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ABSTRACT

In the rapidly evolving field of machine learning (ML), the quality of training data
significantly impacts model performance, especially with the rise of foundation
models capable of generating data. Measuring data quality may be linked to two
statistical metrics: similarity and diversity, relative to a baseline dataset. We
introduce DetEmbedMetrics, a novel deterministic embedding-based metric that
enables textual data quality assessment by integrating a language model (LM) with
deterministic similarity and diversity measurement functions. The core methodol-
ogy constrains LM-generated embeddings to align with deterministic mathemat-
ical measurement functions, endowing the embeddings with desirable statistical
properties. This approach enables the valuation of data quality by providing con-
sistent and reliable similarity and diversity measurements, in contrast to methods
directly employing neural networks for measuring data quality. Specifically, our
approach involves fine-tuning a LM by inputting textual data samples with varying
levels of similarity and diversity. The model learns to generate embeddings that,
when applied to deterministic similarity and diversity functions, effectively cap-
ture the relationship between data sample pairs. This method allows the model to
provide associated probabilities for different levels of similarity and diversity, of-
fering clearer interpretation and decision-making compared to continuous scores.
Extensive experiments on synthetic datasets demonstrate the effectiveness of De-
tEmbedMetrics in identifying similarity and diversity within various datasets. No-
tably, DetEmbedMetrics exhibits generalizability by performing robustly across
different deterministic similarity and diversity functions, not relying on specific
measurement techniques. This flexibility enhances its applicability as a robust
framework for various measurement functions. By providing high-quality em-
beddings that facilitate the valuation of similarity and diversity between datasets,
this research contributes to the growing field of data-centric ML, emphasizing the
importance of data quality in the ML pipeline.

1 INTRODUCTION

Data quality remains a critical factor in machine learning (ML) success and data-driven decision-
making, underpinning accurate analyses and reliable predictions across various artificial intelligence
(AI) applications|Gudivada et al.|(2017); Jain et al.|(2020); [Budach et al.|(2022). With the advent of
language models (LMs) and large language models (LLMs), the demand for high-quality data has
intensified, as it significantly influences the success of model training, performance, capabilities,
and fairness |Chu et al.| (2024)); |Agiza et al.| (2024)); Lee et al.|(2023)). Consequently, data valuation,
the process of measuring data quality, has gained prominence |lliou et al.|(2015)). This crucial step in
LMs and LLMs development allows researchers and developers to rigorously examine data quality
and extract high-quality subsets from raw datasets. By employing data valuation techniques, devel-
opers can better ensure the success of model training, ultimately creating more robust and reliable
Al systems that perform effectively across a wide range of tasks and domains.

Evaluating the quality of data is crucial for understanding how it contributes to the performance of
ML models. Kwon & Zou|(2023)) introduced the Data-OOB approach, which involves partitioning
the data into training and unseen portions, feeding the unseen data into the trained model to see
the model’s performance and selecting good data for the unseen data. Alternatively, Ghorbani &
Zou| (2019) developed data Shapley, a method rooted in cooperative game theory, to measure each
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sample’s marginal contribution to the model’s performance by considering how its inclusion or ex-
clusion affects the outcome. This offers a more balanced valuation of data quality. To address its
computational challenges, (Chhabra et al.| (2024) proposed an influence estimation technique that
approximates each sample’s impact on the model without requiring full retraining, making it more
efficient for large-scale datasets. Although these approaches could efficiently find good data sam-
ples, they are still too computationally expensive, because it involves the model training process,
and their complexity grows exponentially with the number of training data samples. Furthermore,
their reliance on a test dataset for evaluating data importance may limit their practicality.

Another crucial data valuation method, without the need to train a model, involves analyzing sta-
tistical properties such as similarity and diversity [Yang et al.| (2024). By analyzing the statistical
properties of the dataset, the model training process could be skipped and enhance the efficiency
of data valuation. High similarity between training and test sets ensures consistent pattern learning
and prediction. Conversely, diversity in the dataset exposes models to varied scenarios, thereby en-
hancing generalization and mitigating overfitting. Striking an optimal balance between these factors
leads to the construction of datasets that maintain task relevance while incorporating sufficient vari-
ability. This approach results in models with improved generalization capabilities, thus enhancing
their efficacy in real-world applications where data distributions may deviate from training condi-
tions Whang & Lee|(2020); [Liu et al.[(2016).

Amiri et al.[(2023) introduces a task-agnostic approach for valuing data in marketplaces, which fo-
cuses on measuring similarity and diversity by utilizing statistical properties without needing direct
access to the seller’s raw data. In a related effort, Dan Friedman & Dieng| (2023) introduced the
Vendi score, a metric designed to assess diversity within datasets by examining the eigenvalues of
a similarity matrix. This allows the Vendi score to evaluate diversity without relying on external
reference datasets. Meanwhile, |Charfi et al.| (2020) proposed a similarity metric, InfoSpecificity, a
method that combines traditional similarity metrics with information specificity, which allows it to
measure the similarity not only on a sample-level but also multiple samples-level, i.e. distribution
level. In addition, their experiment suggested InfoSpecificity still performs well when the data is
incomplete or of low quality.

