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ABSTRACT

We address the problem of solving strongly convex and smooth minimization
problems using stochastic gradient descent (SGD) algorithm with a constant step
size. Previous works suggested to combine the Polyak-Ruppert averaging proce-
dure with the Richardson-Romberg extrapolation to reduce the asymptotic bias of
SGD at the expense of a mild increase of the variance. We significantly extend pre-
vious results by providing an expansion of the mean-squared error of the resulting
estimator with respect to the number of iterations n. We show that the root mean-
squared error can be decomposed into the sum of two terms: a leading one of order
O(n−1/2) with explicit dependence on a minimax-optimal asymptotic covariance
matrix, and a second-order term of order O(n−3/4), where the power 3/4 is best
known. We also extend this result to the higher-order moment bounds. Our anal-
ysis relies on the properties of the SGD iterates viewed as a time-homogeneous
Markov chain. In particular, we establish that this chain is geometrically ergodic
with respect to a suitably defined weighted Wasserstein semimetric.

1 INTRODUCTION

Stochastic gradient methods are a fundamental approach for solving a wide range of optimization
problems, with a broad range of applications including generative modeling (Goodfellow et al.,
2014; 2016), empirical risk minimization (Van der Vaart, 2000), and reinforcement learning (Sutton
& Barto, 2018; Schulman et al., 2015; Mnih et al., 2015). These methods solve the stochastic
minimization problem

min
θ∈Rd

f(θ) , ∇f(θ) = Eξ∼Pξ
[∇F (θ, ξ)] , (1)

where ξ is a random variable with distribution Pξ, and the gradient ∇f of the function f can be
accessed only through (unbiased) noisy estimates ∇F . Throughout this paper, we consider strongly
convex minimization problems admitting a unique solution θ⋆. Arguably the simplest and one of the
most widely used approaches to solve (1) is the stochastic gradient descent (SGD). This algorithm
constructs the sequence of updates

θk+1 = θk − γk+1∇F (θk, ξk+1) , θ0 ∈ Rd , (2)

where {γk}k∈N are step sizes, either diminishing or constant, and {ξk}k∈N is an i.i.d. sequence
with distribution Pξ. The algorithm (2) can be viewed as a special instance of the Robbins-Monro
procedure (Robbins & Monro, 1951). While the SGD algorithm remains one of the core algorithms
in statistical inference, its performance can be enhanced by means of additional techniques that use
e.g., momentum (Qian, 1999), averaging (Ruppert, 1988; Polyak & Juditsky, 1992), or variance
reduction (Defazio et al., 2014; Nguyen et al., 2017). In particular, the celebrated Polyak-Ruppert
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algorithm proceeds with a trajectory-wise averaging of the estimates

θ̄n0,n =
1

n

n+n0∑
k=n0+1

θk (3)

for some n0 > 0. It is known (Polyak & Juditsky, 1992; Fort, 2015), that under appropriate assump-
tions on f and γk, the sequence of estimates {θ̄n0,n}n∈N is asymptotically normal, that is,

√
n(θ̄n0,n − θ⋆)

d→ N(0,Σ∞) , n→ ∞ (4)

where d→ denotes the convergence in distribution and N(0,Σ∞) denotes the zero-mean Gaussian
distribution with covariance matrix Σ∞, which is asymptotically optimal, see Fort (2015) for a
discussion. On the other hand, quantitative counterparts of (4) rely on the root mean squared error
(root-MSE) bounds of the form

E1/2[∥θ̄n0,n − θ⋆∥2] ≤
√
TrΣ∞

n1/2
+
C(f, d)

n1/2+δ
+R(∥θ0 − θ⋆∥, n) . (5)

Here R(∥θ0 − θ⋆∥, n) is a remainder term which reflects the dependence upon initial condition,
C(f, d) is some instance-dependent constant and δ > 0. There are many studies establishing (5)
for Polyak-Ruppert averaged SGD under various model assumptions, including Moulines & Bach
(2011); Gadat & Panloup (2023). In particular, Li et al. (2022) derived the bound (5) with the
rate δ = 1/4, which is the best known among first-order methods, but their results apply to a
modified two-timescale algorithm with multiple restarts (Root-SGD). In our work, we show that the
same upper bound is achieved by a simple modification of the estimate θ̄n0,n based on Richardson-
Romberg extrapolation. The main contributions of the current paper are as follows:

• We show that a version of SGD algorithm with constant step size, Polyak-Ruppert averag-
ing, and Richardson-Romberg extrapolation lead to the root-MSE bound (5) with δ = 1/4
when applied to strongly convex minimization problems. We obtain this result by leverag-
ing the analysis of iterates of the constant step-size SGD as a Markov chain. It is important
to note that this result is obtained for a fixed step size γ of order 1/

√
n with n being a total

number of iterations. This result requires that the number of samples n is known a priori to
optimize the step size γ.

• We generalize the above result and obtain high-order moment bounds on the error. Select-
ing the constant step size γ = 1/

√
n, we obtain for p ≥ 2 bounds of the form

E1/p[∥θ̄(RR)
n − θ⋆∥p] ≤ c0p

1/2
√
TrΣ∞

n1/2
+
C(f, d, p)

n3/4
+R(∥θ0 − θ⋆∥, n, p) , (6)

where c0 is a universal constant, and θ̄
(RR)
n is a counterpart of θ̄n0,n when using

Richardson-Romberg extrapolation, see related definitions in Section 4. Our proof is based
on a novel version of the Rosenthal inequality, which might be of independent interest.

The rest of the paper is organized as follows. We provide a literature review on the non-asymptotic
analysis of the SGD algorithm and its modifications, with an emphasis on constant step-size SGD
and the Richardson-Romberg procedure in Section 2. Next, we analyze constant step-size SGD by
treating it as a Markov chain and study the properties of the Polyak-Ruppert averaged estimator (3)
in Section 3. In Section 4, we analyze the properties of Richardson-Romberg extrapolation applied
to Polyak-Ruppert averaged SGD and derive bounds for the second-order and higher-order moments
of the error.

Notations and definitions. For θ1, . . . , θk being the iterates of stochastic first-order method, we
denote Fk = σ(θ0, θ1, . . . , θk). Let (Z, dZ) be a complete separable metric space equipped with its
Borel σ-algebra Z . We call a function c : Z × Z → R+ a distance-like function, if it is symmetric,
lower semi-continuous and c(x, y) = 0 if and only if x = y, and there exists q ∈ N such that
dqZ(x, y) ≤ c(x, y). We denote by C (ξ, ξ′) the set of couplings of probability measures ξ and ξ′,
that is, a set of probability measures on (Z2,Z⊗2), such that for any Π ∈ C (ξ, ξ′) and any A ∈ Z it
holds Π(Z× A) = ξ′(A) and Π(A× Z) = ξ(A). We define the Wasserstein semimetric associated
to the distance-like function c(·, ·), as

Wc(ξ, ξ
′) = inf

Π∈C (ξ,ξ′)

∫
Z×Z

c(z, z′)Π(dz,dz′) . (7)
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Note that Wc(ξ, ξ
′) is not necessarily a distance, as it may fail to satisfy the triangle inequal-

ity. In the particular case of Z = Rd, and cp(x, y) = ∥x − y∥p, x, y ∈ Rd, p ≥ 1, we
use a short notation for Wp(ξ, ξ

′) defined by Wp
p(ξ, ξ

′) = Wcp(ξ, ξ
′). For x, y ∈ Rd de-

note by x ⊗ y the tensor product of x and y and by x⊗k the k-th tensor power of x. In ad-
dition, for a function f : Rd → R we denote by ∇kf(θ) the k-th differential of f , that is
∇kf(θ)i1,··· ,ik = ∂kf∏k

j=1 ∂θij
. For any tensor M ∈ (Rd)⊗(k−1), we define ∇kf(θ)M ∈ Rd by

the relation (∇kf(θ)M)l =
∑

i1,...,ik−1
Mi1,··· ,ik−1

∇kf(θ)i1,··· ,ik−1,l, where l ∈ {1, . . . , d}. Also

for any tensor M ∈ (Rd)⊗(k−1) we define ∥M∥ = sup
xl ̸=0,l∈{1,...,k}

∑
i1,...,ik

Mi1,...,ik
x1
i1

·...·xk
ik

∥x1∥·...·∥xk∥ . For

two sequences {an}n∈N and {bn}n∈N we write an ≲ bn, if there is an absolute constant c > 0,
such that an ≤ cbn for any n ∈ N. Throughout this paper we use c0 for an absolute constant, which
values may vary from line to line.

2 LITERATURE REVIEW

Constant step-size SGD has been widely studied in the literature. Its bias and MSE were studied
for strongly convex problems in (Dieuleveut et al., 2020), for both the last iterate and the Polyak-
Ruppert averaging. Yu et al. (2021) studied the bias and the asymptotic normality of the last iterate
of SGD for non-convex problems under the Polyak-Lojasiewicz condition and its generalizations.
Vlatakis-Gkaragkounis et al. (2024) considered constant step-size methods for solving variational
inequalities, focusing on characterizing the bias and establishing asymptotic normality. Merad &
Gaı̈ffas (2023) studied the convergence of constant step-size SGD iterates in Wp distance, p ≥ 1,
and provided concentration bounds for both θn and θ̄n0,n. Moulines & Bach (2011) derived the
root-MSE bound (5) with δ = 1/6 for the case of strongly convex functions f . Gadat & Panloup
(2023) derived an MSE counterpart to (5) of the form

E[∥θ̄n0,n − θ⋆∥2] ≤ TrΣ∞
n + C(f,d)

n1+β

with β = 1/4, translating to the root-MSE bound (5) with δ = 1/8. Li et al. (2022) suggested the
Root-SGD algorithm combining the ideas of the two-timescale stochastic approximation and multi-
ple restarts, establishing a counterpart of (5) with δ = 1/4. The recent series of papers (Huo et al.,
2023; Zhang & Xie, 2024; Zhang et al., 2024) investigated stochastic approximation algorithms with
both i.i.d. and Markovian data and constant step sizes. The authors proposed precise characteriza-
tion of the bias together with an MSE bounds after applying the Richardson-Romberg correction. At
the same time, these works only considered the 2-nd moment of the error and did not aim to identify
the leading term of the MSE bound, which aligns with the CLT covariance matrix Σ∞.

Richardson-Romberg (RR) extrapolation is a technique used to improve the accuracy of numerical
approximations (Hildebrand, 1987), such as those from numerical differentiation or integration. It
involves using approximations with different step sizes and then extrapolating to reduce the error,
typically by removing the leading term in the error expansion. The one-step RR extrapolation was
introduced to reduce the discretization error induced by an Euler scheme to simulate stochastic
differential equation in Talay & Tubaro (1990), and later generalized for non-smooth functions in
Bally & Talay (1996). This technique was extended using multistep discretizations in Pagès (2007).
RR extrapolation have been applied to Stochastic Gradient Descent (SGD) methods in Durmus et al.
(2016), Merad & Gaı̈ffas (2023) and Huo et al. (2024a), to improve convergence and reduce error
in optimization problems, particularly when dealing with noisy or high-variance gradient estimates.
Recent papers (Allmeier & Gast, 2024; Zhang & Xie, 2024; Huo et al., 2024a; Kwon et al., 2024)
consider applications of RR to different stochastic approximation problems with constant step-size,
including Q-learning, and single- and two-timescale stochastic approximation.

3 FINITE-TIME ANALYSIS OF THE SGD DYNAMICS FOR STRONGLY CONVEX
MINIMIZATION PROBLEMS

3.1 GEOMETRIC ERGODICITY OF SGD ITERATES

We consider the following assumption on the function f in the minimization problem (1).
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A1. The function f is continuously differentiable and µ-strongly convex on Rd, that is, there exists
a constant µ > 0, such that for any θ, θ′ ∈ Rd, it holds that

µ

2
∥θ − θ′∥2 ≤ f(θ)− f(θ′)− ⟨∇f(θ′), θ − θ′⟩ . (8)

A2. The function f is 4 times continuously differentiable and L2-smooth on Rd, that is, there is a
constant L2 ≥ 0, such that for any θ, θ′ ∈ Rd,

∥∇f(θ)−∇f(θ′)∥ ≤ L2 ∥θ − θ′∥ . (9)
Moreover, f has bounded 3-rd and 4-th derivatives, that is, there exist L3,L4 ≥ 0 such that

∥∇if(θ)∥ ≤ Li for i ∈ {3, 4} . (10)

We aim to solve the problem (1) using SGD with a constant step size, starting from initial distribution
ν. That is, for k ≥ 0 and a step size γ ≥ 0, we consider the following recurrent scheme

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ

(γ)
0 = θ0 ∼ ν , (11)

where {ξk}k∈N is a sequence satisfying the following condition.
A3 (p). {ξk}k∈N is a sequence of independent and identically distributed (i.i.d.) random variables
with distribution Pξ, such that ξi and θ0 are independent and for any θ ∈ Rd it holds that

Eξ∼Pξ
[∇F (θ, ξ)] = ∇f(θ) .

