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ABSTRACT

In our era of enormous neural networks, empirical progress has been driven by the
philosophy that more is better. Recent deep learning practice has found repeatedly
that larger model size, more data, and more computation (resulting in lower training
loss) improves performance. In this paper, we give theoretical backing to these
empirical observations by showing that these three properties hold in random
feature (RF) regression, a class of models equivalent to shallow networks with only
the last layer trained.

Concretely, we first show that the test risk of RF regression decreases monotonically
with both the number of features and the number of samples, provided the ridge
penalty is tuned optimally. In particular, this implies that infinite width RF archi-
tectures are preferable to those of any finite width. We then proceed to demonstrate
that, for a large class of tasks characterized by powerlaw eigenstructure, training
to near-zero training loss is obligatory: near-optimal performance can only be
achieved when the training error is much smaller than the test error. Grounding our
theory in real-world data, we find empirically that standard computer vision tasks
with convolutional neural tangent kernels clearly fall into this class. Taken together,
our results tell a simple, testable story of the benefits of overparameterization,
overfitting, and more data in random feature models.

1 INTRODUCTION

It is an empirical fact that more is better in modern machine learning. State-of-the-art models are
commonly trained with as many parameters and for as many iterations as compute budgets allow,
often with little regularization. This ethos of enormous, underregularized models contrasts sharply
with the received wisdom of classical statistics, which suggests small, parsimonious models and
strong regularization to make training and test losses similar. The development of new theoretical
results consistent with the success of overparameterized, underregularized modern machine learning
has been a central goal of the field for some years.

How might such theoretical results look? Consider the well-tested observation that wider networks
virtually always achieve better performance, so long as they are properly tuned (Kaplan et al., 2020;
Hoffmann et al., 2022; Yang et al., 2022). Let Ete(n,w,θ) denote the expected test error of a network
with width w and training hyperparameters θ when trained on n samples from an arbitrary distribution.
A satisfactory explanation for this observation might be a hypothetical theorem which states the
following:

If w′ > w, then min
θ

Ete(n,w
′,θ) < min

θ
Ete(n,w,θ).

Such a result would do much to bring deep learning theory up to date with practice. In this work, we
take a first step towards this general result by proving it in the special case of RF regression — that is,
for shallow networks with only the second layer trained. Our Theorem 1 states that, for RF regression,
more features (as well as more data) is better, and thus infinite width is best. To our knowledge, this
is the first analysis directly showing that for arbitrary tasks, wider is better for networks of a certain
architecture.

How might a comparable result for overfitting look? It is by now established wisdom that optimal
performance in many domains is achieved when training deep networks to nearly the point of
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interpolation (i.e. zero training error), with train error many times smaller than test error ( Neyshabur
et al. (2015); Zhang et al. (2017); Belkin et al. (2018), Appendix F of Hui & Belkin (2021)). However,
unlike the statement “wider is better,” the statement “interpolation is optimal” cannot be true for
generic task distributions: we can see this a priori by noting that any fitting at all can only harm us
if the task is pure noise and the optimal predictor is thus zero. Indeed, Nakkiran & Bansal (2020)
and Mallinar et al. (2022) empirically observe that training to interpolation harms the performance
of real deep networks on sufficiently noisy tasks. This suggests that we instead ought to seek an
appropriate class C of model-task pairs — ideally general enough to include realistic tasks — such
that a hypothetical statement of the following form is true:

For model-task pairs in C, at optimal regularization, it holds that Rtr/te :=
Etr

Ete
≪ 1.

Here we have defined the fitting ratio Rtr/te to be the ratio of train error Etr and test error Ete and
we have suppressed the arguments of Etr and Ete for the sake of generality. We take a step towards
this general result, too, by proving a sharp statement to this effect for kernel ridge regression (KRR),
including infinite-feature RF regression and infinite-width neural networks of any depth in the kernel
regime (Jacot et al., 2018; Lee et al., 2019). Letting C be the set of tasks with powerlaw eigenstructure
(Definition 2), our Theorem 2 states that under mild conditions on the powerlaw exponents, not only
is Rtr/te ≪ 1 at optimal regularization, but in fact this overfitting is obligatory: attaining near-optimal
test error requires that Rtr/te ≪ 1.1 Crucially, we put our proposed explanation to the experimental
test: we clearly find that the eigenstructure of standard computer vision tasks with convolutional
neural kernels displays powerlaw decay in satisfaction of our “obligatory overfitting” criteria, and
indeed optimality occurs at Rtr/te ≈ 0 for these tasks (Figure 2).

All our main results rely on closed form estimates for the train and test error of RF regression
and KRR in terms of task eigenstructure. We derive such an estimate for RF regression, and our
“more is better” conclusion (Theorem 1) follows quickly from this general result. This estimate
relies on a Gaussian universality ansatz (which we validate empirically) and becomes exact in an
appropriate asymptotic limit, though we see excellent agreement with experiment even at modest
size. When we study overfitting in KRR, which is the infinite-feature limit of RF regression, we
use the infinite-feature limit of our eigenframework, which recovers a well-known risk estimate for
(kernel) ridge regression extensively investigated in the recent literature (Sollich, 2001; Bordelon
et al., 2020; Jacot et al., 2020a; Dobriban & Wager, 2018; Hastie et al., 2022). We solve this
eigenframework for powerlaw task eigenstructure, obtaining an expression for test error in terms
of the powerlaw exponents and the fitting ratio Rtr/te (Lemma 10), and our “obligatory overfitting”
conclusion (Theorem 2 and Corollary 1) follows from this general result. Remarkably, we find that
real datasets match our proposed powerlaw structure so well that we can closely predict test error
as a function of Rtr/te purely from experimentally extracted values of the powerlaw exponents α, β
(Figure 2). To conclude, we return to the question of how one ought to view modern machine learning,
suggesting some intuitions consistent with our findings.

Concretely, our contributions are as follows:

• We obtain general closed-form estimates for the train and test risk of RF regression in terms
of task eigenstructure (Section 4.1).

• We conclude from the general estimate for test risk that, at optimal ridge parameter, more
features and more data are strictly beneficial (Theorem 1).

• We study KRR for tasks with powerlaw eigenstructure, finding that for a subset of such tasks,
overfitting is obligatory: optimal performance is only achieved at small or zero regularization
(Theorem 2).

• We demonstrate that standard image datasets with convolutional kernels satisfy our criteria
for obligatory overfitting (Figure 2).

1This is in contrast with the proposed phenomenon of “benign overfitting” (Bartlett et al., 2020; Tsigler
& Bartlett, 2023) in which interpolation (i.e. training to zero train loss) is merely harmless, incurring only a
sub-leading-order cost relative to optimal regularization. In our “obligatory overfitting” regime, interpolation is
necessary, and not interpolating incurs a leading-order cost.
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2 RELATED WORK

The benefits of overparameterization. Much theoretical work has aimed to explain the benefits
of overparameterization. Belkin et al. (2019) identify a “double-descent” phenomenon in which,
for certain underregularized learning rules, increasing overparameterization improves performance.
Ghosh & Belkin (2023) show that only highly overparameterized models can both interpolate noisy
data and generalize well. Roberts et al. (2022); Atanasov et al. (2023); Bordelon & Pehlevan
(2023) show that neural networks of finite width can be viewed as (biased) noisy approximations
to their infinite-width counterparts, with the noise decreasing as width grows, which is consistent
with our conclusion that wider is better for RF regression. Nakkiran et al. (2021) prove that more
features benefits RF regression in the special case of isotropic covariates; our Theorem 1 extends
their results to the general case, resolving a conjecture of theirs. Concurrent work (Patil & Du,
2023) also resolves this conjecture, showing sample-wise monotonicity for ridge regression. Yang &
Suzuki (2023) also show that sample-wise monotonicity holds for isotropic linear regression given
optimal dropout regularization. Kelly et al. (2022) study RF regression for time series, showing that
more overparameterization strictly improves certain performance measures of interest in financial
forecasting. It has also been argued that overparameterization provides benefits in terms of allowing
efficient optimization (Jacot et al., 2018; Liu et al., 2022), network expressivity (Cybenko, 1989; Lu
et al., 2017), and adversarial robustness (Bubeck & Sellke, 2021).

The generalization of RF regression. RF (ridge) regression was first proposed by Rahimi & Recht
(2007) as a cheap approximation to KRR. Its generalization was first studied using classical capacity-
based bounds Rahimi & Recht (2008); Rudi & Rosasco (2017). In the modern era, RF regression
has seen renewed theoretical attention due to its analytical tractability and variable parameter count.
Gerace et al. (2020) find closed-form equations for the test error of RF regression with a fixed
projection matrix. Jacot et al. (2020b) show that the average RF predictor for a given dataset
resembles a KRR predictor with greater ridge parameter. Mei & Montanari (2019); Mei et al. (2022)
find closed-form equations for the average-case test error of RF regression in the special case of
high-dimensional isotropic covariates. Maloney et al. (2022) find equations for the average test error
of a general model of RF regression under a special “teacher equals student” condition on the task
eigenstructure, and Bach (2023) similarly solved RF regression for the case of zero ridge. We report a
general RF eigenframework that subsumes many of these closed-form solutions as special cases (see
Appendix F). Our eigenframework can also be extracted, with some algebra, from replica calculations
reported by Atanasov et al. (2023) (Section D.5.2) and Zavatone-Veth & Pehlevan (2023) (Proposition
3.1).

Interpolation is optimal. Many recent works have aimed to identify settings in which optimal
generalization on noisy data may be achieved by interpolating methods, including local interpolating
schemes (Belkin et al., 2018) and ridge regression (Liang & Rakhlin, 2020; Muthukumar et al., 2020;
Koehler et al., 2021; Bartlett et al., 2020; Tsigler & Bartlett, 2023; Zhou et al., 2023). However, it is
not usually the case in these works that (near-)interpolation is required to generalize optimally, as
seen in practice. We argue that this is because these works focus entirely on the model, whereas one
must also identify suitable conditions on the task being learned in order to make such a claim. Several
papers have described ridge regression settings in which a negative ridge parameter is in fact optimal
(Kobak et al., 2020; Wu & Xu, 2020; Tsigler & Bartlett, 2023). We consider only nonnegative ridge in
this work to align with deep learning, but our findings are consistent with the task criterion found by
Wu & Xu (2020).2 In a similar spirit, Cheng et al. (2022) prove in a Bayesian linear regression setting
that for low noise, algorithms must fit substantially below the noise floor to avoid being suboptimal.

3 PRELIMINARIES

We will work in a standard supervised setting: our dataset consists of n samples X = {xi}ni=1

sampled i.i.d. from a measure µx over Rd. We wish to learn a target function f∗ (which we assume
to be square-integrable with respect to µx), and are provided noisy training labels y = (yi)

n
i=1

where yi = f∗(xi) + N (0, σ2) with noise level σ2 ≥ 0. Once a learning rule returns a predicted
function f , we evaluate its train and test mean-squared error, given by MSEtr =

1
n

∑
i(f(xi)− yi)

2

and MSEte = Ex∼µx

[
(f(x)− f∗(x))

2
]
+ σ2 respectively.

2Some of our results — for example, Corollary 1 — give inequalities which, if satisfied, imply that zero
ridge is optimal. It is generally the case that, when such an inequality is satisfied strictly (i.e. we do not have
equality), a negative ridge would have been optimal had we allowed it.
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RF regression is a learning rule defined by the following procedure. First, we sample k weight vectors
{wi}ki=1 i.i.d. from some measure µw over Rp. We then define the featurization transformation
ψ : x 7→ (g(wi, x))

k
i=1, where g : Rp × Rd → R is a feature function which is square-integrable

with respect to µw and µx. Finally, we perform standard linear ridge regression over the featurized
data: that is, we output the function f(x) = aTψ(x), where the weights a are given by a =
(ΨΨT + δkIk)

−1Ψy with Ψ = [ψ(x1), · · · ,ψ(xn)] and δ ≥ 0 a ridge parameter. If the feature
function has the form g(w, x) = h(wTx) with d = p and some nonlinearity h, then this model is
precisely a shallow neural network with only the second layer trained.

RF regression is equivalent to kernel ridge regression

f(x) = k̂xX (K̂XX + δIn)
−1y, (1)

where the vector [k̂xX ]i = K̂(x, xi) and matrix [K̂XX ]ij = K̂(xi, xj) contain evaluations of the
(stochastic) random feature kernel K̂(x, x′) = 1

k

∑
i g(wi, x)g(wi, x

′). Note that as k → ∞, the

kernel converges in probability to its expectation K̂(x, x′)
k−−→ K(x, x′) := Ew[g(w, x)g(w, x

′)]
and RF regression converges to KRR with the deterministic kernel K.

3.1 SPECTRAL DECOMPOSITION OF g AND THE GAUSSIAN UNIVERSALITY ANSATZ

Here we say what we mean by “task eigenstructure” in RF regression. Consider the bounded linear
operator T : L2(µw) → L2(µx) defined as

(Tv)(x) =

∫
Rp

v(w)g(w, x)dµw(w).

