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Abstract

Prior work has demonstrated a consistent tendency in neural networks engaged in1

continual learning tasks, wherein intermediate task similarity results in the highest2

levels of catastrophic interference with prior learning. This phenomenon is at-3

tributed to the network’s tendency to reuse learned features across tasks. However,4

this explanation heavily relies on the condition that such a neuron specialisation oc-5

curs, i.e. the emergence of localised representations. Our investigation challenges6

the validity of this assumption. Using theoretical frameworks for the analysis of neu-7

ral networks, we show a strong dependence of specialisation on the initial condition.8

More precisely, we show that weight imbalance and high weight entropy can favour9

specialised solutions. We then apply these insights in the context of continual learn-10

ing, first showing the emergence of a monotonic relation between task-similarity11

and forgetting in non-specialised networks, and, finally, assessing the implications12

on the commonly employed elastic weight consolidation regularisation technique.13

1 Introduction14

Theories of representation in biological neural networks span from highly localised representations in15

single neural units [1] to fully distributed or shared representations [2]. While shared representations16

offer greater resilience, specialised representations allow for more efficient encoding of information.17

Experimental evidence supports both ends of this spectrum, with different brain areas and tasks18

exhibiting distinct forms of representation [3, 4, 5, 6, 7]. Similarly, artificial neural networks display19

both shared [8, 9, 10] and specialised representations [11, 12], where a recent advancements in20

explainable AI, such as the Golden Gate Claude model [13], exemplify an extreme of the spectrum.21

Given the trade-offs between shared and specialised representations, a critical research challenge22

lies in understanding how to guide neural networks towards one form or the other. This tension is23

especially relevant in contexts like disentangled representation learning [14] and multi-task learning24

[15], including continual learning and transfer learning. Specialised representations can facilitate25

faster adaptation and reduce catastrophic forgetting [16, 17], as they allow networks to rewire26

efficiently [18]. Rich Caruana’s seminal work on multi-task learning [15] emphasised the value of27

specialisation in enhancing performance across multiple tasks. Recent efforts to mitigate catastrophic28

forgetting [19, 20] have led to the development of regularisation strategies that promote specialisation,29

such as elastic weight consolidation [21], synaptic intelligence [22], and learning without forgetting30

[23]. In disentangled representation learning, [24] highlighted that, despite the potential success of31

unsupervised approaches, disentanglement does not emerge naturally without an explicit inductive32

bias, underscoring the need for supervision to enforce such structures.33

In this study, we investigate the role of initialisation in steering neural networks towards specialised34

or shared representations, providing a complementary perspective on both the lazy learning regime35

[25] and the rich learning regime [26, 27, 28]. Previous research [29, 30, 31] has showns that by36

interpolating between these regimes, we can transition from shared representations–characterised by37

random projections in the neural tangent kernels–to effective feature learning [32, 33, 34, 35, 36].38
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While our analysis remains within the feature learning regime, it adopts a distinct theoretical approach39

compared these studies, concentrating specifically on the impact of initialisation within standard40

synthetic frameworks for neural networks. This exploration reveals how initialisation can skew41

the learning dynamics towards either specialised or shared representations, thereby adding a new42

dimension to the study of learning dynamics in over-parameterised networks.43

Our work makes the following main contributions:44

• We study the impact of initialisation on specialisation through two theoretical frameworks:45

– We utilise the dynamics of deep linear networks to investigate the evolution of46

specialisation [37];47

– We extend this analysis to high-dimensional mean-field neural networks, drawing48

insights from stochastic gradient dynamics [38, 39, 40].49

• Our findings challenge prevailing assumptions regarding the relationship between task50

similarity and catastrophic forgetting [41, 42, 43].51

• Moreover, we identify specific initialisation schemes that promote specialised solutions by52

increasing the entropy of the readout weights and creating an imbalance between the first53

and last layers, akin to the findings of [35].54

• Finally, we demonstrate the practical implications of our results on regularisation strategies,55

specifically analysing how Elastic Weight Consolidation (EWC) [21] is influenced by spe-56

cialisation dynamics, highlighting potential pitfalls associated with regularisation methods57

in continual learning.58

In Sec. 2, we introduce the concept of specialisation within the teacher-student framework and59

highlight the relevant literature. Sec. 3 explores this issue through the lens of deep linear dynam-60

ics, illustrating its impact on learned representations, particularly in the context of disentangled61

representation learning. Sec. 4 addresses the continual learning problem, revisiting existing theoreti-62

cal frameworks and demonstrating how their conclusions may not hold under certain initialisation63

schemes. We conclude this section by discussing the implications for the EWC mitigation strategy.64

Finally, in Sec. 5, we reflect on the limitations of our work and propose future directions for research.65

2 Specialisation in the teacher-student66

The teacher-student framework is a generative model that allows for the controlled creation of67

synthetic datasets [44]. The framework involves two classifiers: the teacher and the student, for68

instance represented as neural networks as exemplified in Fig. 1a. The teacher, has fixed randomly69

drawn weights and maps random inputs xxx from a given distribution to labels, providing a rule for70

generating data. The student, on the other hand, updates its parameters through learning protocols71

like stochastic gradient descent (SGD) to approximate the teacher’s outputs.72

While a detailed quantitative characterisation of specialisation follows in the next sections, we briefly73

introduce the concept within the teacher-student framework. [38] showed that, when both teacher74

and student are modelled as committee machines, each student neuron specialises by aligning with a75

specific teacher neuron. Similarly, [45] observed that for certain activation functions in two-layer76

networks, an over-parameterised student will selectively use only a subset of those units to replicate77

the teacher’s outputs. This phenomenon, termed specialisation, stands in contrast to a student78

redundantly sharing representations of the teacher across neurons. In this work we present a more79

comprehensive account of the factors underlying specialisation. In contrast to [45], we argue that80

initialisation—not the activation function—is chiefly responsible. We highlight this in Fig. 1b, by81

showing that with carefully chosen initialisations we can train a highly specialised ReLU student82