While data valuation research has yielded numerous methodologies applicable to diverse data types,
the predominant training data for LMs and LLMs is textual. Consequently, textual data analysis is of
significant importance in this domain. Textual data offers rich semantic content but presents unique
valuation challenges due to its unstructured nature Lebart et al. (1997); [Bernard & Ryan| (1998).
Traditional approaches, such as term frequency (TF) and n-gram are common for textual data anal-
ysis |Sintia et al.| (2021)); [Stefanovic et al.| (2019). However, it’s clear that while the former methods
offer simplicity and effectiveness in certain cases, they come with significant drawbacks. TF simply
counts how often words appear in a document, which ignores word order and relationships, leading
to high-dimensional, sparse vectors that are computationally inefficient. N-grams add some struc-
ture by capturing word sequences, but they are limited by fixed-length patterns and fail to capture
long-range dependencies and deeper semantic meaning. Moreover, as n-gram size increases, the
feature space grows rapidly, leading to computational inefficiencies and overfitting on small datasets
Almeida & Xexéo (2019); Johnson et al.| (2024)).

Another approach for textual data analysis, word embeddings, overcomes these issues by represent-
ing words as dense, low-dimensional vectors that encode both syntactic and semantic relationships.
These embeddings, such as those from Word2Vec|Church| (2017) or GloVe [Pennington et al.[(2014),
allow for words with similar meanings to be closer in vector space, capturing their contextual rela-
tionships in ways TF and n-grams cannot. By learning from large datasets, word embeddings can
model more nuanced language understanding, including the dynamic meanings of words depending
on their context|Selva Birunda & Kanniga Devi|(2021)); |/Asudani et al.| (2023)).

After converting textual data into embeddings, various statistical methods can assess attributes like
similarity and diversity. Zhang et al.|(2019) developed BERTScore, which uses BERT Devlin| (2018))
embeddings to compare the similarity between texts in the token-level. Additionally, Lai et al.|(2020)
introduced statistical metrics for measuring diversity, density, and homogeneity, which quantify the
variation, compactness, and uniformity, respectively, within datasets without label information. Al-
though the existing methods can effectively evaluate data quality by either assessing a sample’s
contribution to model performance or analyzing the statistical properties of the data, they have lim-
itations. These approaches often require access to the raw dataset or rely on word embeddings to
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measure similarity and diversity, but they lack explainability, making it challenging to assess whether
the embeddings are suitable for statistical evaluation.

To overcome these limitations, we focus on measuring similarity and diversity within textual datasets
using embeddings generated by LMs. This approach aligns with the practical requirements of data
marketplaces, where statistical properties of data, rather than raw data, are often exchanged. Con-
sequently, this research directly contributes to data valuation in such markets and advances task-
agnostic methods for textual data valuation. Moreover, we emphasize generating high-quality em-
beddings to quantify similarity and diversity—two key metrics for assessing data quality. This focus
is motivated by a fundamental research question:

* How can we provide interpretable explanations for similarity and diversity measurements
between different datasets, particularly when utilizing complex LMs?

This inquiry stems from LMs’ inherent complexity as deep learning models with intricate, often
difficult-understandable mechanisms. Our research aims to address this challenge by developing a
framework mitigating explainability issues and yielding human-interpretable outcomes.

Our contribution. Our research presents a novel, deterministic embedding-based metric, DetEm-
bedMetrics, for evaluating statistical similarity and diversity in textual data. This approach com-
bines LM-derived embeddings with deterministic functions to quantify statistical relationships be-
tween datasets. While acknowledging inherent limitations in explainability, our method aims to
provide a more structured approach to textual data quality assessments.

Specifically, we strive to generate high-quality embeddings that align with the operation of deter-
ministic mathematical functions measuring similarity and diversity by combining LM outputs with
these functions. The resulting embeddings, constrained to adhere to the mathematical rules of the
deterministic similarity and diversity measurement functions, exhibit desirable properties of these
functions that facilitate data quality valuation tasks. As a result, these refined embeddings can be
utilized to measure similarity and diversity across textual datasets using established measurement
approaches. Moreover, our method addresses limitations in utilizing LLMs directly to measure rela-
tionships between textual data, particularly when dataset sizes exceed LLM input token limitations
or when computational costs are prohibitive. By converting bounded textual datasets into optimized
embeddings and measuring relationships using deterministic similarity and diversity functions, we
circumvent these constraints, offering a more scalable and efficient approach to data quality assess-
ment. Furthermore, the proposed methods help with identifying relevance and diverse data sources
that potentially enhance model generalization.

Notation. Let D = {D;,Ds,...,D,} denote a dataset of n textual samples, where each sample
D; = {do(i),d1(i),...,dn(i)} consists of N disjoint texts, each with a specific relationship to the
text dp (7). We further collect texts with the same relationship to dy(¢) and denote them with the set
D; ={di(1),...,d;(n)},fori =0,..., N. In this paper, we focus on the case where N = 3.