The operator T is a Hilbert-Schmidt operator to which the singular value decomposition can be
applied to (Kato, 2013). That is, there is an orthonormal basis (ζi)∞i=1 of (KerT )⊥ ⊆ L2(µw) and
an orthonormal basis (ϕi)

∞
i=1 of L2(µx) such that Tζi =

√
λiϕi. Here {λi}∞i=1 are the non-negative

eigenvalues indexed in decreasing order and {ϕi}∞i=1 are the corresponding eigenfunctions of the
integral operator Σ : L2(µx) → L2(µx) given by

(Σu)(y) =

∫
Rd

u(x)K(x, y)dµx(x).

If we denote T ⋆ : L2(µx) → L2(µw) as the adjoint of T , then Σ = TT ⋆. Moreover, the feature
function g admits the decomposition g(w, x) =

∑
i

√
λiζi(w)ϕi(x), where the convergence is in

L2(µw ⊗ µx). The decomposition of the deterministic kernel K is given by

K(x, y) = Ew[g(w, x)g(w, x
′)] =

∑
i

λiϕi(x)ϕi(y).

Note that the learning problem is specified entirely by (n, k, δ, {λi}, {vi}, {ζi}, {ϕi}).
The functions {ζi}, {ϕi} viewed as random variables induced by µw and µx respectively can
have a complicated distribution. However, since the functions form orthonormal bases, we know
that the random variables are uncorrelated and have second moments equal to one — that is,
Ew∼µw

[ζi(w)ζj(w)] = Ex∼µx
[ϕi(x)ϕj(x)] = δij . To make progress, throughout the text we

will use the following Gaussian universality ansatz and assume that the distributions may be treated
as uncorrelated Gaussians:

Assumption A (Gaussian universality ansatz). The expected train and test error are unchanged if we
replace {ζi}, {ϕi} by random Gaussian functions {ζ̃i}, {ϕ̃i} such that when sampling w ∼ µw the
values {ζ̃i(w)} are i.i.d. samples from N (0, 1), and likewise for x ∼ µx and {ϕ̃i(x)}.

Assumption A seems strong at first glance. It is made plausible by many comparable universality
results in random matrix theory which state that, when computing certain scalar quantities derived
from large random matrices, only the first two moments of the elementwise distribution matter (up to
some technical conditions), and the elements can thus be replaced by Gaussians for more convenient
analysis (Davidson & Szarek, 2001; Tao, 2023). Assumption A holds provably for RF regression in
certain asymptotic settings — see, for example, (Mei & Montanari, 2019; Mei et al., 2022). Most
encouragingly, recent results for the test error of KRR derived using a comparable condition show
excellent agreement with the test error computed on real data at moderate sample size (Sollich, 2001;
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Bordelon et al., 2020; Jacot et al., 2020a; Simon et al., 2021; Loureiro et al., 2021; Wei et al., 2022),
so we might expect to observe a similar universality in RF regression. Indeed, we will shortly validate
Assumption A empirically, demonstrating excellent agreement between predictions for Gaussian
statistics and RF experiments with real data (Figure 1). Given that our ultimate goal is to understand
learning from real data, this empirical agreement is reassuring.

Under this universality ansatz, the statistics of the eigenfunctions may be neglected, and the learning
task is specified entirely by the remaining variables (n, k, δ, {λi}, {vi}). We will now give a set of
closed-form equations which estimate train and test error in terms of these quantities.

4 MORE DATA AND FEATURES ARE BETTER IN RF REGRESSION

4.1 THE OMNISCIENT RISK ESTIMATE FOR RF REGRESSION

In this section, we will first state our risk estimate for RF regression, which will enable us to conclude
that more data and features are better.

Let κ, γ ≥ 0 be the unique nonnegative scalars such that

n =
∑
i

λi

λi + γ
+

δ

κ
and k =

∑
i

λi

λi + γ
+

kκ

γ
. (2)

Let z =
∑

i
λi

λi+γ and q =
∑

i

(
λi

λi+γ

)2
. The test and train error of RF regression are given

approximately by

MSEte ≈ Ete =
1

1− q(k−2z)+z2

n(k−q)

[∑
i

(
γ

λi + γ
− κλi

(λi + γ)2
k

k − q

)
v2i + σ2

]
, (3)

MSEtr ≈ Etr =
δ2

n2κ2
Ete. (4)

Following Breiman & Freedman (1983); Wei et al. (2022), we refer to Equation 3 as the omniscient
risk estimate for RF regression because it relies on ground-truth information about the task (i.e.,
the true eigenvalues {λi} and target eigencoefficients {vi}). We refer to the boxed equations,
together with estimates for the bias, variance, and expectation of f given in Appendix E.5, as the RF
eigenframework. Several comments are now in order.

Like the framework of Bach (2023), our RF eigenframework is expected to become exact (with
the error hidden by the “≈” going to zero) in a proportional limit where n, k, and the number of
eigenvalues diverge together. 3 However, we will soon see that it agrees well with experiment even at
modest n, k. This eigenframework generalizes and unifies several known results which we elaborate
upon in Appendix F.

Deriving the omniscient risk estimate for RF regression. We give a complete derivation of our
RF eigenframework in Appendix E and give a brief sketch here. It is obtained from the fact that RF
regression is KRR (c.f. Equation 1) with a stochastic kernel. As discussed in the introduction, many
recent works have converged on an omniscient risk estimate for KRR under the universality ansatz,
and if we knew certain eigenstatistics of the stochastic RF kernel K̂, we could simply insert them into
this known estimate for KRR and be done. Our main effort is in estimating these eigenstatistics using
a handful of random matrix theory facts, after which we may read off the omniscient risk estimate for
RF regression. Our derivation is nonrigorous, but we conjecture that it can be made rigorous with
explicit error bounds decaying with n, k as in Cheng & Montanari (2022).

Plan of attack. Our approach for the rest of the paper will be to rigorously prove facts about the
deterministic quantities Ete and Etr given by our omniscient risk estimates in Equations (3) and (4).

4.2 THE “MORE IS BETTER” PROPERTY OF RF REGRESSION

We now state the main result of this section.
3More precisely: in this limit, one can consider taking n → ηn, k → ηk, and duplicating each eigenmode η

times for an integer η, and then taking η → ∞. Alternatively, new eigenmodes can be sampled from a fixed
spectral distribution.
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Figure 1: At optimal ridge, more features monotonically improves test performance. Train and
test errors for RF regression closely match Equations (3) and (4) for both synthetic Gaussian data and
CIFAR10 with random ReLU features. Plots show traces with n = 256 samples and varying number
of features k. See Appendix A for experimental details and more plots.

Theorem 1 (More is better for RF regression). Let Ete(n, k, δ) denote Ete with n samples, k features,
and ridge δ with any task eigenstructure {λi}∞i=1, {vi}∞i=1. Let n′ ≥ n ≥ 0 and k′ ≥ k ≥ 0. It
holds that

min
δ′

Ete(n
′, k′, δ′) ≤ min

δ
Ete(n, k, δ), (5)

with strict inequality so long as (n, k) ̸= (n′, k′) and
∑

i λiv
2
i > 0 (i.e., the target has nonzero

learnable component).

The proof, given in Appendix G, is elementary and follows directly from Equation 3. Theorem 1
states that the addition of either more data or more random features can only improve generalization
error so long as we are free to choose the ridge parameter δ. It is counterintuitive from the perspective
of classical statistics, which warns against overparameterization: by contrast, we see that performance
increases with additional overparameterization, with the limiting KRR predictor being the optimal
learning rule. However, this is sensible if one views RF regression as a stochastic approximation to
KRR: the more features, the better the approximation to the ideal limiting process. This interpretation
lines up nicely with recent theoretical intuitions viewing infinite-width deep networks as noiseless
limiting processes (Bahri et al., 2021; Atanasov et al., 2023; Yang et al., 2022).

4.3 EXPERIMENTS: VALIDATING THE RF EIGENFRAMEWORK

We perform RF regression experiments using real and synthetic data. Synthetic experiments use
Gaussian data x ∼ N (0, diag({λi})) with λi = i−1.5 and simple projection features g(w, x) = wTx
with Gaussian weights w ∼ N (0, Id). Experiments with real datasets use random ReLU features
g(w, x) = ReLU(wTx) with Gaussian weights w ∼ N (0, 2Id); the corresponding theoretical
predictions use task eigenstructure extracted numerically from the full dataset. The results, shown in
Figure 1 and elaborated in Appendix A, show excellent agreement between measured test and train
errors and our theoretical predictions. The good match to real data justifies the Gaussian universality
ansatz used to derive the framework (Assumption A).

5 OVERFITTING IS OBLIGATORY FOR KRR WITH POWERLAW EIGENSTRUCTURE

Having established that more data and more features are better for RF regression, we now seek an
explanation for why “more fitting” — that is, little to no regularization — is also often optimal. As
we now know that infinite-feature models are always best, in our quest for optimality we simply
take k → ∞ for the remainder of the paper and study the KRR limit. When k → ∞, our RF
eigenframework reduces to the well-established omniscient risk estimate for KRR, which we write
explicitly in Appendix I.1. We will demonstrate that overfitting is obligatory for a class of tasks with
powerlaw eigenstructure.

Defining “overfitting.” How should one quantify the notion of “overfitting”? In some sense, we
mean that the optimal ridge parameter δ∗ which minimizes test error Ete is “small.” However, δ∗ will
usually decay with n, so it is unclear how to define “small.” In this work, we define overfitting via the
fitting ratio Rtr/te := Etr/Ete ∈ [0, 1], which has the advantage of remaining order unity even as n
diverges. The fitting ratio is a strictly increasing function of the ridge δ, with Rtr/te = 0 when δ = 0
and Rtr/te → 1 as δ → ∞. Therefore, rather than minimizing Ete with respect to δ ∈ [0,∞), we can
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equivalently minimize Ete with respect to Rtr/te ∈ [0, 1). We will take the term “overfitting” to mean
that Rtr/te ≪ 1.

Definition 1 (Optimal ridge, test error, and fitting ratio). The optimal ridge δ∗, optimal test error E∗
te,

and optimal fitting ratio R∗
tr/te are equal to the values of these quantities at the ridge that minimizes

test error. That is,

δ∗ := argmin
δ

Ete, E∗
te = Ete|δ=δ∗ , R∗

tr/te = Rtr/te|δ=δ∗ . (6)

If the optimal fitting ratio R∗
tr/te := argminRtr/te Ete is small — that is, if R∗

tr/te ≪ 1 — we may say
that overfitting is optimal. If it is also true that any Rtr/te > R∗

tr/te gives higher test error, we say that
overfitting is obligatory.

In this section, we will describe a class of tasks with powerlaw eigenstructure for which overfitting
is provably obligatory. For all powerlaw tasks, we will find that R∗

tr/te is bounded away from 1

(Theorem 2). Given an additional condition — namely, noise not too big, and an inequality satisfied
by the exponents — we find that R∗

tr/te = 0 (Corollary 1). Remarkably, when we examine real
learning tasks with convolutional kernels, we will observe powerlaw structure in satisfaction of this
obligatory overfitting condition, and indeed we will see that R∗

tr/te ≈ 0.

Definition 2 (α, β powerlaw eigenstructure). A KRR task has α, β powerlaw eigenstructure for
exponents α > 1, β ∈ (1, 2α+ 1) if there exists an integer i0 > 0 such that, for all i ≥ i0, the task
eigenvalues and eigencoeffients obey λi = i−α and v2i = i−β .

In words, a task has α, β powerlaw eigenstructure if the task eigenvalues {λi}∞i=1 and squared
eigencoefficients {v2i }∞i=1 have powerlaw tails with exponents α, β. The technical condition β <
2α+ 1 needed for our proofs is mild, and we will find it is comfortably satisfied in practice.

Target noise. We will permit tasks to have nonzero noise. However, we must be mindful of a subtle
but crucial point: we do not want to take a fixed noise variance σ2 = Θ(1), independent of n. The
reason is that the unlearned part of the signal will decay with n, so if σ2 does not decay, the noise
will eventually overwhelm the uncaptured signal. At this point, we might as well be training on pure
noise. In this case, maximal regularization is optimal, and the model cannot possibly benefit from
overfitting, as discussed in Section 1. We give a careful justification of this key point and compare
with the benign overfitting literature in Appendix H.

We instead consider the setting where the noise σ2 scales down in proportion to the uncaptured signal
To do so, we set

σ2 = σ2
rel · Ete|σ2=δ=0, (7)

where σ2
rel = Θ(1) is the relative noise level and Ete|σ2=δ=0 is the test error at zero noise and zero

ridge. This scaling also has the happy benefit of simplifying many of our final expressions. (We note
that this question of noise scaling will ultimately prove purely academic — when we turn to real
datasets, we will find that all are very well described with σ2 identically zero.)

We now state our main results.