(bottom panels), and a non-specialising sigmoidal student (top), which represents the opposite of the83

conclusions presented in [45].84

3 Specialisation explained using Linear Dynamics85

As a first step towards understanding specialisation in neural networks we turn to the deep linear86

neural network paradigm [37]. While deep linear networks can only represent linear input-output87

mappings, they showcase intricate fixed point structure and nonlinear learning dynamics reminiscent88
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Figure 1: Initialisation impacts specialisation. a) In the teacher-student setup a student network is
trained with labels generated by a fixed teacher network. Previous work established a relationship
between the activation function ϕ and the propensity for the student nodes to specialise to teacher
nodes. However we show in this work that this is an overly simplistic description; other factors
including student weight initialisations IW , Ih, parameterised by ΘW ,Θh arguably play a stronger
role. b) Generalisation error curves for two simulations of the teacher-student setup, one with a
ReLU activation function and one with a scaled error activation function. ΘW and Θh are chosen
to achieve a solution with ReLU that specialises—as indicated by sparser overlap matrices on the
bottom right, and a scaled error function solution that does not specialise—as indicated by denser
overlap matrices on the top right. A sparse (dense) Q matrix shows few (many) nodes are active,
while a sparse (dense) R matrix shows student nodes are representing teacher nodes in a targeted
(redundant) manner. Further details for the quantities described can be found in Sec. 4.

of phenomena seen in nonlinear networks. Deep linear networks have been successfully used to89

describe the effects of depth and nonlinearity, while showcasing the influence of initialisation [46, 47].90

Here we construct a synthetic setup, to study the influence of initialisation on specialisation. In this91

work, we consider specialisation adhering to the definition of proposed by the statistical physics92

literature [45] which considers whether one neuron will account for all of the variance associated to93

one feature, while the others remain inactive. This is in contrast to other work on modularity [48]94

such as Neural Module Networks [49, 50, 51, 52], mixture-of-expert models [53, 54, 55], tensor95

product networks [56], among others [57, 58], which consider specialisation as a subset of a network96

or module performing a single “task” or only being activated by one interpretable feature in the97

dataset. Thus, these works are more concerned with what is learned and consider specialisation to98

imply feature sparsity [59]. While we are concerned with the manner in which learning is represented,99

a phenomenon closer to activation sparsity.100

3.1 Specialisation in the deep linear network framework101

To connect this framework to specialisation we use the notion of the “neural race” from [46]. The102

neural race hypothesis says that the pathways through a network are racing to explain the variance in103

the dataset (perform the input-output mapping). Thus, we consider the limited case of a network with104

two hidden neurons and one output neuron. Fig. 2 depicts the setup, notation and strategy for this105

section. We ask the question: “when will one pathway finish learning (reach it’s hitting time t∗) before106

the other begins learning (reaches it’s escaping time t̂)”. In cases when this occurs, the network would107

have specialised as only one pathway will have any activity and will explain all of the data. Similar108

to Sec. 4 we generate data by sampling the elements of a data point from a Gaussian distribution109

(xi ∼ N (0, 1)) with i = 1, . . . , d. We then define a ground-truth mapping (WWWT ) and generate labels110

y = WWWT · xxx. We only consider regression tasks in this section, thus y ∈ R. For P inputs we can111

form the input matrix XXX ∈ Rd×P and row vector of scalar outputs yyy ∈ R1×P . The dataset statistics112

which drive learning are collected in the input and input-output correlation matrices, Σx and Σyx113
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Figure 2: Summary of our setup, notation and strategy. a) The original network with two hidden
neurons learning the regression task. b) We split the network into two separate pathways and consider
their dynamics individually. Since both networks are learning the same task simultaneously, their
dynamics are coupled. c) To obtain the dynamics of the two pathways and calculate their escaping
and hitting time we track the pathway dynamics in terms of the network’s effective singular values.
The closed form dynamics for the pathway singular value are given in Eq. 3.

respectively. For the task described above the singular value decomposition of these matrices are:114

ΣΣΣx = E[XXXXXXT ] = VVVDDDVVV T , ΣΣΣyx = E[yyyXXXT ] = usvvvT . (1)

Here, u ∈ {−1, 1}, vvv is a vector such that vvvTvvv = 1 and VVV is an orthogonal singular vector matrix.115

Correspondingly, s is the singular value for the rank 1 task and DDD is a diagonal matrix of singular116

values. Note that we assume that the correlation matrices are mutually diagonalisable (share the117

same VVV ) up to the rank of Σyx.118

For this task we consider a single hidden layer network (Fig. 2 left) computing output ŷ = hhhWWWxxx with119

hhh ∈ RK and WWW ∈ RK×d in response to an input xxx ∈ Rd. The network is trained to minimise the120

mean squared error loss using full batch gradient descent with a small learning rate η. To identify121

when specialisation will occur in this network, we split the network into two pathways with one122

hidden neuron each. The input and output dimensions remain the same (Fig. 2 middle). Finally123

we obtain the linear dynamics (ultimately depicted as Eq. 3) for each pathway (the full details and124

assumptions of the derivation are given in Appendix A). In this setting, the network’s input-output125

mapping after t epochs of training is hhh(t)WWW (t). Assuming that the network weights align to the126

singular vectors of the dataset from early in training, as described by the “silent alignment effect”127

[60], we perform a change of variables and write the network mapping in terms of the dataset singular128

vectors:129

hhh(t)WWW (t) = uω(t)vvvT , (2)
where ω(t) is the network pathway’s scalar effective singular value and the only time-dependent130

component of the decomposed network mapping. While the alignment assumption is strong, linear131

paradigms with these assumptions have been used successfully in the past [47, 61, 62, 48, 35]. With132

the change of variables we can now obtain a closed form equation describing how ω evolves through133

time as:134

ω(t) =
λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

 (3)

where C is a defined constant, τ = 1
η is the learning time constant and K =

√
4S2 + λ2D2. Eq. 3135

shows that K is the variable interacting with time (t) and as a consequence determines how quickly136

the network will learn. Three factors affect K fastening learning: 1. S the input-output correlation137

matrix singular value, 2. D the input correlation matrix singular value, and 3. λ = h2 −W 2 which138

denotes the imbalance between the weights of the network. Notice that–as shown in Appendix A–λ is139

a conserved quantity and constant throughout training. Thus, given a dataset–which characterises the140

S and D matrices–the only property which can promote faster learning in the network is to increase141

the imbalance parameter. For our experiments we whiten the input data xxx such that K =
√
4S2 + λ2142

to remove one of the interactions within K.143

Fig. 3(a-c) show a confirmation of the validity our theory by comparing with simulations. Instead,144

Fig. 3d represents the main result of this section. We consider both network pathways and vary145

the weight imbalance for each (λslow for the pathway with the lower imbalance and λhigh for the146

pathway with the larger imbalance). We place these two values on the axes and in colour depict147

in log scale how close the slower pathway comes to reaching its escaping time across its training.148