Moreover, there exists τp, such that E1/p[∥∇F (θ⋆, ξ)∥p] ≤ τp, and for any q = 2, . . . , p it holds
with some L1 > 0 that for any θ1, θ2 ∈ Rd,

Lq−1
1 ∥θ1 − θ2∥q−2⟨∇f(θ1)−∇f(θ2), θ1 − θ2⟩ ≥ Eξ∼Pξ

[∥∇F (θ1, ξ)−∇F (θ2, ξ)∥q] . (12)

Assumption A3(p) generalizes the well-known L1-co-coercivity assumption, see Dieuleveut et al.
(2020). A sufficient condition which allows for A3(p) is to assume that F (θ, ξ) is Pξ-a.s. convex
with respect to θ ∈ Rd. For ease of notation, we set

L = max(L1,L2,L3,L4) , (13)
and trace only dependence upon L in our subsequent bounds. In this paper we focus on the conver-
gence to θ⋆ of the Polyak-Ruppert averaging estimator defined for any n ≥ 0,

θ̄(γ)n =
1

n

2n∑
k=n+1

θ
(γ)
k . (14)

Many previous studies instead consider ϑ̄(γ)n = 1
n−n0

∑n
k=n0+1 θ

(γ)
k rather than θ̄(γ)n , where n ≥

n0 + 1 and n0 denotes a burn-in period. However, when the sample size n is sufficiently large, the
choice of the optimal burn-in size n0 affects the leading terms in the MSE bound of θ̄(γ)n −θ⋆ only by
a constant factor. Therefore, we focus on (14), or equivalently, use 2n observations and set n0 = n.

Properties of {θ(γ)k }k∈N viewed as a Markov chain. Under assumptions A1, A2 and A3(2),
the sequence {θ(γ)k }k∈N defined by the relation (11) is a time-homogeneous Markov chain with the
Markov kernel

Qγ(θ,A) =

∫
Rd

1A(θ − γ∇F (θ, z))Pξ(dz) , θ ∈ Rd , A ∈ B(Rd) , (15)

where B(Rd) is a Borel σ-field of Rd. In Dieuleveut et al. (2020) it has been established that, under
the stated assumptions, Qγ admits a unique invariant distribution πγ , if γ is small enough. Previous
studies, such as Dieuleveut et al. (2020) or Merad & Gaı̈ffas (2023), studied the convergence of
the distributions of {θ(γ)k }k∈N to πγ in the p-Wasserstein distance Wp, p ≥ 1, associated with
the Euclidean distance in Rd. Our main results require to switch to the non-standard distance-like
function, which is defined under A1 and A3(2) as follows:

c(θ, θ′) = ∥θ − θ′∥

(
∥θ − θ∗∥ + ∥θ′ − θ∗∥ +

2
√
2τ2

√
γ

√
µ

)
, θ, θ⋆ ∈ Rd . (16)

Here the constants τ2 and µ are given in A3(2) and A1, respectively. This distance-like function is
designed to analyze {θ(γ)k }k∈N under A1 and A3(2). In particular, it depends on the step size γ and
θ⋆. Our first main result establishes geometric ergodicity of the Markov kernel Qγ with respect to
the distance-like function c from (16).
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Proposition 1. Assume A1, A2, and A3(2). Then for any γ ∈ (0; 1/(2 L)], the Markov kernel Qγ

defined in (15) admits a unique invariant distribution πγ . Moreover, Qγ is geometrically ergodic
with respect to the cost function c, that is, for any initial distribution ν on Rd and k ∈ N,

Wc(νQ
k
γ , πγ) ≤ 4(1/2)k/m(γ)Wc(ν, πγ) , (17)

where m(γ) = ⌈2 log 4/(γµ)⌉.

Discussion. The proof of Proposition 1 is provided in Appendix A.1. Properties of the invariant
distribution πγ were previously studied in literature, see e.g. Dieuleveut et al. (2020). It particular,
it is known (Dieuleveut et al., 2020, Lemma 13), that the 2-nd moment of πγ scales linearly with γ:∫

Rd

∥θ − θ⋆∥2πγ(dθ) ≲
γτ2
µ

. (18)

This bound yields, using Lyapunov’s inequality, that∫
Rd×Rd

∥θ − θ′∥πγ(dθ)πγ(dθ′) ≲
√
γτ2
µ

.

At the same time, expectation of the cost function c(θ, θ′) scales linearly with the step size γ:∫
Rd

c(θ, θ′)πγ(dθ)πγ(dθ
′) ≲

γτ2
µ

. (19)

The property (19) is crucial to obtain tighter (with respect to the step size γ) error bounds for the
Richardson-Romberg estimator, as well as in the Rosenthal inequality for additive functional of
{θ(γ)k }k∈N derived in Proposition 8. Precisely, the additional

√
γ factor obtained in (19) would

allow us to obtain sharper bounds on the remainder terms in Theorem 6. Next, we analyze the
error θ(γ)∞ − θ⋆ where θ(γ)∞ is distributed according to the stationary distribution πγ . To this end, we
consider the following condition.
C1 (p). There exist constants Dlast,p,Cstep,p ≥ 2 depending only on p, such that for any step size
γ ∈ (0, 1/(LCstep,p)], and any initial distribution ν it holds that

E2/p
ν

[
∥θ(γ)k − θ⋆∥p

]
≤ (1− γµ)kE2/p

ν

[
∥θ0 − θ⋆∥p

]
+ Dlast,pγτ

2
p/µ . (20)

Moreover, for the stationary distribution πγ it holds that

E2/p
πγ

[
∥θ(γ)∞ − θ⋆∥p

]
≤ Dlast,pγτ

2
p/µ . (21)

It is important to note that C1 is not independent from the preceding assumptions A1 - A3(p). In
particular, Dieuleveut et al. (2020, Lemma 13) establishes that, under A1,A2, and A3(p), the bound
(21) holds for γ ∈ (0, 1/(LCstep,p)] with some constants Dlast,p and Cstep,p depending only upon
p. Unfortunately, it is difficult to obtain precise dependence of Cstep,p and Dlast,p on p, and to obtain
(21) with precise numerical constants. Existing studies (Gadat & Panloup, 2023; Merad & Gaı̈ffas,
2023) either use different set of assumptions or do not explicitly characterize their dependence on
p. That is why we prefer to state C1(p) as a separate assumption. In the subsequent bounds we use
C1(p) together with A1,A2, and A3(p), tracking the dependence of our bounds upon Cstep,p and
Dlast,p. We leave the derivation of C1(p) with precise constants Dlast,p,Cstep,p as an interesting
direction for future research.

Under assumption C1, we control the fluctuations of θ(γ)k around θ⋆. However, unless f is quadratic,
it is known that

∫
Rd θπγ(dθ) ̸= θ⋆. In the next proposition, we quantify this bias under under weaker

assumptions than those in Dieuleveut et al. (2020, Theorem 4).
Proposition 2. Assume A1, A2, A3(6), and C1(6). Then there exist such ∆1 ∈ Rd,∆2 ∈ Rd×d, not
depending upon γ, that for any γ ∈ (0, 1/(LCstep,6)], it holds

θ̄γ :=

∫
Rd

θπγ(dθ) = θ⋆ + γ∆1 +B1γ
3/2 , (22)

Σ̄γ :=

∫
Rd

(θ − θ⋆)⊗2πγ(dθ) = γ∆2 +B2γ
3/2 . (23)
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Here B1 ∈ Rd and B2 ∈ Rd×d satisfy ∥B1∥ ≤ L
µC1 +

LD
3/2
last,6τ

3
6

2µ5/2 , ∥B2∥ ≤ C1, where C1 defined in
(52) is a constant independent of γ. Moreover, for any initial distribution ν on Rd, it holds that

Eν [θ̄
(γ)
n ] = θ⋆ + γ∆1 +B1γ

3/2 +R1(θ0 − θ⋆, γ, n) , (24)

where
∥R1(θ0 − θ⋆, γ, n)∥ ≲ e−γµ(n+1)/2

nγµ

(
E
1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

)
. (25)

The proof is provided in Appendix A. Results of this type are known in the literature for stochastic
approximation algorithms, see e.g. Huo et al. (2024b) and Allmeier & Gast (2024). The additive
term ∆1 vanishes when the function f is quadratic, see (Moulines & Bach, 2011).

3.2 ANALYSIS OF THE POLYAK-RUPPERT AVERAGED ESTIMATOR θ̄
(γ)
n .

In this section, we analyze the finite-sample properties of the estimator θ̄(γ)n from (14). The analysis
is based on techniques previously used in Moulines & Bach (2011), as well as in the analysis of
the Polyak-Ruppert averaged LSA (Linear Stochastic Approximation) algorithms, see Mou et al.
(2020); Durmus et al. (2024). Below we derive the key representation for the error θ̄(γ)n − θ⋆,
following Moulines & Bach (2011). Define the k-th step noise level at the point θ ∈ Rd by:

εk(θ) = ∇F (θ, ξk)−∇f(θ) , (26)

and εk+1(θ
(γ)
k ) is a martingale-difference sequence w.r.t. (Fk)k∈N. Then the recurrence (11) takes

form
θ
(γ)
k+1 − θ⋆ = θ

(γ)
k − θ⋆ − γ

(
∇f(θ(γ)k ) + εk+1(θ

(γ)
k )
)
. (27)

We set
η(θ) = ∇f(θ)−H⋆(θ − θ⋆) , where H⋆ = ∇2f(θ⋆) ∈ Rd×d . (28)

We obtain from (27) with simple algebra that

H⋆(θ
(γ)
k − θ⋆) = γ−1(θ

(γ)
k − θ

(γ)
k+1)− εk+1(θ

(γ)
k )− η(θ

(γ)
k ) . (29)

Taking average of (29) for k = n+ 1 to 2n, we arrive at the final representation:

H⋆(θ̄(γ)n − θ⋆) =
θ
(γ)
n+1 − θ⋆

γn
−
θ
(γ)
2n+1 − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θ
(γ)
k )− 1

n

2n∑
k=n+1

η(θ
(γ)
k ) . (30)

We further introduce the covariance matrix of εk(θ⋆) measured at the optimal point θ⋆, that is,

Σ⋆
ε = Eξ∼Pξ

[∇F (θ⋆, ξ)⊗2] . (31)

Note that Σ⋆
ε does not depend on the step size γ and is related to the asymptotically optimal co-

variance matrix of the Polyak-Ruppert averaged iterates θ̄(γ)n , see Fort (2015). Precisely, under
assumptions A1-A3, the asymptotic covariance matrix Σ∞ from (4) is given by

Σ∞ = {H⋆}−1Σ⋆
ε{H

⋆}−1 . (32)

We state our subsequent results in terms of H⋆(θ̄
(γ)
n − θ⋆) and its Richardson-Romberg adjusted

counterpart. One can switch to the corresponding results for θ̄(γ)n − θ⋆ at the price of the factor
∥{H⋆}−1∥, which affects the non-leading terms. In our first result below, we establish the root MSE
bound on the error of the Polyak-Ruppert averaged estimator (14).
Theorem 3. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0, 1/(LCstep,6)], n ∈ N, and
initial distribution ν on Rd, the sequence of Polyak-Ruppert estimates (14) satisfies

E1/2
ν [∥H⋆(θ̄(γ)n − θ⋆)∥2] ≤

√
TrΣ⋆

ε√
n

+
C2

γ1/2n
+ C3γ +

C4γ
1/2

n1/2
+R2(n, γ, ∥θ0 − θ⋆∥) , (33)

where the constants C2 to C4 are defined in Appendix B (see equation (66)), and

R2(n, γ, ∥θ0 − θ⋆∥) = c0(1− γµ)(n+1)/2 L

γµn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+
c0 L(1− γµ)n+1

2nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
,

where c0 is an absolute (numerical) constant.
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The version of Theorem 3 with explicit constants together with the proof is provided in Appendix B,
see Theorem 15. Note that the result of Theorem 3 is valid for arbitrary γ ∈ (0, 1/(LCstep,6)]. At
the same time, this bound can be optimized over step size of the form γ = n−β , β ∈ (0, 1).

Corollary 4. Under the assumptions of Theorem 3, provided that n ≥ (LCstep,6)
3/2, it holds setting

γ = n−2/3 that

E1/2
ν [∥H⋆(θ̄(γ)n − θ⋆)∥2] ≤

√
TrΣ⋆

ε

n1/2
+

C(L, µ)

n2/3
+R2(n, 1/n

2/3, ∥θ0 − θ⋆∥) , (34)

where the expression for C(L, µ) can be traced from Appendix B, eq. (66).