Theorem 2. Consider a KRR task with α, β powerlaw eigenstructure. Let the optimal fitting ratio
and optimal test risk be given by Definition 1. At optimal ridge, the fitting ratio is

R∗
tr/te = r2∗ +O(n−γ) (8)

where r∗ is either the unique solution to

α− β − (α− 1)βr∗ + α(α− 1) (1− r∗)
β
σ2

rel = 0 (9)

over r∗ ∈ [0, 1) or else zero if no such solution exists, and γ = min(1, 2α+ 1− β). Furthermore,
this fitting ratio is the unique optimum (up to error decaying in n) in the sense that

Ete

E∗
te
≥ 1 + Cα

(√
Rtr/te −

√
R∗

tr/te

)2
+O(n−γ) (10)

where Cα = (α−1)2

α2 .
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The first part of Theorem 2 gives an equation whose solution is the optimal fitting ratio R∗
tr/te under

powerlaw eigenstructure. The second part is a strong-convexity-style guarantee that, unless we are
indeed tuned near R∗

tr/te, we will obtain test error Ete worse than optimal by a constant factor greater
than one. The proof of Theorem 2 consists of direct computation of Ete at large n, together with the
observation that Rtr/te = δ2

n2κ2 . The difficulty lies largely in the technical task of bounding error
terms. We give the proof in Appendix I.

The optimal fitting ratio R∗
tr/te given by Theorem 2 will always be bounded away from 1. This implies

that some overfitting will always be obligatory in order to reach near-optimal test error. The following
corollary, which follows immediately from Theorem 2, gives a necessary and sufficient condition
under which R∗

tr/te ≈ 0 and interpolation (i.e. zero ridge) is obligatory.

Corollary 1. Consider a KRR task with α, β powerlaw eigenstructure. The optimal fitting ratio
vanishes — that is, R∗

tr/te
n−→ 0 — if and only if

σ2
rel ≤

β − α

α(α− 1)
. (11)

Corollary 1 gives an elegant picture of what makes a task interpolation-friendly. First, we must have
β ≥ α; otherwise, the RHS of Equation 11 is negative. Larger β means that the error decays faster
with n (Cui et al., 2021), so β ≥ α amounts to a requirement that the task is sufficiently easy.4
Second, we must have sufficiently small noise relative to the uncaptured signal Ete|σ2=δ=0. More
noise is permissible when the difference β − α is greater, which is sensible since noise serves to
make a task harder. The fact that zero regularization can be the unique optimum even with nonzero
label noise is surprising from the perspective of classical statistics, which cautions against fitting
below the noise level.

With zero noise, Theorem 2 simplifies to the following corollary for the optimal fitting ratio:
Corollary 2. Consider a KRR task with α, β powerlaw eigenstructure. When σ2 = 0, the optimal
fitting ratio at large n converges to

R∗
tr/te

n−−→

{
(α−β)2

(α−1)2β2 if β < α,

0 if β ≥ α.
(12)

Corollary 2 implies in particular that even if β is slightly smaller than α, we will still find that
R∗

tr/te ≈ 0.

5.1 EXPERIMENTS: OVERFITTING IS OBLIGATORY FOR MNIST, SVHN AND CIFAR10 IMAGE
DATASETS

We ultimately set out to understand an empirical phenomenon: the optimality of interpolation in many
deep learning tasks. Having proposed a model for this phenomenon, is crucial that we now turn back
to experiment and put it to the empirical test. We do so now with standard image datasets learned
by convolutional neural tangent kernels. Running KRR with varying amounts of regularization, we
observe that R∗

tr/te ≈ 0 and (near-)interpolation is indeed obligatory for all three datasets (Figure 2).
This is due to both favorable task structure and low intrinsic noise: as we add artificial label noise,
R∗

tr/te is no longer zero, in accordance with Corollary 1. We also find that adding label noise increases
R∗

tr/te in accordance with our theory.

Even more remarkably, we find an excellent quantitative fit to our Lemma 10, which predicts Ete as a
function of Rtr/te, α, β, σ

2
rel up to a multiplicative constant. This surprising agreement attests that,

insofar as the effect of regularization is concerned, the relevant structure of these datasets can be
summarized by just the two scalars α, β. These experiments resoundingly validate our theoretical
picture for the examined tasks.

Measuring the exponents α,β. We examine three standard image datasets — MNIST, SVHN, and
CIFAR10 — and run KRR with the Myrtle convolutional neural tangent kernel (Shankar et al., 2020).

4More precisely, since a larger α corresponds to stronger inductive biases, β ≥ α means that in some sense
“the task is no harder than the model anticipated.”
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Figure 2: Overfitting is obligatory in standard computer vision tasks. We run KRR with
convolutional NTKs on three tasks using varying ridge parameter and label noise, measuring test error
and the fitting ratio Rtr/te. We then compare to theoretical predictions (c.f. Lemma 10) computed
from measured powerlaw exponents α̂, β̂. When no noise is added, we observe that the optimal
fitting ratio is R∗

tr/te ≈ 0 (blue vertical dotted line) and (near-)interpolation is required to achieve
optimal error. These tasks have low intrinsic noise, and as label noise is added, R∗

tr/te becomes
nonzero, as predicted by Corollary 1. Curves with noise added are rescaled to preserve total task
power. See Appendix B for exponent measurements and Appendix D for full experimental details.

We also report results for F-MNIST in Appendix D. We wish to check for powerlaw decay λi ∝ i−α

and v2i ∝ i−β and estimate the exponents α, β.

We measure α using the method of Wei et al. (2022). Assuming λi ∝ i−α, it is easily shown
that at zero ridge, the implicit regularization constant κ in the eigenframework decays with n as
κ(n) ≍ n−α (see e.g. our Lemma 2). Wei et al. (2022) show, theoretically under Gaussian universality
and empirically for real data, that κ(n) is well approximated by κ(n) ≈ Tr[K−1

n ]−1 whereKn is the
empirical kernel matrix on n samples. An estimate α̂ of the true exponent α may thus be extracted by
plotting many points (n,Tr[K−1

n ]−1) ∈ R2 on a log-log plot and fitting a line.

To measure β, we make use of the eigenframework prediction that, with n samples, zero ridge, and
zero noise, the test risk decays as MSEte(n) ≈ Ete(n) ≍ n−(β−1) (see e.g. Cui et al. (2021) or our
Lemma 3). Like with α, we can thus extract an estimate β̂ of the true exponent β by plotting many
points (n,MSEte(n)) ∈ R2 on a log-log plot and fitting a line.

6 DISCUSSION

The present work is part of the research program aiming to understand the shortcomings of classical
learning theory and to develop analyses suitable to machine learning as it exists today. We have
presented two tractable models capturing the “more is better” spirit of deep learning, but we cannot
consider this quest done until we have not only transparent models but also coherent new intuitions to
take the place of appealing but outdated classical ones. To that end, we propose a few here.

One once-well-believed classical nugget of wisdom is the following: Overparameterization is harmful
because it permits models to express complicated, poorly-generalizing solutions. Taking inspiration
from our RF models, perhaps we ought instead to believe the following: Overparameterization is
desirable because bigger models more closely approximate an ideal limiting process with infinitely
many parameters. Overparameterization does permit a model to express complicated, poorly-
generalizing solutions, but it does not mean that it will actually learn such a thing: models are simple
creatures and tend not to learn unnecessarily complication without a good reason to.

Another classical view is that interpolation is undesirable because if a model interpolates, it has fit
the noise, and so will generalize poorly. Our story with KRR suggests that perhaps we should instead
hold the following belief: So long as the inductive bias of the model is a good match for the task
and the noise is not too large, additional regularization is unnecessary, and it is optimal to fit with
train error much less than test error.
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A EXPERIMENTAL VALIDATION OF OUR EIGENFRAMEWORK FOR RF
REGRESSION

We validate our RF eigenframework by comparing its predictions against two examples of random
feature model:

Random Gaussian projections. We draw latent data vectors x ∼ N (0, Im) from an isotropic
Gaussian in a high dimensional ambient space (dimension m = 104).5 The target function is linear
as y = vTx+ ξ, where the target coefficients vi follow a powerlaw vi =

√
i−β with β = 1.5, and

ξ ∼ N (0, σ2) is Gaussian label noise with σ2 = 0.5.

We construct random features as ψ(x) = WΛ1/2x. Here, W ∈ Rk×m has elements drawn i.i.d.
from N (0, 1

k ). Λ = diag(λ1 . . . λm) is a diagonal matrix of kernel eigenvalues, λi = i−α with
α = 1.5. With this construction, the full-featured kernel matrix is (in expectation over the features)
EW [K] =XTΛX , with [X] = [x1, · · · ,xn].

Random ReLU features. CIFAR10 input images are normalized to global mean 0 and standard
deviation 1. The labels are binarized (with y = ±1) into two classes: things one can ride (airplane,
automobile, horse, ship, truck) and things one ought not to ride (bird, cat, deer, dog, frog). Thus the
target function is scalar.

The features are given by ψ(x) = ReLU(W Tx) whereW ∈ Rk×m has elements drawn i.i.d. from
N (0, 2

din
), with din = 3072. With this construction, the limiting infinite-feature kernel is in fact the

“NNGP kernel” of an infinite-width 1-hidden-layer ReLU network (Neal, 1996; Lee et al., 2018).

Theoretical predictions. The RF framework is an omniscient risk estimate, so to use it, we must
have on hand the eigenvalues of the infinite-feature kernel K and the eigencoefficients of the target
function w.r.t to K. For the synthetic data, we dictate the eigenstructure by construction: λi = i−1.5

and v2i = i−1.5. For random ReLU features, we use the neural tangents library (Novak et al.
(2020)) to compute the NNGP kernel matrix of CIFAR10, and then diagonalize it to extract the
eigenstructure. (We diagonalize an n = 30000 subset of the kernel matrix since this is the largest
matrix we can diagonalize on a single A100 GPU without resorting to distributed eigensolvers.)

When evaluating our eigenframework, we numerically solve Equation 2 for κ and γ. This can prove
a slightly finicky process. We use an inner-loop outer-loop routine as follows. In the inner loop, κ is
fixed, we solve for γ such that n =

∑
i

λi

λi+γ + δ
κ , and we return the error signal k −

∑
i

λi

λi+γ − kκ
γ ,

equal to the discrepancy in the other equation. In the outer loop, we optimize κ to drive that error
signal to zero.

Experimental details. We vary n ∈ [101, 104], k ∈ [101, 104], δ ∈ [10−3, 102]. We perform 45
trials of each experimental run at a given (n, k, δ); however, in each trial we fix the size-n dataset as
we vary the random features.

Additional plots. We report additional comparisons between RF experiments and our theory in
Figures 3 and 4.

Code availability. Code to reproduce all experiments is available at https://github.com/
dkarkada/more-is-better.

5In the main text, we purported to draw the data anisotropically as x ∼ N (0,Λ). For our explanation here,
we introduce Λ at the random projection stage, which amounts to the same thing.

15

https://github.com/dkarkada/more-is-better
https://github.com/dkarkada/more-is-better


Published as a conference paper at ICLR 2024

101 102 103 104

100

Random ReLU features @ CIFAR10

101 102 103 104

Gaussian RF @ Gaussian data

101 102 103 104

100

101 102 103 104

0.0 0.2 0.4 0.6 0.8 1.0
number of random features k

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
number of training samples n

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

M
SE

10-3

10-2

10-1

100

101
ridge δ

experiment
train (theory)
test (theory)
optimal ridge

Figure 3: Empirical verification of the RF eigenframework. We plot various traces of train and
test error, both experimental and theoretical as predicted by Equations (3) and (4), for two random
feature models. (top row, same as Figure 1) We fix the trainset size n = 256 and vary the number of
features k. (bottom row) We fix the number of random features k = 256 and vary the training set
size n. Note that in this row, the classical underparametrized regime is to the right of the interpolation
threshold, and the modern overparametrized regime is to the left.
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Figure 4: For RF regression with synthetic data, we show heatmaps of average train and test MSE as a
function of training set size n and number of random features k. We vary the ridge parameter δ from
underregularized (left column) to overregularized (right column). In the underregularized setting, the
signature double descent peak (bright diagonal) separates the classical regime (upper triangle) from
the modern interpolating regime (lower triangle). In the overregularized setting, the model fails to
interpolate the training data even at low n. Our theory accurately captures these phenomena. Note: at
each n, we use the same batch of random datasets for all k, resulting in horizontal stripes visible at
low n that may be ignored as artifacts.
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B TECHNIQUES FOR MEASURING POWERLAW EXPONENTS IN KRR TASKS

Our analysis of overfitting in kernel regression relies on an assumption of “powerlaw eigenstructure”
(Definition 2) characterized by two exponents α, β. Here we describe our procedures for measuring
α, β for real datasets.

Extracting α from the effective regularization κ(n).

The KRR eigenframework on which our results are based entails the computation of an intermediate
quantity κ which serves as an “effective regularization constant” (Simon et al., 2021; Bordelon et al.,
2020; Jacot et al., 2020a; Wei et al., 2022). This quantity decreases as more data are added: writing κ
as a function of n, one usually finds decay as κ(n) ≍ λn.6 In our case, if indeed we have λi ∝ i−α

for large i, then we expect that κ(n) ≍ i−α.