When negative, it means that during training there is a timestep where the network is less than one149
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Figure 3: Linear Dynamics from imbalanced initialisation leads to specialisation. Panels a-c)
Show agreement between our theoretical curves and simulations for the training dynamics of: (a) the
network’s singular values, (b) the network’s loss, (c) and the network’s movement in weight space.
In (a,b) the colour indicates the singular value used for the input weights, while in (c) the colour
represents the loss. Panel d) shows a phase diagram representing how pathways with different initial
weight imbalances lead to specialisation. The two axis represent the initial singular values associated
to the different pathways. The colour represents the amount of time it takes the slower pathways to
learn in logscale. We see that the more inbalanced the fast pathway relative to the slower pathway, the
more likely the network will specialise. The white region represents when the inbalance is reversed.

epoch from its escaping time (so it will learn). In this case there will not be specialisation as both150

pathways will learn some part of the input-output mapping. When the colour is positive it means151

there will be specialisation as the slower pathway is always at least a full epoch away from learning.152

It is important to note that the slower pathway’s escaping time is moving constantly as the faster153

pathway accounts for variance in the data. This decreases the input-output singular value in K for154

this pathway and makes learning slower. Due to this coupling we are also unable to obtain completely155

closed form equations for the slower pathway in term’s of the faster pathway’s effective singular156

value. However, this phase diagram would not be computationally feasible without the closed-form157

escaping time, hitting time and training dynamics (see Appendix C for our process on constructing158

this plot). Finally, we only consider imbalances where the output layer is larger than the input layer.159

Recent work [33, 35] has shown that having larger input weight pushes the network towards lazy160

learning [30] while output heavy imbalance promotes feature learning. Since we are concerned with161

the latter in this work, we focus on the output heavy imbalanced setting for both pathways. From162

Fig. 3 we see that there is a clear phase transition from non-specialised representations to specialised163

ones. This occurs with increasing imbalance of the faster pathway. Increasing the imbalance of the164

slower pathway can similarly combat this specialisation pressure. Thus, the relative imbalance of the165

two pathway at initialisation will dictate whether specialised representations are learned.166

3.2 Specialisation underlies disentanglement167

We extend the results on inbalanced initialisation and applied them, beyond the limited setting168

of our framework, in the context of disentangled representation learning, where the goal is to169

separate latent factors. [14] introduced the importance of disentanglement for interpretability and170

generalisation. A seminal contribution to this domains came with the β-VAE model, where [63]171

demonstrated how increasing the KL-divergence term can enforce disentanglement by encouraging172

specialised latent representations. Many studies have built upon these foundational frameworks173

to enhance disentanglement performance, exploring different training regimes [64, 65] and loss174

functions [66, 67, 68]. Here we contribute to this literature by applying our theoretical insights and175

examining the impact of initialisation on disentanglement performance.176

Specifically, we examine how initialisation impacts specialisation in disentanglement learning on177

the 3DShapes dataset [69] using the β-VAE model–widely adopted for such tasks [63, 70]. We178

implement a β-VAE model, employing the "DeepGaussianLinear" architecture for the decoder179

and the "DeepLinear" architecture for the encoder, as specified in [24]. Both architectures are180

composed of five fully connected layers with ReLU activations. The model is trained using the Adam181

optimiser, optimising a loss function that combines KL divergence and binary cross-entropy-based182

reconstruction loss. Additional details are given in Appendix D. In these experiments, we adjust the183

variance of the weights in a deep fully-connected encoder, by varying the constant gain of the Xavier184

initialisation [71]. Specifically, the first block of layers was initialised with gain g while the readout185

layer received a gain 1/g. Notice that g = 1 represents the standard initialisation scheme.186

5



c) a) b)
Gain 0.3

Gain 2

Lo
ss
re
co
ns
tr
uc
tio

n

Figure 4: Panel a) Violin plots of the DCI values against the gain. Panel b) Violin plots of the
reconstruction loss against the gain. The standard deviation was computed over four seeds. Panel c)
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Results are shown in Fig. 4, despite very similar levels of reconstruction loss, networks initialised187

with smaller gains improved disentanglement in the β-VAE network, as reflected in higher Disentan-188

glement, Completeness, and Informativeness (DCI) scores [72]. This result confirms that modulating189

the initialisation gain can either enhance or reduce the network’s disentanglement. Although the scope190

of these experiments is limited, they provide preliminary validation of our theoretical framework in191

more realistic contexts, encouraging further investigation into alternative initialisation schemes with192

varying levels of balance.193

4 Continual Learning194

As [15] noted, multi-task learning benefits significantly from task-specific specialisation, allowing the195

network to better preserve performance across multiple domains. In the context of continual learning,196

[41] and [42] observed that forgetting does not monotonically increase with task similarity. [43]197

provided a mechanistic explanation, showing that this phenomenon is due to the interplay between198

re-use of specialised neurons and activation of unused ones. In this section, we build on these findings199

and show that this phenomenology can be disrupted by initialisation schemes that disincentives200

specialisation.201

4.1 Continual Learning in the two-layer teacher-student setup202

We use a teacher-student framework, introduced in Sec. 2, which has been analysed in [42, 43]. This203

model consists of two randomly initialised teacher networks—one for an upstream task and one for a204

downstream task. Each teacher is represented by two-layer neural networks with P ∗ hidden units and205

weights WWW (1)
T , hhh(1)

T for the upstream task, and WWW
(2)
T , hhh(2)

T for the downstream task. Given a random206

input xxx ∈ Rd, drawn i.i.d. from a Gaussian distribution xi ∼ N (0, 1), the teachers generate labels207

according to the equation:208

y(t) = hhh
(t)
T · ϕ

(
WWW

(t)
T xxx√
d

)
for t = 1, 2, (4)

where ϕ is a non-linear activation function, chosen here as ϕ(z) = erf
(
z/

√
2
)
. This setup allows us209

to generate two datasets D(1) and D(2), with controlled similarity between the tasks by manipulating210

the teacher weights. Specifically, we generate WWW (1)
T , hhh(1)

T , and hhh
(2)
T with i.i.d. Gaussian entries, while211

WWW
(2)
T is generated as:212

WWW
(2)
T = γWWW

(1)
T +

√
1− γ2WWW

(aux)
T , (5)

where WWW (aux)
T is an auxiliary weight matrix, and γ controls the correlation between tasks. The student213

is a two-layer neural network with P hidden units, using the same non-linearity ϕ. It is trained using214

online stochastic gradient descent on a squared error loss, with a shared first-layer weight matrix215

WWW and task-specific readout weights hhh(1) and hhh(2). For both layers, the initial weights are sampled216

i.i.d. from a Gaussian distribution, with the first-layer weights WWW having standard deviation σW .217

