Compact Optimality Verification for Optimization Proxies

Wenbo Chen !> Haoruo Zhao'? Mathieu Tanneau'? Pascal Van Hentenryck '

Abstract

Recent years have witnessed increasing interest in
optimization proxies, i.e., machine learning mod-
els that approximate the input-output mapping
of parametric optimization problems and return
near-optimal feasible solutions. Following recent
work by (Nellikkath & Chatzivasileiadis, 2021),
this paper reconsiders the optimality verification
problem for optimization proxies, i.e., the deter-
mination of the worst-case optimality gap over the
instance distribution. The paper proposes a com-
pact formulation for optimality verification and
a gradient-based primal heuristic that brings sub-
stantial computational benefits to the original for-
mulation. The compact formulation is also more
general and applies to non-convex optimization
problems. The benefits of the compact formula-
tion are demonstrated on large-scale DC Optimal
Power Flow and knapsack problems.

1. Introduction

In recent years, there has been a surge of interest in opti-
mization proxies, i.e., differentiable programs that approxi-
mate the input/output mappings of parametric optimization
problems. Parametric optimization problems arise in many
application areas, including power systems operations, sup-
ply chain management, and manufacturing. To be applicable
in practice, these optimization proxies need to satisfy two
key properties: they must return feasible solutions and they
must return high-quality solutions. Feasibility has received
significant attention in recent years. Constraint violations
can be mitigated by incorporating them in the loss function
(Fioretto et al., 2020; Tran et al., 2021; Velloso & Van Hen-
tenryck, 2021; Pan et al., 2020). In some cases, the feasi-
bility could be guaranteed by designing mask operations

"H. Milton Stewart School of Industrial and Systems Engi-
neering, Georgia Institute of Technology, Atlanta, USA *NSF
Artificial Intelligence Research Institute for Advances in Op-
timization (AI4OPT), USA. Correspondence to: Wenbo Chen
<wenbo.chen@gatech.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

in the autoregression decoding (Bello et al., 2016; Khalil
et al., 2017; Song et al., 2022) or designing projection pro-
cedures (Joshi et al., 2019; Amos & Kolter, 2017; Agrawal
et al., 2019; Tordesillas et al., 2023; Park et al., 2023; Li
et al., 2023; Chen et al., 2023a). For better efficiency, the
projection procedure can be approximated with unrolled
first-order methods (Chen et al., 2020; Donti et al., 2021;
Scieur et al., 2022; Monga et al., 2021; Sun et al., 2022).

However, quality guarantees for optimization proxies have
received much less attention and have remained largely
empirical. To the authors’ knowledge, (Nellikkath & Chatzi-
vasileiadis, 2021) is the only work that provably provides
worst-case guarantees for optimization proxies. They for-
malize the optimality verification problem as a bilevel opti-
mization and reformulate it into a single level using tradi-
tional techniques from optimization theory. However, the
resulting single-level formulation faces significant computa-
tional challenges as it introduces a large number of auxiliary
decision variables and constraints. Moreover, it only applies
to convex parametric optimization problems.

This paper reconsiders the optimality verification problem
and proposes a compact formulation that applies to non-
convex problems and is more advantageous from a computa-
tional standpoint. Moreover, the paper proposes an effective
primal heuristic, based on a (parallelized) Projected Gra-
dient Attack (PGA). When the problem is convex, PGA
makes use of a conservative approximation of the value
function of the optimization that leverages subgradients. To
showcase the benefits of these modeling and algorithmic
contributions, the paper considers two applications: the DC
Optimal Power Flow (DC-OPF) problems and the knapsack
problems. The DC-OPF illustrates how the compact op-
timality verification formulation and PGA can be applied
to realistic industrial-sized test cases, while the knapsack
problem shows their applicability to a non-convex problem.
The paper also proposes novel Mixed-Integer Programming
(MIP) encoding of the feasibility layers of the DC-OPF and
knapsack optimization proxies. Experimental results are
provided to highlight the benefits of the compact optimality
verification formulation.

The contributions of this paper are summarized as follows.

* The paper proposes a compact formulation for the opti-

Compact Optimality Verification for Optimization Proxies

mality verification of optimization proxies. The formu-
lation provides computational benefits compared to the
existing bilevel formulation and can be used to verify
non-convex optimization problems.

» The paper proposes a (parallelized) Projected Gradient
Attack (PGA) that is effective in finding high-quality
feasible solutions i.e., adversary points. The PGA fea-
tures a novel conservative approximation of convex
value functions.

* The paper demonstrates how to apply the compact op-
timality verification to two problems: large-scale DC
Optimal Power Flows (DC-OPF) and knapsack prob-
lems. The paper contributes new feasibility restoration
layers for the proxies and new encoding of these layers
as MIP models for verification purposes.

» Extensive experiments show the compact formulation,
together with the primal heuristic, can effectively verify
optimization proxies for large-scale DC-OPF problems
and knapsack problems. The compact formulation also
brings substantial computational benefits compared to
the bilevel formulation.

The rest of the paper is organized as follows. Section 2
surveys the relevant literature. Section 3 introduces back-
ground knowledge about parametric optimization, optimiza-
tion proxies, and optimality verification. Section 4 presents
the compact formulation for the optimality verification. Sec-
tion 5 discusses the projected gradient attack with value
function approximation. Section 6 presents the optimality
verification on DC-OPF proxies and reports the numeri-
cal results on realistic industrial-size instances. Section 7
presents the optimality verification for non-convex paramet-
ric optimization problems using the knapsack problem as
a case study. Section 8 concludes the paper and discusses
future research directions. Section 8 includes the potential
broader impact of the work.

2. Related Work

Neural networks have been increasingly used in safety-
critical applications such as autonomous driving (Bojarski
et al., 2016), aviation (Julian et al., 2016) and power sys-
tems (Chen et al., 2022b). However, it has become apparent
that they may be highly sensitive to adversarial examples
(Szegedy et al., 2013) i.e., a small input perturbation could
cause a significant and undesired change in the output. To
characterize the effects of such perturbations, recent veri-
fication algorithms typically employ one of two strategies:
either they perform an exhaustive search of the input do-
main to identify a worst-case scenario (Venzke et al., 2020;
Nellikkath & Chatzivasileiadis, 2021), or they adopt a less
computationally intensive method to approximate an upper

bound for the worst-case violation (Chen et al., 2022a; Xu
et al., 2021; Raghunathan et al., 2018).

While optimality verification falls in the first category, it de-
parts from the large body of the literature in two ways. First,
evaluating the objective of the optimality verification prob-
lem involves the solving of an optimization problem, which
brings unique modeling and computational challenges. Sec-
ond, motivated by practical application in power systems,
this paper considers larger and more complex input perturba-
tions than the small £,-norm perturbation often considered
in existing work, as outlined in (Wang et al., 2021).

It is also important to mention the work on dual optimization
proxies (Qiu et al., 2023). Dual optimization proxies provide
dual feasible solutions at inference time for a particular
instance. In contrast, optimality verification provides a
worst-case guarantee for a distribution of instances. They
complement each other naturally. (Qiu et al., 2023) show
how to derive dual optimization proxies for the second-order
cone relaxation of AC-OPF.