Fortunately, Wei et al. (2022) describe a method by which κ(n) may be experimentally measured.
Under a reasonable Gaussian universality assumption, they find that κ(n) ≈ Tr[K−1

n ]−1, whereKn

is an empirical kernel matrix computed from n samples. When we plot points (n,Tr[K−1
n ]−1) on

a log-log plot for many values of n for the four datasets we study, we indeed see a clear linear tail
indicative of powerlaw decay of κ(n) and whose slope α̂ we can easily extract after performing a
linear fit. We show these linear fits in Figure 5.

Extracting β from the test error MSEte(n).

As discussed in the main text, we generally expect true risk at zero ridge and zero noise to decay
proportionally to the uncaptured signal as MSEte(n) ≈ Ete(n) ∝

∑
i>n v

2
i ≍ n−(β−1). For the four

datasets we study, we indeed see a linear decay when we plot points (n,MSEte(n)) on a log-log plot.
We fit a line and extract β̂ as the slope. We show these plots and linear fits in Figure 5.

Intuitions about powerlaw eigenstructure. Having measured powerlaw structure in several image
datasets, we now give some informal discussion of how this structure might be interpreted. Informally,
powerlaw eigenstructure describes the structure of natural data in two ways:

• The eigenvalues of the kernel roughly decay as a powerlaw: λi ∼ i−α. (Equivalently, the
spectrum of the covariance matrix of the data distribution in the kernel’s feature space decay
as a powerlaw.) Since λi represents a kernel’s “willingness” to learn eigenmode i, we may
interpret α as representing the kernel’s parsimony: in modeling the data, a kernel with large
α tends to overattribute explanatory power to its top n eigenmodes, confidently neglecting
its tail eigenmodes.

• The target function, expressed as a vector in the kernel’s eigenbasis, has components whose
squares roughly decay as a powerlaw: v2i ∼ i−β . Since larger β implies a greater proportion
of total task power in the top eigenmodes, we may interpret β as representing the target
function’s comprehensibility (to the kernel learner): targets with large β are easier to learn.

These informal interpretations suggest that a kernel is well-suited to learn a task if α is sufficiently
small compared to β. Otherwise, the kernel is simply too parochial to learn the intricacies of the
target function; such a kernel will generalize poorly in the absence of regularization. This intuition is
made precise in Corollary 1.

Remark. Powerlaw eigenstructure is a remarkable constraint. There is no clear reason why arbitrary
data distributions and target functions should have this structure, and yet we observe that natural data
do. This fact is both a miracle and a blessing for theorists, as it strongly restricts the class of data
distributions we need concern ourselves with to explain the behavior of deep neural networks. It
remains a major open question to fully explain and characterize the powerlaw structure of natural
data with respect to neural kernels.

6Mallinar et al. (2022) find that κ(n) can in fact be off of λn by log factors for certain exotic “benign
overfitting” spectra, but this is beyond our scope here.
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Figure 5: For the four vision tasks studied (columns), we show our techniques for measuring α (first
row) and β (third row). We fit the powerlaw decay in the tails (solid line) and report the corresponding
exponent measurements (text). These plots are generated by studying increasingly large n×n training-
data kernel matrices. For visual comparison, we include the empirical eigenstructure (eigenvalues and
squared eigencoefficients of the full training-data kernel matrix, second and fourth rows respectively),
along with a powerlaw decay with our measured exponent (solid line). Note that linear fits to the
empirical eigenstructure (rows two and four) would be worse than to our proxy measurements (rows
one and three).
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C COMPARISON: PROXY MEASUREMENTS OF α, β RECOVER TRUE
EXPONENTS MORE ACCURATELY THAN MORE DIRECT MEASUREMENTS

Our theory for overfitting relies on the ansatz of powerlaw task eigenstructure that, at large i,
task eigenvalues and eigencoefficients decay as λi ∝ i−α and v2i ∝ i−β . Prior works, including
Spigler et al. (2020); Lee et al. (2020); Bahri et al. (2021), extracted the exponents α, β from direct
measurements of λi and v2i for full datasets. However, as detailed in Appendix B, we instead extract
α, β more indirectly from the proxy quantities κ and MSEte. The purpose of this appendix is to
explain a flaw in the direct method and thereby motivate this proxy method.

We begin by describing the direct method. First, one computes an empirical kernel matrixKn on a
dataset of size n. SinceKn is real symmetric, we may numerically diagonalize it asKn = ΦΛ̂ΦT ,
where ΦΦT = nIn and Λ̂ = diag(λ̂1, ..., λ̂n) is a diagonal matrix of n estimated eigenvalues.
One then projects the labels onto the kernel eigenvectors to find the target eigencoefficient vector
v̂ = n−1ΦTy. Finally, one plots the computed eigenvalues and target eigencoefficients (or a tailsum
thereof) on a log-log plot and performs linear fits, extracting powerlaw exponents from the slopes.

The essential problem with the direct method is finite-sample-size effects resulting from the finiteness
of n. For example, the extracted eigenvalues (λ̂i)

n
i=1 may be viewed as an estimation of the first

n ground-truth eigenvalues (λi)
n
i=1, but one generally expects this estimation to be accurate only

for indices i ≪ n. In practice, we find it is often unclear for what range of indices we may say that
“i ≪ n” and that we may therefore trust our estimated eigenvalues. This is not a trivial problem: we
find that the error and ambiguity thereby induced can be quite large!

Figure 6: Proxy methods for estimating α, β have lower error than direct powerlaw fits to
task eigenstructure. We generate n = 2000 samples of synthetic Gaussian data with ground-
truth powerlaw eigenstructure λi = i−1.1, v2i = i−1.3 and compare direct and proxy methods
of estimating these exponents. (A,C) We diagonalize the empirical kernel, extracting estimated
eigenvalues (λ̂)ni=1 and eigencoefficients (v̂i)ni=1. We plot the empirical eigenvalues and the tailsum
of the empirical eigencoefficients. We observe that these do not clearly lie on a line on a log-log
plot — a red flag — but we nonetheless depict reasonable attempts (gray lines) to fit lines. (For
the eigenvalues, we do not use the first ∼ 20 eigenvalues in our linear fit, since in practice the top
eigenvalues usually do not obey the powerlaw in the tail and must be discarded.) The estimated
exponents (α̂, β̂) = (0.90, 1.37) thus obtained have fairly high error from the ground-truth values.
For visual comparison, we underlay the ground-truth eigenvalues and eigencoefficient tailsums (blue
dots in both plots). (B,D) We estimate α, β from proxy measurements as described in Appendix B.
The resulting estimates (α̂, β̂) = (1.13, 1.30) are much closer to the ground-truth values. The error
in α is primarily due to the technical detail that our synthetic powerlaw data has a finite maximum
index imax = 3 × 106 for computational feasibility, whereas the theory on which this estimate is
based assumes imax = ∞.

This is best illustrated with an example. To compare the accuracy of direct and proxy methods for
exponent measurement, we construct a synthetic task with Gaussian data with powerlaw eigenstructure
with α = 1.1 and β = 1.3 and try out both methods for recovering these exponents. The results
are illustrated in Figure 6. For eigenvalues, we find that only the first few eigenvalues are recovered
accurately, and attempted fits to the middle or tail of the spectrum yield large measurement errors.
This is important because, in practice, the first few eigenvalues typically do not follow the powerlaw
of the tail, leaving the experimenter with few or no clean power eigenvalues to which to fit a line.
However, our proxy measurement recovers a decent approximation to the true α. For eigencoefficients,
since individual eigencofficients generally look noisy and require smoothing to see a powerlaw, we
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follow Spigler et al. (2020) and plot the tailsum
∑

j≥i v
2
j as a function of i, which is expected to

decay as i−(β−1), the same exponent as that of test error. Here, too, we observe significant finite-size
effects and are unable to observe the ground-truth powerlaw, but we recover the true β with excellent
accuracy from a plot of error vs. sample size.

21



Published as a conference paper at ICLR 2024

D EXPERIMENTAL VALIDATION OF THEORY FOR POWERLAW TASKS

We compute neural tangent kernel matrices for the Myrtle-10 convolutional architecture on four stan-
dard computer vision datasets: CIFAR-10, Street View House Numbers, FashionMNIST, and MNIST.
For each, we perform kernel regression varying the ridge and added label noise. We additionally
measure the eigenstructure exponents α and β using the techniques described in Appendix B. We
use these measurements to predict the train and test error of these kernel learners and find excellent
match with experiment (Figure 7).

Experimental details. We use the neural tangents library (Novak et al. (2020)) to compute
the convolutional NTK matrices (CNTKs). It takes about four A100 GPU-days to compute each
CNTK. We normalize each dataset to have global mean 0 and standard deviation 1. We do not
binarize the labels: the learning task is one-hot 10-class regression. For experiments with label
noise, the added noise is a Gaussian vector whose norm has total variance σ2 = σ2

rel · Ete|σ2=δ=0 (see
Equation 7). After adding noise, we normalize all label vectors to have unit norm so that all curves in
Figure 2 intersect at (Rtr/te = 1, Ete = 1).

In Figure 2 and Figure 7, each theory curve is vertically shifted by a constant multiplicative prefactor
which is chosen such that the theory curve agrees with the experimental data at Rtr/te = 0. This
post-hoc fit is required because the derivation of Lemma 10 assumes the eigencoefficients follow a
powerlaw with prefactor unity (i.e., v2i = Ai−β with A = 1), while the true eigencoefficients will
be scaled, i.e. v2i = Ai−β for some A ̸= 1 which may not be easy to measure. For this reason, we
choose to simply fit the prefactor. When looking at Figure 2, then, we get theory-experiment match at
Rtr/te = 0 for free, and the interesting fact is that we also have agreement for Rtr/te ∈ (0, 1).

Code availability. Code to reproduce all experiments is available at https://github.com/
dkarkada/more-is-better.
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phenomenon. Middle row. We plot experimental test and train error as a function of ridge. Bottom
row. We plot experimental test error as a function of train error. Contours of constant Rtr/te are
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E DERIVATION OF THE RF EIGENFRAMEWORK

In this appendix, we give a derivation of the eigenframework giving the train and test risk of RF
regression which we report in Section 4. Our plan of attack is as follows. First we will recall
from the literature the comparable eigenframework for KRR, expressing it in a manner convenient
for our task. We will then explicitly write RF regression as an instance of KRR with a stochastic
kernel. This framing will make it clear that, if we could understand certain statistics of the (stochastic)
eigenstructure of the RF regression kernel, we could directly plug them into the KRR eigenframework.
We will then use a single asymptotic random matrix theory identity to compute the various desired
statistics. Inserting them into the KRR eigenframework, we will arrive at our RF eigenframework.

Our derivation will be nonrigorous in that we will gloss over technical conditions for the applicability
of the KRR eigenframework for the sake of simplicity. Nonetheless, we will have strong evidence that
our final answer is correct by its recovery of known results in various limits of interest (Appendix F)
and by its strong agreement with real data (Figure 1).

E.1 RECALLING THE KRR EIGENFRAMEWORK.
We now state the omniscient risk estimate for KRR (or equivalently linear ridge regression) under
Gaussian design which has been converged upon by many authors in recent years (Sollich, 2001;
Bordelon et al., 2020; Jacot et al., 2020a; Simon et al., 2021; Loureiro et al., 2021; Dobriban &
Wager, 2018; Wu & Xu, 2020; Hastie et al., 2022; Richards et al., 2021). We phrase the framework
in a slightly different way than in Appendix I.1 which will be more suitable to our current agenda.

As in the main text, let the Mercer decomposition of the kernel K be K(x, x′) =∑∞
i=1 λiϕi(x)ϕi(x

′), where {ϕi}∞i=1 are a complete basis of eigenfunctions which are orthonormal
with respect to the data measure µx. We still assume our Gaussian universality ansatz (Assumption A)
over the eigenfunctions {ϕi}∞i=1.

We will find it useful to pack the eigenvalues into the (infinite) matrix Λ = diag(λ1, λ2, . . .), the
target eigencoefficients into the (infinite) vector v = (v1, v2, . . .), and the set of eigenfunctions
evaluated on any given data point into the (infinite) vector ϕ(x) = (ϕ1(x), ϕ2(x), . . .). Using this
notation, the kernel function is given by

K(x, x′) = ϕ(x)TΛϕ(x′). (13)

The KRR eigenframework appearing in these prior works is as follows.7 First, let κ ≥ 0 be the
unique nonnegative solution to the equation8

n = Tr
[

Λ

Λ+ κI

]
+

δ

κ
. (14)

Then test and train MSE are well-approximated by

Ete =
n

n− Tr
[(

Λ
Λ+κI

)2]
(
vT

(
κ

Λ+ κI

)2

v + σ2

)
, (15)

Etr =
δ2

n2κ2
Ete. (16)

The “≈” in 15 can be given several meanings. Firstly, it becomes an equivalence in an asymptotic
limit in which n and the number of eigenmodes in a given eigenvalue range (or the number of
duplicate copies of any given eignemode) both grow large proportionally (Hastie et al., 2022; Bach,
2023). This is often phrased as sampling a proportional number of new eigenmodes from a fixed
measure. Secondly, with fixed task eigenstructure, the error incurred can be bounded by a decaying
function of n (Cheng & Montanari, 2022). Thirdly, numerical experiments find small error even at
quite modest n (Canatar et al., 2021; Simon et al., 2021). For the purposes of this derivation, we will
simply treat it as an equivalence.