While most previous studies follow a similar scheme for the readout weights, we introduce a novel218

initialisation scheme using polar coordinates, as detailed in Eq. 11. The updates for WWW and hhh(t) at219
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iteration e, under SGD on the squared error loss, are given by:220

WWW [e+ 1] =WWW [e]− η√
d

(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)
ϕ′
(
WWWxxx√

d

)
vvv(t)xxx, (6)

hhh(t)[e+ 1] = hhh(t)[e]− η

d

(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)
ϕ

(
WWWxxx√

d

)
, (7)

where η is the learning rate and y(t) is the target output from the teacher network for task t.221

In the large input dimension limit d → ∞, key observables, such as the generalisation error, can be222

captured by a few order parameters:223

QQQ =
1

d
WWWWWWT , RRR(t) =

1

d
WWWWWW

(t),T
T , TTT (t,t′) =

1

d
WWW

(t)
T WWW

(t′),T
T , hhh(t), hhh

(t)
T ; (8)

where t, t′ ∈ {1, 2} refer to the two tasks. The generalisation error for task t is then:224

ϵ(t) =
1

2
Exxx

[(
hhh(t) · ϕ

(
WWWxxx√

d

)
− y(t)

)2
]

= I21(QQQ,hhh(t)) + I21(TTT
(t,t),hhh

(t)
T )− 1

2
I22(QQQ,RRR(t),TTT (t,t),hhh(t), ,hhh

(t)
T ),

(9)

where I21 and I22 are explicit functions of the order parameters, detailed in Appendix B. The225

evolution of these parameters throughout training can be tracked to study the learning dynamics, as226

first shown in [39, 40, 45]. For the specific case of continual learning, [42] derived the governing227

ordinary differential equations (ODEs), provided in Appendix B.228

4.2 Specialisation relevance for continual learning229

The continual learning results in the teacher-student setup, including the non-monotonic relationship230

between catastrophic forgetting and task similarity, often implicitly assume that the student has231

specialised to the teacher in the first task. This assumption allows for spare capacity to represent the232

second task. However, as shown in Fig. 1b, there are regimes where this assumption of specialisation233

is violated. Here, we expand on these findings and their implications for forgetting.234

A student can effectively ignore a unit in two ways: either the unit’s post-activation is near 0 (inactive),235

or the corresponding second-layer weight is 0. This motivates three measures for specialisation based236

on the definition of entropy–over the hidden units, head weights, and the product of both:237

Hh = −
P∑
i

˜|hi| log |h̃i|, HQ = −
P∑
i

Q̃ii log Q̃ii, Hm = −
P∑
i

Q̃ii|h̃i| log(Q̃ii|h̃i|); (10)

where the tilde denote normalisation, i.e. ˜|hi| = |hi|∑P
i |hi|

and Q̃ii =
Qii∑P
i Qii

. Maximum entropy in238

these measures corresponds to no specialisation, while minimum entropy corresponds to maximum239

specialisation.240

We can investigate how these measures vary as a function of different properties of the problem setup,241

in particular those related to initialisation. To simplify the analysis, we begin with the case where242

the optimal number of tasks is P ∗ = 1 and the network has P = 2 output units. This allows us to243

initialise the second layer weights in polar coordinates, with precise and interpretable control over244

scale and asymmetry of weights. Formally we parameterise our readout initialisations according to245

hhh(t)[0; r(t), θ(t)] = (r(t) cos θ(t), r(t) sin θ(t)). (11)

Fig. 5 contain phase diagrams showing how the entropy measures in Eq. 10 vary with the initialisation246

parameters r(t), θ(t), and σW . We can make several observations: (i) the strongest determinant of247

specialisation is the asymmetry in the second layer weights, i.e. the θ parameter. (ii) this is the248

case for both ReLU and sigmoidal activation functions, reinforcing the point made in the example249

from Fig. 1b. (iii) the scale of initialisations (parameters σW , r) are also important.250
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Figure 5: Phase diagrams show significance of initialisation for specialisation. The phase diagrams
show with colour the aggregated entropy Eq. 10 evaluated for different initialisations. On the x-axis
we span over the standard deviation of the first layer. The second layer is initialised using polar
coordinates, and the y-axis represents the norm while the different panels give the angle spanning
from orthogonal units (θ = 0) to identical units (θ = π/4). Specialisation is achieved by blue-leaning
initialisations, while yellow-leaning ones exhibit high entropy and therefore non-specialised solutions.
Additional results can be found in Appendix E. standard

4.3 Specialisation underlies Maslow’s hammer251

The phase diagrams in Fig. 5 demonstrate that initialisation can drastically change the type of252

solutions found by the student after training on one teacher. While this may be inconsequential if the253

generalisation error remains unaffected, in many cases, the precise nature of the learned representation254

can significantly impact downstream tasks.255

In the worst case scenario, the student undergoes no specialisation during the first task. During the256

second task there is no notion of the trade-off between node re-use and node activation discussed257

in [43]; rather the student continues to find a non-specialised solution to the second teacher, effectively258

fully re-using it’s entire representation for the second task. Consequently, the amount of forgetting259

with respect to the initial task decreases monotonically with task similarity, thereby breaking the260

U-shaped pattern characteristic of Maslow’s hammer that has been observed in various continual261

learning setups [41]. This extreme case is illustrated in Fig. 6. Further, even with specialisation262

after the first task, large asymmetric initialisation in the second task readout weights can induce this263

monotonic relationship, again by pushing the student into re-use rather than activation.264

In a broader context, a rich diversity of behaviours can emerge, driven by factors such as the265

initialisation schemes, the scale of weights in the first layer, and the readout heads for both tasks.266

A glimpse of this behavioural diversity is provided in Appendix F, where we further explore the267

interaction between these factors and their impact on forgetting in continual learning.268

4.4 Specialisation underlies EWC269

The findings relating specialisation to forgetting from subsection 4.3 have direct consequences for270

interference mitigation strategies such as EWC. EWC is a regularisation-based method that computes271

a measure of ‘importance’ for each weight with respect to a task via the Fischer information [21].272