3. Preliminaries
3.1. Parametric Optimization

Consider a parametric optimization problem of the form

P(z): min c(z,y) (la)
Y

st. g(z,y) <0, (1b)

where x € RP? is the input parameter, y € R™ is the deci-
sion variable, ¢ : RP x R™ — R is the cost function and
g : RP x R™ — R™ represents the constraints. The feasible
set is denoted by Y(z) = {y € R" | g(z, y) < 0}. The opti-
mal value of P(x) is denoted by ® () and P is referred to
as the value function. The set of optimal solutions is denoted
by Y*(x) C Y(x). The parametric optimization problem
can be viewed as a mapping from the input parameter € X
to an optimal decision y* € Y*(x).

For instance, in the Optimal Power Flow (OPF) problem,
the parameters are the electricity demand and generation
costs. The optimization consists in finding the most cost-
effective power generation that satisfies the physical and
engineering constraints. In the Traveling Salesman Problem
(TSP), the parameters are the locations and travel costs and
the optimization consists in finding the shortest possible
route that visits each location exactly once and returns to
the starting point.

In a minimization problem, a feasible solution provides
a primal bound, which is an upper bound on the optimal
value. A dual bound is obtained from a dual-feasible solu-
tion and/or via branch-and-bound, and establishes a lower
bound on the optimal value. Dual bounds are central to
proving global optimality. Note that, when maximizing, a

Compact Optimality Verification for Optimization Proxies

—ye)@)

)
R -

~ .

g
lMachine Learning Model

o

Feasibility Repairl

Figure 1. Optimization Proxies

primal (resp dual) bound is a lower (resp. upper) bound on
the optimal value.

3.2. Optimization Proxies

Optimization proxies (see Figure 1) are differentiable pro-
grams that approximate the mapping from input parameters
x to optimal decisions y* of the parametric optimization
problem. Because outputs of machine learning typically
cannot satisfy complex constraints, optimization proxies
consist of two parts, a machine learning model predicting
the optimal decision and a feasibility repair step that projects
the prediction into the feasible space. Trained optimization
proxies are denoted by fy, with 6 denoting the weights.

There has been significant progress in ensuring that opti-
mization proxies produce feasible solutions e.g., (Li et al.,
2023; Donti et al., 2021; Chen et al., 2023a). Therefore, this
paper assumes that optimization proxies provide feasible
solutions, i.e.,

Ve € X, fo(z) € V(x).)

Depending on the parametrization of the machine learning
models and the modeling of the feasibility repair steps, opti-
mization proxies could be trained using supervised learning
(Joshi et al., 2019; Kotary et al., 2022; 2021; Chen et al.,
2022b), reinforcement learning (Bello et al., 2016; Khalil
et al., 2017; Song et al., 2022) and unsupervised learning
(Karalias & Loukas, 2020; Wang et al., 2022; Donti et al.,
2021; Park & Van Hentenryck, 2023; Chen et al., 2023a).

3.3. Optimality Verification

Let X C RP denote the set of possible inputs and fy be an
optimization proxy. The Optimality Verification Problem
can be formalized as

(Po) : c(, fo(z)) — () ©)

max
xzeX

Since the proxy is feasible, i.e., fo(x) € Y(x), it follows
that c(z, fo(x)) > ®(x), Vo € X. In general, there is no an-
alytical formula for ®, which is typically not differentiable
or even continuous. Hence P, cannot be solved directly.

(Nellikkath & Chatzivasileiadis, 2021) introduced a bilevel
formulation for the optimality verification problem

max c(x, fo(x)) — c(x, y*) (4a)

st. y* €argmin c(x,y). (4b)

yeY(z)

In (4), the leader (upper level) chooses input @ € X and
computes the neural network output fy(x) via a MIP encod-
ing. The follower (lower level) then computes an optimal
solution y* of the optimization problem (4b). When the
lower level is linear or quadratic, the bilevel formulation
admits a single-level reformulation using the KKT condi-
tions and mixed-complementarity constraints. Assuming
that the proxy is a ReLU-based DNN, the overall verifica-
tion problem can then be cast as an Mixed Integer Linear
Programming (MILP) and solved with off-the-shelf opti-
mization solvers like Gurobi. More generally, a single-
level reformulation requires strong duality assumptions and
introduces additional variables and constraints, especially
non-convex complementarity constraints. It creates some
computational challenges as documented in the experiments.
Moreover, the reformulation is not available when problem
P is non-convex, since KKT conditions are not sufficient
for optimality, and may not apply if, e.g., the lower level is
discrete. In general, bilevel optimization with non-convex
lower-level problems is 25 hard (Caprara et al., 2013). No
existing solver can solve such problems efficiently.

4. Compact Optimality Verification

The core contribution of this paper is a compact formulation
for the optimality verification problem, that addresses the
shortcomings of the bilevel approach. Namely, the paper
proposes to formulate the optimality verification as

(P.) max c(z,9)—c(z,y) (5a)
zeX,y

st. y= fo(x), (5b)

y € Y(x). (5¢)

The main difference between (5) and (4) is that the inner
problem (4b) is replaced with the simpler constraint (5c). In
fact, the proposed formulation (5) is the so-called high-point
relaxation (Moore & Bard, 1990) of the bilevel formulation
(4). Theorem 4.1 shows that (5) has the same optimum as
(4), i.e., the high-point relaxation is exact. To the authors’
knowledge, this result is novel.

Theorem 4.1. Problems (4) and (5) have same optimum.

Proof. Recall that the compact formulation (5) is a relax-
ation of (4). Therefore, it suffices to show that an optimal
solution to (5), denoted by (&, §), is feasible for (4).

Compact Optimality Verification for Optimization Proxies

Algorithm 1 Projected Gradient Attack with Value Function
Approximation (PGA-VFA)
Input: Input space X, initial point &, value function
approximation ®(-), number of iterations T
fort =0to 7T do R
it+1 =+ A Vw {c(mt, fg(a:t)) - @(wt)}
Liy1 = Pron(:i:t)
end for

By definition, § € J(&), i.e., g is feasible for the lower-
level problem (4b) with upper-level decision . Next, as-
sume g is not optimal for (4b), i.e., there exists y € V(&)
such that ¢(Z, §) < ¢(&,g). By construction, (&,) is fea-
sible for (5) with objective value strictly better than (Z, §),
which contradicts the optimality of (&, g). O

The proposed compact formulation (5) has several advan-
tages. First, it naturally supports non-convex constraints
and objectives, In contrast, the standard approach of refor-
mulating bilevel problems into a single-level problem with
complementarity constraints, is not possible when the lower-
level problem (4b) is non-convex. This is the first tractable
exact formulation for verifying the optimality of non-convex
optimization proxies. Second, even when P is convex and a
single-level reformulation is possible, the compact formu-
lation avoids the additional variables and constraints that
come with a single-level reformulation. In particular, it elim-
inates the need for complementarity constraints, which are
notoriously difficult to solve. This last point is demonstrated
in the experiments of Section 6.