7All the prior works cited at the start of the subsection find the same eigenframework. As of the time of writing,
Cheng & Montanari (2022) give probably the most rigorous and general derivation for this eigenframework and
could be taken as the canonical source if one is required.

8For two commuting matrices A,B, we will sometimes abuse notation slightly to write A
B

in place of
AB−1 = B−1A.
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E.2 REFRAMING RF REGRESSION AS KRR WITH STOCHASTIC EIGENSTRUCTURE.
We now turn to RF regression. Recall from the main text that RF regression is equivalent to KRR
with the random feature kernel

K̂(x, x′) =
1

k

k∑
j=1

g(wi, x)g(wi, x
′) (17)

with wi sampled i.i.d. from some measure µw. Recall also that there exists a spectral decomposition

g(w, x) =

∞∑
i=1

√
λiϕi(x)ζi(w), (18)

where (ϕi)
∞
i=1 and (ζi)

∞
i=1 are sets of eigenfunctions which are orthonormal over µx and µw, respec-

tively, and (λi)
∞
i=1 are a decreasing sequence of nonnegative scalars. Note that the limiting kernel

as k → ∞ is limk→∞ K̂(x, x′) = K(x, x′) =
∑

i λiϕi(x)ϕi(x
′) in probability, from which we see

that we are indeed justified in reusing the notation (λi, ϕi)
∞
i=1 from the previous subsection.

Note that we can write this kernel as

K̂(x, x′) =
1

k

∞∑
i,i′=1

k∑
j=1

√
λiλi′ϕi(x)ϕi′(x)ζi(wj)ζi′(wj) (19)

= ϕ(x)TΛ1/2 ZZ
T

k
Λ1/2ϕ(x′), (20)

where we define the projection matrix (Z)ij = ζi(wj). Comparing with Equation 13 and examining
our KRR eigenframework, we see that, under Assumption A, we can predict the risk of RF regression
as follows.

First, define

Λ̃ := Λ1/2 ZZ
T

k
Λ1/2. (21)

Then, let κ be the unique nonnegative solution to the equation

n = Tr

[
Λ̃

Λ̃+ κI

]
+

δ

κ
. (22)

Then test and train MSE will be well-approximated by

Ete =
n

n− Tr
[(

Λ̃
Λ̃+κI

)2]
(
vT

(
κI

Λ̃+ κI

)2

v + σ2

)
, (23)

Etr =
δ2

n2κ2
Ete. (24)

We refer to this boxed set of equations as the partially-evaluated RF eigenframework because they
are written in terms of the random projection Z, which we still have to deal with.

E.3 BUILDING UP SOME USEFUL STATISTICS OF Λ̃

The problem with the partially-evaluated RF eigenframework is of course that we do not know the
stochastic eigenstructure matrix Λ̃. To make progress, we again turn to our Gaussian universality
ansatz (Assumption A). Under this assumption, we may replace the columns of Z with i.i.d. isotropic
Gaussian vectors, which amounts to replacing the whole of Z with i.i.d. samples from N (0, 1).

We now leverage a basic random matrix theory fact for such Gaussian matrices leveraged in many
recent analyses of ridge regression with random design (Jacot et al., 2020a; Simon et al., 2021; Bach,
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2023). First, let γ ≥ 0 be the unique nonnegative solution to

k =
∑
i

λi

λi + γ
+

kκ

γ
. (25)

The final term is kκ
γ instead of simply κ

γ as might be expected from the form of this fact in other
works because of the factor of 1

k in Equation 21. Then, under the Gaussian design assumption on Z,
we have that

EZ

[
Λ̃

Λ̃+ κI

]
≈ Λ

Λ+ γI
. (26)

This equation is useful because it reduces a statistic of the stochastic eigenstructure matrix Λ̃ into a
function of the known eigenvalue matrix Λ.

The meaning of “≈.” The “≈” in Equation 26 can be given various technical interpretations. It
generally becomes an equivalence the proportional limit described in the following sense: consider
fixing an integer η > 1 and increasing n → ηn, k → ηk, and also duplicating each eigenmode η
times. As η → ∞, we reach the proportional limit. For the purposes of this derivation, we will simply
treat it as an equivalence.

We now bootstrap this relation to obtain four more relations. We state these relations and then justify
them.

EZ

[
κI

Λ̃+ κI

]
≈ γI

Λ+ γI
, (27)

EZ

( Λ̃

Λ̃+ κI

)2
 ≈ Λ

Λ+ γI
− κΛ

(Λ+ γI)2
∂κγ, (28)

EZ

 κΛ̃(
Λ̃+ κI

)2
 ≈ κΛ

(Λ+ γI)2
∂κγ, (29)

EZ

[(
κI

Λ̃+ κI

)2
]
≈ γI

Λ+ γI
− κΛ

(Λ+ γI)2
∂κγ. (30)

Taking a derivative of Equation 25 and performing some algebra, we have that

∂κγ =
k

k −
∑

i

(
λi

λi+γ

)2 . (31)

We obtain Equation 27 by simply subtracting both sides of Equation 26 from the identity matrix I.
We obtain Equation 29 by taking a derivative of Equation 26 with respect to κ. We obtain Equation 30
by taking a derivative of Equation 27 with respect to κ. Finally, we obtain Equation 28 from the

identity
(

Λ̃
Λ̃+κI

)2
= I− 2 κΛ̃

(Λ̃+κI)
2 −

(
κI

Λ̃+κI

)2
.

E.4 INSERTING IDENTITIES INTO THE PARTIALLY-EVALUATED RF EIGENFRAMEWORK.
We are now in a position to insert Equations 26-30 into the partially-evaluated RF eigenframework to
get closed-form results. We will generally trust that scalar quantities concentrate — that is, for some
matrix M and vector z of interest, we will have that Tr[M] ≈ E[Tr[M]] and zTMz ≈ E[zTMz],
with small enough error that we can neglect it.

We start with Equation 22 defining κ. Inserting Equation 26 into the trace, it becomes

n =
∑
i

λi

λi + γ
+

δ

κ
. (32)

Inserting Equations (28) and (30) into Equation 23, we get that

Ete =
n

n−
∑

i

(
λi

λi+γ − κλi

(λi+γ)2 ∂κγ
)(∑

i

(
γ

λi + γ
− κλi

(λi + γ)2
∂κγ

)
v2i + σ2

)
. (33)
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Inserting Equation 31 for ∂κγ and simplifying with the definitions z =
∑

i
λi

λi+γ and q =∑
i

(
λi

λi+γ

)2
and the fact that κ = γ

k (k− z) as per Equation 25, we arrive at the RF eigenframework
we report in the main text.

Remark on implicit constants. The KRR eigenframework we started with had only one implicit
constant κ, which could be understood two ways. First, it is given by the inverse of the trace of
the inverse of the empirical kernel matrix: κ ≈ tr[K−1

XX ]−1 Wei et al. (2022). Second, it acts as
an eigenvalue threshold: modes with λi ≫ κ are learned, and modes with λi ≪ κ are not. In the
RF eigenframework, we have two implicit constants, κ and γ. This new κ still serves the first role:

κ ≈ Tr
[
K̂−1

XX

]−1

. However, it is now γ that acts as the learnability threshold for eigenvalues.

E.5 ADDITIONAL ESTIMATES: BIAS, VARIANCE, AND MEAN PREDICTOR

Test mean squared error is canonically split into a bias term (equal to the error of the “average”
predictor) and a variance term (equal to the rest of the error). In the case of RF regression, a subtle
question is: the average with respect to what? We could consider an average with respect to only
random datasets, only random feature sets, or both at the same time. Jacot et al. (2020b) take a
features-only average. Here we will take the other two.

In the main text, we denote the random dataset by X . Let us also denote the random RF weights as
W . We then denote the data-averaged bias and variance to be

BIASd := EW

[
Ex∼µx

[
(EX [f(x)]− f∗(x))

2
]]

+ σ2, (34)

VARd := EW,X

[
Ex∼µx

[
(f(x)− EX [f(x)])

2
]]

. (35)

Similarly, we let the data-and-feature-averaged bias and variance to be

BIASd,f := Ex∼µx

[
(EW,X [f(x)]− f∗(x))

2
]
+ σ2, (36)

VARd,f := EW,X

[
Ex∼µx

[
(f(x)− EW,X [f(x)])

2
]]

. (37)

Fortunately, the KRR eigenframework gives us an equation for the data-averaged bias and variance:
the data-averaged bias is the term in big parentheses in Equation 15, while the variance is the rest
(see Simon et al. (2021)). This tells us that the data-averaged bias and variance are the following:

BIASd ≈ Bd :=
∑
i

(
γ

λi + γ
− κλi

(λi + γ)2
k

k − q

)
v2i + σ2, (38)

VARd ≈ Vd := Ete − BIASd. (39)

The more interesting case is perhaps the data-and-feature-averaged bias and variance. Jacot et al.
(2020a); Canatar et al. (2021); Simon et al. (2021) found that the data-averaged predictor in the KRR
case is simply EX [f(x)] = vT Λ

Λ+κIϕ(x), so in our case it will be

EX [f(x)] = vT
Λ̃

Λ̃+ κI
ϕ(x). (40)

Taking the feature average, we conclude that

EW,X [f(x)] = EW

[
vT

Λ̃

Λ̃+ κ
ϕ(x)

]
= vT

Λ

Λ+ γI
ϕ(x). (41)

That is, EX [f(x)] ≈
∑

i
λi

λi+γ viϕi(x). We thus conclude that the data-and-feature-averaged bias and
variance are given as follows:

BIASdf ≈ Bdf :=
∑
i

(
γ

λi + γ

)2

v2i + σ2, (42)

VARdf ≈ Vdf := Ete − BIASdf. (43)
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E.6 EVEN AT FIXED RIDGE, MORE IS BETTER FOR BIAS TERMS

Increasing n and k (and keeping δ constant) strictly decreases both data-averaged and data-and-
feature-averaged bias. To see this, we fist note the following proposition, which follows from
Equation 2:

Proposition 1 (Derivatives of implicit constants). Let D := kκδ+ (z − q)(kκ2 + γδ) > 0. Then we
have that

∂kγ = −γ(γ − κ)δ

D
, (44)

∂kκ =
κ2(γ − κ)(z − q)

D
, (45)

∂nγ = −kγκ2

D
, (46)

∂nκ = −κ2(kκ+ (z − q)γ)

D
. (47)

In particular, note that when we increase n, we decrease both constants.9 When we increase k, we
decrease γ but increase κ.

It is immediate from Equations (38) and (42) that increasing k decreases both BIASdf and BIASdf.
It is immediate also that increasing n decreases BIASdf, but since increasing n decreases κ, it is
not apparent that BIASd also decreases. However, we do not need to show this: it is apparent from
Equation 68 that the bias of KRR is sample-wise monotonic in this sense for any task eigenstructure,
and so RF regression (being simply a special case of KRR with stochastic task eigenstructure) will
simply inherit this property. All together, we see that increasing either n or k will decrease both
BIASd and BIASdf. Any region of increasing error one encounters when increasing n or k — for
example, at a double-descent peak — can thus be pinned on (one or another notion of) the variance.

F TAKING LIMITS OF THE RF EIGENFRAMEWORK

In Section 4, we report an omniscient risk estimator giving the expected test risk of RF regression
in terms of task eigenstructure. Here we demonstrate that, by taking certain limits, we can recover
several previously-reported results from our general framework. For easier reference, we repeat
Equations 2 here:

n =
∑
i

λi

λi + γ
+

δ

κ
, (48)

k =
∑
i

λi

λi + γ
+

kκ

γ
. (49)

F.1 THE LIMIT OF LARGE k: RECOVERING THE KRR EIGENFRAMEWORK

RF regression converges to ordinary KRR in the limit of large k, and so we expect to recover the
known KRR eigenframework. As k → ∞, we find that κ

γ ↗ 1. Therefore we can discard Equation 49
and find that κ simply satisfies n =

∑
i

λi

λi+κ + δ
κ as we get in the case of KRR.

Equation 3 reduces to

Ete =
1

1− q
n

[∑
i

(
κ

λi + κ

)2

v2i + σ2

]
, (50)

which is precisely the omniscient risk estimator for KRR (compare with e.g. Simon et al. (2021)).

9For this informal discussion, we will be a little fast and loose with terminology: when δ → 0+, we will find
that these partial derivatives may be zero instead of strictly negative, and so when we say e.g. that a derived
quantity increases with n or k, at zero ridge we really mean that it increases or remains the same.
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F.2 THE LIMIT OF ZERO RIDGE: RECOVERING THE RIDGELESS FRAMEWORK OF BACH (2023)
Bach (2023) report an omniscient risk estimator for ridgeless RF regression. We should recover
this result from our framework when we take δ → 0+. (Note that we cannot simply set δ = 0 as
Equations (48) and (49) do not always have solutions, but we will have no trouble taking the limit
δ → 0+.) Like Bach (2023), we will handle this in two cases.