Corollary 4 implies that, if n is known in advance and γ = n−2/3, then θ̄
(γ)
n satisfies (5) with

δ = 1/6. A closer inspection of the sum (30) reveals that Eπγ
[η(θγk)] is of order γ, and we can not

expect to provide a better bound for the term 1
n

∑2n
k=n+1 η(θ

γ
k) compared to the one coming from

Minkowski’s inequality. Thus, this is the bias of the stationary distribution, which does not allows
us to improve scaling of the second-order term w.r.t. the sample size n.

In case of deterministic problems εk(θ) = 0 for any k and θ, and C1(p) is satisfied for any p ≥ 2
with Dlast,p = 0. In such a setting, Σ⋆

ε = 0, and the remainder terms are proportional to Dlast,p

with p = 2, 4, or 6, and also vanishes. Therefore, Theorem 3 provides exponential convergence
bounds, which are embedded in the remainder term. Previous studies in (Moulines & Bach, 2011)
provides the bound of the same order O(n−2/3) for the second-order term of the root-MSE bound of
SGD algorithm with Polyak-Ruppert averaging. This rate is known to be suboptimal for first-order
methods. The recent work by Li et al. (2022) shows that the best known second-order error term
in the bound (34) is of order O

(
n−3/4

)
and can be achieved by the Root-SGD algorithm. In the

next section we mirror this bound using the constant step-size SGD algorithm combined with the
Richardson-Romberg extrapolation technique.

4 RICHARDSON-ROMBERG EXTRAPOLATION

Our analysis presented in Theorem 3 was based on the summation by parts formula (30) and Taylor
expansion of the gradient ∇f(θ) in the neighborhood of θ⋆, yielding the remainder quantity η(θ). It
is important to notice that ∫

Rd

η(θ)πγ(dθ) ̸= 0 , (35)

which prevents us from using larger step size γ in the optimized bound (34). In this section we show
that Richardson-Romberg extrapolation technique is sufficient to significantly reduce the bias asso-
ciated with η(θ) and improve the second-order term in the MSE bound (34). Instead of considering a
single SGD trajectory {θ(γ)k }k∈N, and then relying on the tail-averaged estimator θ̄(γ)n , we construct
two parallel chains based on the same sequence {ξk}k∈N:

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ̄(γ)n =

1

n

2n∑
k=n+1

θ
(γ)
k ,

θ
(2γ)
k+1 = θ

(2γ)
k − 2γ∇F (θ(2γ)k , ξk+1) , θ̄(2γ)n =

1

n

2n∑
k=n+1

θ
(2γ)
k .

(36)

Based on θ̄(γ)n and θ̄(2γ)n defined above, we construct the Richardson-Romberg estimator:

θ̄(RR)
n := 2θ̄(γ)n − θ̄(2γ)n . (37)

Note that it is possible to use different sources of randomness {ξk}k∈N and {ξ′k}k∈N when construct-
ing the sequences {θ(γ)k }k∈N and {θ(2γ)k }k∈N, respectively. At the same time, it is possible to show
the benefits of using the same sequence of random variables {ξk}k∈N in (36). Indeed, consider the
decomposition (30) and further expand the term η(θ) defined in (28) as

η(θ) = ψ(θ) +G(θ) ,

where we have defined the following vector-valued functions:

ψ(θ) =
1

2
∇3f(θ∗)(θ − θ⋆)⊗2 , G(θ) =

1

2

(∫ 1

0

t2∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 . (38)
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We further rewrite the decomposition (30) as

H⋆(θ̄(γ)n − θ⋆) =
θ
(γ)
n+1 − θ⋆

γn
−
θ
(γ)
2n+1 − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θ
⋆)

− 1

n

2n∑
k=n+1

{εk+1(θ
(γ)
k )− εk+1(θ

⋆)} − 1

n

2n∑
k=n+1

ψ(θ
(γ)
k )− 1

n

2n∑
k=n+1

G(θ
(γ)
k ) . (39)

In the decomposition (39), the linear term W = n−1
∑2n

k=n+1 εk+1(θ
⋆) does not depend upon γ.

Moreover, when setting the step size γ = c0n
−β with an appropriate β ∈ (0, 1), we can show that

the moments of all other terms except for W in the r.h.s. of (39) are small (see Theorem 9 for more
details). Hence, using the same sequence {ξk}k∈N of noise variables in (36) yields an estimator
θ̄
(RR)
n , such that its leading component of the variance still equals W . Hence, using the Richardson-

Romberg procedure increases only the second-order (w.r.t. n) components of the variance. At the
same time, using different random sequences {ξk}k∈N and {ξ′k}k∈N for θ̄(γ)n and θ̄(2γ)n increases the
leading component of the MSE by a constant factor. Hence, it is preferable to use synchronous noise
construction as in (36). Proposition 2 implies the following improved bound on the bias of θ̄(RR)

n :

Proposition 5. Assume A1, A2, A3(6), and C1(6). Then, for any γ ∈ (0, 1/(LCstep,6)], and any
initial distribution ν on Rd, it holds that

Eν [θ̄
(RR)
n ] = θ⋆ +B3γ

3/2 +R3(θ0 − θ⋆, γ, n) , (40)

where B3 ∈ Rd is a vector such that ∥B3∥ ≤ L
µC1 +

LD
3/2
last,6τ

3
6

2µ5/2 , and

∥R3(θ0 − θ⋆, γ, n)∥ ≲ e−γµ(n+1)/2

nγµ

(
E
1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

)
.

The proof of Proposition 5 is provided in Appendix A. This result is a simple consequence of Propo-
sition 5, since the linear in γ component of the bias γ∆1 from (24) cancels out when computing
θ̄
(RR)
n . We are now ready to formulate the main result for the Richardson-Romberg estimate θ̄(RR)

n .

Theorem 6. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0, 1/(LCstep,6) ∧ 2/(11 L)],
initial distribution ν and n ∈ N, the Richardson-Romberg estimator θ̄(RR)

n defined in (37) satisfies

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√

TrΣ⋆
ε

n1/2
+

CRR,1γ
1/2

n1/2
+

CRR,2

γ1/2n
+ CRR,3γ

3/2 +
CRR,4γ

n1/2

+R4(n, γ, ∥θ0 − θ⋆∥) ,

where the constants CRR,1 to CRR,4 are defined in Appendix C (equation (74)), and

R4(n, γ, ∥θ0 − θ⋆∥) = c0 L(1− γµ)(n+1)/2

nγµ

×
(
E1/2
ν [∥θ0 − θ⋆∥6] + E1/2

ν [∥θ0 − θ⋆∥4] + E1/2
ν [∥θ0 − θ⋆∥2] + Dlast,4γτ

2
4

µ

)
,

with c0 being an absolute constant.

Proof of Theorem 6 is provided in Appendix C. Similarly to Theorem 3, we can optimize the above
bound setting γ depending upon n.

Corollary 7. Under the assumptions of Theorem 6, provided that n ≥ L2(Cstep,6 ∨ 11/2)2, it holds
setting γ = n−1/2 that

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√
TrΣ⋆

ε

n1/2
+

C(L, µ)

n3/4
+R4(n, 1/

√
n, ∥θ0 − θ⋆∥) , (41)

where the expression for C(L, µ) can be traced from Appendix C, eq. (74).
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Discussion. Note that the result of Corollary 7 is a counterpart of (5) with δ = 1/4. This decay rate
of the second order term is the same as for the Root-SGD algorithm of Li et al. (2022). At the same
time, we highlight that the assumptions of Theorem 6 are stronger compared to the ones imposed
by Li et al. (2022). In particular, in A2 we require that f is 4 times continuously differentiable and
uniformly bounded. At the same time, Li et al. (2022) impose Lipschitz continuity of the Hessian of
f . Our proof of Theorem 6 essentially relies on the 4-th order Taylor expansion, and it is not clear, if
this assumption can be relaxed. We leave further investigations of this question for future research.

Now we generalize the previous result for the p-th moment bounds with p ≥ 2. The key technical
element of our proof for the p-th moment bound is the following statement, which can be viewed as
a version of Rosenthal’s inequality (Rosenthal, 1970; Pinelis, 1994).
Proposition 8. Let p ≥ 2 and assume A1, A2, A3(2p), and C1(2p). Then for ψ defined in (38) and
any γ ∈ (0, 1/(LCstep,2p)], it holds that

E1/p
πγ

[
∥
n−1∑
k=0

{ψ(θ(γ)k )− πγ(ψ)}∥p
]
≲

LDlast,2ppτ
2
2p
√
nγ

µ3/2
+

LDlast,2pτ2p
µ2

. (42)

Discussion. Proof of Proposition 8 is provided in Appendix D.1. It is important to acknowl-
edge that there are numerous Rosenthal-type inequalities for dependent sequences in the literature.
Proposition 8 can be viewed as an analogue to the classical Rosenthal inequality for strongly mixing
sequences, see (Rio, 2017, Theorem 6.3). However, it should be emphasized that the Markov chain
{θ(γ)k }k∈N is geometrically ergodic under the assumptions A1-A3(p) only in sense of the weighted
Wasserstein semi-metric Wc(ξ, ξ

′) with cost function c defined in (16). As a result, the sequence
{θ(γ)k }k∈N does not necessarily satisfy strong mixing conditions. Bounds similar to (42) have been
explored in (Durmus et al., 2023), but in Proposition 8 we obtain the bound with tighter dependence
of the right-hand side upon γ. Below we provide the p-th moment bound together with corollary for
the step size γ optimized w.r.t. n.
Theorem 9. Let p ≥ 2 and assume A1, A2, A3(3p), and C1(3p). Then for any step size γ ∈
(0, 1/(LCstep,3p) ∧ p/(4 · 3p L)], initial distribution ν, and n ∈ N, the estimator θ̄(RR)

n defined in
(37) satisfies

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

CRR,5

nγ1/2
+

CRR,6γ
1/2

n1/2
+ CRR,7γ

3/2

+
c2pτp
n1−1/p

+
CRR,8

n
+R5(n, γ, ∥θ0 − θ⋆∥) ,

(43)

where c1 = 60e and c2 = 60 are absolute constants from the Pinelis version of Rosenthal in-
equality (Pinelis, 1994, Theorem 4.1), and problem-specific constants CRR,5 to CRR,8 are defined in
Appendix D (equation (100)), and

R5(n, γ, ∥θ0−θ⋆∥) = (1−γµ)(n+1)/2Cf,p

(
E
1/p
ν

[
∥θ0−θ⋆∥p

]
+E

1/p
ν

[
∥θ0−θ⋆∥2p

]
+E

1/p
ν

[
∥θ0−θ⋆∥3p

])
.

Here constant Cf,p can be traced from Appendix D, eq. (101).

Corollary 10. Under the assumptions of Theorem 9, provided that n ≥ L2 (Cstep,3p ∨ 4 · 3p/p)2, it
holds setting γ = n−1/2 that

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

C(L, µ, p)

n3/4
+R5(n, 1/

√
n, ∥θ0 − θ⋆∥) , (44)

where the expression for C(L, µ, p) can be traced from Appendix D, eq. (100).

Discussion. Proof of Theorem 9 is provided in Appendix D. Note that the result above is a direct
generalization of Theorem 6, which reveals the same scaling of the step size γ with respect to
n. To the best of our knowledge, this is the first analysis of a first-order method, which provides
a p-th moment bound with p > 2 and the second-order term of order O

(
n−3/4

)
while keeping

the precise leading term related to the asymptotically optimal covariance matrix Σ⋆
ε . Such results

were previously obtained for the setting of linear stochastic approximation (LSA), see Mou et al.
(2020); Durmus et al. (2024). Thus, Richardson-Romberg extrapolation applied to the strongly
convex minimization problems allows to mimic the p-th moment error bounds that were previously
obtained in the LSA setting.
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Figure 1: Left picture: Richardson-Romberg experimental error with and without the leading term
1
n

∑2n
k=n+1 εk+1(θ

⋆). Right picture: same errors after rescaling by n and n3/2, respectively.