5. Projected Gradient Attack

The projected gradient attack is highly effective in finding
high-quality feasible solutions, i.e., adversarial examples,
for verification problems. It can be formalized as

Ty = xy + AV [c(@, fo(xs)) =P ()], (6a)
Ti41 = PI’OjX(iﬂ,l). (6b)

When X is an £, ball, the projection step in (6b) can be
computed in close form.

A challenge in implementing the projected gradient attack
is the computation of the gradient V,®(x). One possible
approach is to use the implicit function theorem on the KKT
conditions (Amos & Kolter, 2017; Agrawal et al., 2019).
However, this gradient computation involves the solving of
many optimization instances, which may be computation-
ally intensive for large-scale problems as those studied in
this paper. A second key contribution of the paper is the
use in the projected gradient attack of a piece-wise linear
conservative approximation of convex value function. It
builds on the following well-known result.

10

—— Value Function
== Piece-wise Linear Approximation

Figure 2. Value Function and its Piece-wise Linear Approximation

Theorem 5.1. (Boyd & Vandenberghe, 2004) Consider a
convex parametric optimization P where (i) the objective
c and left-hand side g do not depend on x and (ii) the
constraints’ right-hand side is an affine function of x. Then,
the value function ® of P is convex.

Theorem 5.1 implies that a convex value function can be
outer-approximated by a closed-formed piecewise linear
function:

@(m) = max ®(x;) + V@ (x;) T (x — x;), @)
i€[N]

where {x; }I¥ | denotes a set of parameters of historical para-
metric optimization instances. Moreover, the optimal dual
; of an instance with parameter x; represents a subgradient
of the value function with respect to x;. If the optimal dual
is unique, then V,®(x;) = A; (Nocedal & Wright, 1999).
Therefore, the approximate value function reads:

d(x) = max (x;) + A (z —), 8)
i€[N]

The piece-wise linear approximation on the convex value
function is illustrated in Figure 2. Other models such as
Input Convex Neural Networks (Amos et al., 2017) could
also be used for the value function approximation.

The projected gradient attack may converge to a low-quality
solution due to becoming trapped in local optima. This work
proposed several techniques aimed at enhancing the search
process. One acceleration technique consists in sampling
a set of starting points in input domain {*}»_, and run
PGA-VFA(X, x§*) for every starting point. Another accel-
eration technique to improve the search is to partition the
input domain into subregions, and then run Algorithm (1)
on different subregions {X},}/”, in parallel i.e., running
PGA-VFA(X,, =) for every subregion.

Compact Optimality Verification for Optimization Proxies

6. DC Optimal Power Flow
6.1. DC-OPF Formulation

DC Optimal Power Flow (DC-OPF) is a fundamental prob-
lem for modern power system operations. It aims at deter-
mining the least-cost generator setpoints that meet grid de-
mands while satisfying physical and operational constraints.
With the penetration of renewable energy and distributed
energy resources, the system operators must continuously
monitor risk in real-time, i.e., they must quickly assess
the system’s behavior under various changes in load and
renewables by solving a large volume of DC-OPF prob-
lems. However, traditional optimization solvers may not
be capable of solving them quickly enough for large-scale
power networks (Chen et al., 2023b). Recent advancements
in learning-based methods have accelerated the process of
finding feasible and empirically near-optimal solutions con-
siderably faster than conventional approaches (Chen et al.,
2023a; Zhao et al., 2022; Li et al., 2023). This paper aims at
providing formal quality guarantees for optimization prox-
ies in this space to complement existing primal learning
methods.

Consider the DC-OPF formulation

min ¢'p+ MPe et (9a)
p,EN

st. e'p=e'd, (9b)

+Hp+&"> —f+ Hd, (9¢)

-~ Hp+¢" > —f - Hd, (9d)

p<p<p, %e)

p e RB ¢ e RY (91)

where B, E denote the total number of buses and trans-
mission lines in the power grid, respectively, d € R? de-
notes the electricity load, p denotes the decision variables
capturing energy dispatches, &M denotes the thermal limit
violations, f corresponds to the flow limits on the trans-
mission lines and H € RF*B denotes the power transfer
distribution factors. The price of electricity generation is
represented by ¢, and M™ is the price of violating thermal
constraints. The vector e consists of all ones. Constraint
(9b) ensures the global power balance i.e., the total load
equals the total supply. Constraint (9¢) and (9d) measure
the thermal violations. Constraint (9¢) ensures that the out-
puts of the generators remain within their physical limits.

6.2. Compact Optimality Verification

This work considers the optimization proxy proposed in
(Chen et al., 2023a) and illustrated in Figure 3. It consists
of a fully-connected neural network with ReLU activation
to predict the optimal dispatches and feasibility layers to
ensure that the outputs satisfy the hard constraints. The

=3

d-» > > eee > —

L J

NNy

Feasibility Repair

Figure 3. Optimization Proxies for DCOPF

feasibility layer consists of two parts, a bound-clamping
layer, which employs a hard-sigmoid function to ensure that
dispatch decisions remain within the generators’ physical
upper and lower generation limits (9¢) and a hypersimplex
layer, which uses a differentiable binary search to guaran-
tee that total power generation matches the total electricity
demand, addressing constraint (9b). Constraints (9¢c) and
(9d) are soft and are penalized in the loss function when
training the ML models. Another contribution of this paper
is a compact encoding of these layers into a mixed-integer
programming formulation. The detailed modeling of the
compact formulation is deferred in Appendix A.1.

6.3. Empirical Evaluation
6.3.1. EXPERIMENT SETUP

The optimality verification for DCOPF proxies is evalu-
ated over IEEE 57-/118-/300-bus and Pegase 1354-bus
test cases from the PGLib library (Babaeinejadsarookolaee
et al., 2019). The data generation follows (Chen et al.,
2023a). Denote by d™' the nodal load vector from the ref-
erence PGLib case. The instances are generated by per-
turbing the reference load vector. Namely, for instance ¢,
d? = (v 4 @) x d', where v() € R is a global
scaling factor and (¥ € RP denotes element-wise noises.
The + is sampled from uniform distribution U[80%, 120%)
and for each load, 7 is sampled from a uniform distribution
U[—5%,5%]. This distribution captures system-wide cor-
relations (), while allowing for local variability (7). The
optimization proxies are trained using the self-supervised
learning algorithm in (Chen et al., 2023a). It is important
to note that the verification problem only depends on the
weights of the trained proxy.

The parameter input domain & reflects the support of the
distribution of instances described above. Namely,

X = {(a+B) - d*'|—u < a—1 < u, —-5%<B<5%},

where o € R, 3 € R® capture the distribution of v, 1, and
we{0,1%, 2%, 5%, 10%, 20%} controls the size of the in-
put domain. Each value of u yields a different optimality
verification instance; note that larger values of u make the
instances harder to verify.

The value function approximation d, used in PGA-VFA
(Algorithm 1), is constructed using primal and dual solutions
of 50,000 instances, generated using the above distribution.