To formalize the relationships between texts in each set, we define three types of relationships rel-
ative to the collection Dy. Dy: A collection of base texts, each with arbitrary content. D;: A
collection of texts, preserving the same content as in the collection Dy but expressed with different
linguistic structures. Dy: A collection of texts related to Dy, differing in specific content but remain-
ing within the same general domain or topic. D3: A collection of texts unrelated to Dy, belonging
to completely different domains with no direct connection to Dy.

For the purposes of this paper, the relationships between Dy, D;, D3, and D3 are evaluated us-
ing deterministic similarity and diversity metrics outlined in later sections. The similarity and di-
versity relationships are formalized as: similarity(Dg, D;) = same, similarity(Dg, D) = related,
similarity (Dy, D3) = unrelated, and diversity(Dy, D1 ) = no difference, diversity(Dy, D2) = diverse,
diversity ‘(Dg, D3) =totally different.

The evaluation of similarity and diversity between four different texts can be framed as a three-
class classification task, with two sets of fixed labels: [1,0,0], [0, 1,0], and [0, 0, 1], respectively.
Similarity and diversity are measured separately but in parallel, using two deterministic functions:
one for assessing similarity and the other for evaluating diversity. It is important to note that while
the labels for similarity and diversity are numerically identical, they have different meanings. For
similarity, the first element in the label refers to the pair being the same, the second to being related,
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and the third to being unrelated. In contrast, for diversity, the first element indicates no difference,
the second indicates diversity, and the third refers to being completely different.

Paper Arrangement. Section [2] formulates the problem and introduces our proposed approach.
Section[3]describes DetEmbedMetrics” methodology, including deterministc similarity and diversity
measurement functions, model architecture, and training process. Section[z_f]presents the experimen-
tal setup and results, comparing DetEmbedMetrics with benchmarks and assessing its robustness
and generalizability. Section [5|provides a comprehensive summary of the paper’s key findings and
contributions and explores potential avenues for future research and extensions of this work.

2 PROBLEM STATEMENT AND THE PROPOSED APPROACH

Accurately assessing data quality is crucial for effective ML training, impacting model performance.
Evaluating statistical properties like similarity and diversity (Amiri et al., 2023)) is one approach, but
measuring these between textual datasets poses challenges. Existing methods often miss semantic
nuances, lack embedding explainability, or require full data access, raising privacy concerns Bernard
& Ryan|(1998)); |Ghorbani & Zoul(2019); [Zhang et al.|(2019). To address these issues, we introduce
DetEmbedMetrics, which generates high-quality embeddings to efficiently quantify similarity and
diversity. This approach preserves privacy and offers a more interpretable method for assessing data
quality, mitigating embedding inexplicability.

Specifically, we combine LM embeddings with deterministic similarity and diversity functions to
compare textual datasets. This integration appends these functions to the LM embedding layer, de-
riving similarity and diveristy scores from functions rather than directly from embeddings. Joint
optimization of LM and the deterministic functions during training generates embeddings capturing
dataset similarity and diversity. This aligns embeddings with the deterministic functions’ character-
istics, enabling effective relationship capture. Our method yields discrete classes with probabilities
for similarity and diversity, contrasting with continuous, potentially ambiguous scores.

Next, we will discuss the merits of combining LM with deterministic similarity and diversity func-
tions, and the merits of converting continuous scores to discrete classes with associated probabilities.

Combination of LM and Deterministic Similarity and Diversity Measurement Functions. ML
methods, particularly deep learning models like LMs, are often criticized for their lack of inter-
pretability. Directly employing LMs to measure the similarity and diversity between two datasets
might exacerbate this issue due to the complexity of LMs. While combining LM embeddings and
deterministic similarity and diversity measurement functions does not inherently resolve the fun-
damental inexplicability of the LM embeddings, it offers potential minor gains in interpretability,
which is due to its more structured framework for analysis compared to using raw LM outputs. This
approach strikes a balance between leveraging the representational power of neural networks and
applying more transparent mathematical techniques for the final data quality assessment.

Applying the LM embeddings to the deterministic functions for measuring similarity and diversity
ensures consistent comparisons between embeddings, even if the embeddings themselves remain
opaque. Furthermore, it allows for the analysis of relative relationships between datasets, potentially
offering insights into dataset structures.

Conversion from Continuous Scores to Discrete Classes with Associated Probabilities. Having
discrete classes with associated probabilities addresses several drawbacks with continuous scoring:

* Interpretability challenges: Human interpretation of small numerical differences in similar-
ity or diversity scores is often difficult. For instance, with cosine similarity scores ranging
from [0, 1], distinguishing the practical significance between scores of 0.8 and 0.75 is chal-
lenging. These subtle differences may not reflect meaningful distinctions in real-world
applications, complicating decision-making based on such scores.

* Ambiguity in score definition: Assigning scores to items with intermediate similarity or
diversity introduces ambiguity. Consider texts Dy (original), D; (a rephrased version of
Dy), Doy (related to Dy but with different content), and D3 (unrelated to Dy). In terms
of similarity, when using cosine similarity as metrics, scoring (Dy, D) as 1 indicates
high similarity, while scoring (Dg, Ds) as O reflects complete dissimilarity. However,
determining a score for (D, D2), which shares a related topic but differs in specific content,
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is less straightforward. This ambiguity in intermediate scoring complicates analysis and
extends to diversity measurements as well. The challenge lies in consistently quantifying
relationships between datasets that range from homogeneous to highly varied, potentially
leading to inconsistencies in analysis.