Subsequently a squared penalty scaled by this importance is applied to deviation of this weight during273

learning of future tasks as follows:274

LEWC(WWW ) = L(WWW ) +
ξ

2

∑
i

Fi(Wi −W ∗
i ), (12)

where F is the Fischer information matrix, ξ is a regularisation strength parameter, and WWW ∗ are the275

weights at the end of training on the first task.276
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Figure 6: Initialisation and specialisation properties can influence profile of forgetting vs.
similarity. (a) forgetting as a function of task similarity can be both monotonic, shown here for the
cases of specialisation after the first task + large second head initialisation (blue), and no-specialisation
during both tasks (orange); or non-monotonic (green, as characterised by Maslow’s hammer [43]).
(b) the final norm of the two nodes (one solid and one dashed), i.e. at the end of training on both
tasks, as a function of task similarity. In the cases that lead to monotonic forgetting, nodes are fully
re-used, either because the corresponding new head is initialised large (orange) or because the new
head is symmetrically initialised and the nodes continue to represent redundant information during
the second task (blue). Params: N = 10000, η = 1, K∗ = 1, K = 2, σw = 0.001.
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Figure 7: EWC is strongly reliant on specialisation. We show the generalisation error in the
first (solid line) and second (dashed) task for different EWC regularisation strengths. (a) When the
student finds a specialised solution to the first task, there is a range of EWC regularisation strength
ξ for which the activated units can remain fixed and spare capacity can be used to learn the second
task—leading to low generalisation error in both tasks (ξ = 10−2, ξ = 10−4 perform very well). (b)
When the student does not specialise in the first task, EWC reduces to an inflexible regulariser that
either penalises plasticity everywhere—leading to little forgetting but no further learning (e.g. ξ = 1),
or does not penalise any plasticity—leading to catastrophic forgetting (e.g. ξ = 10−6).

In cases where the network does not specialise, i.e. multiple student nodes learn redundant repre-277

sentations for a given teacher node, the nodes have equal importance. Consequently EWC cannot278

distinguish between these sets of weights and depending on the regularisation parameter λ either lets279

these nodes move during training on the second task (under-regularises) leading to forgetting, or lets280

none move (over-regularises) leading to no transfer. We show results illustrating this behaviour in281

the teacher-student setup in Fig. 7. In particular we show the regime of intermediate task similarity,282

wherein [43] previously argued that EWC should perform better than methods such as replay.283
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5 Limitations and Perspectives284

This work operates within simplified frameworks, which–while widely used in the analysis of neural285

networks–do not fully capture the complexity of modern architectures and real-world data. Our286

experiments rely on Gaussian input data and simplified input-output relations, which are far removed287

from the intricacies of real-world scenarios. A natural next step is to extend our analysis to more288

realistic generative models, such as the hidden manifold model [73] or the superstatistical generative289

model [74], which offer more structured data distributions and better capture observations from real290

data experiments.291

Another promising direction is to complement analytical approaches with numerical experiments on292

controlled real-world datasets. While this may sacrifice some analytical tractability, it brings us closer293

to addressing practical challenges. For instance, transfer learning settings, such as those explored in294

[75], provide a useful benchmark for testing our theoretical findings in more complex environments.295

While the current work remains theoretical in nature, focusing on simplified models for analytical296

tractability, a thorough exploration of the practical implications of our findings, particularly in297

disentangled representation learning, is beyond the scope of this paper. However, we aim to address298

this in future work by shifting towards a more experimental approach. Specifically, we plan to299

explore a broader range of network architectures, datasets–such as Car3D [? ] and dSprites [76]–and300

evaluation metrics—such as SAP [68, 63]. This future study will allow us to validate our theoretical301

insights and fully assess their relevance in real-world settings.302
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A Hyperbolic-Linear Dynamics517

Consider a linear network performing a regression task with one hidden layer computing output518

Ŷ = hWX in response to an input batch of data X , with P datapoints, and trained to minimize the519

quadratic loss using gradient descent:520

L(W,h) =

P∑
i=1

1

2
||yi − hWxi||22

This gives the learning rules for each layer with learning rate η as:521

∆W = ηPhT (Σyx − hWΣx); ∆h = ηP (Σyx − hWΣx)WT

These equations can be derived for a batch of data using the linearity of expectation, where Σx =522

E[XXT ] is the input correlation matrix and Σyx = E[Y XT ] is the input-output correlation matrix,523

as follows:524

∆W = η
d

dW
L(W,h)

= η
d

dW

P∑
i=1

1

2
(Yi − hWXi)

T (Yi − hWXi)

= η

P∑
i=1

hT (Yi − hWXi)X
T
i

= ηP
1

P

P∑
i=1

hT (Yi − hWXi)X
T
i

= ηPE[hT (YiX
T
i − hWXiX

T
i )]

= ηPhT (E[YiX
T
i ]− hWE[XiX

T
i ])]

= ηPhT (Σyx − hWΣx)

∆h = η
d

dh
L(W,h)

= η
d

dh

P∑
i=1

1

2
(Yi − hWXi)

T (Yi − hWXi)

= η

P∑
i=1

(Yi − hWXi)(WXi)
T

= ηP
1

P

P∑
i=1

(Yi − hWXi)X
T
i W

T

= ηPE[(YiX
T
i − hWXiX

T
i )]W

T

= ηP (E[YiX
T
i ]− hWE[XiX

T
i ])]W

T

= ηP (Σyx − hWΣx)WT

By using a small learning rate η and taking the continuous time limit, the mean change in weights is525

given by:526

τ
d

dt
W = hT (Σyx − hWΣx); τ

d

dt
h = (Σyx − hWΣx)WT

where τ = 1
Pη is the learning time constant. Here, t measures units of learning epochs. It is helpful527

to note that since we are using a small learning rate the full batch gradient descent and stochastic528

gradient descent dynamics will be the same.529
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[47] has shown that the learning dynamics depend on the singular value decomposition of:530

Σyx = USV T =

ry∑
α=1

σαu
αvα

T

; Σx = V DV T =

rx∑
α=1

δαu
αvα

T

Here ry and rx denote the ranks of the matrices. To solve for the dynamics we require that Σyx and531

Σx are mutually diagonalizable such that the right singular vectors V of Σyx are also the singular532

vectors of Σx. We verify that this is true for the tasks considered in this work and assume it to be533

true for these derivations. We also assume that the network has at least ry hidden neurons (the rank534

of Σyx which determines the number of singular values in the input-output covariance matrix) so535

that it can learn the desired mapping perfectly. If this is not the case then the model will learn the536

top nh singular values of the input-output mapping where nh is the number of hidden neurons [37].537