5 NUMERICAL RESULTS

In this section we illustrate numerically the scale of the second-order terms in equation (41) in
Corollary 7. We show that, for a particular minimization problem, setting γ = n−1/2, we achieve
the scaling of the second-order terms in root-MSE bounds of order O(n−3/4). We consider the
problem

min
θ∈R

f(θ) , f(θ) = θ2 + cos θ ,

with the stochastic gradient oracles ∇F (θ, ξ) given by ∇F (θ, ξ) = 2θ−sin θ+ξ, and ξ ∼ N (0, 1).
This example satisfies the assumptions A1, A2, A3(p) with any p ≥ 2. We select different sam-
ple sizes n, choose γ = 1/

√
n, and construct the associated estimates θ̄(γ)n and θ̄(2γ)n . Detailed

description of the experimental setting is provided in Appendix E. Then for each n we compute
the Richardson-Romberg estimates θ̄(RR)

n from (36) alongside with its versions without the leading
term in n, i.e. θ̄(RR)

n + n−1
∑2n

k=n+1 εk+1(θ
⋆). We provide first the plot for ∥θ̄(RR)

n − θ⋆∥2 and

∥θ̄(RR)
n +n−1

∑2n
k=n+1 εk+1(θ

⋆)− θ⋆∥2, averaged over M = 320 parallel runs, in Figure 1. On the
same figure we also provide the plots for rescaled errors

n∥θ̄(RR)
n − θ⋆∥2 and n3/2∥θ̄(RR)

n − θ⋆ + n−1
∑2n

k=n+1
εk+1(θ

⋆)∥2 ,

also averaged over M parallel runs. The corresponding plot indicates that the proper scaling of the
squared norm of the remainder part is n−3/2, that is, the corresponding term in root-MSE bound for
E
1/2
ν [∥θ̄(RR)

n − θ⋆∥2] scales as O(n−3/4), as predicted by Corollary 7.

6 CONCLUSION

In this paper, we study the non-asymptotic error bounds for the Richardson-Romberg estimator built
upon the Polyak-Ruppert averaged SGD iterates with a constant step size. In particular, under an
appropriate choice of step size, depending on the total number of iterations n, the corresponding
root-MSE bound admits both a sharp leading term, which aligns with the minimax-optimal co-
variance matrix, and a second-order term of order O(n−3/4), which is the best known rate among
first-order methods. Future research directions include, firstly, generalizing the proposed algorithm
to the setting of dependent noise sequences {ξk}k∈N in the stochastic gradients (1). Another natural
question is to study the properties of θ̄(RR)

n under relaxed assumptions on f . In particular, it would be
interesting to remove additional smoothness assumptions on f (bounded 3-rd and 4-th derivatives),
and to relax the strong convexity condition A1. One more research direction is to quantify a relation
between the parameter δ in (5) and convergence rates in (4), following the approach suggested in
Shao & Zhang (2022).
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A PROOF OF PROPOSITION 1, PROPOSITION 2, AND PROPOSITION 5

Throughout this appendix we use c0 for an absolute constant, which values may vary from line to
line. In addition, when the upper index of θ(γ)k or θ(2γ)k is omitted, we assume the result applies to
iterations of θ(γ)k . The corresponding results for θ(2γ)k can be obtained by substituting 2γ instead
of γ. We provide some additional definitions related to the Markov kernels and kernel couplings,
particularly useful when considering convergence in Wasserstein semimetric. Detailed exposition
can be found in (Douc et al., 2018, Chapter 20).

Let Q(z,A) be a Markov kernel on (Z,Z). A Markov kernel K on (Z2,Z⊗2) is called a kernel
coupling of (Q,Q) (that is, of Q with itself), if for all (z, z′) ∈ Z2 and A ∈ Z , K((z, z′), A× Z) =
Q(z,A) and K((z, z′),Z× A) = Q(z′, A). If K is a kernel coupling of (Q,Q), then for all n ∈ N,
Kn is a kernel coupling of (Qn,Qn) and for any Π ∈ C (ξ, ξ′), ΠKn is a coupling of (ξQn, ξ′Qn).
Moreover, it holds that

Wc(ξQ
n, ξ′Qn) ≤

∫
Z×Z

Knc(z, z′)Π(dzdz′) , (45)

see (Douc et al., 2018, Corollary 20.1.4). For any probability measure Π on (Z2,Z⊗2), we denote by
PK
ζ and EK

ζ the probability and the expectation on the canonical space ((Z2)N, (Z⊗2)⊗N) such that
the canonical process {(Zn, Z

′
n), n ∈ N} is a Markov chain with initial probability Π and Markov

kernel K. We write EK
z,z′ instead EK

δz,z′
.

To prove Proposition 1 we need the following auxiliary lemma about the last iterate of SGD algo-
rithm. It can be found in (Dieuleveut et al., 2020, Lemma 10), but we provide its proof here for
completeness.
Lemma 11. Assume A1, A2, and A3(2). Then for any γ ∈ (0; 1/(2 L)] and any k, r ∈ N it holds
that

E1/2[∥θk+r − θ⋆∥2|Fk] ≤ (1− γµ)r/2∥θk − θ⋆∥ +
21/2γ1/2τ2

µ1/2
(46)

Proof. Using the recurrence (11), we get

E[∥θk+1 − θ⋆∥2|Fk] = E
[
∥θk − θ⋆ − γ∇F (θk, ξk+1)∥2|Fk

]
= E

[
∥θk − θ⋆∥2 − 2γ⟨∇F (θk, ξk+1), θk − θ⋆⟩+ γ2∥∇F (θk, ξk+1)∥2|Fk

]
.

Applying A3(2), we get

E[∥θk+1−θ⋆∥2|Fk] ≤ ∥θk−θ⋆∥2−2γ⟨∇f(θk)−∇f(θ⋆), θk−θ⋆⟩+γ2E[∥∇F (θk, ξk+1)∥2|Fk] .

Since ∇f(θ⋆) = 0, using A3(2), we obtain

E[∥∇F (θk, ξk+1)∥2|Fk] = E[∥∇F (θk, ξk+1)−∇F (θ⋆, ξk+1) + εk+1(θ
⋆)∥2|Fk]

≤ 2L⟨∇f(θk)−∇f(θ⋆), θk − θ⋆⟩+ 2τ22 .

Using A1, A2, and the fact that γ ≤ 1/(2 L), we get

E[∥θk+1 − θ⋆∥2|Fk] ≤ (1− 2γµ(1− L γ))∥θk − θ⋆∥2 + 2γ2τ22 ≤ (1− γµ)∥θk − θ⋆∥ + 2γ2τ22 .

Hence, applying tower property for conditional expectations, we obtain

E[∥θk+r−θ⋆∥2|Fk] ≤ (1−γµ)r∥θk−θ⋆∥2+2γ2τ22

r∑
i=0

(1−γµ)i ≤ (1−γµ)r∥θk−θ⋆∥2+
2γτ22
µ

.

A.1 PROOF OF PROPOSITION 1

Consider the synchronous coupling construction defined by the recursions

θ
(γ)
k+1 = θ

(γ)
k − γ∇F (θ(γ)k , ξk+1) , θ

(γ)
0 = θ ∈ Rd ,

θ̃
(γ)
k+1 = θ̃

(γ)
k − γ∇F (θ̃(γ)k , ξk+1) , θ̃

(γ)
0 = θ̃ ∈ Rd .

(47)
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The pair (θ(γ)k , θ̃
(γ)
k )k∈N defines a Markov chain with the Markov kernel Kγ(·, ·), which is a cou-

pling kernel of (Qγ ,Qγ). From now on we omit an upper index (γ) and write simply (θk, θ̃k)k∈N.
Applying now A3(2), we get for γ ≤ 1/L that

E[∥θk+1 − θ̃k+1∥2|Fk] = E[∥θk − θ̃k − γ(∇F (θk, ξk+1)−∇F (θ̃k, ξk+1))∥2|Fk]

= ∥θk − θ̃k∥2 + γ2E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2|Fk]

− 2γ⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩
≤ (1− γµ)∥θk − θ̃k∥2, (48)

where in the last inequality we additionally used 1−2γµ(1−γ L /2) ≤ 1−γµ. Similarly, for a cost
function c defined in (16), we get using Hölder’s and Minkowski’s inequalities, that for any r ∈ N

E[c(θk+r, θ̃k+r)|Fk] ≤ E1/2[∥θk+r − θ̃k+r∥2|Fk]
(
E1/2[∥θk+r − θ⋆∥2|Fk]

+ E1/2[∥θ̃k+r − θ⋆∥2|Fk] +
23/2γ1/2τ2

µ1/2

)
.

Combining the above inequalities and applying Lemma 11, we obtain

E[c(θk+r, θ
′
k+r)|Fk] ≤ (1− γµ)r/2∥θk − θ̃k∥

(
(1− γµ)r/2(∥θk − θ⋆∥ + ∥θ̃k − θ⋆∥) + 25/2γ1/2τ2

µ1/2

)
≤ 2(1− γµ)r/2c(θk, θ

′
k) .

Note that 2(1−γµ)r/2 ≤ 2 for any r ≤ m(γ)−1 and 2(1−γµ)m(γ)/2 ≤ 1/2. Hence, applying the
result of (Douc et al., 2018, Theorem 20.3.4), we obtain that the Markov kernel Qγ admits a unique
invariant distribution πγ . Applying (45), we get

Wc(νQ
k
γ , πγ) ≤ 2(1/2)⌊k/m(γ)⌋Wc(ν, πγ) . (49)

It remains to note that (1/2)⌊k/m(γ)⌋ ≤ 2(1/2)k/m(γ), and the statement follows.

A.2 PROOF OF PROPOSITION 2

We first prove (22) and (23) and introduce some additional notations. Under A1 – A3(2), we define
a matrix-valued function C(θ) : Rd → Rd×d as

C(θ) = E[ε1(θ)
⊗2] . (50)

The result below is essentially based on an appropriate modification of the bounds presented in
Dieuleveut et al. (2020, Lemma 18). A careful inspection of its proof reveals that we do not need
additional assumptions on C(θ), instead we use Lemma 14.

Lemma 12. Assume A1, A2, A3(6), and C1(6). Then, for any γ ∈ (0, 1/(LCstep,6)], it holds

θ̄γ − θ⋆ = −(γ/2){H⋆}−1{∇3f(θ⋆)}TC(θ⋆) +B1γ
3/2 , (51)

where θ̄γ is defined in (22), C(θ) is defined in (50), andB1 ∈ Rd satisfies ∥B1∥ ≤ L
µC1+

LD
3/2
last,6τ

3
6

2µ5/2 ,
with

C1 =

√
Lτ22√

Cstep,6µ
+

1

2

((
L2 Dlast,2

µ3/2
+

L
√

Dlast,2√
µ

)
τ22 +

LD
3/2
last,6τ

3
6

2µ3/2
+

L1/2 D2
last,4τ

4
4

4µ2C
3/2
step,6

)
(52)

Moreover,
Σ̄γ = γTC(θ⋆) +B2γ

3/2 , (53)

where the operator T : Rd×d → Rd×d is defined by the relation

vec (TA) = (H⋆ ⊗I + I⊗H⋆)−1 vec (A)

for any matrix A ∈ Rd×d, and B2 ∈ Rd×d is a matrix, such that ∥B2∥ ≤ C1.
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Proof. Let (θ(γ)k )k∈N be a recurrence defined in (11) with initial distribution θ0 ∼ πγ . Recall that
θ0 is independent from the noise variables (ξk)k≥1. First, applying a third-order Taylor expansion
of ∇f(θ) around θ⋆, we obtain

∇f(θ) = H⋆(θ − θ⋆) + (1/2){∇3f(θ⋆)}(θ − θ⋆)⊗2 +G(θ) , (54)

where G(θ) has a form

G(θ) =
1

2

(∫ 1

0

t2∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 .

Thus, using A2,

∥G(θ)∥ ≤ L4

2
∥θ − θ⋆∥3 .

Integrating (54) with respect to πγ , we get

H⋆(θ̄γ − θ⋆) + (1/2){∇3f(θ⋆)}
[∫

Rd

(θ − θ⋆)⊗2πγ(dθ)

]
= −

∫
Rd

G(θ)πγ(dθ) . (55)

Moreover, using C1(6), we have

∥
∫
Rd

G(θ)πγ(dθ)∥ ≤ γ3/2
LD

3/2
last,6τ

3
6

2µ3/2
. (56)

Now we provide an explicit expression for the covariance matrix

Σ̄γ =

∫
Rd

(θ − θ⋆)⊗2πγ(dθ) . (57)

Using the recurrence (11), we obtain that

θ1 − θ⋆ = (I− γH⋆)(θ0 − θ⋆)− γε1(θ0)− γη(θ0) ,

where the function η(·) is defined in (28). Hence, taking second moment w.r.t. πγ from both sides,
we get that

Σ̄γ = (I− γH⋆)Σ̄γ(I− γH⋆) + γ2
∫
Rd

C(θ)πγ(dθ) + γ2
∫
Rd

{η(θ)}⊗2πγ(dθ)

− γ

∫
Rd

[
(I− γH⋆)(θ − θ⋆){η(θ)}⊤ + η(θ)(θ − θ⋆)⊤(I− γH⋆)

]
πγ(dθ) . (58)

In the above equation C(θ) is defined in (50), and we additionally used that E
[
ε1(θ0)|F0

]
= 0.