Figure [1| provides an illustration of the proposed approach with these classes for similarity and
diversity, corresponding to three levels of each characteristic.

Here we demonstrate DetEmbedMetrics’ effectiveness in capturing similarity and diversity between
various dataset pairs with a motivating exaple. Consider a LM pre-trained on Dy European Medieval
art-related textual data (paintings and sketches). We evaluate four potential fine-tuning datasets: D;
(European Medieval marble statues), Dy (Chinese Medieval paintings), D3 (highly-relevant Eu-
ropean Medieval paintings), and D, (Modern sports data). We measure similarity and diversity
between Dy and each dataset, classifying as [same, related, unrelated] and [no difference, diverse,
totally different] respectively. DetEmbedMetrics yields:

* (Dy, Dy): similarity = [0.1, 0.6, 0.3], diversity = [0.1, 0.8, 0.1].
* (Dy, Dy): similarity = [0.2, 0.7, 0.1], diversity = [0.2, 0.7, 0.1].
* (Do, D3): similarity = [0.8, 0.2, 0.0], diversity = [0.7, 0.3, 0.0].
* (Dy, Dy): similarity = [0.0, 0.1, 0.9], diversity = [0.0, 0.2, 0.8].

Results suggest D; and Dy introduce beneficial diversity while maintaining relevance. D; is less
similar to Dy than D, reflecting the shift from painting to sculpture versus geographical change. D,
introduces slightly more diversity. Both remain within the art domain, offering valuable fine-tuning
information. D3’s high similarity and low diversity indicate limited new information potential. Dy,
unrelated to Dy, diverges too far for useful fine-tuning. These results confirm intuitive dataset pair
connections, showing the approach’s effectiveness in capturing similarity and diversity traits.

3 METHODOLOGY

In this section, we present a detailed description of DetEmbedMetrics, including the deterministic
similarity and diversity measurement functions, the model architecture, and the training process.

3.1 THE DETERMINISTIC SIMILARITY AND DIVERSITY MEASUREMENT FUNCTIONS

DetEmbedMetrics employs deterministic functions to measure similarity and diversity using em-
beddings of datasets pairs. In the following, we describe these functions.

Similarity Measurement Function. We use Manhattan distance to measure similarity between
embeddings. For two vectors x,y € R™ with i-th entries x; and y;, respectively, we have:

d(@,y) =) v — yil- (1)
=1

This metric sums the absolute differences across dimensions, effectively comparing vector represen-
tations in high-dimensional spaces.

Diversity Measurement Function. To evaluate the diversity of the embeddings, we employ Vendi
score (Dan Friedman & Dieng| [2023), which offers a flexible and general approach to quantifying
diversity in ML contexts, addressing the limitations of domain-specific metrics or those requiring

reference datasets. Given a vector & = [x1, ..., Z,], the Vendi score is defined as:
n
VSk(@) =exp (= - Ailog \i). 2
i=1
where A1, ..., A, are the eigenvalues of K /n, and K is an n x n kernel matrix with entries K; ; =

k(x;,x;) for a user-defined similarity function k.

3.2 THE ARCHITECTURE OF DETEMBEDMETRICS

DetEmbedMetrics integrates LMs with the above deterministic functions to evaluate similarity and
diversity between dataset embeddings. Conventional methods often employ average pooling to sum-
marize information across the entire sequence length of LM outputs, with shape [B, L, H|, where
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Figure 1: DetEmbedMetrics architecture: This system processes text pairs and generates probability
distributions for similarity (same, related, or unrelated) and diversity (no difference, diverse, or
totally different) classes. Specifically, the architecture generates N embeddings for the similarity
and diversity metrics, respectively, with each embedding designed to capture a specific aspect of the
textual relationship. This multi-embedding approach facilitates a comprehensive representation of
textual relationships, simultaneously capturing various dimensions of similarity and diversity.

B denotes the batch size, L represents the sequence length, and H is the hidden state dimension,
and then utilize the average-pooled embedding, with shape [B, 1, H], for downstream tasks. Our
experiments show this approach inadequate for model training. An intuitive explanation is that our
goal is to generate discrete classes rather than continuous scores. While deterministic functions
measure statistical relationships between LM embeddings effectively, they yield continuous scores.
Converting these to discrete classes, as noted earlier, is challenging, impeding model training.

To overcome this limitation, we propose a novel framework generating N embeddings from the LM
output, each representing an aggregation of the whole sequence. The number N corresponds to
the classification task’s class count, with each embedding learning a specific relationship. Notably,
DetEmbedMetrics generates two [N-embedding sets—one for similarity, one for diversity—enabling
parallel yet separate measurements.