Compact Optimality Verification for Optimization Proxies

Table 1. Comparison of presolved model size for Bilevel and Com-
pact (proposed) formulations. Statistics are averages across 30
instances (6 distinct values of v and 5 unique seeds).

#ConVars #BinVars #Constraints
System Bilevel Compact Bilevel Compact Bilevel Compact
57 255 259 69 64 350 342
118 609 522 218 100 862 619
300 1798 1320 861 325 2982 1821
1354 6739 4655 7281 1353 15373 6777

PGA-VFA is executed in parallel, across 200 threads, using
the acceleration techniques of Section 5. The initial step size
is 1073, and is reduced by a factor 10 if no improvement is
recorded over 10 iterations. Finally, PGA-VFA is stopped if
no improved solution is found after 20 consecutive iterations,
or a maximum of 500 iterations is reached.

All verification problems are solved with Gurobi 10.0
(Gurobi Optimization, LLC, 2023) using 16 threads and
a 6-hour time limit. Preliminary experiments revealed that
Gurobi struggles to find primal-feasible solutions. There-
fore, unless specified otherwise, the d™'c X’ is always passed
as a warm-start to the solver. In addition, this work uses
optimization-based bound tightening (Caprara & Locatelli,
2010) to improve the MILP relaxation, by tightening the
input domain of ReLU neurons; see Appendix A.3. Finally,
each verification instance is solved using 5 different seeds,
and results are averaged using the shifted geometric mean

ps(x1, - xzn) = VIi(z; 4+ 5) — 5.

The paper uses a shift s of 1% for optimality gaps and 1 for
other values. Solving times are reported in wall clock. Ex-
periments are conducted on dual Intel Xeon 6226 @2.7GHz
machines running Linux on the cluster.

6.3.2. NUMERICAL RESULTS

Effectiveness of Compact Formulation Table 1 reports
the size (number of variables and constraints) of the compact
formulation and bilevel formulation, after being presolved
by Gurobi. Table 1 shows that the compact formulation
results in substantially fewer binary decision variables than
its bilevel counterpart, especially on large systems.

The size reduction of the compact formulation is reflected in
the solving process. For ease of comparison, the verification
instances are split into two groups. On the one hand, closed
instances are instances that can be solved by at least one
approach within the prescribed time limit. They include
all 57-bus and 118-bus instances, as well as the 300-bus
instances with v = 0,1%,2%,5%. On the other hand,
open instances are those that cannot be solved by either
formulation. They include the 300-bus instances with u =
10%, 20%, and all the 1354-bus instances.

Table 2. Comparison of solution times(s) for Bilevel and Compact
(proposed) formulations across closed (i.e., solved) instances.

System %u Bilevel Compact Speedup”
57 0 0.4 0.3 22.9%
1 0.6 0.6 -3.4%

2 0.6 0.5 10.4%

5 1.9 1.1 75.8%

10 1.2 1.2 -1.7%

20 0.7 0.5 27.6%

118 0 1.7 1.2 43.3%
1 3.9 2.1 89.7%

2 4.7 3.1 53.6%

5 284 12.1 135.2%

10 18.7 14.1 32.4%

20 76.8 59.4 29.3%

300 0 119.8 63.4 88.9%
1 298.6 166.0 79.9%

2 1302.7 420.8 209.5%

5 175854 10507.9 67.4%

* Average speedup compared to bilevel formulation.

Table 3. Primal and dual objective values attained by the Bilevel
and Compact formulation on open (i.e., unsolved) instances.
Primal bound (K$) Dual bound (M$)

System %u Bilevel Compact %Gaint Bilevel Compact %Gain®
300 10 466.76 596.98 27.90 4.45 3.82 14.08
20 410.19 582.81 42.08 10.79 9.29 13.88

1,354 0 9422 360.03 282.13 29.64 26.00 12.25
1 84.44 365.50 332.83 36.35 35.39 2.63

2 5012 369.68 637.65 47.64 45.13 5.26

5 54.32 37152 584.02 78.79 74.31 5.69

10 46.63 35320 65742 135.32 129.99 3.94

20 49.52 359.72 62640 249.02 235.79 5.31

fRelative improvement compared to bilevel formulation, in %.

Table 2 reports the solving times of the compact formulation
and bilevel formulation on solved instances, and indicate
the relative speedup of the compact formulation, defined as
’5‘3“3:;(_7’:‘1"‘“"‘“ x 100%. The compact formulation consistently
outperforms the bilevel formulation, except for two small
instances which are solved by both formulations in under 2
seconds. Notably, the compact formulation achieves higher
speedups on larger systems, with up to 209.5% speedup on

the 300-bus system with 2% input perturbation.

Next, Table 3 reports the performance of two formulations
on open instances, where none of the formulations can solve
the instances to optimality within 6 hours, primarily due
to the weak linear relaxation. In this case, the compari-
son focuses on the final primal and dual objectives. The
gains in percentage under the Primal and Dual columns
report the performance improvements on the primal and

: : Primalcompact —Primalgiieve
dual side, respectively: ———pe—=med 5 100% and

Dualpiiesei — Dualcom,)
W x 100%. As reported in Table 3, the com-

pact formulation finds substantially better primal solutions
than the bilevel formulation, especially for harder instances.

Compact Optimality Verification for Optimization Proxies

g 600 600 600 600 600 600
=500 500 500 500 500 500
S 400 400 400 400 400 400
8 300 Compact 3%0 300 300 300 300
= 200 : P 200 200 200 200 200
8100 Bilevel 100 100 100 100 100
0~ 0 0 0 0 0
0 2 3 0 1 2 3 4 5 6 0 10 15 20 0 100 200 300 0 100 300 0 200 300
Time (min) Time (min) Time (min) Time (min) Time (min) Time (min)
400 400 400 400
X~
5 300 300 300 300
S —— Compact
g 200 Bilevel 200 200 200 200 200
B 100 100 100 100 100 100
@ 9 0 0 0 0 [
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Time (min) Time (min) Time (min) Time (min) Time (min) Time (min)
(a) u = 0% b)u=1% ©) u=2% @ u=5% (e)u=10%) v =20%

Figure 4. Evolution of primal objective value for Compact and Bilevel formulations over time on the 300 IEEE system (top row) and the
1354 Pegase system (bottom row) with different sizes of input domains. Higher values indicate better outcomes.

Table 4. Comparisons of PGA-VFA and the compact formulation
on final objective and solving times for large power systems.

Table 5. Comparisons of PGA-VFA and the compact formulation
for different warm starts on final objective and solving times for

PGA-VFA Compact large power systems

System %u Obj. ($) Time (s) Obj. ($) Time(s) [T2PGA (s) System %u PGA-VFA Compact+Nom Compact+PGA
300 0 544923.75 4.53 546038.13 63.41 52.06

1 562348.33 7.09 564263.39 166.01 114.79 300 0 544923.75 546038.13 546038.13

2 57216601 37.30 57246417 42083 307.40 1 562348.32 564263.39 564263.44

5 572166.01 4926 651163.59 10507.88 872.25 2 572166.01 572464.17 572464.17

10 572166.01 41.41 596983.07 t.0. 2646.21 5 572166.01 651163.59 651163.38

20 572166.01 17.86 582808.23 t.0. 2646.28 10 572166.01 596983.07 596983.90

1,354 0 380673.60 67.26 360031.97 t.o. to. 20 572166.01 582808.23 582808.47
1 399441.04 63.54 365497.51 t.o. t.o.