Using Taylor’s expansion with integral remainder together with A2 and C1(6),

γ2∥
∫
Rd

{η(θ)}⊗2πγ(dθ)∥F ≤ γ4
L2 D2

last,4τ
4
4

4µ2
,

γ∥
∫
Rd

[
(I− γH⋆)(θ − θ⋆){η(θ)}⊤ + η(θ)(θ − θ⋆)⊤(I− γH⋆)

]
πγ(dθ)∥F ≤ γ5/2

LD
3/2
last,6τ

3
6

2µ3/2

Moreover, (50) together with C1(6) imply that∫
Rd

C(θ)πγ(dθ) = C(θ⋆) +Bγ1/2 ,

where B ∈ Rd×d satisfies ∥B∥ ≤ C2. Using (58) together with C1(6), we obtain that Σ̄γ is a
solution to the matrix equation

H⋆ Σ̄γ + Σ̄γ H
⋆ −γH⋆ Σ̄γ H

⋆ = γC(θ⋆) +B′γ3/2 , (59)

where

∥B′∥F ≤ C2 +
LD

3/2
last,6τ

3
6

2µ3/2
+

L1/2 D2
last,4τ

4
4

4µ2C
3/2
step,6

. (60)

16



Published as a conference paper at ICLR 2025

The matrix equation (59) can be written using vectorization operation as

vec
(
Σ̄γ

)
= γ(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (C(θ⋆))

+ γ3/2(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (B′) .

Applying Lemma 13(c), we obtain that

(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 = (H⋆ ⊗I + I⊗H⋆)−1 +D ,

where D ∈ Rd2×d2

is a matrix which satisfies

∥D∥ ≤ γ L /µ .

Thus,

vec
(
Σ̄γ

)
= γ(H⋆ ⊗I + I⊗H⋆)−1 vec (C(θ⋆)) + γ3/2(D/

√
γ) vec (C(θ⋆))

+ γ3/2(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (B′) .

We define the matrix B2 such that

vec (B2) = (D/
√
γ) vec (C(θ⋆)) + (H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 vec (B′) (61)

Hence, using A3, (60), and Lemma 13, we get

∥B2∥ ≤ ∥B2∥F = ∥ vec (B2) ∥
≤ ∥D/√γ∥∥ vec (C(θ⋆)) ∥ + ∥(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1∥∥B′∥F

≤
√
γ L τ22
µ

+
1

2

(
C2 +

LD
3/2
last,6τ

3
6

2µ3/2
+

L1/2 D2
last,4τ

4
4

4µ2C
3/2
step,6

)

≤
√
Lτ22√

Cstep,6µ
+

1

2

(
C2 +

LD
3/2
last,6τ

3
6

2µ3/2
+
L1/2D2

last,4τ
4
4

4µ2C
3/2
step,6

)
,

where in the last inequality we use that γ ≤ 1/(LCstep,6). Combining the above bounds in (55), we
arrive at the expansion formula (51).

Lemma 13. Assume A1 and A2. Then for any γ ∈ (0, 1/(LCstep,6)] it holds

(a) All eigenvalues λ̃i, i ∈ {1, . . . , d2} of the matrix H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆ satisfy

2µ(1− γ L /2) ≤ λ̃i ≤ 2L(1− γµ/2) ;

(b) ∥(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1∥ ≤ 1/2;

(c) In addition,

(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 = (H⋆ ⊗I + I⊗H⋆)−1 +D where ∥D∥ ≤ γ L /µ .

Proof. Assumption A 1 guarantees that the symmetric matrix H⋆ is positive-definite. Let
u1, . . . , ud ∈ Rd and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ µ > 0 be its eigenvectors and eigenvalues, re-
spectively. Then we notice that

H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆ = H⋆ ⊗(I− (γ/2)H⋆) + (I− (γ/2)H⋆)⊗H⋆ .

Hence, the latter operator is also diagonalizable in the orthogonal basis ui ⊗ uj ∈ Rd2

with the
respective eigenvalues being equal to λi(1−(γ/2)λj)+λj(1−(γ/2)λi). Hence, we obtain the first
part of lemma (a). To prove (b) it remains to note that for γ ≤ 1/L it holds (2µ(1 − γ L /2))−1 ≤
1/2. Set now

S = H⋆ ⊗I + I⊗H⋆ ∈ Rd2×d2

R = H⋆ ⊗H⋆ ∈ Rd2×d2

.
(62)
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Then it is easy to observe that

(S − γR)−1 = S−1 + S−1
∞∑
k=1

γk(RS−1)k ,

provided that γ∥RS−1∥ < 1. Sice R and S are diagonalizable in the same orthogonal basis {ui ⊗
uj}1≤i,j≤d with the eigenvalues λiλj and λi + λj , respectively, the condition γ∥RS−1∥ < 1 holds
provided that γ < 2/L. Hence, for γ ≤ 1/L, it holds that

(H⋆ ⊗I + I⊗H⋆ −γH⋆ ⊗H⋆)−1 = (H⋆ ⊗I + I⊗H⋆)−1 +D ,

where D ∈ Rd2×d2

satisfies

∥D∥ ≤ 2γ∥S−1∥∥RS−1∥ ≤ γ L

µ
.

We now state an auxiliary lemma about the function C(θ) from (50).
Lemma 14. Assume A1, A2, A3(2), and C1(2). Then, for any γ ∈ (0, 1/(LCstep,2)], it holds

∥
∫
Rd

C(θ)πγ(dθ)− C(θ⋆)∥F ≤ C2γ
1/2 ,

where the constant C2 is given by

C2 =

(
L2 Dlast,2

µ3/2
+

L
√
Dlast,2√
µ

)
τ22 . (63)

Proof. Recall that

ε1(θ) = ∇F (θ, ξ1)−∇f(θ) .

Hence, using the definition of C(θ) in (50), we get, with θ ∈ Rd, that

C(θ)− C(θ⋆) = E[(ε1(θ)− ε1(θ
⋆))(ε1(θ)− ε1(θ

⋆))T ] + E[ε1(θ
⋆)(ε1(θ)− ε1(θ

⋆))T ]

+E[(ε1(θ)− ε1(θ
⋆))ε1(θ

⋆)T ].

Using A3(2), we obtain

E[∥ε1(θ)− ε1(θ
⋆)∥2] ≤ L⟨∇f(θ)−∇f(θ⋆), θ − θ⋆⟩ − ∥∇f(θ)−∇f(θ⋆)∥2 ≤ L2 ∥θ − θ⋆∥2.

Hence, combining the previous inequalities and using Hölder’s inequality, we obtain for any θ ∈ Rd,
that

∥C(θ)− C(θ⋆)∥F ≤ L2 ∥θ − θ⋆∥2 + τ2 L ∥θ − θ⋆∥.
Applying now C1(2), we obtain

∥
∫
Rd

C(θ)πγ(dθ)−C(θ⋆)∥F ≤
∫
Rd

∥C(θ)−C(θ⋆)∥Fπγ(dθ) ≤ L2 Dlast,2γτ
2
2

µ
+τ2 L

√
Dlast,2γτ22

µ
.

We conclude the proof by using the fact that γµ ≤ 1.

Now we prove (24). We use synchronous coupling construction defined by the pair of recursions:

θk+1 = θk − γ∇F (θk, ξk+1), θ0 ∼ ν

θ̃k+1 = θ̃k − γ∇F (θ̃k, ξk+1), θ̃0 ∼ πγ .

Recall that the corresponding coupling kernel is denoted as Kγ(·, ·). Then we obtain

Eν [θ̄n]− θ⋆ = n−1
2n∑

k=n+1

EKγ
ν,πγ

[θk − θ̃k] + n−1
2n∑

k=n+1

Eπγ
[θ̃k − θ⋆]

= n−1
2n∑

k=n+1

EKγ
ν,πγ

[θk − θ̃k] + (θ̄γ − θ⋆) .
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Using (48) and C1(2), we obtain

∥EK
ν,πγ

[θk − θ̃k]∥ ≤ (1− γµ)k/2{EKγ
ν,πγ

∥θ0 − θ̃0∥2}1/2

≤ (1− γµ)k/2(E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

√
2γτ2√
µ

) .

Summing the above bounds for k from n+ 1 to 2n, we obtain (24).

A.3 PROOF OF PROPOSITION 5

Note that
Eν [θ̄

(RR)
n − θ⋆] = 2Eν [θ̄

γ
n − θ⋆]− Eν [θ̄

2γ
n − θ⋆].

Applying (24), we obtain

∥Eν [θ̄
(RR)
n − θ⋆]∥ ≤ (

L

µ
C1 +

LD
3/2
last,6τ

3
6

2µ5/2
)γ3/2 +R3(θ0 − θ⋆, γ, n), (64)

where

∥R3(θ0 − θ⋆, γ, n)∥ ≲
(1− γµ)(n+1)/2

nγµ
(E1/2

ν

[
∥θ0 − θ⋆∥2

]
+

√
γτ2√
µ

) , (65)

and the statement follows.

B PROOF OF THEOREM 3

Theorem 15 (Version of Theorem 3 with explicit constants). Assume A1, A2, A3(6), and C1(6).
Then for any γ ∈ (0, 1/(LCstep,6)], n ∈ N, and initial distribution ν on Rd, the sequence of
Polyak-Ruppert estimates (14) satisfies

E1/2
ν [∥H⋆(θ̄(γ)n − θ⋆)∥2] ≤

√
TrΣ⋆

ε√
n

+
C2

γ1/2n
+ C3γ +

C4γ
1/2

n1/2
+R2(n, γ, ∥θ0 − θ⋆∥) ,

where we have set

C2 = c0D
1/2
last,2τ2 , C3 = c0

LDlast,4τ
2
4

2µ
, C4 = c0 LD

1/2
last,2τ2 . (66)

and the remainder term R2(n, γ, ∥θ0 − θ⋆∥) is given by

R2(n, γ, ∥θ0 − θ⋆∥) = c0 L(1− γµ)(n+1)/2

γµn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

L c0(1− γµ)n+1

2nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
. (67)

Proof. Throughout the proof we omit upper index (γ) both for the elements of the sequence
{θ(γ)k }k∈N and Polyak-Ruppert averaged estimates θ̄(γ)n . Instead, we write simply θk and θ̄n, re-
spectively. Summing the recurrence (30), we obtain that

H⋆(θ̄n − θ⋆) =
θn+1 − θ⋆

γn
− θ2n+1 − θ⋆

γn
− 1

n

2n∑
k=n+1

εk+1(θk)−
1

n

2n∑
k=n+1

η(θk) . (68)

Applying the 3-rd order Taylor expansion with integral remainder, we get that

∇f(θk) = H⋆(θk − θ⋆) +

(∫ 1

0

t∇3f(tθ⋆ + (1− t)θk) dt

)
(θk − θ⋆)⊗2 ,

where ∇3f(·) ∈ Rd×d×d. Using A2, we thus obtain that

∥η(θk)∥ ≤ 1

2
L3 ∥θk − θ⋆∥2 .
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Applying Minkowski’s inequality to the decomposition (33) and to the last term therein, we get

E1/2
ν [∥H⋆(θ̄n − θ⋆)∥2] ≤ E

1/2
ν [∥θn+1 − θ⋆∥2]

γn
+

E
1/2
ν [∥θ2n+1 − θ⋆∥2]

γn
+

1

n
E1/2
ν

[
∥

2n∑
k=n+1

εk+1(θk)∥2
]

+
L3

2n

2n∑
k=n+1

E1/2
ν

[
∥θk − θ⋆∥4

]
.

Applying C1(2), we obtain that for γ ∈ (0; 1/(LCstep,2)] it holds that

Eν∥θk − θ⋆∥2 ≲ (1− γµ)kEν

[
∥θ0 − θ⋆∥2

]
+

Dlast,2γτ
2
2

µ
. (69)

Moreover, from γ ∈ (0; 1/(LCstep,4)] it holds that

E1/2
ν ∥θk − θ⋆∥4 ≲ (1− γµ)kE1/2

ν

[
∥θ0 − θ⋆∥4

]
+

Dlast,4γτ
2
4

µ
. (70)

Combining Lemma 16 with previous inequalities, we obtain

E1/2
ν [∥H⋆(θ̄n − θ⋆)∥2] ≲

√
TrΣ⋆

ε√
n

+
D

1/2
last,2τ2

γ1/2n
+

LDlast,4γτ
2
4

2µ
+

LD
1/2
last,2γ

1/2τ2

µ1/2n1/2

+
(1− γµ)(n+1)/2

γn

(
L

µ
+ 1

)
E1/2
ν

[
∥θ0 − θ⋆∥2

]
+

L(1− γµ)n+1

nγµ
E1/2
ν

[
∥θ0 − θ⋆∥4

]
,

and the result follows.