To demonstrate DetEmbedMetrics, consider a three-class problem (N = 3) evaluating relationships
between texts Dy, D1, Ds, and D3, focusing on similarity (analogous for diversity). We quantify
similarity between pairs (Dg, D1), (Do, D2), and (Dy, D3), with corresponding labels [1, 0, 0],
[0,1,0], and [0, 0, 1], respectively. These one-hot encoding labels represent “the same”, “related,”
and “unrelated” categories, where the first embedding measures the degree of identity between the
pair, the second embedding quantifies the extent of relatedness, and the third embedding assesses

the degree of unrelatedness.

By dedicating separate embeddings to each relationship category, we enable the model to learn
and represent complex textual relationships more effectively. It is important to note that, with De-
tEmbedMetrics, the NN is to generate suitable embeddings, which align with the operation of the
deterministic measurement functions, while the operation of these functions remains fixed and uses
consistent mathematical logic to measure the similarity and diversity between datasets.

Figure |1| illustrates the complete model architecture for our proposed approach. The flowchart
demonstrates that the embeddings from the LM undergo further processing for the downstream
task. Specifically, these embeddings serve as input to two small NNs, each outputing N distinct
embeddings, each of which encapsulates information about the entire sequence and is designed to
capture different aspects of similarity and diversity relationships.

In addition, to ensure probabilistic outputs, we normalize results by dividing each class probability
by the sum of all probabilities, yielding valid distributions across relationship categories. Similarity
and diversity functions then measure relationships using these specialized embeddings. For example,
with N = 3 for similarity, both datasets have 3 embeddings representing [same, related, unrelated].
The similarity function uses the first embedding pair to measure dataset identity, the second for
relatedness, and the third for unrelatedness. Diversity measurement follows the same process with
its own specialized embeddings.

Next, we describe the training process, which aims to train the model to generate embeddings that
can capture the similarity and diversity among pairs of data with the desired granularity after being
applied to the respective deterministic functions.
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diversity outcome: diversity label:

[probablity of no difference, | N [[1,0,0],
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Figure 2: This figure illustrates the concept behind using three classes. The model’s objective is to
generate predictions that approximate a diagonal matrix as closely as possible.

3.3 TRAINING PROCESS

The training aim is to generate embeddings with statistical properties aligned with deterministic
similarity and diversity functions, performed separately but in parallel as shown in Figure[T] Textual
data is converted into two embedding types—from similarity and diversity NNs, respectively. These
embeddings measure similarity and diversity against other textual data embeddings. For example,
similarity NN embedding pairs (e.g., from Dy and D) fed into the deterministic similarity function
output discrete classes with probabilities: [same, related, unrelated]. This process repeats for (D,
D,) and (Dy, Ds3), producing relationship vectors. Similarly, diversity embeddings yield vectors
with [no difference, diverse, totally different] probabilities, representing relationships between Dy
and D1, DQ, and D3.

We use textual datasets with relationships between pairs (Dg, D1), (Do, D2), and (Dy, D3) la-
beled [1,0,0], [0, 1, 0], and [0, 0, 1] respectively. Labels for similarity and diversity are numerically
identical but semantically different. During training, we feed Dy, D1, Do, and D3 simultaneously,
obtaining predicted classes (model output) and fixed labels for each pair. We concatenate the three
predicted classes and their labels to form prediction and label matrices. The fixed labels form a
diagonal matrix. The predicted probabilities (prediction matrix) and corresponding fixed labels for

similarity are shown below:
same (DO 9 Dl ) Prelated (DO ) Dl ) Punrelated (DO 9 Dl ) 1 0 0
Prediction = same (D07 DQ) prelated(D07 D2) Punrelated (DO; D2) , Label= [0 1 O0f.
0 0 1

same (D07 DS) prelated(D07 D3) Punrelated (D07 D3)

Here, psames Prelateds and Punrelated are predicted probabilities for each class (same, related, unrelated)
for respective text pairs. The fixed label matrix shows true relationships: Dy and D; are same, D
and D, related, and Dy and D3 unrelated. Diversity measurement follows the same procedure.

The diagonal structure allows us to treat the label matrix as an image-like representation, where
the diagonal pixels are 1, and the rest are 0. To minimize the difference between the prediction
matrix and the label matrix, we employ the Sinkhorn distance (Cuturi, 2013) as the loss function.
The Sinkhorn distance, a refined version of the Wasserstein distance (Kantorovich, 2006)), evaluates
the difference across all elements of the matrices, unlike cross-entropy, which only considers the
element corresponding to the correct label. This enables the Sinkhorn distance to effectively measure
the discrepancy between two probability distributions. Our experimental results also indicate that
using cross-entropy as the loss function fails to train the model effectively. Figure 2] illustrates
this concept for a three-class problem (/N = 3), where the goal is for the model’s predictions to
approximate the diagonal matrix as closely as possible.

4 EXPERIMENTS

We conducted three experiments to evaluate DetEmbedMetrics’ efficacy, comparative performance,
and generalization capabilities.