Case 1: n < k. When n < k, we will still have κ > 0 even as δ → 0+. Observe that γ is determined
by the constraint that n = z =

∑
i

λi

λi+γ . Plugging into Equation 48 gives us that

k = n+
kκ

γ
(51)

⇒ κ =
k − n

k
γ. (52)

Sticking in these substitutions into Equation 3 and simplifying substantially, we find that

Ete =
n

n− q

[∑
i

(
γ

λi + γ

)2

v2i + σ2

]
+

n

k − n

[∑
i

γ

λi + γ
v2i + σ2

]
, (53)

which matches the result of Bach (2023).

Case 2: n > k. When n > k, we have that κ ↘ 0 as δ → 0+. Therefore γ is determined by
the constraint that k =

∑
i

λi

λi+γ . We also have that k = z =
∑

i
λi

λi+γ . Inserting these facts into
Equation 3, we find that

Ete =
1

1− k2−kq
n(k−q)

[∑
i

γ

λi + γ
v2i + σ2

]
=

n

n− k

[∑
i

γ

λi + γ
v2i + σ2

]
. (54)

This also matches the result of Bach (2023).

Remark. We can observe the following proposition from the above δ → 0+ liimt of the RF
eigenframework:

Proposition 2 (Monotonic improvement after the double-descent peak). With δ → 0+, we have that

• ∂Ete
∂k

≤ 0 when k > n,

• ∂Ete
∂n

≤ 0 when n > k.

Proof. First, let us take k > n. From our discussion of “Case 1,” we see that further increasing k will
leave γ unchanged, which leaves q unchanged. The only effect is thus to decrease the prefactor n

k−n
of the second term of Equation 53, which decreases Ete.

Now let us take n > k. From our discussion of “Case 2,” we see that further increasing n leaves γ
unchanged. It is similarly immediate from Equation 54 that the result is to decrease Ete.

Proposition 2 states that, at zero, ridge, increasing the larger of n, k further can only improve test
performance. Phrased another way, it’s all downhill after the double-descent peak. Though this fact
is elementary, we do not know of any existing proof in the literature.

F.3 STUDENT EQUALS TEACHER: RECOVERING THE RF RISK ESTIMATOR OF MALONEY
ET AL. (2022)

Maloney et al. (2022) work out a risk estimator for ridgeless RF regression under the “student equals
teacher” condition that λi = v2i and σ2 = δ = 0. Inserting these into Equations (53) and (54) and
exploiting the fact that z = min(n, k) when δ = 0 to simplify the resulting expressions, we find that

Ete =

{
k

k−nnγ for n < k,
n

n−kkγ for n > k.
(55)

Again using the fact that z = min(n, k), these can be further unified (using the notation of Maloney
et al. (2022)) as

Ete =

{
k

k−n∆ for n < k,
n

n−k∆ for n > k,
(56)

where ∆ ≥ 0 is the unique nonnegative solution to 1 =
∑

i
λi

mλi+∆ with m := min(n, k). This is
the main result of Maloney et al. (2022).
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F.4 HIGH-DIMENSIONAL ISOTROPIC ASYMPTOTICS: THE SETTING OF MEI & MONTANARI
(2019)

Here we compute the predictions of our framework in the setting of Mei & Montanari (2019), who
study RF regression with isotropic covariates on the high-dimensional hypersphere. The essential
feature of their setting is that task eigenvalues group into degenerate sets: we first have one eigenvalue
of size Θ(1), then d eigenvalues of size Θ(d−1), then Θ(d2) eigenvalues of size Θ(d−2), and so on.
We take d∞ with n/d → rn/d, k/d → rk/d with rn/d, rk/d = Θ(1). In this setting, we expect to
perfectly learn the 0th-order modes, partially learn the 1st-order modes, and completely fail to learn
the higher-order modes.

Let Iℓ denote the set of eigenvalue indices corresponding to degenerate level ℓ ≥ 0. Let µℓ =∑
i∈Iℓ

λi be the total kernel power in level ℓ and µ≥ℓ to denote
∑

m≥ℓ µℓ. Let pℓ =
∑

i∈Iℓ
v2i be

the total target power in level ℓ and p≥ℓ to denote
∑

m≥ℓ pℓ. Let us write λ0̃, λ1̃, etc. to denote the
value of the degenerate eigenvalue at level ℓ.

In this setting, we will find that γ, κ = Θ(d−1). Equation 2 simplify in this setting to

n

d
≈ λ1̃

λ1̃ + γ
+

δ + µ≥2

dκ
and

k

d
≈ λ1̃

λ1̃ + γ
+

kκ

dγ
. (57)

Here the ≈ hides O(1) terms that asymptotically vanish. These equations can be solved analytically
or numerically for γ, κ. Note that if one wishes to work in the large-d limit, one might prefer to solve
for γ̃ := dγ and κ̃ := dκ as follows:

rn/d ≈ µ1

µ1 + γ̃
+

δ + µ≥2

κ̃
and rk/d ≈ µ1

µ1 + γ̃
+

κ̃

γ̃
rk/d. (58)

The advantage of the above equations is that all quantities are Θ(1) after one replaces n/d, k/d with
the appropriate Θ(1) ratios.

One then has z = d
λ1̃

λ1̃+γ = d µ1

µ1+γ̃ and q = d
(

λ1̃

λ1̃+γ

)2
= d

(
µ1

µ1+γ̃

)2
. Let z̃ := z/d = Θ(1) and

q̃ := q/d = Θ(1). Equation 3 then reduces to

Ete ≈
1

1− q̃(1−2z̃)+z̃2

rn/d(1−q̃)

[(
µ1

µ1 + γ̃
− κ̃µ1

(µ1 + γ̃)2
1

1− q̃

)
p1 + p≥2 + σ2

]
. (59)

We expect this is equivalent to the risk estimate of Mei & Montanari (2019)’s Definition 1, as they
solve the same problem, but we have not directly confirmed equivalence.

F.5 HIGH-DIMENSIONAL ISOTROPIC ASYMPTOTICS: THE SETTING OF MEI ET AL. (2022)
In followup work to Mei & Montanari (2019) in the linear regime, Mei et al. (2022) study RF
regression in the same hyperspherical setting, but in a polynomial regime in which n ∝ da, k ∝ db

with a, b > 0, a ̸= b, and a, b /∈ Z.10

In this regime, working through our equations, we find the following. First, let c = ⌊min(a, b)⌋.
When a > b and thus n ≫ k, we find that γ ≈ µ>c

k and κ ≈ δ
n ≪ γ. When a < b and thus

k ≫ n, we find that γ ≈ µ>c+δ
n and κ ≈ γ. In either case, we find that z, q ≪ min(k, n), and so the

prefactor in Equation 3 becomes equal to 1, with the whole estimate simplifying to

Ete ≈ p>c + σ2. (60)

That is, all signal of order ℓ ≤ c is perfectly captured and all signal of order ℓ > c is fully missed
(but not overfit), with c set by the minimum of n and k. This is precisely the conclusion of Mei et al.
(2022).

F.6 SANITY CHECK: THE LIMIT OF INFINITE RIDGE

It is easily verified that, as δ → ∞, we find that κ, γ → ∞, and so z, q ↘ 0 and thus Ete =
∑

i v
2
i +σ2

as expected.

10Technically they abstract the hyperspherical setting to a generic setting with a suitably gapped eigenspectrum,
but the essential features are the same.
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F.7 INTERESTING CASE: THE LIMIT OF LARGE n

Here we report an additional limit which, to our knowledge, has not appeared in the literature. When
n → ∞ with k finite, we have that κ ↘ 0 and thus z ↗ k. The risk estimator then reduces to

Ete =
∑
i

γ

λi + γ
v2i + σ2. (61)

This resembles the bias term of the KRR risk estimator with k samples, with the sole difference being

the replacement
(

γ
λi+γ

)2
→ γ

λi+γ .

G PROOF OF THEOREM 1
Proof. First consider increasing n → n′. Examining Equations 2, we see that we may always increase
δ such that κ and γ remain unchanged and still satisfy both equations, and thus z and q are also
unchanged. Turning to Equation 3, we see that increasing n → n′ while keeping κ, γ, k, z, q fixed
can only decrease Ete, as this only serves to decrease the (always positive) prefactor.

Next consider increasing k → k′. From Equations 2, we see that it is always possible to increase δ so
that γ remains unchanged (and so z, q remain unchanged) and κ increases. Increasing k decreases the
prefactor in Equation 3 because d

dk
q(k−2z)+z2

n(k−q) = − (z−q)2

(k−q)2 ≤ 0, and increasing k and κ manifestly
decreases the term in square brackets, and so overall Ete decreases.

To show that this inequality is strict in both cases, all we require is that q > 0, which only requires
that the optimal δ is not positive infinity. To show this, we first observe that as δ → ∞, then κ, γ
grow proportionally, with κn

δ , γn
δ ↘ 1. It is then easy to expand Equation 3 in terms of large δ, using

the facts that z = γ−1
∑

i λi +O(γ−2) and q = γ2 +
∑

i λ
2
i +O(γ−3). Inserting these expansions,

we find that

Ete =

(
1 + γ−2n−2

∑
i

λ2
i +O(γ−3)

)[∑
i

v2i + σ2 − 2γ−1
∑
i

λiv
2
i +O(γ−2)

]
(62)

= lim
δ→∞

Ete − 2γ−1
∑
i

λiv
2
i +O(γ−2). (63)

From the negative γ−1 term in this expansion, it is clear that the optimal γ is finite so long as∑
i λiv

2
i > 0, and thus the inequality in the theorem is strict.

H NOISE SCALING AND COMPARISON WITH BENIGN OVERFITTING

Here we give further justification of our decision to scale the noise down with n as σ2 = σ2
rel ·

Ete|σ2=δ=0, which amounts to σ2 ∝ n−(β−1). This turns out to be a subtle but very important point
which differentiates our approach and conclusions from those of the “benign overfitting” literature
(Bartlett et al., 2020; Tsigler & Bartlett, 2023). These other works take a fixed, positive noise level
σ2 = Θ(1). This is well-motivated — after all, there appears a priori to be no reason why the noise
should change with n — and has long been the standard setup in the statistics literature. One essential
consequence of this setup — which we argue here is in fact somewhat misleading — is that, once n
grows large, the noise inevitably dominates the signal. Concretely, one can decompose the portion of
test risk coming from the (deterministic) signal and that coming from the noise, and so long as the
signal lies in the RKHS of the model and the ridge is not very large, at large n the contribution to test
error due to the noise dominates that coming from the signal.

We can see this clearly from the omniscient risk estimate for KRR which we use in the text. Examining
Equation 65-Equation 68, it is easily seen that as n grows, the implicit regularization κ will decay to
zero so long as δ = o(n) (for example, if it is constant). So long as the overfitting coefficient E0 does
not explode as n grows (and it usually does not, and will never if δ = Θ(1)), the contribution to Ete
from the signal {vi} will decay to zero because (1− Li) =

κ
λi+κ → 0. However, the contribution

from the noise will still remain E0σ2 = Θ(1). Our foremost consideration in this case becomes
guaranteeing that E0 → 1. The esoteric eigenvalue decay λi ∝ i−1 log−γ i with γ > 1 found by
Bartlett et al. (2020) achieves this, as shown by Mallinar et al. (2022).

Once we reach this “noise-dominating” regime, our task was irrelevant: to leading order, we might as
well assume it is pure noise. This simplifies the question of overfitting dramatically and, we argue,
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too much. Indeed, when training and testing on pure noise, the best one can hope to do is to fit as
little as possible, because the Bayes-optimal predictor is uniformly zero. The optimal ridge is thus
large, and zero ridge is suboptimal: the best we can hope for is that the suboptimality of zero ridge
costs us only an on(1) penalty in test error. That is, at best, interpolation is permissible (or “benign”);
it is never preferable. This is emphatically not the regime we actually see in deep learning: one often
finds that training to interpolation is often indeed strictly beneficial (practitioners wouldn’t train for
so many extra iterations if they weren’t strictly helping!), and indeed Nakkiran & Bansal (2020);
Mallinar et al. (2022) simply run experiments in which neural networks are fit to interpolation on
data with controlled noise levels and find that interpolation is not benign but rather incurs a finite cost
in test error. This suggests that we should seek theoretical settings where interpolation is beneficial
on tasks that resemble real data but is harmful on pure noise, which is our contribution in Section 5.

As discussed above, the essential problem here is that finite noise inevitably grows to dominate
uncaptured signal. The solution is to scale down noise proportional to the uncaptured signal as
we do in Section 5. This puts both sources of error on an equal footing and enables us to make a
nontrivial comparison between the two. As we show in Section 5, we do in fact need to consider
the details of the target function to understand overfitting in modern machine learning (or at least
KRR on image datasets), and so choosing a scaling that does not wash out all signal is crucial.
Target-function-agnostic analyses like those performed by (Bartlett et al., 2020; Tsigler & Bartlett,
2023; Mallinar et al., 2022; Zhou et al., 2023) cannot resolve target-dependent effects.