To ease notation for the remainder of this section we will use nh to denote both the number of538

hidden neurons and rank of Σyx. S and D then are diagonal matrices of the singular values of the539

input-output correlation and input correlation matrices respectfully.540

541

We now perform a change of variables using the SVD of the dataset statistics. The purpose of this542

step is to decouple the complex dynamics of the weights of the network, with interacting terms, into543

multiple one-dimensional systems. Specifically we set:544

h = UhRT ; W = RWV T

where R is an arbitrary orthogonal matrix such that RTR = I . Substituting this into the gradient545

descent update rules for the parameters above yields:546

τ
d

dt
W =hT (Σyx − hWΣx)

τ
d

dt
(RWV T ) =RhUT (USV T − UhRTRWV TV DV T )

τ
d

dt
(RWV T ) =Rh(SV T − hWDV T )

τ
d

dt
W =h(S − hWD)

and547

τ
d

dt
h =(Σyx − hWΣx)WT

τ
d

dt
(UhRT ) =(USV T − UhRTRWV TV DV T )VWRT

τ
d

dt
(UhRT ) =(US − UhWD)WRT

τ
d

dt
h =W (S − hWD)

Here we have used the orthogonality of the singular vectors such that V TV = I and UTU = I .548

Importantly, all matrices in the dynamics are now diagonal and represent the decoupling of the549

network into the modes transmitted from input to the hidden neurons and from hidden to output550

neurons. In practice we do not initialize the network weights to adhere to this diagonalisation and so551

it is not guaranteed that the matrices will be diagonal at initialisation. However, empirically it has552

been found that the network singular values rapidly align to this required configuration [37, 47].553

The derivative then for the full-network input-output mapping can be obtain by using the product554

rule:555

τ
d

dt
hW =(τ

d

dt
h)W + h(τ

d

dt
W )

=
(
W (S − hWD)

)
W + h

(
h(S − hWD)

)
=W

2
(S − hWD) + h

2
(S − hWD)

=
(
W

2
+ h

2
)
(S − hWD)

16



This means that at a minimum: S−hWD = 0 or S
DW

= h. This defines a hyperbolic space between556

W and h. As a result we can use the change of variables: W =
√
λ sinh θ

2 and h =
√
λ cosh θ

2557

parametrized by θ.558

We note that there is a conserved quantity between the singular values of the weight matrices:559

W
2 − h

2
= (

√
λ sinh

θ

2
)2 − (

√
λ cosh

θ

2
)2

= λ sinh2
θ

2
− λ cosh2

θ

2

= λ

(
cosh(θ) + 1

2

)
− λ

(
cosh(θ)− 1

2

)
=

λ

2
cosh θ +

λ

2
− λ

2
cosh θ +

λ

2
= λ

This is known as λ-Balanced weights [33] and for a given initial value for λ this quantity will be560

conserved for all times during training. Aiming to write the network dynamics in terms of this561

quantity to understand its effect on learning speed and initialisation and with the change of variables562

to hyperbolic coordinates we begin with:563 (
W

2
+ h

2
)2

=(W
2
)2 + (h

2
)2

=(W
2
)2 + (h

2
)2 + 4W

2
h
2 − 4W

2
h
2

=
(
W

2 − h
2
)2

+ 4W
2
h
2

Substituting this into the network dynamics equation and defining the network singular value as564

ω = hW we obtain:565

τ
d

dt
ω =

(
W

2
+ h

2
)
(S − ωD)

τ
d

dt
ω =

√(
(W

2 − h
2
)2 + 4W

2
h
2
)
(S − ωD)

Now applying the change of variables to hyperbolic coordinates with W =
√
λ sinh θ

2 and h =566 √
λ cosh θ

2 parametrized by θ:567

τ
d

dt
(
√
λ cosh

θ

2
)(
√
λ sinh

θ

2
) =√(

(λ sinh2
θ

2
)− (λ cosh2

θ

2
)

)2

+ 4(λ sinh2
θ

2
)(λ cosh2

θ

2
)(S − (

√
λ cosh

θ

2
)(
√
λ sinh

θ

2
)D)

τ
d

dt
λ cosh

θ

2
sinh

θ

2
=

√(
(λ sinh2

θ

2
)− (λ cosh2

θ

2
)

)2

+ 4λ2(cosh
θ

2
sinh

θ

2
)2(S − λ cosh

θ

2
sinh

θ

2
D)

We can then apply the identities: cosh θ
2 sinh

θ
2 = 1

2 sinh θ and λ sinh2 θ
2 − λ cosh2 θ

2 = λ:568

τ
d

dt

λ

2
sinh (θ) =

√
λ2 + 4λ2(

1

2
sinh (θ))2(S − λ

2
sinh (θ)D)

τ
d

dt

λ

2
sinh (θ) =

√
λ2 + λ2 sinh2 (θ)(S − λ

2
sinh (θ)D)

τ
d

dt

λ

2
sinh (θ) = |λ|

√
1 + sinh2 (θ)(S − λ

2
sinh (θ)D)
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τ
d

dt

λ

2
sinh (θ) = |λ|

√
cosh2 (θ)(S − λ

2
sinh (θ)D)

τ
d

dt

λ

2
sinh (θ) = |λ| cosh (θ)(S − λ

2
sinh (θ)D)

Now applying the derivative on the left:569

τ
λ

2
cosh (θ)

d

dt
θ = |λ| cosh (θ)(S − λ

2
sinh (θ)D)

d

dt
θ =

1

τ
sgn(λ)(2S − λD sinh (θ))

This is a separable differential equation in θ:570 ∫ θf

θ0

1

(2S − λD sinh (θ))
dθ =

∫ t

0

sgn(λ)

τ
dt[

log
(∣∣2S tanh

(
θ
2

)
+
√
4S2 + λ2D2 + λD

∣∣)− log
(∣∣2S tanh

(
θ
2

)
−

√
4S2 + λ2D2 + λD

∣∣)
√
4S2 + λ2D2

]θf
θ0

=
sgn(λ)

τ
t

1√
4S2 + λ2D2

[
log

(∣∣2S tanh
(
θ
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣2S tanh
(
θ
2

)
−
√
4S2 + λ2D2 + λD

∣∣
)]θf

θ0

=
sgn(λ)

τ
t

1√
4S2 + λ2D2

log

∣∣∣2S tanh

(
θf
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−
√
4S2 + λ2D2 + λD

∣∣∣


− log

(∣∣2S tanh
(
θ0
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣2S tanh
(
θ0
2

)
−
√
4S2 + λ2D2 + λD

∣∣
)]

=
sgn(λ)