Experiment 1 (Comparison with Benchmark LMs). This experiment compares our method, De-
tEmbedMetrics, with widely-used LMs. We utilize the alternative LMs without training or fine-
tuning, directly employing their embeddings to compute similarity and diversity scores. We employ
Manhattan distance for similarity and Vendi score for diversity assessment, given in equation [T]and
equation [2| respectively, comparing this baseline approach with DetEmbedMetrics.
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Experiment 2 (Various Deterministic Similarity and Diversity Measurement Functions). We
assess DetEmbedMetrics’ robustness using alternative deterministic functions for similarity and
diversity measurements. This experiment tests whether the model maintains performance across
different measures, indicating methodological effectiveness beyond a single set of measurements.
Consistent performance would evidence the approach’s robustness and generalizability, suggesting
broader applicability in textual data quality assessment.

Experiment 3 (Cross-Domain Generalizability Assessment). This experiment tests DetEmbed-
Metrics’ performance on an unseen dataset from a different domain (e.g., training on art, evaluating
on sports). We assess the model’s cross-domain generalization, both with and without domain-
specific training data. Strong performance without additional training demonstrates robust general-
ization. If suboptimal, we introduce minimal new domain data. Significant improvement with lim-
ited new data would indicate the model’s general ability to distinguish texts, regardless of domain.
This design evaluates the model’s capacity to discern content, structure, and semantic differences
generalizably, and its ability to leverage limited domain data for enhanced performance.

4.1 SYNTHETIC DATA GENERATION

While our approach is conceptually straightforward, acquiring an appropriate dataset for training
is challenging. We used LLaMA-3 8B (Al@Metal [2024) and GPT-40 (OpenAll 2024) to generate
a synthetic dataset. We instructed these LLMs to generate four paragraphs (Dy, D;, D2, and D3)
with specific relationships with easy examples: Dy (Arbitrary content): “I love dogs so much.”, D;
(Paraphrase of Dy): “I am a dog person.”, D (Content related to Dy): “I pet 3 cats, and they are
the treasure in my life.”, D3 (Content entirely different from Dy): “I majored in archaeology and am
now a well-known archaeologist.”.

Here, Dy and D; convey the same sentiment with slight structural variations. Dy and D5 share a pet
theme, while D3 diverges significantly.

Using LLMs for synthetic data generation offers cost-reduction benefits in data collection and pre-
processing. To mitigate potential homogeneity in grammatical structures from a single LLM, we
employed both LLaMA-3 8B and GPT-40. In our third experiment, we trained DetEmbedMetrics
on LLaMA-3 8B’s art-related data and evaluated it on sports-related data from both LLMs, testing
cross-domain and language pattern generalization. The generation prompt and sample data are in

the [<ppendi]

4.2 EXPERIMENT 1: COMPARING WITH BENCHMARK LMS

We generated 9,900 samples using LLaMA-3 8B, with 7,920 for training and 1,980 for testing. We
modified “all-mpnet-base-v2” (Song et al., 2020by incorporating a small NN as shown in Figure
This modified model serves as DetEmbedMetrics’ LM. For benchmarking, we selected two popular
Hugging Face LMs:

* Unmodified “all-mpnet-base-v2” model.
* “BAAI/bge-large-en-v1.5” model. (X1ao et al.,|2023)

For benchmarks, we used zero-shot learning, utilizing pre-trained embeddings without fine-tuning.
These embeddings were inputs for the similarity (Manhattan distance) and diversity (Vendi score
with Manhattan distance kernel) metrics. Table E] shows performance on 1,980 unseen test samples,
revealing significant performance disparity between benchmarks and our approach.

Table 1: The results show that DetEmbedMetrics has apparent improvement than the benchmark
LMs in terms of accuracy, precision, recall, and F1 scores (both macro and micro).

Model Relation ~ Accuray Precision macro Precision micro Recall macro Recall micro F1 macro F1 micro
. similarity  1.00 1.00 1.00 1.00 1.00 1.00 1.00
DetEmbedMetrics diversity 0.7 0.97 0.97 0.97 0.97 0.97 0.97
) ;1{1;1 :1;1;3;5; ;2 77777 similarity ~ 031~ ~ "0.11 ~ 7 ( 031~ 7 031 031 0.16° 031
dlbmenerbase diversity 067 050« 067 067 067 056067
similarity  0.33 0.11 0.33 0.33 0.33 0.17 0.33

BAAlbge-large-en-vI.S oG 033 0.11 0.33 0.33 0.33 0.17 0.33

"We use “sentence-transformers/all-mpnet-base-v2”, fine-tuned for sentence similarity tasks.
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4.3 EXPERIMENT 2: VARIOUS DETERMINISTIC SIMILARITY AND DIVERSITY
MEASUREMENT FUNCTIONS

To assess our approach’s consistency and generalizability, we expanded experiments beyond initial
deterministic functions. Originally, we used Manhattan distance for similarity and Vendi score (with
Manhattan distance kernel) for diversity. Our goal was to determine if performance generalizes
across various deterministic measures. We note that “VS with Manhattan” refers to the use of Vendi
score as the diversity measurement function, with Manhattan distance serving as the kernel function.

Table [2| shows extended evaluation results. Findings demonstrate robust performance across differ-
ent deterministic similarity and diversity functions, indicating our approach’s generalizability. How-
ever, Euclidean distance as similarity function and Vendi score kernel caused numerical instabilities.
This suggests that while robust, not all measurement functions suit our methodology equally.

