degrade on deeper backbones. For example,
the best relative improvement (i.e., ∆p) of SOTA methods is 1.58%, 0.48%, and 0.37% for ResNet-
18, ResNet-50, and ResNet-101 backbones, respectively. Compared with those baseline strategies,
the RLW method can always achieve a significant improvement and even outperform the SOTA
baselines on all the backbones.

Table 13: Performance on the NYUv2 validation dataset using ResNet-18 as the backbone network.
The best results for each task on each measure are highlighted in bold. ↑ (↓) indicates that the higher
(lower) the result, the better the performance.

Weighting
Segmentation Depth Surface Normal

∆p↑ ∆d
t ↓ ∆t↓Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓

Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 47.65 70.71 0.4165 0.1740 26.2454 19.4920 31.53 55.66 66.87 +0.00 +0.000 ×1.00

GradNorm 48.11 71.21 0.4200 0.1694 26.4314 20.0192 30.63 54.66 66.08 −0.03 +18.16 ×1.76
UW 48.16 71.41 0.4172 0.1729 26.1624 19.4585 31.65 55.74 66.97 +0.49 +0.273 ×1.01

MGDA 47.79 71.03 0.4180 0.1745 26.1139 19.4272 31.71 55.80 66.98 +0.13 +39.53 ×2.65
DWA 48.42 71.53 0.4174 0.1746 26.2161 19.4966 31.50 55.69 66.92 +0.37 +0.074 ×1.00

PCGrad 48.35 71.50 0.4185 0.1761 25.8142 19.1808 31.95 56.37 67.60 +0.61 +26.80 ×2.12
GradDrop 47.78 70.84 0.4169 0.1740 26.1840 19.5099 31.65 55.65 66.86 +0.09 +18.32 ×1.77

IMTL 47.38 70.53 0.4157 0.1677 25.6736 18.6073 32.96 57.35 68.25 +1.58 +18.21 ×1.76
GradVac 48.24 71.21 0.4146 0.1718 25.8110 19.1442 32.03 56.41 67.56 +1.10 +27.30 ×2.14

RLW (Uniform) 48.14 71.27 0.4173 0.1747 25.9891 19.4086 31.53 55.87 67.17 +0.35 +0.033

×1.00

RLW (Normal) 48.65 71.55 0.4103 0.1727 25.8828 19.0478 32.12 56.57 67.59 +1.47 +0.051
RLW (Dirichlet) 47.79 71.29 0.4144 0.1752 25.8251 19.0171 32.24 56.63 67.70 +0.77 +0.062
RLW (Bernoulli) 48.51 71.62 0.4121 0.1715 25.5254 18.8868 32.53 56.89 68.01 +1.79 −0.033

RLW (constrained Bernoulli) 48.12 71.49 0.4116 0.1731 25.5469 18.8112 32.53 57.01 68.09 +1.54 −0.067
RLW (random Normal) 47.79 71.10 0.4160 0.1760 25.7642 19.1556 31.93 56.39 67.66 +0.46 +0.041

Except the relative training speed ∆t, we also provide the difference of training speed for one epoch
between each method and the EW method as ∆d

t in Tables 13, 14, and 15 to better show the compu-
tational efficiency of the proposed RLW strategy. It can be observed that most of the SOTA methods,
especially MGDA, PCGrad, and GradVac, need more training time (i.e., ∆d

t ) when the backbone be-
comes deeper. One main reason is due to the computation of all task gradients. Compared with those
baseline methods, the proposed RLW strategy brings negligible and backbone-agnostic computa-
tional cost, which indicates RLW is as efficient as EW. Even, RLW with Bernoulli and constrained
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Bernoulli distributions are even more efficient than EW since only some tasks are involved in the loss
computation. Moreover, although DWA and UW are efficient since DWA computes loss weights via
the loss ratio and UW updates loss weights by gradient descent methods, those two methods do not
perform well in all cases. For example, the performance of DWA is 1.02% lower than EW on the
NYUv2 dataset with the ResNet-101 backbone (in Table 14). Differently, the proposed RLW strat-
egy can not only keep the efficiency but also outperform EW and achieve comparable performance
with SOTA methods in all cases.

Table 14: Performance on the NYUv2 validation dataset using ResNet-101 as the backbone network.
The best results for each task on each measure are highlighted in bold. ↑ (↓) indicates that the higher
(lower) the result, the better the performance.

Weighting
Segmentation Depth Surface Normal

∆p↑ ∆d
t ↓ ∆t↓Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓

Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 54.85 76.14 0.3720 0.1523 23.1482 16.4630 36.40 62.43 73.03 +0.00 +0.000 ×1.00

GradNorm 54.62 76.48 0.3804 0.1556 23.0503 16.6280 36.15 62.03 72.97 −0.87 +51.83 ×1.66
UW 55.58 76.46 0.3733 0.1540 23.0585 16.5488 36.22 62.22 73.05 −0.01 +0.318 ×1.01

MGDA 55.35 76.18 0.3682 0.1536 22.8771 16.4448 36.43 62.55 73.48 +0.33 +129.6 ×2.66
DWA 55.12 75.95 0.3759 0.1540 23.5170 16.9624 35.10 61.47 72.49 −1.02 +0.063 ×1.00