Below we provide an auxiliary lemma used in the proof of Theorem 3.
Lemma 16. Assume A1, A2, A3(2), and C1(2). Then for any γ ∈ (0; 1/(LCstep,2)] and any n ∈ N,
it holds

E1/2
ν [∥

2n∑
k=n+1

{εk+1(θk)−εk+1(θ
⋆)}∥2] ≲

LD
1/2
last,2

√
γnτ2

µ1/2
+
L(1− γµ)(n+1)/2

γµ
E1/2
ν

[
∥θ0−θ⋆∥2

]
.

(71)
Moreover, let p ≥ 2, and assume A1, A2, A3(p), and C1(p). Then for any γ ∈ (0; 1/(LCstep,p)] and
n ∈ N it holds that

E1/p
ν [∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥p] ≲

LD
1/2
last,p

√
γnpτp

µ1/2

+
L p(1− γµ)(n+1)/2

µ1/2γ1/2
E1/p
ν [∥θ0 − θ⋆∥p] .

(72)

Proof. Since {εk+1(θk) − εk+1(θ
⋆)} is a martingale-difference sequence with respect to Fk, we

have

Eν

[
∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥2

]
=

2n∑
k=n+1

Eν

[
∥{εk+1(θk)− εk+1(θ

⋆)}∥2
]
.

where εk+1(θ
⋆) = ∇F (θ⋆, ξk+1) uses the same noise variable ξk+1 as F (θk, ξk+1). Note that

Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2] = Eν [∥∇F (θk, ξk+1)−∇F (θ⋆, ξk+1)∥2

− 2Eν

[
⟨∇F (θk, ξk+1)−∇F (θ⋆, ξk+1),∇f(θk)−∇f(θ⋆)⟩

]
+ ∥∇f(θk)−∇f(θ⋆)∥2] .

Using A2, A3(2), and taking conditional expectation with respect to Fk, we obtain

Eν [∥εk+1(θk)− εk+1(θ
⋆)∥2] ≤ Eν [L⟨∇f(θk)−∇f(θ⋆), θk − θ⋆⟩ − ∥∇f(θk)−∇f(θ⋆)∥2]

≤ L2 Eν [∥θk − θ⋆∥2].
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Thus, we obtain that

Eν [∥
2n∑

k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥2] ≤ L2

2n∑
k=n+1

Eν [∥θk − θ⋆∥2] ,

and the statement (71) follows from the assumption C 1(2). In order to prove (72), we apply
Burkholder’s inequality Osekowski (2012, Theorem 8.6) and obtain

E1/p
ν [∥

2n∑
k=n+1

{εk+1(θk)− εk+1(θ
⋆)}∥p] ≤ pE1/p

ν

[( 2n∑
k=n+1

∥εk+1(θk)− εk+1(θ
⋆)∥2

)p/2]
≤ p
( 2n∑
k=n+1

E2/p
ν

[
∥εk+1(θk)− εk+1(θ

⋆)∥p
])1/2

≲ pL
( 2n∑
k=n+1

E2/p
ν

[
∥θk − θ⋆∥p

])1/2
(a)

≲
LD

1/2
last,p

√
γnpτp

µ1/2
+

L p(1− γµ)(n+1)/2

µ1/2γ1/2
E1/p
ν [∥θ0 − θ⋆∥p] ,

where in (a) we have additionally used C1(p).

C PROOF OF THEOREM 6

Within this section we often use the definition of the function ψ : Rd → Rd from (38):

ψ(θ) = (1/2)∇3f(θ∗)(θ − θ⋆)⊗2 (73)

Theorem 17 (Version of Theorem 6 with explicit constants). Assume A1, A2, A3(6), and C1(6). Then
for any γ ∈ (0, 1/(LCstep,6)∧2/(11 L)], initial distribution ν, and n ∈ N, the Richardson-Romberg
estimator θ̄(RR)

n defined in (37) satisfies

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤
√

TrΣ⋆
ε

n1/2
+

CRR,1γ
1/2

n1/2
+

CRR,2

γ1/2n
+ CRR,3γ

3/2 +
CRR,4γ

n1/2

+R4(n, γ, ∥θ0 − θ⋆∥) ,
where we have set

CRR,1 =
c0Dlast,4 L τ

2
4

µ3/2
+
c0 LD

1/2
last,2τ2

µ1/2
, CRR,2 =

c0D
1/2
last,2τ2

µ1/2

CRR,3 = c0

(
LD

3/2
last,6τ

3
6

µ3/2
+ C1

)
, CRR,4 =

c0Dlast,4 L τ
2
4

µ
,

(74)

C1 is defined in (52), and the remainder term R4(n, γ, ∥θ0 − θ⋆∥) is given by

R4(n, γ, ∥θ0 − θ⋆∥) = c0 L(1− γµ)(n+1)/2

nγµ

×
(
E1/2
ν [∥θ0 − θ⋆∥6] + E1/2

ν [∥θ0 − θ⋆∥4] + E1/2
ν [∥θ0 − θ⋆∥2] + Dlast,4γτ

2
4

µ

)
. (75)

Proof. Using the recursion (30), we obtain that

H⋆(θ̄(RR)
n − θ⋆) =

2(θ
(γ)
n+1 − θ⋆)

γn
− 2(θ

(γ)
2n − θ⋆)

γn
−
θ
(2γ)
n+1 − θ⋆

2γn
+
θ
(2γ)
2n − θ⋆

2γn

− 1

n

2n∑
k=n+1

[2εk+1(θ
(γ)
k )− εk+1(θ

(2γ)
k )]− 1

n

2n∑
k=n+1

[2η(θ
(γ)
k )− η(θ

(2γ)
k )] . (76)
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Therefore, applying Minkowski’s inequality to the decomposition (76), we obtain for any initial
distribution ν that

E1/2
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥2] ≤ 1

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥2]︸ ︷︷ ︸

T1

+
2

γn
E1/2
ν [∥θ(γ)n+1 − θ⋆∥2] + 2

γn
E1/2
ν [∥θ(γ)2n+1 − θ⋆∥2]︸ ︷︷ ︸

T2

+
1

2γn
E1/2
ν [∥θ(2γ)n+1 − θ⋆∥2] + 1

2γn
E1/2
ν [∥θ(2γ)2n+1 − θ⋆∥2]︸ ︷︷ ︸

T3

+
2

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
(γ)
k )− εk+1(θ

⋆)∥2]︸ ︷︷ ︸
T4

+
1

n
E1/2
ν [∥

2n∑
k=n+1

εk+1(θ
(2γ)
k )− εk+1(θ

⋆)∥2]︸ ︷︷ ︸
T5

+ ∥2πγ(ψ)− π2γ(ψ)∥︸ ︷︷ ︸
T6

+
2

n
E1/2
ν [∥

2n∑
k=n+1

η(θ
(γ)
k )− πγ(ψ)∥2] +

1

n
E1/2
ν [∥

2n∑
k=n+1

η(θ
(2γ)
k )− π2γ(ψ)∥2]︸ ︷︷ ︸

T7

.

Now we upper bound the terms in the right-hand side of the above bound separately. First, we note
that

T1 =

√
TrΣ⋆

ε√
n

.

Using C1(2), we get

T2 + T3 ≲
(1− γµ)(n+1)/2

γn
E1/2
ν [∥θ0 − θ⋆∥2] +

D
1/2
last,2τ2

µ1/2γ1/2n
.

Applying Lemma 16, we get

T4 + T5 ≲
LD

1/2
last,2γ

1/2τ2

µ1/2n1/2
+

L(1− γµ)(n+1)/2

µγn
E1/2
ν

[
∥θ0 − θ⋆∥2

]
.

Now we proceed with the term T6. Applying the recurrence (11), we obtain that

θ
(γ)
1 − θ⋆ = (I− γH⋆)(θ

(γ)
0 − θ⋆)− γε1(θ

(γ)
0 )− γη(θ

(γ)
0 ) . (77)

Thus, taking expectation w.r.t. πγ in both sides above, we get

H⋆(θ̄γ − θ⋆) = Eπγ

[
η(θ

(γ)
0 )
]
= πγ(ψ) + πγ(G) ,

where G(θ) is defined in (38) and writes as

G(θ) =
1

2

(∫ 1

0

t2∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 .

Hence, applying A2 together with Proposition 2, we obtain that

T6 = ∥2πγ(ψ)− π2γ(ψ)∥ ≲ C1γ
3/2 . (78)

Finally, using Lemma 21, Lemma 20, and Lemma 18, we obtain that

T7 ≲
Dlast,4 L γτ

2
4

µn1/2
+

Dlast,4 L γ
1/2τ24

µ3/2n1/2
+

LD
3/2
last,6γ

3/2τ36

µ3/2

+
L(1− γµ)(n+1)/2

nγµ

(
E1/2
ν [∥θ0 − θ⋆∥6] + E1/2

ν [∥θ0 − θ⋆∥4] + Dlast,4γτ
2
4

µ

)
.

Combining the bounds above completes the proof.

22



Published as a conference paper at ICLR 2025

Below we provide some auxiliary technical lemmas.

Lemma 18. Assume A1, A2, A3(4), and C1(4). Then for any γ ∈ (0; 1/(LCstep,4)] and any n ∈ N
it holds

n−1E1/2
πγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
≲

Dlast,4 L3 γτ
2
4

µn1/2
+

Dlast,4 L3 γ
1/2τ24

µ3/2n1/2
. (79)

Proof. Using the fact that πγ is a stationary distribution, we obtain that

Eπγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
= nEπγ

[∥ψ(θ0)− πγ(ψ)∥2]

+

n−1∑
k=1

(n− k)Eπγ [(ψ(θ0)− πγ(ψ))
T (ψ(θk)− πγ(ψ))]

Using the Markov property, Cauchy–Schwartz inequality, Proposition 1, and Lemma 22, we obtain

Eπγ
[(ψ(θ0)− πγ(ψ))

T (ψ(θk)− πγ(ψ))]

= Eπγ [(ψ(θ0)− πγ(ψ))
T (Qk

γψ(θ0)− πγ(ψ))]

(a)

≲ (1/2)k/m(γ) L3 Eπγ

[
∥ψ(θ0)− πγ(ψ)∥

∫
c(θ0, ϑ)dπγ(ϑ)

]
,

(80)

where in (a) we additionally used the fact that

Wc(δθ0 , πγ) =

∫
c(θ0, ϑ)dπγ(ϑ) .

Using C1(4), we get

Eπγ
[∥ψ(θ0)− πγ∥2] ≤ Eπγ

[∥ψ(θ0)∥2] ≤ L2
3 Eπγ

[∥θ0 − θ⋆∥4] ≤ L2
3 Dlast,4γ

2τ44
µ2

, (81)

and, using C1(2) and C1(4), we get∫ ∫
c2(θ0, ϑ)dπγ(ϑ)dπγ(θ0) (82)

≤
∫ ∫

∥θ0 − ϑ∥2
(
∥θ0 − θ⋆∥ + ∥ϑ− θ⋆∥ +

23/2γ1/2τ2
µ1/2

)2

dπγ(ϑ)dπγ(θ0) (83)

≲
∫ ∫

(∥θ0 − θ⋆∥4 + ∥ϑ− θ⋆∥4) + γτ22
µ

(∥θ0 − θ⋆∥2 + ∥ϑ− θ⋆∥2)dπγ(ϑ)dπγ(θ0) (84)

≲
Dlast,4γ

2τ24
µ2

+
Dlast,2γ

2τ42
µ2

≲
Dlast,4γ

2τ44
µ2

. (85)

Using (81), (82), and Cauchy–Schwartz inequality for (80), we obtain

Eπγ [(ψ(θ0)− πγ(ψ))
T (ψ(θk)− πγ(ψ))] ≲ (1/2)k/m(γ)L3 Dlast,4γ

2τ44
µ2

.