Table 2: Performance of DetEmbedMetrics across various similarity and diversity functions. The
table shows accuracy, precision, recall, and F1 scores (both macro and micro) for similarity and
diversity relationships using different deterministic functions.

Similarity Function Diversity Function Relationship Accuracy Precision macro Precision micro Recall macro Recall micro FI macro F1 micro
Manhattan Distance VS with Manhattan similarity 1.00 1.00 1.00 1.00 1.00 1.00 1.00
diversity 0.97 0.97 0.97 0.97 0.97 0.97 0.97
similari . A 0.99 0. .99 .9 .9
Cosine Similarity VS with Cosine Similarity S 099 099 0.9 099 099 099 099
diversity 0.97 0.97 0.97 0.97 0.97 0.97 0.97
similarit 0.99 0.99 0.99 0.99 0.99 0.99 0.99
CKA (Klabunde et al.|[2024) VS with CKA stmiarity
diversity 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AngShape (Klabunde et al.||2024) VS with AngShape similarity 1.00 1.00 1.00 1.00 1.00 1.00 1.00
diversity 0.98 0.98 0.98 0.98 0.98 0.98 0.98

4.4 EXPERIMENT 3: CROSS-DOMAIN GENERALIZABILITY ASSESSMENT

To evaluate cross-domain generalizability, we conduct a two-step experiment. Step one involves in-
crementally adding data from one domain to determine the data quantity needed for stable, effective
performance. We train the model on an unmodified “all-mpnet-base-v2” augmented with a small
NN, as shown in Figure E} For each data increment, we train from scratch and evaluate on a fixed
validation dataset.

Step two evaluates the trained model from step one on an unseen dataset from another domain.
We incrementally add new domain training data to the pre-trained model, determining the quantity
needed for good performance on the new validation set. We also monitor performance on the origi-
nal validation set to ensure consistency. Our aim is to achieve good performance in the new domain
without compromising effectiveness in the original domain, maintaining cross-domain generaliz-
ability. Next, we provide the experimental details of each step.

Step one. we incrementally train DetEmbedMetrics on art-related data from LLaMA-3 8B (with
training set sizes ranging from 32 to 2080 samples), assessing performance on a fixed 1000-sample
validation set.

Step two. using the model trained on 2080 art samples, we gradually add sports data (0 to 648
samples), evaluating on both art and sports validation sets (1000 samples each). We use sports
datasets from LLaMA-3 8B and GPT-40 to account for language pattern differences. We also test
baseline cross-domain generalizability on sports data without sports-specific training to observe if
the model could perform well on a different content domain without additional training.

Figure 3| presents the results. The first row shows enhanced performance with increased art-related
training data, with incremental accuracy improvements for similarity and diversity beyond about
600 samples. The second and third rows demonstrate improved sports domain performance while
maintaining art-related task consistency when incorporating sports data (from LLaMA-3 8B and
GPT-4o0, respectively). Notably, adding relatively few sports samples (about 40 from LLaMA-3
8B and 168 from GPT-40, while the model was originally trained on samples from LLaMA-3 8B)
suffices for good generalization to the new domain. Comprehensive results are in the
Results are averaged over 10 iterations to mitigate NN randomness. This experiment illustrates the
model’s ability to generalize to a new domain without compromising performance on the original
domain, and the impact of using data from different LLMs on cross-domain generalizability.
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Figure 3: Performance improvement with increasing number of training samples. Top row: art
domain. Middle row: sports domain (LLaMA-3 8B). Bottom row: sports domain (GPT-40). Left
column: similarity accuracy. Right column: diversity accuracy.

5 CONCLUSIONS

DetEmbedMetrics offers a novel textual data quality valuation approach, generating high-quality
embeddings aligned with deterministic similarity and diversity functions. This two-step pro-
cess—creating optimized embeddings capturing nuanced textual relationships, then applying de-
terministic functions—bridges LM’ representational power and mathematical consistency. Experi-
ments show DetEmbedMetrics’ superior performance, robustness across various deterministic func-
tions, and cross-domain generalizability. By providing a systematic method for embedding genera-
tion and subsequent similarity and diversity assessment, DetEmbedMetrics significantly contributes
to data-centric ML, offering a powerful tool for textual dataset valuation and improvement. While
not fully resolving interpretability challenges, it represents progress towards more transparent tex-
tual data quality assessment. Furthermore, depending on chosen deterministic functions, this ap-
proach may help identify embedding dimensions’ contributions to similarity or diversity measures,
potentially enhancing explainability. For instance, employing a deterministic similarity function that
assesses similarity dimension by dimension could endow the embeddings with special properties in
each dimension once the model is well-trained, thereby enhancing their explainability. While De-
tEmbedMetrics advances embedding interpretability, further research on LM explainability remains
crucial for a deeper understanding of internal mechanics, including embedding generation processes.

10
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A APPENDIX

A.1 SYNTHETIC DATA GENERATION PROMPT

Here is the prompt used to generate synthetic data:

Create four distinct paragraphs, A, B, C, and D, adhering to the following conditions:

Paragraph A: Write an informative paragraph on any topic of your choice.