PCGrad 54.57 76.15 0.3754 0.1519 22.8305 16.3208 36.68 62.75 73.48 +0.08 +87.58 ×2.12
GradDrop 54.95 76.01 0.3718 0.1523 23.0108 16.5162 36.34 62.31 73.14 +0.02 +52.94 ×1.68

IMTL 54.44 75.87 0.3736 0.1525 22.6043 16.0620 37.22 63.30 73.98 +0.37 +51.64 ×1.66
GradVac 54.90 76.41 0.3709 0.1523 22.8708 16.3755 36.65 62.66 73.38 +0.34 +88.40 ×2.13

RLW (Uniform) 55.16 76.41 0.3721 0.1501 22.9222 16.4800 36.42 62.41 73.26 +0.47 +0.034

×1.00

RLW (Normal) 55.02 76.15 0.3703 0.1539 22.7994 16.2493 36.82 62.86 73.54 +0.31 +0.046
RLW (Dirichlet) 54.99 76.36 0.3697 0.1539 22.7090 16.2848 36.82 62.80 73.57 +0.38 +0.059
RLW (Bernoulli) 55.37 76.39 0.3733 0.1527 22.8259 16.3255 36.73 62.72 73.43 +0.39 −0.525

RLW (constrained Bernoulli) 55.13 76.14 0.3703 0.1516 22.8667 16.4130 36.52 62.54 73.36 +0.40 −0.624
RLW (random Normal) 54.94 76.46 0.3678 0.1509 22.7614 16.1379 37.27 63.02 73.62 +0.96 +0.066

C.8 LEARNING TO COMBINE THE DISTRIBUTIONS FOR RLW

In this section, we proposed a method, called RLW-L2C, to learn a combination of those six different
distributions for RLW. Specifically, in each iteration, we firstly sample loss weights from each of six
distributions, then sum those weights elementwisely weighted by learnable distribution weights, and
finally normalize the aggregated weights by the softmax function. The results of RLW-L2C on the
NYUv2 dataset are shown in Table 15. Although the performance of RLW-L2C is slightly inferior
to the best performance of RLW with single distribution (i.e. 0.09% performance degradation), this
method still significantly outperforms those SOTA baselines and it can be adopted to any datasets
and architectures by adaptively learning how to combine different distributions. Moreover, RLW-
L2C is computationally efficient by only increasing about 0.01% computational cost over EW. Thus,
those empirical results show that RLW-L2C is an adaptive, effective, and efficient loss weighting
strategy for MTL.

Table 15: Performance on the NYUv2 validation dataset with three tasks: 13-class semantic seg-
mentation, depth estimation, and surface normal prediction. The best results for each task on each
measure are highlighted in bold. ↑ (↓) indicates that the higher (lower) the result, the better the
performance.

Weighting
Segmentation Depth Surface Normal

∆p↑ ∆d
t ↓ ∆t↓Strategy mIoU↑ Pix Acc↑ Abs Err↓ Rel Err↓

Angle Distance Within t◦

Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
EW 53.91 75.56 0.3840 0.1567 23.6338 17.2451 34.94 60.65 71.81 +0.00 +0.000 ×1.00

GradNorm 53.81 75.35 0.3863 0.1556 23.6106 17.2565 34.98 60.58 71.76 −0.06 +51.88 ×1.82
UW 53.15 75.41 0.3817 0.1576 23.6487 17.2040 34.98 60.71 71.80 −0.24 +0.318 ×1.01

MGDA 53.66 75.37 0.3864 0.1610 23.4757 16.9912 35.44 61.17 72.16 −0.35 +100.8 ×2.64
DWA 53.33 75.42 0.3834 0.1556 23.5806 17.1242 35.18 60.88 71.91 +0.07 +0.051 ×1.00

PCGrad 53.34 75.43 0.3857 0.1600 23.2293 16.6966 36.09 61.80 72.66 +0.12 +68.42 ×2.10
GradDrop 53.80 75.56 0.3857 0.1587 23.8726 17.1406 35.10 60.72 71.60 −0.33 +52.70 ×1.84

IMTL 52.90 74.88 0.3883 0.1632 23.0534 16.5304 36.30 62.20 73.08 −0.35 +51.59 ×1.82
GradVac 53.52 75.43 0.3840 0.1559 23.2892 16.8601 35.67 61.53 72.46 +0.48 +65.56 ×2.11

RLW (Uniform) 54.09 75.78 0.3826 0.1563 23.6272 17.2711 34.73 60.67 71.87 +0.17 +0.089

×1.00

RLW (Normal) 54.19 75.98 0.3789 0.1570 23.1984 16.7944 35.71 61.74 72.77 +1.02 +0.067
RLW (Dirichlet) 53.54 75.45 0.3834 0.1547 23.6392 17.0715 35.28 60.92 71.88 +0.27 +0.044
RLW (Bernoulli) 53.72 75.62 0.3850 0.1610 23.1413 16.6591 36.08 61.98 72.86 +0.28 −0.394

RLW (constrained Bernoulli) 54.32 75.78 0.3779 0.1533 23.2101 16.9354 35.41 61.44 72.58 +1.29 −0.457
RLW (random Normal) 54.08 75.77 0.3815 0.1581 23.5598 16.9577 35.53 61.20 72.13 +0.39 +0.030

RLW-L2C 54.24 75.76 0.3837 0.1515 23.3497 16.8673 35.57 61.44 72.43 +1.20 +0.355 ×1.01
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