2 403725.74 4198 369678.23 to. t.o. 1,354 0 380673.60 360031.97 380757.88

5 403725.74 31.88 37152452 t.o. to. 1 399441.04 365497.51 399579.63

10 571252.51 85.88 353196.16 t.o. t.o. 2 403725.74 369678.23 406165.38

20 57125251 76.43 359722.30 t.o. t.o. 5 403725.74 371524.52 406164.74

TTime taken by the compact formulation to reach the same primal 10 571252.51 353196.16 571715.99

objective as PGA; “t.0.” indicate timeouts. 20 571252.51 359722.30 578732.15

This is further supported in Figure 4, where the compact
formulation consistently converges faster. On the dual side,
the compact formulation is slightly better than its bilevel
counterpart. Since the compact formulation systematically
outperforms the bilevel formulation, the next experiments
focus on the compact formulation.

Effectiveness of PGA-VFA Table 4 focuses on the perfor-
mance of the proposed PGA-VFA and compact formulation
in identifying feasible solutions on large power systems
(300 bus and 1354 bus). The performance on small systems
is deferred to Appendix A.4 since the compact formulation
solves those instances within 60 seconds. PGA-VFA is par-
ticularly good at finding high-quality primal solutions within
short computing time. It finds near-optimal solutions on the
300-system orders of magnitude faster than the compact
formulation with a reference load vector as the warm-start.
For the 300-bus system with 1% perturbation, PGA-VFA
finds a feasible solution with objective 562348.33 in 7.09s.
Meanwhile, Gurobi solves the compact MILP formulation
in 166.01s, reporting an optimal value of 564263.39. It

takes Gurobi 114.79s to find a feasible solution at least as
good as the one found by PGA-VFA (in 7.09s). The com-
pact model cannot find the same quality of primal solutions
as PGA-VFA on the 1354-systems within 6 hours.

Finally, Table 5 reports the impact of warm-starting the com-
pact formulation with PGA-VFA. The compact model with
the PGA-VFA solution as a warm start always outperforms
its counterparts with the reference load as the warm start.
Observe also that the optimization barely improves on the
PGA-VFA solution.

7. Optimality Verification for Knapsack

One major benefit of the proposed compact formulation
is that it may provide quality guarantees for optimization
proxies that approximate non-convex parametric optimiza-
tion problems. This section illustrates this capability on the
knapsack problem.

Compact Optimality Verification for Optimization Proxies

€T -> > oo ~N ;S.» S @

T
NNyg Feasibility Repair

Figure 5. An Optimization Proxy for the Knapsack Problem.

7.1. Knapsack Formulation

Consider a knapsack problem with K items

max {v'y|w'y <lLye{0,1}*}, (10
y

where v denotes the value of the items, [is the knapsack

capacity and w denotes the weight of the items. The binary

decision variable y; = 1 indicates putting the item k in the

knapsack and vice versa.

7.2. Optimality Verification

This paper considers the optimality verification of an op-
timization proxy for the knapsack problem. The proxy is
summarized in Figure 5. First, a fully-connected neural
network with ReLU activation predicts a score for each
item, where a higher score indicating higher desirability
of the item. Then, a novel feasibility repair step sorts the
items by the predicted score in a descending order and adds
items to the knapsack following the order until reaching
the knapsack’s capacity limit, thus enforcing w”y <I. An-
other contribution of this paper is a compact formulation
of this repair layer that is presented in Appendix B.1. Be-
cause the parametric optimization is non-convex, the bilevel
formulation in (4) cannot be reformulated into a single level.

7.3. Numerical Evaluation

The data for the experiments is generated by perturbing the
total capacity of the knapsack and the item values, where the
scaler [of the total capacity and the item values v are sam-
pled from the uniform distribution U[80%, 120%)]. More
information of the knapsack proxies is detailed in the Ap-
pendix B. The input domain is defined as:

X={al,fv|—-u<a—-1<uy,—u<pB-1<u}
where u controls the size of the input domain.

Table 6 demonstrates the compact formulation can verify op-
timization proxies for Knapsack. It highlights a key benefit
of the compact formulation: its ability to verify non-convex
optimization problems.

8. Conclusion

The paper presents a novel compact formulation for opti-
mality verification of optimization proxies. It offers sub-
stantial computational benefits over the traditional bilevel

Table 6. Optimality Verification for Knapsack

#items %u Gap (%) Time (s)
10 1 0.0 04
5 0.0 04

10 0.0 04

20 0.0 0.7

50 1 0.0 89.1
5 0.0 117.3

10 0.0 642.8

20 142.0 t.o.

80 1 0.0 1928.3
5 0.0 5997.8

10 230.0 t.o.

20 1350.0 t.o.

* Solved with 16 threads and time limits of 6 hours.

formulations and can verify non-convex optimization prob-
lems. The paper also introduces a Projected Gradient Attack
with a value function approximation as a primal heuristic
for effectively finding high-quality primal solutions. The
methodology is applied to large-scale DC-OPF and knap-
sack problems, incorporating new MILP encodings for the
feasibility layers. Extensive experiments demonstrate the ef-
ficacy of the methodology in verifying proxies for DC-OPF
and knapsack problems, highlighting its computational ad-
vantages. Future works will investigate the scalability of the
methodology on large industrial instances with the coupling
with spatial branch and bound and «, 5-CROWN, and ex-
tend the verification on auto-regression-based optimization
proxies.

Limitations The proposed compact formulation is more
general than prior state-of-the-art, and has fewer variables
and constraints. Nevertheless, this exact verification scheme,
which eventually relies on solving MIP problems, shares
common limitations with existing exact verification meth-
ods, as highlighted in (Wang et al., 2021; Zhang et al.,
2022; Ferrari et al., 2022). State-of-the-art exact verifi-
cation solvers primarily focus on ReL.U networks, and do
not always support arbitrary linear/discrete/nonlinear con-
straints which are needed for optimality verification. Thus,
MIP solvers are the only existing tools capable of solving
optimality verification problems. MIP solvers are known to
struggle when solving large verification instances, especially
for finding high-quality solutions (which correspond to ad-
versarial examples). Therefore, scalability issues still exist
when solving large-scale verification problems, especially
with deep neural networks and large input space. Exact op-
timality verification on large-scale industrial instances, and
exploring its effectiveness for nonlinear activations and non-
perceptron architectures, e.g., Transformers, are promising
research directions.

Compact Optimality Verification for Optimization Proxies

Acknowledgements

This research was partially supported by NSF awards
2007164 and 2112533, and ARPA-E PERFORM award
DE-AR0001280.