Combining the inequalities above and using that m(γ) = ⌈2 log 4
γµ ⌉ ≤ 2 log 4+1

γµ , we get

n−1E1/2
πγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2
]
≤
(
Dlast,4 L

2
3 γ

2τ44
µ2n

+
Dlast,4m(γ) L2

3 γ
2τ44

µ2n

)1/2

≲
Dlast,4 L3 γτ

2
4

µn1/2
+

Dlast,4 L3 γ
1/2τ24

µ3/2n1/2
.
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Lemma 19. Assume A1, A2, A3(4). Then for any γ ∈ (0; 2
11 L ], and any k ∈ N it holds that

E[∥θk+1 − θ̃k+1∥4|Fk] ≤ (1− γµ)2∥θk − θ̃k∥4. (86)

Moreover, let p ≥ 2 and assume A1, A2, and A3(2p). Then for any γ ∈ (0, p
4·3p L ] and any k ∈ N it

holds that
E[∥θk+1 − θ̃k+1∥2p|Fk] ≤ (1− γµ)p∥θk − θ̃k∥2p . (87)

Proof. Recall that the sequences {θk}k∈N and {θ̃k}k∈N are defined by the recurrences

θk+1 = θk − γ∇F (θk, ξk+1) , θ0 = θ ∈ Rd , (88)

θ̃k+1 = θ̃k − γ∇F (θ̃k, ξk+1) , θ̃0 = θ̃ ∈ Rd . (89)

Expanding the brackets, we obtain that

∥θk+1 − θ̃k+1∥4 = ∥θk − θ̃k∥4 + γ4∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥4

+ 4γ2⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩2

+ 2γ2∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2∥θk − θ̃k∥2

− 4γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥θk − θ̃k∥2

− 4γ3⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2

Using A3(4) and Cauchy–Schwartz inequality, we get

E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥4|Fk] ≤ L3⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2,
E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩2|Fk] ≤ L⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2,

E[∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2∥θk − θ′k∥2|Fk] ≤ L⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥θk − θ̃k∥2|Fk] = ⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2 .

Similarly,

E[⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2|Fk]

≤ L2⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

Combining all inequalities above, we obtain

E[∥θk+1 − θ′k+1∥4|Fk] ≤ ∥θk − θ̃k∥4

− (4γ − γ4 L3 −4γ2 L−2γ2 L−4γ3 L2)⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩∥θk − θ̃k∥2

Using A1 and since 1− γ3 L3 /4− 3γ L /2− γ2 L2 ≥ 1− 11γ L /4, we get

E[∥θk+1 − θ̃k+1∥4|Fk] ≤ (1− 4γµ(1− 11γ L /4))∥θk − θ̃k∥4

≤ (1− 2γµ(1− 11γ L /4))2∥θk − θ̃k∥4 .

Since 1− 11γ L /4 ≥ 1/2 for γ ≤ 2/(11 L), we complete the proof.

For simplicity of proof for second part of lemma we define δk+1 = ∥θk+1 − θ′k+1∥. Then we have

E[δ2pk+1|Fk]

= E[(δ2k − 2γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩+ γ2∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2)p|Fk]

= E[
∑

i+j+l=p;
i,j,l∈{0,...p}

p!

i!j!l!
δ2ik (−2γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩)jγ2l∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2l|Fk] .

Now we bound each term in the sum above.

1. First, for i = p, j = 0, l = 0 the corresponding term in the sum is equal to δ2pk .
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2. Second, for i = p− 1, j = 1, l = 0, we have
E[(−2γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk−θ̃k⟩)|Fk] = −2γ⟨∇f(θk)−∇f(θ̃k), θk−θ̃k⟩ .

3. Third, for l ≥ 1 or j ≥ 2 we use Cauchy-Schwartz inequality and get
(2γ⟨∇F (θk, ξk+1)−∇F (θ̃k, ξk+1), θk − θ̃k⟩)jγ2l∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2l

≤ 2jγj+2lδjk∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2l+j .

Moreover using A3(2p), we get
E[2jγj+2lδ2i+j

k ∥∇F (θk, ξk+1)−∇F (θ̃k, ξk+1)∥2l+j |Fk]

≤ 2jγj+2lδ2p−2
k L2l+j−1⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩ .

Combining all inequalities above, we obtain

E[δ2pk+1|Fk] ≤ δ2pk − 2pγ⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩δ2p−2
k

+
(∑

i+j+l=p;
i,j,l∈{0,...p}

j+2l≥2

p!

i!j!l!
2jγj+2lL2l+j−1

)
⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩δ2p−2

k .

Since γ ≤ p
3p4L , we have

E[δ2pk+1|Fk] ≤ δ2pk − γp⟨∇f(θk)−∇f(θ̃k), θk − θ̃k⟩δ2p−2
k .

It remains to apply A1 together with an elementary bound (1− pµγ) ≤ (1− γµ)p.

Lemma 20. Assume A1, A2, A3(4), and C1(4). Then for any γ ∈ (0; 1/(LCstep,4)], any n ∈ N and
initial distribution ν it holds

n−1E1/2
ν [∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2] ≲ n−1E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2]

+
L3(1− γµ)(n+1)/2

nγµ

(
E1/2
ν [∥θ0 − θ⋆∥4] + Dlast,4γτ

2
4

µ

)
.

Proof. Using the synchronous coupling construction defined in (47) and the corresponding coupling
kernel Kγ , we obtain that

E1/2
ν [∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥2] = (EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− πγ(ψ)}∥2])1/2

≤ E1/2
πγ

[∥
2n∑

k=n+1

{ψ(θ̃k)− πγ(ψ)}∥2] + (EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− ψ(θ̃k)}∥2])1/2
(90)

Applying Minkowski’s inequality to the last term and using Lemma 22, we get

(EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)− ψ(θ̃k)}∥2])1/2 ≤
2n∑

k=n+1

(EK
ν,πγ

[∥{ψ(θk)− ψ(θ̃k)}∥2])1/2

≤ L3

2

2n∑
k=n+1

(EKγ
ν,πγ

[c2(θk, θ̃k)])
1/2 .

Using Hölder’s and Minkowski’s inequality and applying Lemma 19 , (69) and (70), we obtain
(EKγ

ν,πγ
[c2(θk, θ̃k)])

1/2

≤ (EKγ
ν,πγ

[∥θk − θ̃k∥4])1/4
(
E1/4
πγ

[∥θ̃k − θ⋆∥4] + E1/4
ν [∥θk − θ⋆∥4 + γ1/2τ2

µ1/2
]
)

≤ (1− γµ)k/2(EKγ
ν,πγ

[∥θ0 − θ̃0∥4])1/4(E1/4
ν [∥θ0 − θ⋆∥4] +

D
1/2
last,4γ

1/2τ4

µ1/2
+
γ1/2τ2
µ1/2

)

≲ (1− γµ)k/2
(
Dlast,4γτ

2
4

µ
+ E1/2

ν ∥θ0 − θ⋆∥4
)
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Combining all inequalities above, we get

(EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)−ψ(θ′k)}∥2])1/2 ≲
L3(1− γµ)(n+1)/2

γµ

(
E1/2
ν [∥θ0 − θ⋆∥4] + Dlast,4γτ

2
4

µ

)
.

Substituting the last inequality into (90) we complete the proof.

Lemma 21. Assume A1, A2, A3(6), and C1(6). Then for any γ ∈ (0; 1/(LCstep,6)], n ∈ N, and
initial distribution ν, it holds that

n−1E1/2
ν [

2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2] ≤ n−1E1/2
ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]

+
L4(1− γµ)(n+1)/2

nγµ
E1/2
ν [∥θ0 − θ⋆∥6] +

L4 D
3/2
last,6γ

3/2τ36

3µ3/2
.

(91)

Proof. Applying the 4-rd order Taylor expansion with integral remainder, we get that

η(θ) = ψ(θ) +
1

2

(∫ 1

0

t2∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3 , (92)

and using A2, we obtain

(1/2)∥
(∫ 1

0

t2∇4f(tθ⋆ + (1− t)θ) dt

)
(θ − θ⋆)⊗3∥ ≤ L4 ∥θ − θ⋆∥3 . (93)

Therefore, combining (92), A2, and applying Minkowski’s inequality, we get

E1/2
ν

[ 2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2
]
≤ E1/2

ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]

+
L4

6

2n∑
k=n+1

E1/2
ν [∥θk − θ⋆∥6] (94)

Applying C1(6) for the last term of (94), we get

E1/2
ν

[ 2n∑
k=n+1

∥η(θk)− πγ(ψ)∥2
]
≲ E1/2

ν

[ 2n∑
k=n+1

∥ψ(θk)− πγ(ψ)∥2
]
+

L4 nD
3/2
last,6γ

3/2τ36

µ3/2

+
L4(1− γµ)3(n+1)/2

1− (1− γµ)3/2
E1/2
ν [∥θ0 − θ⋆∥6] .

(95)

In remains to notice that (1− γµ)3/2 ≤ (1− γµ), and the statement follows.

We conclude this section with a technical statement on the properties of the function ψ from (73).
Lemma 22. Let ψ(·) be a function defined in (73). Then for any θ, θ′ ∈ Rd, it holds that

∥ψ(θ)− ψ(θ′)∥ ≤ 1

2
L3 c(θ, θ

′).

Proof. For simplicity, let us denote T = ∇3f(θ∗). Hence,

∥ψ(θ)− ψ(θ′)∥ ≤ 1

2
∥T (θ − θ⋆)⊗2 − T (θ′ − θ⋆)⊗2∥. (96)

Note that

∥T∥ = sup
x ̸=0,y ̸=0,z ̸=0

∑
i,j,k

Tijkxiyjzk

∥x∥∥y∥∥z∥
≥ sup

x̸=0,y ̸=0
sup
z ̸=0

∑
k

zk
∑
i,j

Tijkxiyj

∥z∥∥y∥∥x∥
= sup

x ̸=0,y ̸=0

∥t(x, y)∥
∥y∥∥x∥

, (97)
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where t(x, y)k =
∑
i,j

Tijkxiyj . Therefore, for any x, y ∈ Rd, it holds that

∥t(x, y)∥ ≤ ∥x∥∥y∥∥T∥ (98)

We denote v = Tx⊗2 − Ty⊗2. Then

vk =
∑
i,j

Tijk(xixj − yiyj) =
∑
i,j

Tijk((xi − yi)xj + (xi − yi)yj) =∑
i,j

Tijk(xi − yi)xj +
∑
i,j

Tijk(xi − yi)yj , (99)

where the first inequality is true since Tijk = Tjik by definition of T . Combining (98) and (C) and
using triangle inequality, we obtain

∥v∥ ≤ ∥T∥∥x− y∥(∥x∥ + ∥y∥) ≤ ∥T∥∥x− y∥(∥x∥ + ∥y∥ +
2
√
2τ2

√
γ

√
µ

).

We complete the proof setting x = θ − θ⋆, y = θ′ − θ⋆

D PROOF OF THEOREM 9

Theorem 23 (Version of Theorem 9 with explicit constants). Let p ≥ 2 and assume A1, A2, A3(3p),
and C1(3p). Then for any γ ∈ (0, 1/(LCstep,3p) ∧ p/(4 · 3p L)], initial distribution ν, and n ∈ N,
the estimator θ̄(RR)

n defined in (37) satisfies

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

c2pτp
n1−1/p

+
CRR,5

nγ1/2
+

CRR,6γ
1/2

n1/2
+ CRR,7γ

3/2

+
CRR,8

n
+R5(n, γ, ∥θ0 − θ⋆∥) ,

where we have set

CRR,5 =
c0D

1/2
last,pτp

µ1/2
, CRR,6 =

c0 LD
1/2
last,ppτp

µ1/2
+
c0 LDlast,2ppτ

2
2p

µ3/2
,

CRR,7 = c0

(
C1 +

LD
3/2
last,3pτ

3
3p

µ3/2

)
, CRR,8 =

c0 LDlast,2pτ2p
µ2

,

(100)

C1 is defined in (52), and the remainder term R5(n, γ, ∥θ0 − θ⋆∥) is given by

R5(n, γ, ∥θ0−θ⋆∥) =
c0(1− γµ)(n+1)/2

γn
E1/p
ν

[
∥θ0−θ⋆∥p

]
+
c0 L p(1− γµ)(n+1)/2

µ1/2γ1/2n
E1/p
ν [∥θ0−θ⋆∥p]

+
c0 L(1− γµ)(n+1)/2

γµn

(
E1/p
ν [∥θ0 − θ⋆∥2p] +

Dlast,2pγτ
2
2p

µ

)
+
c0 L(1− γµ)(3/2)n

γµ
E1/p
ν

[
∥θ0−θ⋆∥3p

]
(101)
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Proof. Using the decomposition (76), we obtain that for any p ≥ 2, it holds that

E1/p
ν [∥H⋆(θ̄(RR)

n − θ⋆)∥p] ≲ 1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
⋆)∥p]︸ ︷︷ ︸

T1

+
1

γn
E1/p
ν [∥θ(γ)n+1 − θ⋆∥p] + 1

γn
E1/p
ν [∥θ(γ)2n+1 − θ⋆∥p]︸ ︷︷ ︸

T2

+
1

γn
E1/p
ν [∥θ(2γ)n+1 − θ⋆∥p] + 1

γn
E1/p
ν [∥θ(2γ)2n+1 − θ⋆∥p]︸ ︷︷ ︸

T3

+
1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
(γ)
k )− εk+1(θ

⋆)∥p]︸ ︷︷ ︸
T4

+
1

n
E1/p
ν [∥

2n∑
k=n+1

εk+1(θ
(2γ)
k )− εk+1(θ

⋆)∥p]︸ ︷︷ ︸
T5

+ ∥2πγ(ψ)− π2γ(ψ)∥︸ ︷︷ ︸
T6

+
1

n
E1/p
ν [∥

2n∑
k=n+1

ψ(θ
(γ)
k )− πγ(ψ)∥p] +

1

n
E1/p
ν [∥

2n∑
k=n+1

ψ(θ
(2γ)
k )− π2γ(ψ)∥p]︸ ︷︷ ︸

T7

+
1

n

2n∑
k=n+1

E1/p
ν

[
∥G(θ(γ)k )∥p

]
+

1

n

2n∑
k=n+1

E1/p
ν

[
∥G(θ(2γ)k )∥p

]
︸ ︷︷ ︸

T8

.