Paragraph B: Rephrase Paragraph A entirely, maintaining the exact same content but using a different structure
and wording. The information conveyed should be identical to Paragraph A.

Paragraph C: Write a paragraph that is related to Paragraph A and within the same general domain, but focuses
on different specific content. For example, if Paragraph A is about baseball, Paragraph C could be about tennis
- both are sports, but they are different sub-domains. Ensure that the relationship between Paragraphs A and C
is clear and logical.

Paragraph D: Create a paragraph on a topic from a completely different domain than Paragraph A. For instance,
if Paragraph A is about technology, Paragraph D could be about medicine.

Note:
When generating Paragraph C, take extra care to review Paragraph A again to ensure they are appropriately
related within the same general domain.

Example structure:

Domain 1 is related with tech (i.e. Quantum computing and Al), and Domain 2 is about medicine.

Paragraph A [Topic X in Domain 1]: In the fast-paced world of technology, the development of quantum
computers stands as a monumental achievement. These advanced systems leverage the principles of quantum
mechanics to process information at speeds unattainable by classical computers. The core of quantum
computing revolves around the quantum bit, or qubit, which can exist in multiple states simultaneously, thus
offering exponential growth in processing power. This capability enables quantum computers to solve complex
problems, such as cryptographic challenges and optimization tasks, which are currently beyond the reach of
traditional computing technologies.

Paragraph B [Rephrased version of Topic X in Domain 1]: Quantum computing represents a significant
breakthrough in technology, utilizing the principles of quantum mechanics to enhance processing speeds
beyond what classical computers can achieve. These systems are built around qubits, which unlike traditional
bits, can hold multiple states concurrently, significantly expanding computational capacity. This unique
feature allows for tackling highly complex tasks, including cryptography and optimization problems, which
conventional computers find challenging.

Paragraph C [Related Topic Y in Domain 1]: Artificial intelligence (AI) systems are increasingly being
integrated into various industries to optimize processes and enhance decision-making. Al algorithms are
designed to analyze data and learn from patterns, enabling them to make predictions or decisions without
human intervention. This technology is particularly influential in areas like finance, where it can predict market
trends and automate trading activities.

Paragraph D [Unrelated Topic Z in Domain 2]: In the realm of medicine, the discovery of CRISPR gene-editing
technology marks a revolutionary advancement. This innovative technique utilizes a specialized DNA sequence
found in bacteria, which can be engineered to target and modify genes in other organisms. By precisely altering
the genetic structure, CRISPR has the potential to treat a variety of genetic disorders by correcting mutations
at their source. The application of this technology extends from simple genetic modifications to complex
therapeutic interventions, tackling diseases that were once deemed incurable.

A.2  SAMPLE FROM SYNTHETIC DATASET
Here is one example from the generated synthetic dataset, including paragraphs Dy, D;, D2 and Ds.

 Paragraph Dy: During a basketball game, teamwork plays an essential role in achieving
victory. Each player on the court has specific responsibilities and must communicate effec-
tively with their teammates. This collaboration ensures that both offensive and defensive
plays are executed smoothly. Additionally, understanding each member’s strengths and
weaknesses allows the team to strategize more effectively, maximizing their chances of
winning the game.

» Paragraph D;: Teamwork is crucial for success in a basketball game. Every player has
distinct roles and needs to communicate properly with fellow team members. This synergy
helps in the efficient execution of offensive and defensive strategies. Moreover, knowing
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each player’s strengths and weaknesses enables better strategic planning, increasing the
team’s likelihood of winning.

 Paragraph Ds: In soccer, the goalkeeper has one of the most challenging tasks on the field.
Their main job is to prevent the opposing team from scoring by blocking shots on goal.
A good goalkeeper needs excellent reflexes, strong decision-making skills, and the ability
to stay calm under pressure. They also need to coordinate closely with the defenders to
ensure that the back line remains solid and organized, making it difficult for opponents to
penetrate.

* Paragraph Ds: In the field of medical surgery, teamwork is vital for a successful operation.
Each member of the surgical team has specific roles that must be clearly understood and
executed with precision. Effective communication among the team members is crucial
for the smooth execution of the operation procedures. Additionally, knowing each team
member’s specialized skills and limitations helps in crafting a precise surgical plan, thereby
increasing the chances of a successful outcome for the patient.

A.3 COMPLETE RESULTS OF EXPERIMENT 3: CROSS-DOMAIN GENERALIZABILITY
ASSESSMENT

This section presents the comprehensive results of experiment 3, where we gradually added samples
to observe performance changes. Note that due to identical macro and micro results for Precision,
Recall, and F1, we only display macro values.

Figure [ shows the complete results of step one, where we trained an unmodified “all-mpnet-base-
v2” model augmented with a small NN (as illustrated in Figure [I). We incrementally added art-
related data to observe performance improvements on the art-related validation dataset.

For step two, Figure [5] presents the results of gradually adding sport-related data generated by
LLaMA-3 8B. Similarly, Figure [6] shows the results for sport-related data generated by GPT-4o.
These graphs demonstrate the model’s cross-domain generalization capabilities and the impact of
different data sources on performance.
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