τ
t

If we let:571

C =

∣∣2S tanh
(
θ0
2

)
+
√
4S2 + λ2D2 + λD

∣∣∣∣2S tanh
(
θ0
2

)
−
√
4S2 + λ2D2 + λD

∣∣ ;K =
√

4S2 + λ2D2

then:572

1

K

log

∣∣∣2S tanh

(
θf
2

)
+K + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−K + λD

∣∣∣
− log(C)

 =
sgn(λ)

τ
t

Writing θf in terms of t:573

1

K

log

∣∣∣2S tanh

(
θf
2

)
+K + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−K + λD

∣∣∣
− log(C)

 =
sgn(λ)

τ
t

log


∣∣∣2S tanh

(
θf
2

)
+K + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−K + λD

∣∣∣
 =

sgn(λ)K

τ
t+ log(C)

∣∣∣2S tanh
(

θf
2

)
+K + λD

∣∣∣∣∣∣2S tanh
(

θf
2

)
−K + λD

∣∣∣ = C exp

(
sgn(λ)K

τ
t

)

2S tanh

(
θf
2

)
+K + λD = C exp

(
sgn(λ)K

τ
t

)
(K − 2S tanh

(
θf
2

)
− λD)

2S tanh

(
θf
2

)
+ C exp

(
sgn(λ)K

τ
t

)
2S tanh

(
θf
2

)
= C exp

(
sgn(λ)K

τ
t

)
(K − λD)−K − λD
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2S tanh

(
θf
2

)(
1 + C exp

(
sgn(λ)K

τ
t

))
= −K

(
1− C exp

(
sgn(λ)K

τ
t

))
− λD

(
1 + C exp

(
sgn(λ)K

τ
t

))

tanh

(
θf
2

)
=

−K
(
1− C exp

(
sgn(λ)K

τ t
))

− λD
(
1 + C exp

(
sgn(λ)K

τ t
))

2S
(
1 + C exp

(
sgn(λ)K

τ t
))

θf = 2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)



To obtain the dynamics for the singular value of a mode of the network we use:574

ω =λ sinh
θ

2
cosh

θ

2

=
λ

2
sinh θ

=
λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)


With the linear network dynamics we can now derive a network’s hitting time (t∗). Let υ∗ be a575

sufficiently small value:576

S

D
− ω = υ∗

S

D
− λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

 = υ∗

1

2
sinh−1 (

2S − 2Dυ∗

λD
) = tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)


tanh (

1

2
sinh−1 (

2S − 2Dυ∗

λD
)) =

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

Let T ∗ = tanh ( 12 sinh
−1 ( 2S−2Dυ∗

λD )) then577

T ∗ =
K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2ST ∗
(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
= K

(
C exp

(
sgn(λ)K

τ
t

)
− 1

)
− λD

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
2ST ∗C exp

(
sgn(λ)K

τ
t

)
+ 2ST ∗ = KC exp

(
sgn(λ)K

τ
t

)
−K − λDC exp

(
sgn(λ)K

τ
t

)
− λD

2ST ∗C exp

(
sgn(λ)K

τ
t

)
−KC exp

(
sgn(λ)K

τ
t

)
+ λDC exp

(
sgn(λ)K

τ
t

)
= −2ST ∗ −K − λD

exp

(
sgn(λ)K

τ
t

)
(2ST ∗C −KC + λDC) = −2ST ∗ −K − λD

exp

(
sgn(λ)K

τ
t

)
=

−2ST ∗ −K − λD

2ST ∗C −KC + λDC
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sgn(λ)K

τ
t = log

(
−2ST ∗ −K − λD

2ST ∗C −KC + λDC

)
t∗ =

τ

sgn(λ)K
log

(
−2ST ∗ −K − λD

2ST ∗C −KC + λDC

)
t∗ =

τ

sgn(λ)K
log

(
K + 2ST ∗ + λD

KC − 2ST ∗C − λDC

)

Similarly we derive the escaping time for a mode with sufficiently small υ̂ as:578

ω = υ̂

λ

2
sinh

2 tanh−1

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

 = υ̂

K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
) = tanh

(
1

2
sinh−1

(
2υ̂

λ

))

Let T̂ = tanh
(
1
2 sinh

−1
(
2υ̂
λ

))
then579

T̂ =
K
(
C exp

(
sgn(λ)K

τ t
)
− 1
)
− λD

(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2S
(
C exp

(
sgn(λ)K

τ t
)
+ 1
)

2ST̂

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
= K

(
C exp

(
sgn(λ)K

τ
t

)
− 1

)
− λD

(
C exp

(
sgn(λ)K

τ
t

)
+ 1

)
2ST̂C exp

(
sgn(λ)K

τ
t

)
+ 2ST̂ = KC exp

(
sgn(λ)K

τ
t

)
−K − λDC exp

(
sgn(λ)K

τ
t

)
− λD

2ST̂C exp

(
sgn(λ)K

τ
t

)
−KC exp

(
sgn(λ)K

τ
t

)
+ λDC exp

(
sgn(λ)K

τ
t

)
= −2ST̂ −K − λD

exp

(
sgn(λ)K

τ
t

)(
2ST̂C −KC + λDC

)
= −2ST̂ −K − λD

exp

(
sgn(λ)K

τ
t

)
=

−2ST̂ −K − λD

2ST̂C −KC + λDC

sgn(λ)K

τ
t = log

(
−2ST̂ −K − λD

2ST̂C −KC + λDC

)

t̂ =
τ

sgn(λ)K
log

(
−2ST̂ −K − λD

2ST̂C −KC + λDC

)

t̂ =
τ

sgn(λ)K
log

(
K + 2ST̂ + λD

KC − 2ST̂C − λDC

)

Thus, the escaping time can be summarised as:580

t̂ =
τ

sgn(λ)K
log

(
K + 2ST̂ + λD

KC − 2ST̂C − λDC

)
(13)

with the escaping time constant:581

T̂ = tanh

(
1

2
sinh−1

(
2υ̂

λ

))
(14)
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Similarly the hitting time is summarised as:582

t∗ =
τ

sgn(λ)K
log

(
K + 2ST ∗ + λD

KC − 2ST ∗C − λDC

)
(15)

with the hitting time constant:583

T ∗ = tanh (
1

2
sinh−1 (

2S − 2Dυ∗

λD
)) (16)