Impact Statement

Optimization proxies have been increasingly used in critical
infrastructures such as power systems and supply chains,
offering the potential to catalyze substantial advancements.
These advancements include facilitating the transition of
power systems to high-renewable grids, as well as enhanc-
ing the operational resilience and sustainability of supply
chain operations. In this context, ensuring the quality and
reliability of optimality proxies is essential for their prac-
tical deployment. The compact optimality verification and
the gradient-based primal heuristic play a pivotal role in ad-
dressing these needs. By offering a more reliable foundation
for the deployment of optimization proxies, this research
has the potential to substantially impact human life and
contribute to social welfare improvement.

References

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J. Z. Differentiable convex optimization lay-
ers. Advances in neural information processing systems,

32,2019.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, pp. 136—145. PMLR,
2017.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-
works. In International Conference on Machine Learning,
pp- 146-155. PMLR, 2017.

Babaeinejadsarookolaee, S., Birchfield, A., Christie, R. D.,
Coffrin, C., DeMarco, C., Diao, R., Ferris, M., Flis-
counakis, S., Greene, S., Huang, R., et al. The power
grid library for benchmarking ac optimal power flow al-
gorithms. arXiv preprint arXiv:1908.02788, 2019.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. arXiv preprint arXiv:1611.09940, 2016.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B.,
Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller,
U., Zhang, J., et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Boyd, S. P. and Vandenberghe, L. Convex optimization.
Cambridge university press, 2004.

Bunel, R. R., Turkaslan, I., Torr, P.,, Kohli, P, and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Caprara, A. and Locatelli, M. Global optimization problems
and domain reduction strategies. Mathematical Program-
ming, 125:123-137, 2010.

Caprara, A., Carvalho, M., Lodi, A., and Woeginger, G. J.
A complexity and approximability study of the bilevel
knapsack problem. In Integer Programming and Com-
binatorial Optimization: 16th International Conference,
IPCO 2013, Valparaiso, Chile, March 18-20, 2013. Pro-
ceedings 16, pp. 98-109. Springer, 2013.

Chen, S., Wong, E., Kolter, J. Z., and Fazlyab, M. Deepsplit:
Scalable verification of deep neural networks via operator
splitting. IEEE Open Journal of Control Systems, 1:126—
140, 2022a. doi: 10.1109/0JCSYS.2022.3187429.

Chen, W., Park, S., Tanneau, M., and Van Hentenryck, P.
Learning optimization proxies for large-scale security-
constrained economic dispatch. Electric Power Systems
Research, 213:108566, 2022b.

Chen, W., Tanneau, M., and Hentenryck, P. V. End-to-end
feasible optimization proxies for large-scale economic
dispatch. IEEE Transactions on Power Systems, pp. 1-12,
2023a. doi: 10.1109/TPWRS.2023.3317352.

Chen, W., Tanneau, M., and Van Hentenryck, P. Real-time
risk analysis with optimization proxies. arXiv preprint
arXiv:2310.00709, 2023b.

Chen, X., Li, Y., Umarov, R., Gao, X., and Song, L. Rna
secondary structure prediction by learning unrolled algo-
rithms. In International Conference on Learning Repre-
sentations, 2020.

Donti, P. L., Rolnick, D., and Kolter, J. Z. DC3: A learn-
ing method for optimization with hard constraints. In
International Conference on Learning Representations,
2021.

Ferrari, C., Mueller, M. N., Jovanovi¢, N., and Vecheyv,
M. Complete verification via multi-neuron relaxation
guided branch-and-bound. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=1_amHfloakK.

Fioretto, F., Mak, T. W., and Van Hentenryck, P. Predicting
ac optimal power flows: Combining deep learning and
lagrangian dual methods. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 630—
637, 2020.

https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK

Compact Optimality Verification for Optimization Proxies

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Julian, K. D., Lopez, J., Brush, J. S., Owen, M. P,, and
Kochenderfer, M. J. Policy compression for aircraft colli-
sion avoidance systems. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC), pp. 1-10. IEEE,
2016.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. Advances in Neural Information Processing
Systems, 33:6659-6672, 2020.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kotary, J., Fioretto, F., and Van Hentenryck, P. Learning
hard optimization problems: A data generation perspec-
tive. Advances in Neural Information Processing Systems,
34:24981-24992, 2021.

Kotary, J., Fioretto, F., and Van Hentenryck, P. Fast approxi-
mations for job shop scheduling: A lagrangian dual deep
learning method. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 7239-7246,
2022.

Li, M., Kolouri, S., and Mohammadi, J. Learning to solve
optimization problems with hard linear constraints. /EEE
Access, 2023.

Monga, V., Li, Y., and Eldar, Y. C. Algorithm unrolling:
Interpretable, efficient deep learning for signal and image
processing. IEEE Signal Processing Magazine, 38(2):
18—44, 2021.

Moore, J. T. and Bard, J. F. The Mixed Integer Linear
Bilevel Programming Problem. Operations Research, 38
(5):911-921, 1990. doi: 10.1287/opre.38.5.911.

Nellikkath, R. and Chatzivasileiadis, S. Physics-informed
neural networks for minimising worst-case violations
in dc optimal power flow. In 2021 IEEE International
Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), pp. 419—
424. TEEE, 2021.

Nocedal, J. and Wright, S. J. Numerical optimization.
Springer, 1999.

10

Pan, X., Zhao, T., Chen, M., and Zhang, S. Deepopf: A
deep neural network approach for security-constrained
dc optimal power flow. [EEE Transactions on Power
Systems, 36(3):1725-1735, 2020.

Park, S. and Van Hentenryck, P. Self-supervised primal-
dual learning for constrained optimization. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 4052-4060, 2023.

Park, S., Chen, W., Mak, T. W., and Van Hentenryck, P.
Compact optimization learning for ac optimal power flow.
arXiv preprint arXiv:2301.08840, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Qiu, G., Tanneau, M., and Van Hentenryck, P. Dual Conic
Proxies for AC Optimal Power Flow. 2024 Power Systems
Computation Conference, Paris, june 2023. URL https:
//doi.org/10.48550/arXiv.2310.029609.

Raghunathan, A., Steinhardt, J., and Liang, P. Semidefi-
nite relaxations for certifying robustness to adversarial
examples, 2018.

Scieur, D., Gidel, G., Bertrand, Q., and Pedregosa, F. The
curse of unrolling: Rate of differentiating through opti-
mization. Advances in Neural Information Processing
Systems, 35:17133-17145, 2022.

Song, W., Chen, X, Li, Q., and Cao, Z. Flexible job-shop
scheduling via graph neural network and deep reinforce-
ment learning. IEEE Transactions on Industrial Informat-
ics, 19(2):1600-1610, 2022.

Sun, H., Shi, Y., Wang, J., Tuan, H. D., Poor, H. V., and
Tao, D. Alternating differentiation for optimization layers.
arXiv preprint arXiv:2210.01802, 2022.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, ., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In International Conference on Learning Representations,
2019.

Tordesillas, J., How, J. P., and Hutter, M. Rayen: Imposition
of hard convex constraints on neural networks. arXiv
preprint arXiv:2307.08336, 2023.