Now we upper bounds the terms above separately. Applying first the Pinelis version of Rosenthal
inequality (Pinelis, 1994, Theorem 4.1) together with A3(p), we obtain that

T1 ≤
c1
√
TrΣ⋆

εp
1/2

n1/2
+

c2pτp
n1−1/p

.

Applying C1(p) (which is implied by C1(3p)), we obtain that

T2 + T3 ≲
D

1/2
last,pτp

µ1/2nγ1/2
+

(1− γµ)(n+1)/2

γn
E1/p
ν

[
∥θ0 − θ⋆∥p

]
.

Applying Lemma 16 (see the bound (72)), we get that

T4 + T5 ≲
LD

1/2
last,pγ

1/2pτp

µ1/2n1/2
+

L p(1− γµ)(n+1)/2

µ1/2γ1/2n
E1/p
ν [∥θ0 − θ⋆∥p] .

Using the bounds (77) and (78), we obtain
T6 ≲ C1γ

3/2 .

Applying Proposition 8, we get

1

n
E1/p
πγ

[∥
2n∑

k=n+1

ψ(θ
(γ)
k )− πγ(ψ)∥p] ≲

LDlast,2ppτ
2
2pγ

1/2

µ3/2n1/2
+

LDlast,2pτ2p
µ2n

.

Using this bound and Lemma 24, we obtain that

T7 ≲
LDlast,2ppτ

2
2pγ

1/2

µ3/2n1/2
+

LDlast,2pτ2p
µ2n

+
L(1− γµ)(n+1)/2

γµn

(
E1/p
ν [∥θ0 − θ⋆∥2p] +

Dlast,2pγτ
2
2p

µ

)
Finally, applying the definition of G(θ) in (38) together with C1(3p), we obtain that

T8 ≲
LD

3/2
last,3pγ

3/2τ33p

µ3/2
+

L

n

2n∑
k=n+1

(1− γµ)(3/2)kE1/p
ν

[
∥θ0 − θ⋆∥3p

]
≲

LD
3/2
last,3pγ

3/2τ33p

µ3/2
+

L(1− γµ)(3/2)n

γµ
E1/p
ν

[
∥θ0 − θ⋆∥3p

]
.

To complete the proof it remains to combine the bounds for T1 to T8.
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D.1 PROOF OF PROPOSITION 8

In the proof below we use the notation

ψ̄(θ) = ψ(θ)− πγ(ψ) .

We proceed with the blocking technique. Indeed, let us set the parameter

m = m(γ) =

⌈
2 log 4

γµ

⌉
. (102)

Our choice of parameter m(γ) is due to Proposition 1. For notation conciseness we write it simply
as m, dropping its dependence upon γ. Using Minkowski’s inequality, we obtain that

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≤ E1/p

πγ

[
∥
⌊n/m⌋m−1∑

k=0

ψ̄(θk)∥p
]
+mE1/p

πγ

[
∥ψ̄(θ0)∥p

]
. (103)

Now we consider the Poisson equation, associated with Qm
γ and function ψ̄, that is,

gm(θ)−Qm
γ gm(θ) = ψ̄(θ) . (104)

The function

gm(θ) =

∞∑
k=0

Qkm
γ ψ̄(θ) (105)

is well-defined under the assumptions A1, A2, A3(2p), and C1(2p). Moreover, gm is a solution of
the Poisson equation (104). Define q := ⌊n/m⌋, then we have

qm−1∑
k=0

ψ̄(θk) =

m−1∑
r=0

Bm,r , with Bm,r =

q−1∑
k=0

{
gm(θkm+r)−Qm

γ gm(θkm+r)
}
. (106)

Using Minkowski’s inequality, we get from (103), that

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≤ mE1/p

πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]
+ 2mE1/p

πγ

[
∥ψ(θ0∥p

]
(107)

Now we upper bound both terms of (107) separately. Under assumption A2, and applying C1(2p),
we get

E1/p
πγ

[
∥ψ(θ0∥p

]
≤ L

2
E1/p
πγ

[
∥θ0 − θ⋆∥2p

]
≤

LDlast,2pγτ
2
2p

2µ
. (108)

To proceed with the first term, we apply Burkholder’s inequality (Osekowski, 2012, Theorem 8.6),
and obtain that

E1/p
πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]

≤ pE1/p
πγ

[( q∑
k=1

∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥2
)p/2]

. (109)

Applying now Minkowski’s inequality again, we get

E2/p
πγ

[( q∑
k=1

∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥2
)p/2] ≤ qE2/p

πγ

[
∥
{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]

≲ q
(
E2/p
πγ

[∥gm(θ0)∥p] + E2/p
πγ

[∥Qm
γ gm(θ0)∥p]

)
≲ qE2/p

πγ
[∥gm(θ0)∥p] .
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It remains to upper bound the moment E2/p
πγ [∥gm(θ0)∥p]. In order to do this, we first note that due to

the duality theorem (Douc et al., 2018, Theorem 20.1.2.), we get that for any k ∈ N,
∥Qmk

γ ψ(θ)− πγ(ψ)∥ = sup
u∈Rd:∥u∥=1

|Qmk
γ (u⊤ψ(θ))− πγ(u

⊤ψ)|

≤ 1

2
L3 Wc(δθQ

km
γ , πγ)

≤ 2L3(1/2)
kWc(δθ, πγ) ,

where the last inequality is due to Proposition 1. Hence, applying the definition of gm(θ) in (105),
we obtain that

E1/p
πγ

[∥gm(θ0)∥p] ≤
∞∑
k=0

E1/p
πγ

[
∥Qkm

γ ψ̄(θ)∥p
]
≤ 2L3

∞∑
k=0

(1/2)kE1/p
πγ

[
{Wc(δθ, πγ)}p

]
.

To control the latter term, we simply apply the definition of Wc(δθ, πγ) and a cost function c(θ, θ′)
together with C1(2p), we get

E1/p
πγ

[
{Wc(δθ, πγ)}p

]
≲

(∫
Rd×Rd

∥θ − θ′∥p
(
∥θ − θ⋆∥ + ∥θ′ − θ⋆∥ +

τ2
√
γ

√
µ

)p

πγ(dθ)πγ(dθ
′)

)1/p

≤
(∫

∥θ − θ′∥2pπγ(dθ)πγ(dθ′)
)1/2p(∫ (∥θ − θ⋆∥ + ∥θ′ − θ⋆∥ +

τ2
√
γ

√
µ

)2p

πγ(dθ)πγ(dθ
′)
)1/2p

≲
Dlast,2pτ

2
2pγ

µ
.

Combining now the bounds above in (109), we get that

E1/p
πγ

[
∥

q∑
k=1

{
gm(θkm)−Qm

γ gm(θ(k−1)m)
}
∥p
]
≲

Dlast,2ppL3 τ
2
2pγ

√
q

µ
, (110)

and, hence, substituting into (103), we get

E1/p
πγ

[
∥
n−1∑
k=0

ψ̄(θk)∥p
]
≲

Dlast,2ppL3 τ
2
2pγ

√
qm

µ
+

LDlast,2pτ
2
2pγm

2µ
. (111)

Now the statement follows from the definition of m = m(γ) in (102) and q = ⌊n/m⌋ ≤ n/m.

D.2 VERSION OF PROPOSITION 8 FOR ARBITRARY INITIAL DISTRIBUTION ν .

In order to prove Theorem 23, we need a generalization of Proposition 8 for arbitrary initial distri-
bution ν. The following result holds:

Lemma 24. Let {θ̃(γ)k }k∈N and {θ(γ)k }k∈N be defined by the synchronous coupling construction
(47), where θ̃(γ)0 ∼ πγ and θ(γ)0 ∼ ν. Then, under assumptions of Proposition 8, for any γ ∈
(0, 1/(LCstep,6)], n ∈ N and initial distribution ν, it holds that

E1/p
ν

[
∥

2n∑
k=n+1

{ψ(θ(γ)k )− πγ(ψ)}∥p
]
≤ E1/p

πγ

[
∥

2n∑
k=n+1

{ψ(θ̃(γ)k )− πγ(ψ)}∥p
]

+
c0 L3(1− γµ)(n+1)/2

γµ

(
E1/p
ν [∥θ(γ)0 − θ⋆∥2p] +

Dlast,2pγτ
2
2p

µ

)
,

where c0 is an absolute constant.

Proof. We consider the synchronous coupling contraction defined in (47) and denote by Kγ the
corresponding coupling kernel. Hence, we have

E1/p
ν

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥p
]
=
(
EKγ
ν,πγ

[
∥

2n∑
k=n+1

{ψ(θk)− πγ(ψ)}∥p
])1/p

≤ E1/p
πγ

[
∥

2n∑
k=n+1

{ψ(θ̃k)− πγ(ψ)}∥p
]
+
(
EKγ
ν,πγ

[
∥

2n∑
k=n+1

{ψ(θk)− ψ(θ̃k)}∥p
])1/p

.
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It remains to bound the last term in the inequality above. Applying Minkowski’s inequality together
with Lemma 22, we get

(
EKγ
ν,πγ

[
∥

2n∑
k=n+1

{ψ(θk)− ψ(θ̃k)}∥p
])1/p ≤ L3

2

2n∑
k=n+1

(
EKγ
ν,πγ

[cp(θk, θ̃k)]
)1/p

.

Using Hölder’s and Minkowski’s inequalities together with C1(2p) and Lemma 19, we obtain that(
EKγ
ν,πγ

[cp(θk, θ̃k)]
)1/p

≤ (EKγ
ν,πγ

[∥θk − θ̃k∥2p])1/(2p)
(
E1/(2p)
πγ

[∥θ̃k − θ⋆∥2p] + E1/(2p)
ν [∥θk − θ⋆∥2p + 23/2γ1/2τ2

µ1/2
]
)

≤ (1− γµ)k/2(EKγ
ν,πγ

[∥θ0 − θ̃0∥2p])1/(2p)(E1/(2p)
ν [∥θ0 − θ⋆∥2p] +

2D
1/2
last,2pγ

1/2τ2p

µ1/2
+

23/2γ1/2τ2
µ1/2

)

≲ (1− γµ)k/2

(
Dlast,2pγτ

2
2p

µ
+ E1/p

ν ∥θ0 − θ⋆∥2p
)

Combining all inequalities above, we get(
EKγ
ν,πγ

[∥
2n∑

k=n+1

{ψ(θk)−ψ(θ̃k)}∥p]
)1/p

≲
L3(1− γµ)(n+1)/2

γµ

(
E1/p
ν [∥θ0−θ⋆∥2p]+

Dlast,2pγτ
2
2p

µ

)
,

and the statement follows.

E EXPERIMENTAL DETAILS

We recall the error representation (39), and obtain with simple algebra:

H⋆(θ̄(γ)n − θ⋆) + n−1
2n∑

k=n+1

εk+1(θ
⋆) =

θ
(γ)
n+1 − θ⋆

γn
−
θ
(γ)
2n+1 − θ⋆

γn

− 1

n

2n∑
k=n+1

{εk+1(θ
(γ)
k )− εk+1(θ

⋆)} − 1

n

2n∑
k=n+1

ψ(θ
(γ)
k )− 1

n

2n∑
k=n+1

G(θ
(γ)
k ) . (112)

Under A3(6), the statistics 1
n

∑2n
k=n+1 εk+1(θ

⋆) is a sum of independent random variables, and

n−2E[∥
2n∑

k=n+1

εk+1(θ
⋆)∥2] = TrΣ⋆

ε

n
.

Hence, in order to trace the rate of the second-order terms in (41), it is enough to find the de-
cay rate of the right-hand side in (112). We select different sample sizes n = 250 × 2k, where
k = 0, . . . , 14, and run the SGD procedure (2) based on the constant step sizes γ and 2γ, selecting
γ = 1/

√
n. Then we construct the associated estimates θ̄(γ)n and θ̄(2γ)n . We conduct M = 320 inde-

pendent parallel runs to approximate the expectations. Code to reproduce experiments is provided
at https://github.com/svsamsonov/richardson romberg example.
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