B Mean-field theory of the dynamics584

As outlined in Sec.4, the key observation for the mean-field analysis is that the main properties of585

the learning dynamics can be expressed as functions of the order parameters–Eqs. 8. By combining586

these definitions with the update rules–Eqs. (6, 7)–we can derive closed-form expressions for the587

evolution of the order parameters, enabling us to track the key observables throughout the training588

process. In the high-dimensional limit (d → ∞), these discrete update equations converge to ordinary589

differential equations (ODEs), which can be integrated either numerically or analytically in certain590

cases [77]. As is often the case in the statistical physics of disordered systems, this approach was first591

derived non-rigorously by [38] and [40], with later works laying down a mathematical foundation592

showing concentration of the ODEs [73, 78].593

Following these prescriptions, we obtain the update equations as in [42]. Let us define the pre-594

activations of the student and task-t teacher given an input xxx from task t as595

λi =
1√
d
WWW i · xxx, ρ

(t)
i =

1√
d
WWW

(t)
T,i · xxx, (17)

and denote the difference between the teacher and student predictions by ∆(t) = hhh(t)·ϕ(λλλ)−hhh(t)
T ·ϕ(ρρρ).596

The corresponding ODEs for the order parameters in the limit d → ∞ are given by:597

dQik

dτ
= −ηh

(t)
i ⟨ϕ′(λi)∆

(t)λk⟩ − ηh
(t)
k ⟨ϕ′(λk)∆

(t)λi⟩+ η2h
(t)
i h

(t)
k ⟨ϕ′(λi)ϕ

′(λk)(∆
(t))2⟩, (18)

dR
(t′)
in

dτ
= −ηh

(t)
i ⟨ϕ′(λi)∆

(t)ρ(t
′)

n ⟩, (19)

dh
(t)
i

dτ
= −η⟨∆(t)ϕ(λi)⟩, (20)

where τ = epoch/d represents continuous time in the high-dimensional limit, and t, t′ ∈ 1, 2598

denote the task indices. The angular brackets indicate an average over the pre-activations. The599

pre-activations themselves are centered Gaussian random variables with covariances determined by600

the order parameters QQQ, RRR(t), and TTT .601

These averages can be computed analytically for certain activation functions. For instance, in the case602

of a rescaled error function introduced in the main text [38, 40], the relevant averages are given by:603

⟨ϕ(β)ϕ(γ)⟩ = 1

π
arcsin

(
Σ12√

(1 + Σ11)(1 + Σ22)

)
, (21)

⟨ϕ′(ζ)βϕ(γ)⟩ = 2Σ23(1 + Σ11)− 2Σ12Σ13√
Λ3(1 + Σ11)

, (22)

⟨ϕ′(ζ)ϕ′(ι)ϕ(β)ϕ(γ)⟩ = 4

π2
√
Λ4

arcsin

(
Λ0√
Λ1Λ2

)
, (23)

where the Greek letters represent arbitrary pre-activations with covariance matrix ΣΣΣ, and the auxiliary604

quantities Λi are given by:605

Λ0 = Λ4Σ34 − Σ23Σ24(1 + Σ11)− Σ13Σ14(1 + Σ22) + Σ12Σ13Σ24 +Σ12Σ14Σ23, (24)

Λ1 = Λ4(1 + Σ33)− Σ2
23(1 + Σ11)− Σ2

13(1 + Σ22) + 2Σ12Σ13Σ23, (25)

Λ2 = Λ4(1 + Σ44)− Σ2
24(1 + Σ11)− Σ2

14(1 + Σ22) + 2Σ12Σ14Σ24, (26)

Λ3 = (1 + Σ11)(1 + Σ33)− Σ2
13. (27)

These expressions provide a comprehensive analytical framework for tracking the dynamics of the606

student network and the evolution of specialisation across training.607
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C Method for Linear Network Phase Transition608

D Disentenglement609

We conduct our experiments using open-source frameworks [24, 79]. Specifically, we implement610

a beta-VAE with the "DeepGaussianLinear" architecture for the decoder and "DeepLinear" for the611

encoder. We modify the Xavier initialisation where the weights of the linear layers will have values612

sampled from U(−a, a) with613

a = gain ×
√

6

fan_in + fan_out

We vary the gain between 0.3 and 3 and run each experiment over 4 seeds. All network parameters614

are set to their default values as provided by the respective open-source frameworks. We run the615

experiments for 20 Epochs and 157499 iterations.616

These experiment illustrate the impact of initialisation on network specialisation. Although the scope617

of these experiments is limited, they provide preliminary validation of our theoretical framework in618

more realistic contexts. We advocate for further investigation into alternative initialisation schemes619

with varying levels of balance. Moreover, we highlight the need for future research to extend620

these experiments by considering a wider variety of datasets (Car3D [80], dSprites [76],), network621

architectures (Conv,Linear), initialisation strategies ( Gaussian Xavier Initalisation) and different622

metric (SAP [68, 63],) to fully explore the implications of our findings. In practice, linear networks623

in PyTorch are initialized using a uniform distribution, specifically:624

W ∼ U
(
−
√
k,
√
k
)
, where k =

1

in_features

This initialization is equivalent to applying a small gain in our experimental setting, aligning with the625

weight scaling typically seen in neural network training setups. DCI Disentanglement [72] define626

three key properties of learned representations: Disentanglement, Completeness, and Informativeness.627

To assess these, they calculate the importance of each dimension of the representation in predicting628

a factor of variation. This can be done using models like Lasso or Random Forest classifiers.629

Disentanglement is computed by subtracting the entropy of the probability that a representation630

dimension predicts a factor, weighted by its relative importance. Completeness is similarly measured,631

focusing on how well a factor is captured by the dimensions. Informativeness is evaluated as the632

prediction error of the factors. We use the implementation in [24]. In this implementation, we sample633

10,000 training and 5,000 test points, then use gradient-boosted trees from Scikit-learn to obtain634

feature importance weights. These weights form an importance matrix, with rows representing factors635

and columns representing dimensions. Disentanglement is calculated by normalizing the columns of636

this matrix, subtracting the entropy from 1 for each column, and then weighting by each dimension’s637

relative importance.638

E Additional Entropy Phase Diagrams639

In Fig. 5 we showed phase diagrams of the aggregate entropy as a function of initialisation parameters,640

for both ReLU and sigmoidal networks. Below we show additional plots with the individual entropy641

terms (Hu defined over the unit activations, and Hh defined over the head weights).642

F Diversity of Forgetting Curves643
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Figure 8: Additional Phase Diagrams. Here we show the equivalent phase diagrams from Fig. 5 for
entropy measures over the unit activations and head weights.
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Figure 9: Initialisation can lead to a diversity of specialisation dynamics and a diversity of rela-
tionships between forgetting and task similarity. R, σW fixed, θ(1), θ(2) measured in increments
of π/16. Scaled error function, P ∗ = 1, P = 1. 24
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