Tran, C., Fioretto, F., and Van Hentenryck, P. Differen-
tially private and fair deep learning: A lagrangian dual

https://www.gurobi.com
https://doi.org/10.48550/arXiv.2310.02969
https://doi.org/10.48550/arXiv.2310.02969

Compact Optimality Verification for Optimization Proxies

approach. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 9932-9939, 2021.

Velloso, A. and Van Hentenryck, P. Combining deep learn-
ing and optimization for preventive security-constrained
dc optimal power flow. IEEE Transactions on Power
Systems, 36(4):3618-3628, 2021.

Venzke, A., Qu, G., Low, S., and Chatzivasileiadis, S. Learn-
ing optimal power flow: Worst-case guarantees for neural
networks, 2020.

Wang, H. P, Wu, N., Yang, H., Hao, C., and Li, P. Un-
supervised learning for combinatorial optimization with
principled objective relaxation. Advances in Neural In-
formation Processing Systems, 35:31444-31458, 2022.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.-J.,
and Kolter, J. Z. Beta-crown: Efficient bound propaga-
tion with per-neuron split constraints for neural network
robustness verification. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 29909-29921. Curran Associates, Inc., 2021.

Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., and
Hsieh, C.-J. Fast and complete: Enabling complete neural
network verification with rapid and massively parallel
incomplete verifiers, 2021.

Zhang, H., Wang, S., Xu, K., Li, L., Li, B., Jana, S., Hsieh,
C.-]., and Kolter, J. Z. General cutting planes for bound-
propagation-based neural network verification. Advances
in neural information processing systems, 35:1656-1670,
2022.

Zhao, H., Hijazi, H., Jones, H., Moore, J., Tanneau, M., and
Hentenryck, P. V. Bound tightening using rolling-horizon
decomposition for neural network verification, 2024.

Zhao, T., Pan, X., Chen, M., and Low, S. Ensuring dnn
solution feasibility for optimization problems with linear
constraints. In The Eleventh International Conference on
Learning Representations, 2022.

11

Compact Optimality Verification for Optimization Proxies

p<p <p P<P<Dp
. eTﬁ —e'd
d—> — —> 000 — L 13
\ J
1
NNog Feasibility Repair

Figure 6. Optimization Proxies for DCOPF

A. More information of DCOPF Optimization Proxies
A.1. Detailed Modeling of Compact Formulation

As shown in Figure 6, the proposed DC-OPF proxy integrates a multilayer perceptron (MLP), a bound clamping, and a
hypersimplex projection layer. The MLP can be translated into a Mixed Integer Linear Program (MILP) by modeling its
general matrix multiplication (GEMM) blocks with linear constraints and its ReLU activations using binary variables and
linear constraints, as detailed in prior works (Tjeng et al., 2019; Bunel et al., 2018).

Bound Clamp The bound clamping layer is designed to enforce minimum and maximum generation limits (9¢). It can be
expressed as the composition of two ReLLU layers, effectively clamping the input between specified maximum and minimum
power generation limits:

p' = clamp(p, p, p) = min(max(p, p), p) (11a)
= —ReLU(~ReLU(p — p) — p + D) + b. (11b)

The clamp operator clips all entries in p into the range [P, p]. It can be formulated as linear constraints and binary decision

variables, leveraging the ReLU MILP representation from the aforementioned studies (Tjeng et al., 2019; Bunel et al., 2018).

Hypersimplex Projection The Hypersimplex Projection takes as input p € H = {p € RP lp < p < p}, and outputs
p € S, where S is the hypersimplex

S:{pERBmSpgﬁ,eTp:er}.

The input vector p must satisfy minimum and maximum generation limits (9¢), and the output vector p jointly satisfies
minimum/maximum generation limits (9¢) and power balance constraint (9b). The projection adjusts all entries in p
uniformly until either the total power generation matches the total demand, or the entries in p reach their bounds. Formally,
p is obtained as the unique solution of the system of equations

p = clamp(p +6,p, p). (13a)

Tp=e'd, (13b)

e

™

where § € R is a scalar. Note that (13) can reduced to a uni-dimensional problem in J by substituting out p. Namely, letting
f(8) = e clamp(p’ + 6, P, p), (13b) reduces to f(5) = e’ d. The uniqueness of the solution to (13) then follows from

the fact that f is monotonically increasing. § can be effectively computed using binary search (see Algorithm 2). It can be
easily parallelized in PyTorch (Paszke et al., 2019) with its subgradient computed using auto-differentiation.

The Hypersimplex projection layer is then represented as an MILP by encoding the system of equations (13). Namely,
constraint (13a) is encoded as an MILP following Equation (11), and constraint (13b) is linear. The compact optimality

12

Compact Optimality Verification for Optimization Proxies

Algorithm 2 Hypersimplex Projection via Binary Search

Input: Initial dispatch p, Dispatch bounds p, p, demand d, numerical tolerance €
Initialize 6 = max(p — p),d = —max(p —p),d = (6 —0)/2, D =e'd
while |§ — 6| > ecor |f(6) — D| > edo
if f(0) > D then
=96
else
=)
end if
§=(8—0)/2
end while
return ¢

verification problem for DC-OPF proxies thus reads:

max cTp+ MieTeh — ¢Tp— MheTéh

de
s.t. P =NNp(d),
f=Hp-ad),
" = max{f - f,—f - f,0},
(11), (13),
(9b) — (9e),

peRE peRE pecRE " e RY & e RY

(14a)

(14b)
(14c)
(14d)
(14e)
(14f)
(14g)

Constraint (14b) encodes the inference of the neural network, which could be linearized by introducing binary decision
variables (Tjeng et al., 2019; Bunel et al., 2018). Constraint (14c) and (14d) compute the thermal violation of the predicted
dispatch. Before solving formulation (14), all clamp and max operators are linearized by introducing binary decision

variables, which leads to a Mixed Integer Linear Program (MILP).

A.2. Detailed Modeling of Bilevel Formulation

The Bilevel formulation of DC-OPF proxy reads:

glajf ch—FMlheTfth _ cTﬁ— MlheTéth
€

s.t. (14b) — (14d), (14g)
(11), (13),
p, " = DC-OPF(d)

(15a)
(15b)
(15¢)
(15d)

where lower level DC-OPF(d) outputs the optimal dispatch and thermal violations by solving formulation (9) with input d.
To enhance the tractability, the work in (Nellikkath & Chatzivasileiadis, 2021) reformulates DC-OPF(d) with KKT

conditions:

13

Compact Optimality Verification for Optimization Proxies

(9b) = (9) (16a)
eA+H'v-H'v+pu—fi=c (16b)
v+o+¢=M"e (16¢)

My i, v, 7,¢ >0 (led)

v (Hp+&"+ f— Hd) =0 (16¢)
7' (~Hp+ "+ f+ Hd) =0 (16f)
p'(p-p)=0 (16g)

p'p-p)=0 (16h)

("¢ =0 (16i)

Constraints (9b) - (9f) model the primal feasibility. Constraints (16b) - (16d) model the dual feasibility, where i and p
denote the dual variables for the upper and lower bounds in Constraint (9¢), respectively. The v, 7 are the dual variables
for the upper and lower thermal limits in Constraints (9d) and (9c¢), respectively. A denotes the dual variable for the power
balance constraint (9b). ¢ denotes the dual variable for the non-negativity of thermal violations. Constraints (16e)-(16i)
model the complementary slackness, which can be reformulated as an MILP using the standard big-M formulation. Note
that valid bounds on all primal variables can be derived from the primal formulation. Dual variables v, , are naturally
bounded by M™. For the remaining dual variables, a large M value is selected.