It may seem aesthetically repugnant to have σ2 scale in any way with n. The noise level is surely
a fixed quantity; how can it change with the number of samples? In reality, this is simply a way of
viewing whatever noise level we see in an experiment. As we increase n, we will indeed find that σ2

rel
indeed increases (because the noise remains the same, but the uncaptured signal decays), but because
we will never have infinite n in practice, we will always observe a finite (or zero) value of σ2

rel. At
finite n, this σ2

rel may be large or small compared with the uncaptured signal. Our scaling boils down
to a choice to treat σ2

rel as an order-unity quantity that one must consider carefully. The naive scaling
with σ2 = Θ(1) amounts to a choice to treat σ2

rel as infinite and dominating in the large-n regime in
which one proves theorems.

Since we are developing theory we wish to describe a set of real experiments, the choice of which
scaling is preferable ought thus to be put to the empirical test. In our experiments, we find that σ2

rel is
indeed small for the datasets we examine, which we view as affirming our choice to do theory in a
regime in which the noise is not necessarily dominant.

Put another way, because we will always observe a finite σ2
rel in practice, we take a limit that resembles

this situation, with signal and noise of the same order, but enables one to prove theorems as one can
at large n. Figure 2 attests that the real experiments are well-described by our limit, and would be
poorly-described by a limit which takes σ2

rel → ∞.

We note that this business of how to scale quantities so effects of interest do not vanish is loosely
similar to how the “neural tangent kernel” limit (Jacot et al., 2018) steadily loses feature learning as
width grows, while the “µ-parameterization” line of work (Yang & Hu, 2021) changes the layerwise
scalings so feature change is no longer washed out by feature initialization. Yang et al. (2022); Vyas
et al. (2023) observe that, when trying to understand a finite network using theory for infinite networks,
one should scale up using the µ-parameterization — not the neural tangent kernel parameterization —
and this gives a (somewhat) theoretically-tractable infinite-width model which quantitatively captures
the finite network one started with. Similarly, we find that scaling σ2 in the manner we describe —
and not keeping it Θ(1) — gives a tractable limit that closely resembles our experiments.

H.1 RECOVERING BENIGN OVERFITTING FROM OUR RESULTS

That said, since we worked out our theory with σ2
rel as a free variable, we can always recover the

benign overfitting “noise-dominated” case by simply taking setting σ2
rel = Θ(nβ−1) → ∞ post

hoc, which gives σ2 = Θ(1). (This will be nonrigorous, since some of the formal statements of
Appendix I assumed σ2

rel = Θ(1) and would need to be reworked slightly, but this is a technicality,
and we will find that the limit of large σ2

rel can be taken with no difficulty.)

Test error in terms of fitting ratio with dominant noise. When σ2
rel ≫ 1, Lemma 10 reduces to

approximately

Ete ∝
σ2

rel

1 + (α− 1)
√
Rtr/te

, (64)
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where we have neglected sub-leading-order error terms. Equation 64 tells us two useful facts. First,
in our powerlaw setup, interpolation in this noise-dominated regime will always hurt us, specifically
by a factor of α. (This is consistent with the analysis of Mallinar et al. (2022), who find that the
zero-ridge overfitting coefficient is E0|δ=0 = α+ on(1)). Second, as we take the limit α → 1, the
additional “cost of interpolation” goes to zero, and we recover benign overfitting. We now see that
the peculiar eigenvalue decay λi ∝ i−1 log−γ i found to give benign overfitting is essentially a way
to take the limit α → 1 without incurring the divergence in kernel norm one gets at exactly α = 1.

Viewing such benign spectra as effectively having α → 1, we now see that as a consequence of our
powerlaw analysis that for any target function with β > 1 and no noise, we expect zero ridge to be
required for optimal fitting. We thus conjecture that ridge regression with the benign spectra already
identified in the literature in fact exhibits obligatory overfitting for a wide set of reasonable target
functions so long as there is no noise!

Illustrating benign overfitting in our framework. Figure 8 depicts the approach to benign overfit-
ting as α → 1. Figure 9 shows how taking this limit actually makes overfitting obligatory if the target
function is noiseless.
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Figure 8: When the target function is dominated by noise, taking α → 1 in our analysis recovers
benign overfitting. This plot shows theoretical fitting ratio vs. test error curves generated from
Equation 64. As α approaches 1, it ceases to matter what fitting ratio one regularizes to: the test
ratio is Bayes-optimal (up to sub-leading-order terms). Note the lack of resemblance between these
theoretical noise-dominated curves and the experimental curves of Figure 2. Curves with α > 1
illustrate “tempered overfitting” à la Mallinar et al. (2022).
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Figure 9: The α → 1 eigenspectra known to exhibit benign overfitting in fact give obligatory
overfitting on noiseless target functions. This plot shows theoretical fitting ratio vs. test error
curves assuming powerlaw eigenstructure and no noise, generated from Lemma 10. Each plot takes
fixed eigenvalue exponent α and varying eigencoefficient exponent β. Dots show the location of
the minimum of each curve. As per Corollary 1, interpolation (Rtr/te = 0) is optimal when β ≥ α.
As α approaches 1 (plots left to right), interpolation becomes optimal for all target functions with
powerlaw decay.

H.2 RELATION TO “TEMPERED OVERFITTING”
Mallinar et al. (2022) describe a fitting behavior they term “tempered overfitting” in which training
beyond optimal regularization to the point of interpolation incurs a penalty on test error which
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is not negligible (as in benign overfitting) and is also not arbitrarily large, but rather takes the
form of some multiplicative factor in (1,∞). In particular, they find that kernel regression with
powerlaw eigenspectra λi ∼ i−α exhibits tempered overfitting in the noise-dominated regime, with
the proportionality constant in fact equal to α. This is reflected in Figure 8.

We find that these same spectra may exhibit obligatory overfitting when the targets also have powerlaw
structure and the noise is not dominant. The task eigenstructures we consider here will generally
be tempered as soon as interpolation is no longer optimal — that is, as soon as the condition of
Corollary 1 is violated.

34



Published as a conference paper at ICLR 2024

I PROOFS: KRR WITH POWERLAW STRUCTURE

Here we will derive a picture of the train and test risk of KRR under powerlaw eigenstructure. The
ultimate goal is to arrive at Theorem 2 giving the optimal fitting error ratio for exponents α, β and
noise level. Along the way, we will derive closed-form equations for many quantities of interest,
including the test risk Ete (Lemma 10), which are plotted as theory curves in Figure 2. All results in
this appendix will assume powerlaw task eigenstructure as per Definition 2: that is, there exists some
positive integer i0 = O(1) such that, for all i ≥ i0, it holds that λi = i−α and v2i = i−β . (We do still
assume that the eigenvalues are indexed in decreasing order, even though the first i0 − 1 will not be
exactly powerlaw.)

I.1 RECALLING THE KRR EIGENFRAMEWORK

We begin by stating the k → ∞ limit of the RF eigenframework of Section 4. In this limit, we recover
a known risk estimate for KRR (or equivalently linear ridge regression) that has been converged upon
by many authors in recent years (Sollich, 2001; Bordelon et al., 2020; Jacot et al., 2020a; Simon
et al., 2021; Loureiro et al., 2021; Dobriban & Wager, 2018; Wu & Xu, 2020; Hastie et al., 2022;
Richards et al., 2021) — a result which we actually bootstrapped to derive our RF eigenframework
(Appendix E). We also recall this same eigenframework at the start of Appendix E. This risk estimate
as follows:

Let κ ≥ 0 be the unique nonnegative solution to∑
i

λi

λi + κ
+

δ

κ
= n. (65)

Then test risk is given approximately by

MSEte ≈ Ete := E0B, (66)

where the overfitting coefficient E0 is given by

E0 :=
n

n−
∑

i

(
λi

λi+κ

)2 (67)

and the bias is given by

B =
∑
i

(
κ

λi + κ

)2

v2i + σ2. (68)

As discussed in Appendix E, the “≈” in 66 can be given several meanings. Firstly, it becomes an
equivalence in an asymptotic limit in which n and the number of eigenmodes in a given eigenvalue
range (or the number of duplicate copies of any given eignemode) both grow large proportionally
(Hastie et al., 2022; Bach, 2023). This is often phrased as sampling a proportional number of new
eigenmodes from a fixed measure. Secondly, with fixed task eigenstructure, the error incurred can be
bounded by a decaying function of n (Cheng & Montanari, 2022). Thirdly, numerical experiments
find small error even at quite modest n (Canatar et al., 2021; Simon et al., 2021). As with the RF
eigenframework, in this paper we will simply treat it as an equivalence, formally proving facts about
the risk estimate Ete.

Recall that all sums run from i = 1 to ∞. Train risk is given by

MSEtr ≈ Etr :=
δ2

n2κ2
Ete, (69)

and so the fitting error ratio is given roughly by

MSEtr

MSEte
≈ Rtr/te :=

Etr

Ete
=

δ2

n2κ2
. (70)

Recall that the noise level is defined relative to the zero-noise-zero-ridge risk as

σ2 = σ2
rel · Ete|σ2=δ=0. (71)

We will assume throughout that α > 1 and β ∈ (1, 2α + 1). We will also assume n ≥ 1. We will
generally use an asterisk to demarcate quantities which occur at the optimal ridge w.r.t. test risk. For
example, δ∗ = argminδ Ete, and κ∗ = κ|δ=δ∗ , and R∗

tr/te = Rtr/te|δ=δ∗ .
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It is worth noting that we have two varying parameters in our system: the sample size n and the
ridge δ. Other quantities, like κ or Rtr/te, may be seen as functions of n and δ. When we state
scaling results using big-O-style notation, they will describe scaling with respect to n — that is,
x = O(f(n, δ)) means that there exist constants n0, C > 0 such that, for all n ≥ n0, it holds that
x ≤ Cf(n, δ). We will allow δ to vary arbitrarily, including as a function of n.

I.2 CONTINUUM APPROXIMATIONS TO SUMS

Our main trick will be approximating the sums appearing in the eigenframework by integrals. The
primary technical difficulty will be in bounding the error of these approximations (though we will
ultimately find that these errors do not present a problem). Upon a first reading of this appendix, a
reader may wish to simply ignore all error terms to grasp the overall flow of the argument.

Various quantities in this appendix will have complicated prefactors depending on the exponents α
and β. These prefactors often cancel and simplify in the final accounting.11 It is useful at first to pay
less attention to these prefactors and more attention to how quantities scale — with respect to, for
example, n (which will be large) and κ (which will be small).

Here we state continuum approximations to the three eigensums of the eigenframework.

Lemma 1 (Continuum approximations to eigensums). The sums appearing in the KRR eigenframe-
work can be approximated as follows:

∞∑
i=1

λi

λi + κ
=

π

α sin(π/α)
κ−1/α +O(1), (72)

∞∑
i=1

(
λi

λi + κ

)2

=
π(α− 1)

α2 sin(π/α)
κ−1/α +O(1), (73)

∞∑
i=1

(
κ

λi + κ

)2

v2i =
π(α− β + 1)

α2 sin
(
π (β−1)

α

)κ β−1
α +O

(
κ2 + κ

β
a

)
. (74)

Proof. First, we argue that we may disregard the first i0 = O(1) terms in these sums and replace them
with their ideal powerlaw values λi = i−α and v2i = i−β . For the first two sums, note that replacing
the first i0 terms (or neglecting the first i0 terms entirely) only incurs an O(1) error, which is the size
of the error terms in Equations (72) and (73) anyways. For the third sum, note that replacing the first
i0 terms (or neglecting the first i0 terms entirely) only incurs an O(κ2) error, which is at most the
size of the error term in Equation 74 anyways. We may thus proceed assuming perfect powerlaw
structure, with i0 = 1.

To prove the first clause, we note that the summand is monotonically decreasing, and thus use integrals
to bound the sum as∫ ∞

0

i−α

i−α + κ
di >

∞∑
i=1

λi

λi + κ
>

∫ ∞

1

i−α

i−α + κ
di >

∫ ∞

0

i−α

i−α + κ
di− 1. (75)

The LHS integral evaluates to π
α sin(π/α)κ

−1/α, which is sufficient to give Equation 72.

Equation 73 is obtained in exactly the same way.

Equation 74 is obtained in the same way, except that the summand is no longer monotonically-
decreasing if β ∈ (2α, 2α+ β), instead monotonically increasing to a maximum of size Θ(κβ/α) at
index imax = β−1/α(2α− β)1/ακ−1/α +O(1) before monotonically decreasing to zero. Splitting
the sum into increasing and decreasing parts and again using integrals to bound the sum gives
Equation 74.

Remark. We will more or less never again need to worry about the constant cutoff index i0 and can
forget about it now. Our conclusions will live in the regime of large n, and in this regime, it will be
sufficient to have powerlaw tails, and we can simply neglect a constant number of eigenmodes at

11The authors are grateful for the existence of computer algebra systems.