Finally, the reformulated Bilevel formulation reads

glea;((cTp+ MheTeh —cTp— MtheTgth (17a)
s.t. (14b) — (144d), (149) (17b)
(96) — (9f) (17d)

(16b) — (167) (17e)

A.3. Optimization-based Bound Tightening

The MILP formulations introduce a significant number of binary decision variables. The convergence of these MILP
problems becomes notably challenging due to the poor quality of their linear relaxations. Consequently, tightening the
bounds of the input variables for activation functions is crucial to enhancing the relaxations and improving the overall
solution process. This paper uses Optimization-Based Bound Tightening (OBBT) to refine variable bounds and solution
efficiency (Caprara & Locatelli, 2010; Zhao et al., 2024).

Consider a neural network with an input vector 20 = xo € R™. In this network, n; represents the number of neurons in
the i-th layer. The network consists of L layers, where each layer i has an associated weight matrix W () € R *"i-1 and a
bias vector b(Y) € R™, fori € {1,...,L}. Let y® denote the pre-activation vector and (*) the post-activation vector at
layer i, with £(*) = o (y(*)) where o could be any activation function. Define f to be the desired property for any input
) e .

The optimization problem is as follows:

min f(y")

st y® = WOz 4 p@) vie{l,...,L}, (18)
) = o(y®), Vie{l,...,L—1},
z® €.

To tighten variable bounds, OBBT solves two optimization subproblems for each neuron to determine its maximum and

minimum bounds (Caprara & Locatelli, 2010; Zhao et al., 2024). Specifically, let yl(f) denote the k-th neuron at layer ¢

14

Compact Optimality Verification for Optimization Proxies

subject to network constraints. Given 0 < ¢t < L, the problem states:

max/min y,(:)

sty =whgli= 40, vie{l,... t}
2 = g(y®), Vie{l,...,t—1},
20 e,)
Y@ <y <), Vie{1,...,t},
mfi)gm(i)gmﬁf) Vie{l,...,t—1}.

A.4. More results on optimality verification of DCOPF proxies

Table 7 reports the final objective and solving time on small power systems, where Compact formulation can solve all
instances to optimality within 1 minute.

Table 7. Comparisons of PGA-VFA and Compact formulation on final objective and solving time on small power systems. T2PGA reports
the time that the compact formulation takes to reach the same primal objective of the proposed PGA-VFA. Compact formulation is very
effective at finding optimal solutions for small systems i.e., it solves all instances to optimality within 1 minute.

PGA-VFA Compact

System %u ObjVal ($) Time(s) ObjVal($) Time(s) T2PGA (s)
57 0 127.36 2.17 141.36 0.31 0.10
1 137.35 1.44 142.29 0.59 0.11

2 143.70 4.31 151.54 0.54 0.12

5 171.53 3.35 179.12 1.10 1.10

10 175.89 2.28 432.20 1.21 1.10

20 1527.72 5.59 3837.33 0.54 0.30

118 0 752.29 1.43 6216.97 1.20 0.74
1 4615.37 6.96 7917.56 2.07 1.17

2 4615.37 7.61 9607.68 3.08 2.00

5 4615.37 4.44 14329.88 12.08 3.00

10 5448.69 6.26 68556.32 14.14 6.67

20 6048.77 9.04 69109.46 59.41 17.27

B. More information of Knapsack

Recall the knapsack problem formulation

max va (20a)

Y
st. wly <, (20b)
y € {0,1}%. (20c)

B.1. Detailed Modeling of Compact Formulation

Figure 7 illustrates the Knapsack proxies. First, a fully-connected neural network with ReLU activation predicts a score for
each item, where a higher score indicating higher desirability of the item. Then, a feasibility repair step sorts the items by
the predicted score in a descending order and adds items to the knapsack following the order until reaching the knapsack’s
capacity limit, addressing constraint (20b). The MLP is trained disjointly with the feasibility repair steps in the training
due to their non-differentiability. The neural network is trained using supervised learning to minimize the distances of the
predicted scores to the ground truth: (s, s*) = ||s — s*||2. The ground truth score is computed heuristically: s* = =,
where v denotes the value of the items and w denotes the weight of the items. Note that the score is exactly the solution of
the continuous relaxation of Knapsack problems.

15

Compact Optimality Verification for Optimization Proxies

Sk 2 Sk41
€L — — — ee0e — i» S ’g
| J
Y
NNQ Feasibility Repair

Figure 7. Optimization Proxies for Knapsack

The following part focuses on formulating the sorting and item selection operators into MILP.

Sorting Denote the predicted score s from the neural network, the sorting operation sorts the item id with the score
descendingly. The sorting operation is modeled by introducing a permutation matrix:

s = ps, (21a)

8 > 8pq1,Vk € [K] (21b)
K

> bk =1,Vk € [K], (2lc)
K

> pik =1, € [K], (21d)
k

p € {0, 1} %K (21e)

s e RN 5 eRE. (21f)

The s denotes the score after the sortation. The p denotes the permutation matrix to convert predicted score s to sorted
score 8. Constraint (21c)-(21e) define the permutation matrix and constraint (21a) and (21b) ensure the perturbation matrix
encodes the orders of sorting the score descendingly.

Item Selection After obtaining the permutation matrix, the item selection operator could be modeled as:

Yy = py, (22a)

w = pw, (22b)

w'y <1, (22¢)

Ji > Yri1, Yk € [K] (22d)
k

D b > (1—gx)(1+1),VEk € [K] (22¢)
=1

§€{0,1}%,g € {0,1}¥. (22f)

Constraint (22a) and (22b) permutate the item action and weights. Constraint (22¢) ensures the total weight of the added
items is less than the knapsack capacity. Constraint (22d) ensures items are added sequentially following the sorted scores
Constraint (22¢) ensures that the addition of items continues only if adding another item does not exceed the knapsack’s
capacity. Finally, following the reformulation of the operations and Formulation (5), the compact optimality verification for
Knapsack proxies could be written as a MILP and readily be solved by solvers like Gurobi (Gurobi Optimization, LLC,
2023).

16

Compact Optimality Verification for Optimization Proxies

Finally, the optimality verification formulation reads:

T T
vy—v
afoier YT
s.t. s =NNg(x),
(21), (22),

(200), (20¢)

(23a)

(23b)
(23c¢)
(23d)

The objective function (23a), constraints (23b) and (23c) are linearized by introducing binary decision variables, which

gives a MILP.

17