36



Published as a conference paper at ICLR 2024

low index. One should usually expect the sub-leading-order error terms we will carry around to be
smaller the smaller i0 is and the less the task deviates from perfect powerlaw eigenstructure, however
(though one likely ought to consider some measure of total deviation rather than simply the cutoff i0).

Remark. In several places in this appendix, including Equation 74, we will encounter the fraction
(α − β + 1)/ sin(π(β − 1)/α). This is nominally undefined when β = α + 1. However, this
discontinuity disappears with an application of L’Hopital’s rule, simplifying to π/α. (Indeed, when
evaluating the integral to arrive at the RHS of Equation 74, if we specify that β = α+ 1, then e.g.
Mathematica informs us that the integral evaluates to the result of applying L’Hopital’s rule to the
general form.) Rather than treat the case β = α+ 1 specially, we will simply gloss over it with the
understanding that L’Hopital’s rule ought to be used to resolve this undefined fraction.

I.3 THE ZERO-NOISE-ZERO-RIDGE TEST RISK

Because the noise level is defined in a normalized fashion by σ2 = σ2
rel · Ete|σ2=δ=0, we need to

find the zero-noise-zero-ridge risk Ete|σ2=δ=0 before we can study the noise in the general case. The
zero-noise-zero-ridge risk is also an interesting object in its own right.

Lemma 2 (Zero-ridge implicit regularization). At δ = 0, the implicit regularization κ is given by

κ|δ=0 =

(
π

α sin(π/α)

)α

n−α +O
(
n−(α+1)

)
. (76)

Proof. This follows straightforwardly from inserting Equation 72 into Equation 65.

Lemma 3 (Zero-noise-zero-ridge test risk). At σ2 = 0 and δ = 0, the test risk Ete is given by

Ete|σ2=δ=0 =
πβ(α− β + 1)

αβ sin
(

π(β−1)
α

)
(sin(π/α))

β−1
n−(β−1) +O

(
n−2α + n−β

)
. (77)

Proof. This follows from inserting Equation 76 into the continuum approximations of Lemma 1, then
inserting the results into the the eigenframework to get Ete, and finally simplifying.

Remark. In the process of doing this, one finds (after a surprising cancellation) that the overfitting
coefficient is simply E0|δ=0 = α+O(n−1), as previously reported by Mallinar et al. (2022).

I.4 TEST RISK IN TERMS OF κ

We now turn back to the general case in which noise and regularization are nonzero. The following
lemma gives test risk in terms of the implicit regularization κ.

Lemma 4.
Ete =

n

n− π(α−1)
α2 sin(π/α)κ

−1/α

×

(
π(α− β + 1)

α2 sin
(
π (β−1)

α

)κ β−1
α + σ2

rel ·
πβ(α− β + 1)

αβ sin
(

π(β−1)
α

)
(sin(π/α))

β−1
· n−(β−1)

)

+O(n−β + κ2 + κβ/α). (78)

Proof. This lemma follows from inserting Lemmas 1 and 3 into the definition of Ete.

Lemma 5. κ = Ω(n−α) , Ete = Ω
(
min

(
κ

β−1
α , 1

))
, and thus Ete = Ω

(
n−(β−1)

)
.

Proof. The fact that κ = Ω(n−α) follows from the fact that κ|δ=0 = Θ(n−α) and κ is a monotoni-
cally increasing function of δ.

To see that Ete = Ω
(
min

(
κ

β−1
α , 1

))
, we return to the definition of Ete. It is easily seen that

E0 = Θ(1), because E0|δ=0 = Θ(1), E0 ≥ 1, and E0 monotonically decreases with δ, so we need
only examine the bias B to understand the size of Ete in a scaling sense. Because σ2

rel = O(1), we
have that σ2 = σ2

rel · Ete|σ2=δ=0 = O(n−(β−1)). Examining the eigensum
∑

i(1−Li)
2v2i , it is easily

seen that at all modes i > i′ for some i′ = Θ(max(1, κ−1/α)), we will have that Li =
i−α

i−α+κ ≤ 1
2 ,
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say, which tells us that Ete = Ω(
∫∞
i′

i−βdi) = Ω
(
(i′)−(β−1)

)
12. The second clause of the lemma

follows from this.

The third clause of the lemma follows from the insertion of the first statement into the second.

Lemma 6. At optimal regularization, we have that E∗
te = Θ(n−(β−1), κ∗ = Θ(n−α), and thus

δ∗ = O(n−(α−1))

Proof. The first clause of this lemma follows from the lower bound on Ete given by Lemma 5 and the
fact that we can saturate this lower bound in a scaling sense because we do so already at zero ridge,
Ete|δ=0 = Θ(n−(β−1)) (which itself follows from inserting Lemma 2 into Lemma 4). Given this, the
second clause of Lemma 5 assures us that κ∗ = Θ(n−α) as desired.13 The bound on δ∗ follows from
Equation 72 and Equation 65.

Remark. Lemma 5 is useful because it tells us that, at optimal ridge, the error terms in Lemma 4 will
indeed decay faster with n than Ete itself.

I.5 RELATING κ AND Rtr/te

Lemma 7. The fitting ratio is given in terms of κ by√
Rtr/te = 1− n−1 π

α sin(π/α)
κ−1/α +O(n−1). (79)

Solving for κ, we have

κ =

(
π

α sin(π/α)

)−α

nα
(
1−

√
Rtr/te +O(n−1)

)−α

. (80)

Proof. This lemma follows directly from Equations (65), (70) and (72).

Remark. A minor annoyance in the usage of Equation 80 is that, when Rtr/te is too close to 1, the
O(n−1) term can affect κ to leading order. As a patch to avoid this, we will initially restrict the
domain of study to Rtr/te ∈ [0, 1− c] for some n-independent constant c > 0. We are then assured
that

κ =

(
π

α sin(π/α)

)−α

nα
(
1−

√
Rtr/te)

)−α

+O(n−(α+1)). (81)

The fact that κ increases monotonically with Rtr/te (Lemma 8) will let us extend results of interest to
the small region Rtr/te ∈ (1− c, 1). As far as the study of the optimal regularization point go, we
need not consider this small edge region in the following sense:

Lemma 8. The fitting error ratio Rtr/te ∈ [0, 1) and implicit regularization κ ∈ [κ|δ=0,∞) are
monotonically-increasing functions of each other.

Proof. This lemma is apparent from the fact that Rtr/te =
(
1− n−1

∑
i

λi

λi+κ

)2
.

Lemma 9. The optimal value of the fitting error ratio is bounded away from 1 in the sense that there
exists a constant c′ > 0 such that R∗

tr/te ≤ 1− c′ +O(n−1).

Proof. We know from Lemma 6 that κ∗ = Θ(n−α). We then obtain the desired result from
Equation 79.

I.6 PUTTING IT ALL TOGETHER: TEST RISK IN TERMS OF Rtr/te

The following lemma gives the test risk Ete in terms of the fitting error ratio Rtr/te and is the basis for
our ultimate conclusions about the optimal fitting error ratio.

12It might seem that we need to be mindful of the cutoff index i0 up to which we do not necessarily have
powerlaw eigenstructure, but we do not actually: because i0 = Θ(1), we will still have i′ = Θ(max(1, κ−1/α)).

13Seeing this is made easier by writing out the scaling notation explicitly — e.g., Ete = Ω(n−(β−1)) means
that there exists a constant A1 > 0 such that Ete >1 ·n−(β−1) for sufficiently large n, and so on — and then
solving for constants which are sufficient to give the desired new statements.
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Lemma 10. Let c > 0 be an n-independent constant. Then for Rtr/te ∈ [0, 1− c], we have that

Ete = πβα−β(α− β + 1)
(
sin
(π
α

))−(β−1)

csc

(
π(β − 1)

α

)
× 1

1 + (α− 1)
√
Rtr/te

(
ασ2

rel +
(
1−

√
Rtr/te

)−(β−1)
)
n−(β−1)

+O(n−β + n−2α), (82)

where the suppressed constants in the O(n−β + n−2α) term may depend on c.

Proof. This lemma follows from insertion of Equation 81 into Lemma 4.

Lemma 11. Let us abbreviate r =
√
Rtr/te, and let c be the n-independent constant from Lemma 10.

Then for Rtr/te ∈ [0, 1− c], we have that the second derivative of the log of the train error obeys

d2

dr2
log Ete =

(α− 1)2

(1 + (1− α)r)
2 +

β − 1 + αβ(β − 1)(1− r)β−1σ2
rel

(1− r + α(1− r)βσ2
rel)

2 +O(n−1 + n−2α+β−1)

(83)

≥ (α− 1)2

α2
+O(n−1 + n−2α+β−1), (84)

and thus at sufficiently large n, Ete is strongly logarithmically convex w.r.t. r.

Proof. This lemma follows from taking two derivatives of Ete as given by Lemma 10.

Lemma 12. For all Rtr/te ∈ [0, 1), we have that

Ete

E∗
te
≥ 1 +

(α− 1)2

2α2

(√
Rtr/te −

√
R∗

tr/te

)2
+O(n−1 + n−2α+β−1). (85)

Proof. It is easy to see that this holds for all Rtr/te ∈ [0, 1 − c] for any constant c > 0. Indeed, it
follows directly from Lemma 11. Note that

log Ete − log E∗
te ≥

(α− 1)2

2α2

(√
Rtr/te −

√
R∗

tr/te

)2
+O(n−1 + n−2α+β−1), (86)

so
Ete

E∗
te
≥ exp

{
(α− 1)2

2α2

(√
Rtr/te −

√
R∗

tr/te

)2}
+O(n−1 + n−2α+β−1), (87)

which yields Equation 85 using the fact that ex > 1 + x for x ∈ R. We now need to assure ourselves
that this bound still holds for Rtr/te ∈ (1− c, 1). Intuitively, the test tisk will generally explode as
Rtr/te → 1, growing from Θ(n−(β−1)) to Θ(1), so we should expect this lower bound to hold near
Rtr/te = 1 with little trouble. Since the error terms we have been carrying around grow large in this
region, we will need to rely on Lemmas 5 and 8 for support.

First, observe that there exist constants B1, n1 such that, if

Ete ≥ B1n
−(β−1) for all n ≥ n1 (88)

on the region Rtr/te ∈ (1− c, 1), then Equation 85 will hold on this region. (For example, one might
set Rtr/te = 1 on the RHS of Equation 85, then use the fact that E∗

te = Θ(n−(β−1)) (Lemma 6), then
increase the constant a small amount to absorb the O(n−1 + n−2α+β−1) error term. ) Then note that,
by Lemma 5, there exist constants B2, n2 such that

Ete ≥ B2κ
−(β−1)/α for all n ≥ n2. (89)

Thus, provided that n > max(n1, n2), we are assured of Equation 88 so long as c is small enough
that κ ≥ (B2/B1)

α/(β−1)n−α. We can identify such a sufficiently small c by looking at Equation 79,
which tells us that so long as n ≥ n3 for some n3, we can be assured that κ is sufficiently large when
Rtr/te = 1− c for c = (B1/B2)

1−βπ/(α sin(π/α)). The fact that κ monotonically increases with
Rtr/te (Lemma 8) assures us that κ will remain sufficiently large for all Rtr/te ∈ (1− c, 1), and thus
Equation 88 will continue to hold. This patches over our edge case and completes the proof.
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Lemma 13. The value of the fitting error ratio that minimizes the test error is

R∗
tr/te = r2∗ +O(n−1 + n−2α+β−1), (90)

where r∗ is either the unique solution to

α− β − (α− 1)βr + α(α− 1)(1− r∗)
βσ2

rel = 0 (91)

over r∗ ∈ [0, 1) or else zero if no such solution exists.

Proof. First, let the constant c in Lemma 10 be less than c′/2, where c′ is the constant prescribed
by Lemma 9, so that we are assured that R∗

tr/te ∈ [0, 1 − 2c]. Because the error terms are small
relative to the quantity itself in the region Rtr/te ∈ [0, 1 − c], we may simply take a derivative of
Ete in terms of Rtr/te as given by Lemma 10, setting dEte

dr = 0. This yields Equations (90) and (91).
We are assured that this equation can have only one solution on the domain of interest because the
function we differentiated to obtain it is strongly log-convex for r ∈ [0, 1), as shown in proving
Lemma 11. If this equation has no solution, this implies that there must be no local minimum on the
domain, so the minimum over the domain must lie at (or more precisely, because we have error terms,
close to) an endpoint — that is, at either Rtr/te = 0 +O(n−γ) or Rtr/te = 1− c+O(n−γ), where
γ = min(1, 2α− β + 1). However, we chose c to be small enough that Rtr/te < 1− 2c+O(n−γ),
so we can eliminate the right endpoint, and we have that R∗

tr/te = O(n−γ) as desired.

Remark. It is worth emphasizing that, because we were free from the beginning to choose c to be
quite small, the rather technical patch business in the preceding proof is not really all that important
and can be glossed over on a first reading. It is, however, nice to have for completeness, as covering
the whole region Rtr/te ∈ [0, 1) permits the final theorem statement to be simpler.

I.7 STATING THE FINAL THEOREM

Putting together Lemmas 12 and 13 gives us Theorem 2.
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